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Final Exam - Answer key

Problem 1 [32 points]

A) Let f(x) = (x − 2)(x − 1)(x + 1)(x + 2).
This function can be rewritten as:
f(x) = (x2 − 1)(x2 − 4) or
f(x) = x4 − 5x2 + 4
Consider the NPP

min
x∈R1

f(x) s.t.

{

x ≥ −2

x ≤ 0.5

(a) [2 points] Convert the problem to the standard format for an NPP that we have
been using in this course.

(b) [5 points] Is the constraint qualification (CQ) satisfied at all the points in the con-
straint set?

(c) [5 points] Find the set of all points that satisfy the KKT conditions.
(d) [5 points] At what point is the minimum attained?

All points satisfy the CQ. The KKT conditions satisfied at {−
√

5/2, 0, 0.5}. The min is attained

at x = −
√

5/2

B) Now consider the problem

max
x∈R2

h(x) s.t











x2 ≤ (x1 − 2)(x1 − 1)(x1 + 1)(x1 + 2)

x1 ≥ −2

x1 ≤ 1

where h(x) = x1 + x2. Do not solve this optimization problem!

(a) [7 points] Carefully apply KKT (including checking the CQ) for x̄ = (0, 4) and
x̃ = (1, 0).

(b) [8 points] Using only KKT, what can we conclude about x̄ = (0, 4) and x̃ = (1, 0)
as potential solutions to the optimization problem?

For x̄ = (0, 4), only the first constraint is satisfied with equality. ∇g1(x̄) = (0, 1). The CQ
holds. ∇h(x̄) = (1, 1). KKT necessary conditions not satisfied.
For x̃ = (1, 0), the first and third constraints are satisfied with equality. ∇g1(x̃) = (0, 1).
∇g3(x̃) = (6, 1). The CQ holds. ∇h(x̃) = (1, 1). KKT necessary conditions are not satisfied.
Using only the KKT, we can rule out both x̃ and x̄ as possible maximizers.
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Problem 2 [32 points]

Consider the system of equations: F (x, α) = Sx + G(α) = 000 where S is an invertible 2x2 matrix,
G is a continuously differentiable function, and α ∈ R

1.

A) [5 points] Write down the domain and range of F .

f : R
3 → R

2

B) [9 points] Treating α as a parameter, write down the Jacobian of F .

Taking partials of F w.r.t. x, the Jacobian of F , treating α as a parameter, is simply S.

C) [9 points] Given any α, is the solution to the system of equations unique? If so, why? If
not, give a counterexample.

Solution is unique: S has full rank, so there exists a unique vector x such that x = −S−1G(α)

D) [9 points] Given G(α) =

[

α2

α3 + (α − 2)2

]

and S =

[

1 2

0 4

]

, let x?(α) denote the solution

to the equation system. Set α = 0. Can you compute
(

∂x?

1
(0)

∂α
,

∂x?

2
(0)

∂α

)

using the implicit

function theorem? If so, do so; If not, explain which condition(s) of the theorem is violated.

It is possible. S is non-singular and hence invertible. S−1 =

[

1 −0.5

0 0.25

]

, and

JG(0) =

[

0

−4

]

. Hence

[

∂x?

1
(0)

∂α
∂x?

2
(0)

∂α

]

= −S−1JG(0) =

[

−2

1

]
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Problem 3 [20 points]

Consider the function F (x) = Ax = 000, where A is a b × c matrix with full rank.

A) If b = c, can we apply the implicit function theorem? If so, what other conditions are needed,
if any?

B) If b > c, can we apply the implicit function theorem? If so, what other conditions are needed,
if any?

C) If b < c, can we apply the implicit function theorem? If so, what other conditions are needed,
if any?

Clarification 1: the elements of A are not variables. The column vector, x, contains all the variables
in the system.
Clarification 2: For the purposes of this question, define “full rank” as rank(A) = min(b, c).

We can only apply the implicit function theorem if the number of equations equals the number of
endogenous variables. In addition to the endogenous variables, there must be at least one exogenous
variable. That is, the number of rows of A must be fewer than the number of columns i.e., b < c. If
b < c, after picking which variables are endogenous, we need that the matrix keeping only the columns
of the endogenous variables, is full rank. This is not guaranteed by A being of full rank, since for

A =

[

1 2 3

0 6 9

]

, picking {x2, x3} as endogenous does not work. An acceptable argument would be

that given A is full rank, it is always possible to choose endogenous variables that will work, since
column rank = row rank. In the above example, both {x1, x3} and {x1, x2} would work as endogenous
variables. Not discussing this issues at all means some points taken off.

Problem 4 [48 points]

Consider the following NPP:

max
x∈Rn

u(x) s.t

{

xi ≥ bi for i = 1, . . . , n

p · x ≤ W

A) [7 points] Write down the Lagrangian for this problem. Then write down the n + (n +
1) + (n + 1) + (n + 1) KKT first order conditions in terms of the partial derivatives of the
Lagrangian.

