FINAL EXAM - ANSWER KEY

Problem 1 (Real Analysis) [36 points]:

Answer whether each of the following statements is true or false. If true, prove your answer; if false provide a counterexample. If you have trouble giving a formal proof, or constructing a formal counterexample, a helpful picture will usually earn you partial credit.

A) [6 points] Let (x_n) be a sequence in \mathbb{R} such that for all $n, x_n > 0$. If 0 is the greatest lower bound (GLB) for the set $\{x_n : n \in \mathbb{N}\}$, then the sequence contains a strictly decreasing subsequence. (Hint: think about GLB's);

Ans: TRUE:

Let $y_1 = x_1$. Now assume that for $k \in \mathbb{N}$, we've chosen $(y_1, ..., y_k)$ such that for some strictly increasing function $\tau^k : (1, ..., k) \to \mathbb{N}$, $y_k = x_{\tau^k(k)}$, thus $(y_1, ..., y_k)$ preserves the order of (x_n) . Moreover, assume that for all $k' \leq k$, $y_{k'-1} > y_{k'}$. Both conditions are satisfied vacuously for k = 1. Now by assumption, $y_k > 0$. Since 0 is a GLB for the image of the sequence, there exists $n > \tau^k(k)$ such that $x_n \in (0, y_k)$. Set y_{k+1} equal to this x_n and define $\tau^{k+1} : (1, ..., k+1) \to \mathbb{N}$ by, $\tau^{k+1}(k') = \begin{cases} \tau^k(k') & \text{if } k' \leq k \\ n & \text{if } k' = k+1 \end{cases}$. Since $n > \tau^k(k)$, τ^{k+1} is a strictly increasing function. Moreover, for all $k' \leq k + 1$, $y_{k'-1} > y_{k'}$. Hence, by induction we have constructed a strictly decreasing subsequence of (x_n) .

B) [6 points] If $\{x_n\}$ is a Cauchy sequence and $f(\cdot)$ a continuous function, then $\{f(x_n)\}$ is a Cauchy sequence.

Ans: FALSE: Let $f : \mathbb{R}^{++} \to [-1,1]$ be defined by f(x) = sin(1/x); The sequence $x = \left(\frac{2}{\pi(1+2n)}\right)_{n \in \mathbb{N}}$ converges to zero, and so is Cauchy. Yet $f(x) = \begin{cases} 1 & \text{if } n \text{ is even} \\ -1 & \text{if } n \text{ is odd} \end{cases}$. Thus $\{f(x_n)\}$ is not a Cauchy sequence.

C) [6 points] The product of two homogenous functions is a homogenous function. (Definition: A function $f : \mathbb{R}^n_+ \to \mathbb{R}$ is *homogenous* if for some k > 0, all $\mathbf{x} \in \mathbb{R}^n_+$ and all $\alpha > 0$, $f(\alpha \mathbf{x}) = \alpha^k f(\mathbf{x})$.

Ans: TRUE:

Let $h(\mathbf{x}) = f(\mathbf{x})g(\mathbf{x})$ where f and g are both homogeneous. Then there exists k^f , k^g for all $\mathbf{x} \in \mathbb{R}^n_+$ and all $\alpha > 0$, $f(\alpha \mathbf{x}) = \alpha^{k^f} f(\mathbf{x})$ and $g(\alpha \mathbf{x}) = \alpha^{k^g} g(\mathbf{x})$. Hence

$$h(\alpha \mathbf{x}) = f(\alpha \mathbf{x})g(\alpha \mathbf{x}) = \alpha^{k^{j}}f(\mathbf{x})\alpha^{k^{g}}g(\mathbf{x}) = \alpha^{k^{j}+k^{g}}h(\mathbf{x})$$

D) [6 points] A quasiconcave function defined on an open convex set $S \subset \mathbb{R}$ does not obtain a strict global minimum on S.

