
Fall2007 ARE211

Final Exam - Answer key

This is the final exam for ARE211. As announced earlier, this is an open-book exam. However,
use of computers, calculators, Palm Pilots, cell phones, Blackberries and other non-human aids is
forbidden.

Read all questions carefully before starting the test.

Allocate your 180 minutes in this exam wisely. The exam has 180 points, so aim for an average of
1 minute per point. However, some questions & parts are distinctly easier than others. Make sure
that you first do all the easy parts, before you move onto the hard parts. Always bear in mind
that if you leave a part-question completely blank, you cannot conceivably get any marks for that
part. The questions are designed so that, to some extent, even if you cannot answer some parts,
you will still be able to answer later parts. Even if you are unable to show a result, you are allowed
to use the result in subsequent parts of the question. So don’t hesitate to leave a part out. You
don’t have to answer questions and parts of questions in the order that they appear on the exam,
provided that you clearly indicate the question/part-question you are answering. Finally, always
keep in mind the famous maxim KISS (keep it simple, stupid).
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Problem 1 [20 points]

Fix some metric d that applies to all parts of the following question. A function f is uniformly
continuous on X if for all ǫ > 0, ∃δ > 0 such that for all x, x′ ∈ X, d(x, x′) < δ implies
d(f(x), f(x′)) < ǫ. Now let {xn} be a Cauchy sequence in X ⊂ R, let f : X → R be some
function, and consider the sequence {yn} defined by, for all n, yn = f(xn).

A) [10 points] If f is continuous on X, is yn Cauchy? If so, prove it. If not provide a counter
example. (Your counter-example must specify the function f , its domain X and a Cauchy
sequence in X.)

No. Counter example is f(x) = 1/x, defined on X = R++; Cauchy sequence is xn = 1/n. In
this case, f(xn) = f(1/n) = n, which is clearly not Cauchy.

B) [10 points] If f is uniformly continuous on X, is yn Cauchy? If so, prove it. If not provide
a counter example. (Your counter-example must specify the function f , its domain X and a
Cauchy sequence in X.)

Yes. Fix ǫ > 0. We need to show that there exists N ∈ N, such that m,n > N implies
d(yn, ym) < ǫ. Since f is uniformly continuous, there exists δ > 0 such that d(x, x′) < δ
implies d(f(x), f(y)) < ǫ. Since {xn} is Cauchy, there exists N such that m,n > N implies
d(xn, xm) < δ which in turn implies d(f(xn), f(xm)) < ǫ.

Problem 2 [40 points]

Fix a vector v0 ∈ R
n, two natural numbers J > 1 and K > 1, and a nonempty set Q ⊂ {1, ...JK}.

Now let M denote the set of all n × JK matrices M such that M = [x1, ...,xJK ] where

xm =

{

v0 if m ∈ Q

vk if m /∈ Q and m = k + jK, for j ∈ {1, ..., J} and k ∈ {1, ...,K}

for some n × K matrix V = [v1, ...,vK ]. (Note that each distinct element of M is defined by a
different vector V .)

A) [7 points] Think of an example of an element of M, for K = 3, J = 4 a set Q that has at
least 3 elements and a n×K matrix V . Remember KISS! Write down Q, n, v0 and V Then
write down your matrix M .

n = 1; Q = {2, 3, 4}; v0 = 4. M = [1, 4, 4, 4, 2, 3, 1, 2, 3, 1, 2, 3].

B) [4 points] Identify conditions under which M is a vector space.
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The condition is that v = 0.

C) [11 points] Demonstrate that if the conditions you identified in part B) are satisfied, M

is indeed a vector space.

Consider M1,M2 ∈ M and α ∈ R
2.

Let M3 = α1M
1 + α2M

2 where for i = 1, 2, 3, M i = [x1,i, ...,xJK,i] and

xi,3 =

{

0 if m ∈ Q

α1x
1,k + α2x

2,k if m /∈ Q and m = jk, for j ∈ {1, ..., J} and k ∈ {1, ...,K}

Hence M3 ∈ M.

D) [7 points] Demonstrate that if the conditions you identified in part B) are not satisfied,
M is not a vector space.

Suppose that n = 1 and v0 = 1. Let Q = {1} and let J = K = 2. Consider the matrix
M = [1, 1, 1, 1] and note that 2M = [2, 2, 2, 2] /∈ M.

E) [4 points] Assume now that your conditions guaranteeing that M is a vector space are
satisfied. Write down the dimension of M.

The dimension of M is nK.

F) [7 points] Continuing to assume that your conditions guaranteeing that M is a vector
space are satisfied, write down a basis for M.
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For i = 1, ..., n, let ei denote the i’th canonical vector, i.e., the vector whose i’th component
is 1 and all other components are 0. Now for i = 1, ..., n and k = 1, ...,K, let M i,k denote

the matrix whose m’th column is











0 if m ∈ Q

ei if m /∈ Q and m = jk, for j ∈ {1, ..., J}

0 otherwise

. The family

of matrices {M i,k} i=1,...,n

k=1,...,K
is a basis for M.