L(x, λ, µi) = u(x) + λ(W − p · x) +
∑n

i=1 µi(xi − bi)

FOC:











































for i = 1, . . . , n ∂L
∂xi

= ui(x) − λpi + µi = 0.5u(x)/xi − λpi + µi = 0

for i = 1, . . . , n ∂L
∂µi

= xi − bi ≥ 0

for i = 1, . . . , n µi ≥ 0

for i = 1, . . . , n µi × ∂L
∂µi

= 0
∂L
∂λ

= W − p · x ≥ 0

λ ≥ 0

λ × ∂L
∂λ

= 0
All of these partials are evaluated at the point of interest.
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B) Let n = 3, b = (3, 6, 10)′, W = 60, p = (3, 2, 1)′ , and u(x) = x0.5
1 x0.5

2 .

(a) [6 points] Compute the solution to this NPP problem. Your answer should include
values for the maximized value, the maximizing point, and the four Lagrange multipliers.

∇u(x) =





0.5/x1

0.5/x2

0



× x0.5
1 x0.5

2 . Hence, p1x1 = p2x2 =
0.5x0.5

1
x0.5

2

λ
and λp3 = µ3. Solving all

this out, we get, x = [50/6, 50/4, 10], λ = 0.5/
√

6, µµµ = [0, 0, 0.5/
√

6].

(b) [6 points] Compute a first order approximation of the change in the maximized value
of utility if b changes by db = (6, 6, 6).

Apply the envelope theorem. ∇bu(x(b)) = Dbu
′(x(b)) =

[

0, 0, µ3

]

. The first order

approximation to the change in u is
[

0, 0, µ3

]

·





6

6

6



 = 3/
√

6

C) Now consider n = 2, b = (β, 0)′, p = (1, 1)′, and u(x) = x0.5
1 x0.5

2 . Let 0 < β ≤ W
be exogenously specified parameters. (Hint #1: a necessary condition for a maximum is
that xi > 0, for i = 1, 2. To see this, note that for any x such that xi = 0, for some i,
u(x) = 0. Hint #2: since the objective is strictly pseudoconcave on R++ and the constraints
are quasiconvex, the KKT conditions are sufficient for a solution.)

(a) [6 points] Draw the constraint set for W = 60, β = 0. Where is the maximum
attained? You should be able to eye-ball the answer to this question. Once you have
figured out the solution x, plug this vector into your answer to A), and compute the
values of all three multipliers.

Eyeballing, the max is attained at x = (30, 30). Since xi > bi, µi = 0, for i = 1, 2. We
now have ∂L

∂xi
= 0.5u(x)/xi − λpi + µi = 0.5 × 30/30 − λ = 0, so that λ = 0.5.

(b) [2 points] Draw the constraint set for W = 60, β = 50. Where is the maximum
attained? Again, you should be able to eye-ball the answer to this question. Again,
once you have figured out the solution x, plug this vector into your answer to A), and
compute the values of all three multipliers. Your answer should include square root
terms. Don’t compute them, just write your answer as an expression in square roots.
Simpler is better, but don’t spend too much time simplifying.

Eyeballing, the max is attained at x = (50, 10). Since 10 > 0, µ2 = 0.

∂L
∂x2

= 0.5u(x)/x2 − λp2 = 0.5

√
500

10
− λ =

√
1.25 − λ = 0;
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Hence λ =
√

1.25. Finally,

∂L
∂x1

= 0.5u(x)/x1 − λp1 + µ1 = 0.5

√
500

50
−

√
1.25 + µ1 =

√
0.05 −

√
1.25 + µ1 = 0.

Hence µ1 =
√

1.25 −
√

0.05.

(c) [2 points] For each W , there exists a unique scalar β∗ with the following property:
the solution to the NPP when β′ ∈ (β∗,W ) is different from the solution to the NPP
when β′ ∈ [0, β∗] (For example, with W = 60, given the solution you obtained to part
C)(b) of this problem, you know that when W = 60, β∗ must be between 0 and 50.)
Calculate β∗ for W = 60. To answer this part, you can either use a diagrammatic
argument, or invoke the fact that the KKT conditions are sufficient for a solution.

β∗ = 30

(d) [2 points] For an arbitrary W , calculate β∗. To answer this part, you can either use
a diagrammatic argument, or invoke the fact that the KKT conditions are sufficient for
a solution.

β∗(W ) = W/2

(e) [9 points] Define V (β,W ) as the value function, i.e. the maximized value of the
utility function, given the parameters β and W . Apply the envelope theorem to compute
∂V
∂β

(β,W ) and ∂V
∂W

(β,W ) for an arbitrary W ∈ R
1
++ and β ∈ [0,W ]. (Hint #1: The

answer will require considering different cases. Hint #2: Check carefully that you have
the signs right.) ).

