ARE 211 Final Exam, Fall 2009

(100 points)

- 1. (Total: 10 points) Let x_n be any sequence containing only numbers of the form 1/n with $n \in \mathbb{N}$ with no duplicate elements. Prove x_n is a convergent sequence.
- 2. (Total: 12 points) Consider the correspondence $G : \mathbb{R} \rightrightarrows \mathbb{R}$ defined by $G(x) = (0, x^2 + 1)$.
 - (a) (2 points) Draw the graph of the correspondence.
 - (b) (6 points) This correspondence is either upper hemicontinuous or lower hemicontinuous, but is not both. Which of these properties is not satisfied? Prove your answer. (Hint: Consider x = 0.)
 - (c) (2 points) Is G a bounded-valued correspondence?
 - (d) (2 points) Does G have a closed graph?
- 3. (Total: 6 points) Consider the following equation:

$\int -6$	2	$\begin{bmatrix} x_1 \end{bmatrix}$	_	$\begin{bmatrix} 2 \end{bmatrix}$
8	4	$\begin{bmatrix} x_2 \end{bmatrix}$	_	12

- (a) (3 points) Are the column vectors comprising the 2×2 matrix linearly independent?
- (b) (3 points) If a unique solution exists, then it is the intersection of two sets. Graphically represent these two sets in R².
- 4. (Total: 6 points) Consider figure 1 on the last page. The curve in the figure represents a function $f: (0,7) \to S \in \mathbb{R}$
 - (a) (2 points) What is the level set of the function f corresponding to 2?
 - (b) (4 points) What are the lower and upper contour sets of the function f corresponding to 2?

- 5. (Total: 9 points) Consider $f(x, y, z) = xy^2 x^3yz + z^4$.
 - (a) (3 points) Compute $\nabla f(x, y, z)$.
 - (b) (3 points) Compute the directional derivative f(0, 1, 2) in the direction (1, 2, 2).
 - (c) (3 points) Compute a first order approximation of f(1,3,4) using information about f at (0,1,2).
- 6. (Total: 12 points) Each of the following statements can be proven true or false using an example. Indicate whether each statement is true or false and provide an example validating your claim.
 - (a) (3 points) A discontinuous function $f : \mathbb{R} \to \mathbb{R}$ can be strictly quasiconcave.
 - (b) (3 points) A quasiconcave function can have a non-convex lower contour set for some $x \in \mathbb{R}$.
 - (c) (3 points) Strict quasiconvexity guarantees at least one local minimum.
 - (d) (3 points) If every upper contour set of a continuous function $f : \mathbb{R} \to \mathbb{R}$ is closed then f is a quasiconcave function.
- 7. (Total: 12 points) Consider figure 2 on the last page depicts the domain of a continuously differentiable function $f : \mathbb{R}^2 \to \mathbb{R}$. The feasible set is $A = \{x \in \mathbb{R}^2 : \forall j = 1, 2, 3, g_j(x) \leq b_j\} \bigcap \mathbb{R}^2_{++}$. No demonstration is required to support your answer.
 - (a) (4 points) Suppose f has a unique global maximum at x^* . True or False: It is possible that the following two conditions are simultaneously satisfied.

i. $\nabla f(x)$ belongs to the non-negative cone formed by $\nabla g_1(x)$ and $\nabla g_2(x)$.

- ii. $\nabla f(z)$ belongs to the non-negative cone formed by $\nabla g_1(z)$ and $\nabla g_2(z)$.
- (b) (4 points) Now suppose we are also told f is quasiconcave. Let $\nabla f(y)$ belong to the non-negative cone formed by $\nabla g_1(y)$ and $\nabla g_3(y)$. True or False: The shadow values of relaxing g_1 and g_3 are both positive.
- (c) (4 points) Drop the supposition from part (a) that f has a unique global maximum at x^{*}, but once again assume that f is quasiconcave. Now suppose that ∇f vanishes in the feasible set. True or False: We know we have an interior solution in \mathbb{R}^2_{++} to the maximization of f(x) subject to $g_j(x) \leq b$ for j = 1, 2, 3.

8. (Total: 15 points) Consider the following NPP:

$$\max_{x_1, x_2} f(x_1, x_2) = -(x_1 - 2) - (x_2 - 4)^2$$

$$g_1: x_2 \le 4 - x_1 \quad \text{and} \quad g_2: x_2 \le 9 - 3x_1$$

$$g_3: x_1 \ge 0 \quad \text{and} \quad g_4: x_2 \ge 0$$
(1)

Using graphical methods answer the following:

- (a) (3 points) Draw the $x_1 x_2$ plane with the above constraints, indicate the feasible set.
- (b) (3 points) In the same plot draw ∇g_1 and ∇g_2 where the constraint functions associated with g_1 and g_2 intersect (indicate this intersection with a 'b').
- (c) (2 points) In the same plot indicate with a 'c' the solution to the UNconstrained maximization of $f(x_1, x_2)$ above. What is ∇f evaluated at this point 'c' ?
- (d) (3 points) Draw a level set of $f(x_1, x_2)$ that passes through point 'b' and draw ∇f at point 'b'.
- (e) (4 points) Using $\nabla g_1(b)$ and $\nabla g_2(b)$ as guides what does the positioning of $\nabla f(b)$ tell us about whether or not b is a solution to our constrained maximization problem? If b is not a solution then draw another level set of f to identify the solution to our constrained maximization problem.
- 9. (Total: 8 points) Consider the objective function: $f(x, \alpha) = \ln(x) \alpha x^2$ with $\alpha > 0$.
 - (a) (2 points) Derive $x^*(\cdot)$, a function mapping each possible α to the value of x that maximizes $f(\cdot, \alpha)$.
 - (b) (2 points) Given the above objective function, how will the optimum value of x change with respect to a change in α ?
 - (c) (1 point) Replacing x with $x^*(\alpha)$ into our objective function above we obtain what is commonly called the _____ function.
 - (d) (1 point) The total derivative of $f(x(\alpha), \alpha)$ w.r.t. to α is given by: $\frac{df}{d\alpha} = \frac{\partial f}{\partial \alpha} + \frac{\partial f}{\partial x(\alpha)} \cdot \frac{dx(\alpha)}{d\alpha}$. Using your work in (a) and (b) replace the right-hand side of this equation with the relevant partial derivatives and derivatives (do not simplify).
 - (e) (2 points) Using the envelope theorem simplify your answer in part (d).

10. (Total: 10 points) Consider a monopoly who has a constant marginal cost of production m and cannot produce more than Q units due to a capacity constraint (assume this constraint is binding). Also, let there be a per unit tax of τ . How does the equilibrium price and shadow value of capacity change with an increase in τ ? (If you have time, please complete the matrix algebra. Answers that leave the answer in matrix form will not earn more than 6 points).

Figure 2: Domain of a continuously differentiable function $f : \mathbb{R}^2 \to \mathbb{R}$