Ans: TRUE:

Suppose f attains a strict global minimum at $s \in S$. Since S is open, s is an interior point of S. It follows that there exists $\epsilon > 0$, such that $s + \epsilon$ and $s - \epsilon$ both belong to S. Let $\alpha = \min(f(s-\epsilon), f(s+\epsilon))$. Since f attains a strict global minimum at $s \in S$, $f(s) < \alpha$. Both $s+\epsilon$ and $s-\epsilon$ belong to the upper contour set of f corresponding to α , but s does not. Hence the upper contour set of f corresponding to α is not a convex set, so that f cannot be quasi-concave.

If $f_1(\cdot), f_2(\cdot), \ldots, f_n(\cdot)$ are quasiconcave functions, and $g(\cdot)$ is a monotone E) [6 points] function, then $h(\cdot) = g(f_1(\cdot) + f_2(\cdot) + \ldots + f_n(\cdot))$ is a quasiconcave function.

Ans: FALSE:

Ans: FALSE: Let n = 2 and g(x) = x. Clearly g is a monotone function. Let $f_1(x) = \begin{cases} x & \text{if } x \in [0, 1] \\ 2 - x & \text{if } x \in [1, 2] \\ 0 & \text{otherwise} \end{cases}$ and let $f_2(x) = \begin{cases} x - 2 & \text{if } x \in [2,3] \\ 4 - x & \text{if } x \in [3,4] \\ 0 & \text{otherwise} \end{cases}$ Clearly $h(x) = \begin{cases} x & \text{if } x \in [0,1] \\ 2 - x & \text{if } x \in [1,2] \\ x - 2 & \text{if } x \in [2,3] \\ 4 - x & \text{if } x \in [2,3] \\ 0 & \text{otherwise} \end{cases}$ Thus, $f_1(x) + f_2(x)$ is not quasi-concave. Moreover, $h(x) = g(f_1(x) + f_2(x)) = f_1(x) + f_2(x)$, so that h is not a quasi-concave function.

The correspondence $\Psi : \mathbb{R}_+ \twoheadrightarrow \mathbb{R}_+$ defined by $\Psi(x) = \{y : 0 \le y < \frac{1}{x} \text{ if } x > 0; \emptyset \text{ if } x = 0\}$ is F) [6 points] upper hemicontinuous.

Ans: FALSE:

Fix $\epsilon > 0$ arbitrarily. For all $x \in B(x, \epsilon) \cap \mathbb{R}_{++}$, $\Psi(x) \subset [0, 1/\epsilon)$. Hence the upper inverse image $\bar{\Psi}^{-1}\left([0, \frac{1}{2\epsilon})\right) \cap [0, \epsilon) = \{0\}$. Hence $\bar{\Psi}^{-1}\left([0, \frac{1}{2\epsilon})\right)$ is not open. Hence Ψ is not u.h.c.

Problem 2 (Linear Algebra) [36 points]:

For i = 1, 2, let \mathbf{v}^i and λ^i denote a unit-length eigenvector and corresponding eigenvalue for invertible 2×2 matrix A. Assume that $\lambda^1 \neq \lambda^2$. It will probably help to do part C) before parts A) and B).

A) [6 points] For i = 1, 2, let \mathbf{u}^i and ψ^i denote, respectively, a unit eigenvector and eigenvalue of A^{-1} . Find \mathbf{u}^i and ψ^i .

Ans: $\mathbf{u}^i = \mathbf{v}^i, \ \psi^i = 1/\lambda^i$.

B) [6 points] For i = 1, 2, let \mathbf{w}^i and ϕ^i denote, respectively, a unit eigenvector and eigenvalue of A^k . Find \mathbf{w}^i and ϕ^i .

Ans: $\mathbf{w}^i = \mathbf{v}^i$, $\phi^i = k\lambda^i$.

C) [6 points] Explain the intuition behind your results using the interpretation of A as a mapping of the unit circle to \mathbb{R}^2 .

Ans:

Given a vector space V, indicate whether each statement is true or false. If true, prove your claim. If false, give a counterexample

D) [6 points] If the vectors \mathbf{u}^1 , \mathbf{u}^2 and \mathbf{u}^3 span V, then dim V = 3.

Ans: False: let $\mathbf{u}^i = i$, for i = 1, 2, 3. These three vectors span \mathbb{R} , whose dimension is 1.