The answer depends on β. Applying the envelope theorem we have

∂V
∂β

(β,W ) =







0 if β < β∗(W )

−µ1 = −0.5
√

β(W − β)
(

1
W−β

− 1
β

)

if β ≥ β∗(W )
while

∂V
∂W

(β,W ) =

{

λ = 1/2 if β < β∗(W )

λ = 0.5
√

β(W − β)/(W − β) if β ≥ β∗(W )

(f) [8 points] Compute the first order approximation to the change in V when the
parameter vector increases from (β,W ) = (50, 60) to (β,W )′ = (60, 80). Again, don’t
compute out the values of square roots.
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Plugging in numbers to the expressions we obtained in part (e), and noting that in each
case, β∗ > W/2, we have

∂V

∂β
(β,W ) = − 0.5

√
500

(

1

10
− 1

50

)

= −0.5
4

50
× 10

√
5 = −2

5

√
5

∂V

∂W
(β,W ) = 0.5

√
500/10 = 0.5

√
5

We can now evaluate the differential: dβ = 10; dW = 20. Hence the first order approxi-
mation is

2

5

√
5 × 10 − 0.5

√
5 × 20 = −4

√
5 + 10

√
5 = 6

√
5

Problem 5 [48 points]

Consider the following economic system.

f : R → R is defined by f(x) = x, for all x ∈ R+

g : R → R satisfies the following properties

g(0) > 0

∃ε > 0 such that g′′(·) < −ε

Both f and g are three times differentiable. An equilibrium for this system is defined as a scalar
x̄ ≥ 0 such that f(x̄) = g(x̄)

A) [2 points] For which of the following functions, h, is the following statement true:
(x is an equilibrium ⇔ h(x) = 0)?
A: h = g − f
B: h = g + f

Use the h you select in this part to answer the remaining parts of this questions.

A i.e., h = g − f .

B) [5 points] For x > 0, express h(x) exactly in terms of the zero’th1, first and second
derivatives of h w.r.t. x. Except for the remainder term, evaluate the derivatives at x = 0.

For some λ ∈ [0, 1], h(x) = h(0) + h′(0)x + 0.5h′′(λx)x2.

C) [5 points] Prove that h(1) < h(0) + h′(0) − 0.5ε.

1 The zero’th derivative of f w.r.t. x is f
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From the previous part, h(1) = h(0) + h′(0)1 + 0.5h′′(λx)1. But by assumption, h′′(λx) < −ε.
Hence, h(1) < h(0) + h′(0) − 0.5ε.

D) [2 points] Is the following statement True or False?
Given x > 0, ∀λ ∈ [0, 1] g′(λx) ≥ g′(x).
Full credit for a one letter answer!

True

E) [10 points] Using Taylor theory, determine if g′(x̄) is greater than, equal to, or less than
1. [Recommended approach: Draw a picture and look at your picture. Then consider a
zero’th order Taylor expansion of g about 0.]

There exists λ ∈ [0, 1] such that

x̄ = f(x̄) = g(x̄) = g(0) + g′(λx̄)x̄

which, from the answer to part E) is

≥ g(0) + g′(x̄)x̄

Therefore, for some λ ∈ [0, 1]

g(0) +
(

g′(λx̄) − 1
)

x̄ = 0

Since g(0) > 0, it follows that (g′(λx̄) − 1) < 0, i.e., g′(λx̄) < 1.

F) [12 points] Use the function h and some part of Taylor theory to prove that an equilibrium
x̄ > 0 exists. [Recommended approach: Do a first order Taylor expansion of h about zero.
The last line of your proof should include something like the following, which invokes a
theorem known as the intermediate value theorem, which we haven’t taught you but you can
simply assert:
since h(0) > 0 and ∃x > 0 s.t. h(x) < 0, and h is continuous, an equilibrium must exist
somewhere between 0 and x.]

Given dx > 0, there exists λ ∈ [0, 1] such that
h(dx) = h(0) + h′(0)dx + 0.5h′′(λdx)dx2. Let dx > max[h(0)/h′(0), 4h′(0)/ε] and note that
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since h′′(λdx) = g′′(λdx) − f ′′(λdx) = g′′(λdx) < −ε,

h(dx) = h(0) + h′(0)dx + 0.5h′′(λdx)dx2

< h(0) + (h′(0) − 0.5ε(4h′(0)/ε))dx

= h(0) + (h′(0) − 2h′(0))dx

= h(0) − h′(0)dx

< h(0) − h(0) = 0

Thus, for x = dx, h(x) < 0. Since h(0) > 0 and ∃x > 0 s.t. h(x) < 0, and h is continuous, an
equilibrium must exist somewhere between 0 and x.

G) [12 points] Use the function h and some part of Taylor theory to prove that this equilib-
rium is unique. [Recommended approach: Let X be the set of equilibria for this problem.
(You can assume that X is a finite set.) Now let x̄ be the smallest element of X and consider
a first order Taylor expansion of h about x̄. Finally, use your answer to E to show that x̄ is
the only element of X.]

For arbitrarily chosen x = x̄ + dx, dx > 0, there exists λ > 0 s.t.

h(x̄ + dx) = h(x̄) + h′(x̄)dx + 0.5h′′(x̄ + λdx)dx2

Now, h(x̄) = 0, and h′(·) = g′(·) − 1 < 0 (from E) while h′′(·) < −ε, so that

h(x̄ + dx) < 0 + (g′(x̄) − 1)dx − εdx2.

Since dx is positive by assumption, h(x̄ + dx) < 0 and so cannot belong to X.