Problem 3 [40 points]

Let

f(x) = x1 + x2,

g1(x) = max(0, x3
1) − x2,

g2(x) = max(0, x3
1) + x2

Now consider the following optimization problem

max
x∈R2

f(x) s.t gj(x) ≤ 0, for j = 1, 2

Observe that all three functions are twice continuously differentiable. [It’s not 100% obvious that
gj is differentiable when x1 = 0; you can, however, simply accept this to be true. Knowing this,
there’s only one value that ▽gj(0, x2) can possibly take. Similarly, there is only one value that
Hgj(0, x2) can take. You can figure these out. (You can just assert them, don’t have to prove that
these values are correct.)]

A) [7 points] Using graphical methods only, indicate in a clearly labeled diagram
• for j = 1, 2, the lower contour set of gj corresponding to zero
• the constraint set for this NPP
• the solution to this problem. (State its numeric value as well labeling.)
• a level set of the objective thru the solution.

Make sure that you clearly differentiate the constraint set from lower contour sets, using a
different colored pen or some other device.

See Fig. 1.

B) [3 points] What property relating to second order conditions do the gj ’s satisfy? You
don’t need to prove this property, you can just demonstrate it informally with a simple
sketch. (Hint: this property has to do with all sets of a certain class being convex.)

They are both quasi-convex, i.e all lower contour sets are convex sets.
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The constraint set: {(x1, 0) : x1 ∈ R−}

x1

x
2

The solution: (0, 0)

Lower contour set of g1 corr. to 0

Lower contour set of g2 corr. to 0

Level set of f through (0, 0)

Figure 1. Solution to the NPP

C) [4 points] Write down a condition on the Hessian of gj which is sufficient for the property
you’ve identified in the previous part. (NB: The condition you write down should not include
the words “determinant” or “bordered hessian”.)

A sufficient condition for f : R
n → R to be quasi-convex is that for all x and all dx such that

▽f(x)′dx = 0, dx′Hf(x)dx ≥ 0.

D) [13 points] Set j equal to either 1 or 2, and verify that the condition you’ve written down
in the previous part is satisfied by the Hessian of gj .

▽g1(x) =
[

3max(0, x)2,−1
]

and so ▽g1(x) · dx = 0 iff for some α ∈ R,

dx = α
[

−1, 3max(0, x)2
]

. In this case,

dx′Hf(x)dx = α2
[

−1 3max(0, x)2
]

[

6max(x, 0) 0
0 0

] [

−1
3max(0, x)2

]

= 6α2 max(x, 0) ≥ 0

E) [7 points] At the solution to the problem, are the KT necessary conditions for a solution
satisfied? Carefully explain your answer.

The KT necessary conditions are satisfied. These conditions state that if the CQ is satisfied,
then .... In this instance, the CQ isn’t satisfied, and unless the CQ is satisfied, the KT conditions
impose no restrictions on the problem. To see that the CQ isn’t satisfied, note that the linearized
version of the constraint set is the entire horizontal line, {(x1, 0) : x1 ∈ R}. The true constraint
set is {(x1, 0) : x1 ∈ R−}. Therefore the linearized version of the problem does not accurately
represent the true constraint.
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F) [7 points] At the solution to the problem, are the KT sufficient conditions for a solution
satisfied? Carefully explain your answer.

The sufficient conditions are not satisfied. The sufficient conditions state that if f is pseudo-
concave and the gj ’s are quasi-convex, then a sufficient condition for a solution to the Taylor
is that the KT conditions are satisfied. In this problem the KT conditions are not satisfied.
To see this, observe that at x = 0, ▽g1(x) = [0,−1] and ▽g2(x) = [0, 1]. The nonnegative
cone generated by these vectors is {(x1, 0) : x1 ∈ R}. However, ▽f(x) = [1, 1] which does not
belong to this cone.

G) [7 BONUS points] In class I told you that a certain conjecture was almost certainly false,
since if it had been true, then it would be all over the textbooks. At the time I told you
that I didn’t have a counter example to this conjecture. State the conjecture for which the
example in this question is a counter example.

In class, we discussed the possibility that a sufficient condition for the CQ to be satisfied was
that the gj ’s were quasi-convex. The only reason why I thought this might be true was that
in the Varian example for which CQ failed, the constraints were not quasi-convex. The present
example is a counter example to this sufficiency conjecture: we’ve verified that the constraints
are both quasi-convex, but the CQ fails.
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Problem 4 [40 points]

Let f : R → R, be a twice continuously differentiable function. Suppose that f(·) attains a strict
local maximum at x̄ but that there exists dx > 0 such that f(x̄ + dx) > f(x̄). Assume also that
f ′′(x̄) < 0. Each part of this question builds on some or all of the previous parts. A good strategy
would be to read the entire question carefully, then do the diagram required in part D)(a), then
complete the rest of the question.