E) [6 points] If the vectors \mathbf{u}^1 , \mathbf{u}^2 and \mathbf{u}^3 are a minimal spanning set for V, then $\dim V = 3$.

Ans: False: let $\mathbf{u}^1 = (1,0,0)$, $\mathbf{u}^2 = (0,1,1)$, $\mathbf{u}^3 = (0,1,-1)$. These vectors space $\{\mathbf{v} \in \mathbb{R}^3 : \mathbf{v}_3 = 0\}$, which is a 2 dimensional subspace of \mathbb{R}^3 .

F) [6 points] If the vectors \mathbf{u}^1 , \mathbf{u}^2 and \mathbf{u}^3 are a minimal spanning set for V, then \mathbf{u}^1 , \mathbf{u}^2 , \mathbf{u}^3 are linearly independent.

Ans: True: suppose $\mathbf{u}^3 = t_1 \mathbf{u}^1 + t_2 \mathbf{u}^2$, so that the set is not linear independent. Now consider $\mathbf{v} \in V$; if $\mathbf{v} = \sum_{i=1}^3 r_i \mathbf{u}^i$, then $\mathbf{v} = \sum_{i=1}^2 r_i \mathbf{u}^i + r_3(t_1 \mathbf{u}^1 + t_2 \mathbf{u}^2)$, i.e., \mathbf{v} can be written as a linear combination of \mathbf{u}^1 and \mathbf{u}^2 .

Problem 3 (Calculus) [36 points]:

Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by $f = \sqrt{x_1}x_2^2$

A) [5 points] Write down the gradient and the hessian of f

Ans:
$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{x_2^2}{2\sqrt{x_1}} & 2x_2\sqrt{x_1} \end{bmatrix}$$
. $Hf(\mathbf{x}) = \begin{bmatrix} \frac{x_2^2}{4\sqrt{x_1^3}} & \frac{x_2}{\sqrt{x_1}} \\ \frac{x_2}{\sqrt{x_1}} & 2\sqrt{x_1} \end{bmatrix}$

B) [5 points] Write down the directional derivative $f_h(\cdot)$ where h = (3, 4)

Ans: $f_h = \frac{3x_2^2}{10\sqrt{x_1}} + \frac{8x_2\sqrt{x_1}}{5} = \frac{3x_2^2 + 16x_2x_1}{10\sqrt{x_1}}$

C) [5 points] Let $\mathbf{x} = (1,2)$. Write down the differential of ∇f at \mathbf{x} .

Ans: $d \bigtriangledown f^{\mathbf{x}}(\mathbf{dx}) = Hf(\mathbf{x})\mathbf{dx} = \begin{bmatrix} -1 & 2\\ 2 & 2 \end{bmatrix} \begin{bmatrix} dx_1\\ dx_2 \end{bmatrix}.$

D) [5 points] Let $\mathbf{x} = (1,2)$. Use the differential to approximate the value of ∇f at (2,5)

ns: Let
$$\mathbf{dx} = (2,5) - (1,2) = (1,3)$$

 $\bigtriangledown f(2,4) \approx \bigtriangledown f(\mathbf{x}) + d \bigtriangledown f^{\mathbf{x}}(\mathbf{dx})$
 $= [2,4] + \begin{bmatrix} -1 & 2\\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1\\ 3 \end{bmatrix} = [7,12]$

Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function such that for some points x and x' in \mathbb{R} , f(x') > f(x). (Hint: the difference in the differentiability conditions in the next two parts is a big HINT.)

E) [8 points] If f is once continuously differentiable, use Global Taylor to show that there exists an x'' between x and x' such that the slope of f at x'' is equal to the slope of the line segment joining (x, f(x)) and (x', f(x')).

Ans: Let dx = x' - x. By Global Taylor, there exists $\lambda \in [0,1]$, such that $f(x') - f(x) = f'(x + \lambda dx)dx$. Hence $\frac{f(x') - f(x)}{dx} = f'(x + \lambda dx)$. But $\frac{f(x') - f(x)}{dx}$ is the slope of the line segment joining (x, f(x)) and (x', f(x')). Hence, for $x'' = x + \lambda dx$, f'(x'') equals the slope of the line segment.

F) [8 points] If f is twice continuously differentiable, show that if f'(x) = 0, then there exists a point y between x and x', such that f''(y) > 0.

Ans: By Global Taylor, there exists $\lambda \in [0,1]$, such that $f(x') - f(x) = f'(x)dx + 0.5f''(x + \lambda dx)dx^2$. Since f(x') - f(x) > 0 and f'(x)dx = 0 it follows that $f''(x + \lambda dx)dx^2 > 0$. Since $dx^2 > 0$, it must be the case that $f''(x + \lambda dx) > 0$. Let $y = x + \lambda dx$. We've shown that f''(y) > 0.

А

Problem 4 (Constrained Optimization) [36 points]:

You are given the following maximization problem:

$$\max_{x,y} 2x + 3y \quad s.t. \quad \sqrt{x} + \sqrt{y} \le 5, x, y \ge 0$$

A) [8 points] Find the values for x, y and the lagrangians that satisfy the Kuhn Tucker conditions. If you prefer, solve the first order conditions of the Lagrangian.

Ans:

$$L(x, y, \lambda) = 2x + 3y + \lambda_0 (5 - \sqrt{x} - \sqrt{y}) + \lambda_x x + \lambda_y y$$

The first order conditions are

$$\begin{aligned} \frac{\partial L}{\partial x} &= 2 - \frac{\lambda_0}{2\sqrt{x}} + \lambda_x &= 0\\ \frac{\partial L}{\partial y} &= 3 - \frac{\lambda_0}{2\sqrt{y}} + \lambda_y &= 0\\ \frac{\partial L}{\partial \lambda_0} &= (5 - \sqrt{x} - \sqrt{y}) &\ge 0\\ \frac{\partial L}{\partial \lambda_x} &= x &\ge 0\\ \frac{\partial L}{\partial \lambda_y} &= y &\ge 0 \end{aligned}$$
for $i \in \{0, x, y\}, \qquad \lambda_i \frac{\partial L}{\partial \lambda_i} &\ge 0 \end{aligned}$

The objective function is strictly increasing in both x and y so the solution to this problem must satisfy $\sqrt{x} + \sqrt{y} = 5$.

- (a) If x, y > 0 then $\lambda_x = \lambda_y = 0$ in which case, $4\sqrt{x} = 6\sqrt{y}$, i.e., $\sqrt{y} = 2/3\sqrt{x}$ or $5\sqrt{x}/3 = 5$ or x = 9 hence y = 4. If $\lambda_0 = 12$, then $\frac{dL}{dx} = 2 \frac{12}{6} = \frac{dL}{dy} = 3 \frac{12}{4} = 0$. Thus the Kuhn Tucker conditions are satisfied.
- (b) Suppose x = 0 so that y = 25. By the complementary slackness conditions, $\lambda_x = 0$, so that $\frac{dL}{dx} > 0$.
- (c) Suppose y = 0 so that x = 25. By the complementary slackness conditions, $\lambda_y = 0$, so that $\frac{dL}{dy} > 0$.

Conclude that the only values that solve the problem are x = 9, y = 4, $\lambda_0 = 12$, $\lambda_x = \lambda_y = 0$. Note for future reference that at these values, the value of the objective function is 18+12=30.

B) [8 points] Find the solution to the maximization problem.

Ans: If y = 25, x = 0, the value of the objective is 75. If y = 0, x = 25, the value of the objective is 55. Thus the solution to the maximization problem is y = 25, x = 0.

C) [6 points] Your answers to the first two parts should not be the same. Explain why they are not.

Ans: The constraint function is not quasi-convex. This means that solving the KT conditions does not guarantee a maximum. In other words, the fact that the Kuhn Tucker conditions are satisfied at x = 9, y = 4 does *not* mean that these values *necessarily* maximize the value of the objective on the constraint set.

- Let $f: X \to \mathbb{R}$ be defined by $f(\mathbf{x}) = x_1 x_2$, for some convex set $X \subset \mathbb{R}^+_2$,
 - D) [8 points] Let $X = \{ \mathbf{x} \in \mathbb{R}^2_+ : \mathbf{x} \neq 0 \}$. Using the definition of negative definiteness "subject to constraint" or "on a subspace," prove that f is strictly quasi-concave.