A) [10 points] Prove by applying “global Taylor” (Taylor-Lagrange) to the derivative f ′(·)
that there exists α̂ > 0 such that for α ∈ (0, α̂), f ′(x̄ + αdx) < 0. (Hint: (1) this prop-
erty would not necessarily hold if f were twice differentiable but not twice continuously
differentiable; (2) you need to do a zero’th order Taylor expansion of f ′ about x̄)

Since f ′′(x̄) < 0 and f ′′(·) is continuous, there exists ǫ > 0, such that for x ∈ B(x̄, ǫ), f ′′(x) < 0.
Pick α̂ > 0 sufficiently small that x̄ + α̂dx ∈ B(x̄, ǫ). Now pick α ∈ (0, α̂) By the Taylor La-
grange theorem, f ′(x̄ + αdx) = f ′(x̄) + f ′′(x̄ + λαdx)dx, for some λ ∈ [0, 1]. Since λ ≤ 1,
x̄+λαdx ∈ B(x̄, ǫ), so that f ′′(x̄+λαdx) < 0. Moreover, since f is maximized at x̄, f ′(x̄) = 0.
Finally, dx > 0 by assumption. Hence f ′(x̄) + f ′′(x̄ + λαdx)dx < 0.

B) [10 points] Let β̂ = inf{β > 0 : f ′′(x̄ + βdx) ≥ 0}. Use global Taylor on f to prove that

for all β ∈ (0, β̂], f(x̄ + βdx) < f(x̄).

By definition of β̂, f ′′(x̄ + βdx) < 0, for all β ∈ [0, β̂). Fix β < [0, β̂). By global Taylor, there
exists λ ∈ [0, 1] such that

f(x̄ + βdx) − f(x̄) = f ′(x̄)βdx + 0.5f ′′
(

x̄ + λβdx
)(

βdx
)2

= 0.5f ′′
(

x̄ + λβdx
)(

βdx
)2

But since λ ∈ [0, 1], λβ ∈ [0, β̂). Hence the right hand side is negative.
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Figure 2. Graph of the Taylor question

C) [10 points] Let γ̂ = inf{γ > 0 : f(x̄ + γdx) > f(x̄)}. Write f(x̄ + γ̂dx) as a first order
Taylor expansion of f about x̄ plus a remainder term. Specify explicitly what the remainder
term is, i.e., in this instance, you know which point in the domain to evaluate f ′′(·) to obtain
the remainder term.

Because f is continouous, f(x̄ + γ̂dx) − f(x̄) = 0. Moreover, by the Taylor-Lagrange theorem,
for some λ ∈ [0, 1],

f(x̄ + γ̂dx) − f(x̄) = f ′(x̄)γ̂dx + 0.5f ′′(x̄ + λγ̂dx)(γ̂dx)2

Since the left hand size is zero, as is f ′(x̄)γ̂dx, it follows that f ′′(x̄ + λγ̂dx) = 0. From the

previous part, we know that f ′′(x̄+ β̂dx) = 0. Moreover, by the definitions of β̂ and γ̂, we know

that β̂ < γ̂. Therefore, we have

f(x̄ + γ̂dx) − f(x̄) = f ′(x̄)γ̂dx + 0.5f ′′(x̄ + β̂dx)(γ̂dx)2 = 0.5f ′′(x̄ + λγ̂dx)(γ̂dx)2

where λ = β̂/γ̂

D) [10 points] Let U denote the lower contour set of f corresponding to f(x̄).

(a) Draw a graph of a function f that exhibits the properties described at the beginning of

this question. Indicate on your graph the locations of x̄, x̄ + dx, α̂, β̂, γ̂ and U .

See Fig. 2.

(b) Prove that there exists y in the interior of U such that f ′′(y) ≥ 0.
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By definition of γ̂, U contains the open interval (x̄, x̄ + γ̂dx). From Part B, we know that

f(x̄ + β̂dx) < f(x̄), so that x̄ + β̂dx belongs to the interior of U . By definition of β̂,

f ′′(x̄ + β̂dx) ≥ 0.
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Problem 5 [40 points]

Consider the following general equilibrium system. For i = 1, 2, supply of good i is given by
Si(pi, ti), where pi is the price of good i, and ti ≥ 0 is an ad valorum tax payable by producers.
The consumer’ demand function for good i is Di(pi, y), where y denotes the consumer’s income.