Ans: $\nabla f(\mathbf{x}) = (x_2, x_1)$; $Hf(\mathbf{x}) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. Fix $\mathbf{x} \neq 0$, & $\mathbf{dx} \neq 0$ such that $\nabla f(\mathbf{x})\mathbf{dx} = 0$. Assume without loss of generality that $x_1 \neq 0$. Necessarily, $dx_2 = -\frac{x_2 dx_1}{x_1}$. Hence

$$\begin{bmatrix} dx_1 & -\frac{x_2 dx_1}{x_1} \end{bmatrix} \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix} \begin{bmatrix} dx_1\\ -\frac{x_2 dx_1}{x_1} \end{bmatrix} = \begin{bmatrix} dx_1 & -\frac{x_2 dx_1}{x_1} \end{bmatrix} \begin{bmatrix} -\frac{x_2 dx_1}{x_1} & dx_1 \end{bmatrix} = -2\frac{x_2 dx_1^2}{x_1} < 0$$

E) [6 points] Is *f* pseudo-concave? Prove your answer.

Ans: Answer is yes iff X does not contain zero. Assume that X doesn't contain zero. We've just proved that in this case, f is strictly quasi-concave, and hence quasi-concave. Also, $\nabla f(\mathbf{x}) = (x_2, x_1)$ which is non-zero when $\mathbf{x} \neq 0$. Hence f is quasi-concave and the gradient never vanishes, and so is pseudo-concave. On the other hand, if X contains zero, $\nabla f(0) = 0$, and 0 is not a global maximum of f; hence f fails the test for pseudo-concavity.

Problem 5 (Comparative Statics) [36 points]:

A competitive market equilibrium is described by the following two equations:

Profit maximization: $p(nq) - \frac{\partial c(q;w)}{\partial q} = 0$

Zero profit: qp(nq) - c(q;w) = 0

where $p(\cdot)$ denotes price, *n* the number of firms—ignore that firms come in integers, i.e., treat *n* as a real number.—*q* denotes quantity produced by each individual firm, $c(\cdot, \cdot)$ costs and *w* input costs. Assume that p' < 0 and that $c = \alpha + wq^2$, $\alpha > 0$.

A) [14 points] Find the derivative of n and q with respect to changes in w.

Ans: Parts A) and B) are answered together

B) [14 points] Does the quantity produced by each firm increase or decrease if w increases? What about the number of firms?

Ans: The quantity produced by each firm decreases, but the effect on the number of firms cannot be determined. To verify this, we'll write the equation system as

$$f(q,n;w) = \begin{bmatrix} p(nq) - \frac{\partial c(q,w)}{\partial q} \\ qp(nq) - c(q,w) \end{bmatrix} = 0$$

By the implicit function theorem

$$\begin{aligned} \frac{dq}{dw} \\ \frac{dn}{dw} \end{bmatrix} &= - \begin{bmatrix} \frac{df^1}{dq}, & \frac{df^1}{dn} \\ \frac{df^2}{dq}, & \frac{df^2}{dn} \end{bmatrix}^{-1} \begin{bmatrix} \frac{df^1}{dw} \\ \frac{df^2}{dw} \end{bmatrix} \\ &= - Jf_{q,w}^{-1} \begin{bmatrix} -\frac{\partial^2 c(q,w)}{\partial q \partial w} \\ -\frac{\partial c(q,w)}{\partial w} \end{bmatrix} = Jf_{q,w}^{-1} \begin{bmatrix} \frac{\partial^2 c(q,w)}{\partial q \partial w} \\ \frac{\partial c(q,w)}{\partial w} \end{bmatrix} \end{aligned}$$

where

$$\mathsf{Jf}_{q,w} = \begin{bmatrix} np'(nq) - \frac{\partial^2 c(q,w)}{\partial q^2}, & qp'(nq) \\ p(nq) + qnp'(nq) - \frac{\partial c(q,w)}{\partial q}, & q^2p'(nq) \end{bmatrix} = \begin{bmatrix} np'(nq) - \frac{\partial^2 c(q,w)}{\partial q^2}, & qp'(nq) \\ qnp'(nq), & q^2p'(nq) \end{bmatrix}$$

terms cancel nicely, so that

$$\det \left(\mathsf{Jf}_{q,n}\right) \quad = \quad -\frac{\partial^2 c\left(q,w\right)}{\partial q^2} q^2 p' \quad > \quad 0$$