A) [2 points] Identify conditions on the primitives of this problem (i.e., on supply and de-
mand) that are sufficient to ensure that the implicit function theorem can be applied. For
the remainder of the question, you can assume that these conditions are satisfied.

For each good, the supply curve is upward sloping; the demand curve is downward sloping. (There
are lots of other possible answers to this part.)

B) [8 points] Using the implicit function theorem, write down in matrix form an expression
for the impact of changes in the exogenous variables (taxes and income) on equilibrium
prices. Simplify your matrices to the extent that’s possible with the information that you
have at this point.

By the implicit function, we have

[

dp1

dt1

dp1

dt2

dp1

dy
dp2

dt1

dp2

dt2

dp2

dy

]

= −

[

dS1

dp1
− dD1

dp1

dS1

dp2
− dD1

dp2

dS2

dp1
− dD2

dp1

dS2

dp2
− dD2

dp2

]

−1 [

dS1

dt1
dS1

dt2
−dD1

dy
dS2

dt1
dS2

dt2
−dD2

dy

]

= −

[

dS1

dp1
− dD1

dp1
0

0 dS2

dp2
− dD2

dp2

]

−1 [

dS1

dt1
0 −dD1

dy

0 dS2

dt2
−dD2

dy

]

C) [8 points] Now, and for the remainder of the question, let Si(pi, ti) = αipi(1− ti), where
αi > 0 is the slope of the supply function, and Di(pi, y) = y

βipi
. Using this specification,

further simplify to the maximum extent possible the expression that you wrote down in
part B) (i.e., compute the actual derivatives, and compute the inverse).

Writing Ψi = αi(1 − ti) + y

βip
2

i

, for i = 1, 2, we have

[

dp1

dt1

dp1

dt2

dp1

dy
dp2

dt1

dp2

dt2

dp2

dy

]

=

[

Ψ1 0
0 Ψ2

]

−1
[

α1p1 0 1

β1p1

0 α2p2
1

β2p2

]

=

[

Ψ−1
1 0
0 Ψ−1

2

]

[

α1p1 0 1

β1p1

0 α2p2
1

β2p2

]

=

[

α1p1

Ψ1
0 (β1p1Ψ1)

−1

0 α2p2

Ψ2
(β2p2Ψ2)

−1

]
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D) [6 points] Find the equilibrium of this system for the case in which

• there are no taxes
• for i = 1, 2, αi = [4

3
, 16],

• the lady’s income is 100, and her βββ = [3/4, 1/4].

In this case the equilibrium value of p, denoted p∗ satisfies:

S1(p∗1, y) = 4/3p1 = D1(p∗1, y) = 400/3p∗1

S2(p∗2, y) = 16p2 = D2(p∗2, y) = 400/p∗2

so that p = [5, 10].

E) [8 points] Now assume that taxes on suppliers are spent in part on enhancing National
Public Radio, which distracts the consumer from working and hence lowers her income. The
relationship between income and taxes is given by y = y0 −

∑2

i=1
γiti, where y0 > 0 and

γi > 0. (This is an incredibly stupid economic model, but since ARE211 is a math class,
this is legal.) Rewrite your answer to C, reducing the number of exogenous variables in the
model by one (i.e., treat y0 as a parameter, not an exogenous variable).

The new equilibrium condition becomes

0 = αipi(1 − ti) −
y0 −

∑2

i=1
γiti

βipi

so that

[

dp1

dt1

dp1

dt2
dp2

dt1

dp2

dt2

]

= −

[

Ψ1 0
0 Ψ2

]

−1 [ γ1

β1p1
− α1p1

γ2

β1p1
γ1

β2p2

γ2

β2p2
− α2p2

]

=

[

Ψ−1
1 0
0 Ψ−1

2

] [

α1p1 −
γ1

β1p1
− γ2

β1p1

− γ1

β2p2
α2p2 −

γ2

β2p2

]

=





α1β1p2

1
−γ1

β1p1Ψ1
− γ2

β1p1Ψ1

− γ1

β2p2Ψ2

α2β2p2

2
−γ2

β2p2Ψ2





F) [8 points] Use your answer to E) to obtain necessary and sufficient conditions for a
sufficiently small equal increase in both taxes to result in an increase in the price of good 1
and a decrease in good 2.
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Suppose that dt1 = dt2 = dτ . In this case

[

dp1

dp2

]

=





(

dp1

dt1
+ dp1

dt2

)

dτ
(

dp2

dt1
+ dp2

dt2

)

dτ





=





(β1p1Ψ1)
−1

(

α1β1p
2
1 −

∑

2

i=1
γi

)

(β2p2Ψ2)
−1

(

α2β2p
2
2 −

∑2

i=1
γi

)



 dτ

so that

dp1 > 0 > dp2 iff α1β1p
2
1 >

2
∑

i=1

γi > α2β2p
2
2