Applying Cramer's rule

$$\frac{dq}{dw} = \det\left(\begin{bmatrix} \frac{\partial^2 c(q,w)}{\partial q \partial w}, & qp'(nq) \\ \frac{\partial c(q,w)}{\partial w}, & q^2 p'(nq) \end{bmatrix} \right) / \det\left(\mathsf{Jf}_{q,n} \right)$$

$$= qp'(nq) \det\left(\begin{bmatrix} \frac{\partial^2 c(q,w)}{\partial q \partial w}, & 1 \\ \frac{\partial c(q,w)}{\partial w}, & q \end{bmatrix} \right) / \left(-\frac{\partial^2 c(q,w)}{\partial q^2} q^2 p' \right)$$

$$= -\det\left(\begin{bmatrix} \frac{\partial^2 c(q,w)}{\partial q \partial w}, & 1 \\ \frac{\partial c(q,w)}{\partial w}, & q \end{bmatrix} \right) / \frac{\partial^2 c(q,w)}{\partial q^2} q$$

$$= \left(\frac{\partial c(q,w)}{\partial w} / q - \frac{\partial^2 c(q,w)}{\partial q \partial w} \right) / \frac{\partial^2 c(q,w)}{\partial q^2}$$

which, if $c(q,w) = wq^2$

$$= \frac{q-2q}{2w} = -\frac{q}{2w}$$

Now for $\frac{dn}{dw}$:

$$\frac{dn}{dw} = \det\left(\begin{bmatrix} np'(nq) - \frac{\partial^2 c(q,w)}{\partial q^2}, & \frac{\partial^2 c(q,w)}{\partial q\partial w} \\ qnp'(nq), & \frac{\partial c(q,w)}{\partial w} \end{bmatrix} \right) / \det\left(\mathsf{Jf}_{q,n}\right)$$

$$= n \det\left(\begin{bmatrix} 1 - \frac{\partial^2 c(q,w)}{\partial q^2} / (np'), & \frac{\partial^2 c(q,w)}{\partial q\partial w} \\ q, & \frac{\partial c(q,w)}{\partial w} \end{bmatrix} \right) / \left(-\frac{\partial^2 c(q,w)}{\partial q^2} q^2 \right)$$

$$= \frac{n}{q^2} \left[q \frac{\partial^2 c}{\partial q \partial w} / \frac{\partial^2 c}{\partial q^2} - \frac{\partial c}{\partial w} \left(1 / \frac{\partial^2 c}{\partial q^2} - 1 / (np') \right) \right]$$

which, if $\boldsymbol{c}(\boldsymbol{q},\boldsymbol{w})=\boldsymbol{w}\boldsymbol{q}^2$

$$= \frac{n}{q^2} \left[\frac{q^2}{w} - 2q^2 \left(\frac{1}{2wq} - \frac{1}{np'} \right) \right] = \frac{n}{2w} + \frac{1}{p'}$$

which cannot be signed

C) [8 points] The total quantity produced by all firms is Q = nq. What is the approximate change in Q when w increases by 0.1 units? What is the sign of this change?

Ans: The question asks us to evaluate the differential of Q at dw = 0.1. Now $dQ = \frac{dQ}{dw}dw$, so that the answer is just $0.1\frac{dQ}{dw}$.

$$\frac{dQ}{dw} = \frac{\partial q}{\partial w}n + \frac{\partial n}{\partial w}q = -\frac{qn}{2w} + \left(\frac{qn}{2w} + \frac{q}{p'}\right) = \frac{q}{p'} < 0$$

Hence the answer is $dQ \approx \frac{q}{10p'} < 0.$