Fall 2004 ARE211
FINAL EXAM - ANSWER KEY

Problem 1 (25 points).

Let f : R? — R andg: R? — R be two concave functions and fixc R?. Let
Y ={(y1,y2) e R?: 3}, x2 e R?s.t.y; < f(x1),y2 < g(x?) andx* + x* < a}.

To give you some intuition, functions andg might be interpreted as production functio$,andx? as

input vectors and as a production set.

A) (3 points) Give a formal definition of a convex set.
A set Sis convex if VX,y € Sand all A € [0,1], AX+ (1—A)ye S
B) (3 points) Give a formal definition of a concave function.
A function f : X — Y is concave if the set of points below the graph of the function, i.e.,
{(x,y) e XxY:y< f(x)}, is a convex set.
C) (19 points) Using your answers to parts a) and b), prove formallytig&tonvex.
Pick (y1,y?) €Y and 8 € [0, 1]. We need to prove that y® = (1—8)y’ +8y? € Y. Fori = A, B, since
y' €Y, there exists x'1,x? € R? such that yil < f(xi1), yi2 < g(x"?) and X1 +x2 <a. For j = 1,2, de-
fine x% = (1 — @)xA + 6xBl. Since f and g are concave, we have,

f(x®) > (1—0)f(xA) +6f(xB) and g(x®?) > (1 6)g(xB?) + Bg(xB?). Therefore

i = (1-eyi+eyf < (1-o)f(x*)+efx®) < f(x¥

ye = (1-0)y2+6y8 < (1-0)g(x*?)+6g(x*) < g(x¥)

Clearly, x84+ x82 < a. Therefore, X and x%2 satisfy the conditions required for ye = (ye,yg) to belong
to.

Problem 2 (25 points).

Let f : R" — R and fixx € R".

A) (9 points) Suppose that af all of the partial derivatives of exist.

a) Give a mathematical definition of a partial derivative.



. _ 1 ifj=i
Fori=1,..,n, let€ € R" be defined by, for j = 1,...,n: € = . The i’th partial
0 otherwise

derivative of f at Xg is now defined by

af(Xo) B lim (f(Xo—l—ei/k)—f(Xo))
0X; Ko 1/k

b) Explain intuitively what this definition means in terms of the grapt.of
It's the slope at Xg of the cross-section of the graph of f obtained by “slicing” the graph through
the point vertically above Xg and in the direction of e.

¢) Canyou say that f is differentiable x®
No, existence of partials does not imply differentiability. See for example Figure 3 in the lecture
notes CALCULUS2.

d) Does your answer to the previous question change if you are told thes directional deriva-
tives in all directions ax?
No, existence of all directional derivatives does not imply differentiability. An example was pro-
vided in §4.3.7 of the lecture notes CALCULUS2

B) (16 points) Now suppose thétis differentiable ak. and denote by f* the differential off atx.

a) Doesf have directional derivatives in all directionsxé
Yes, differentiability implies the existence of all directional derivatives.

b) If so, forh € R", specify the directional derivative df at x in the directionh in terms of the
differential.
O (x) - h/[h].

c) Can you say that the partial derivativesfoif they exist, are continuous af

No. Existence of continuous partials is a sufficient but not necessary condition for differentiability.
af(x)
23

is a point, and it doesn’t make sense to say that a point is continuous.

d) Can you say that the partial derivativesfadtx, i.e., the 's, are continuous?

f(x)

No. ax

Problem 3 (25 points).

2/3.1/3
Xy °x

A) (9 points) Consider the functioh: R? — R? defined byf (x) = 1/3 2/3 . Use the differential to
)

estimate the value of(-) at (997,29).



2/ 3x[1/ 3X%/ oy 3xi/ 3x£ 2/3
. Now (997,29) = (100Q 27) + (—3,2) so we'll evaluate

Jf(x) =
) -2/3,1/3 2/3,-1/3
1/3x, 777 2/3x 7%

the differential of f at x = (100Q27) at the point dx = (—3,2). Now

1 100 200 3
F0 + 3F00dk — 300 R —3| _ [300+%7-5| | 3068074
90 0y 2 2 90+ % — 1% 94.3544

So that the
B) (8 points) Consider the functioh: R — R defined byf (x) = x*. Use a second-order Taylor approx-

imation of f aboutx = 2 to estimate the value df(3).
The second order Taylor expansion of f about X is 4x3dx+ 6x2dx?. Evaluating at X =2 and dx = 3—

2=1, we obtain Ty(f,2,1) = 56. So the second order Taylor approximation to f(3) is f(2)+56= 72

C) (8 points) At what point must one computé(-) so that the second order Taylor expansionf of
aboutx = 2 (including the remainder term) delivers exactly the difference betWé&nand f (2)?

Since f(3) = 81, the second order Taylor approximation to f(3) is 9 short of its target. We need to

make this up by choosing Yy so that the third order Taylor term T f3(y,dX) = 4ydx = 9. Since dx =1,

we have y = 9/4. That is, we need to evaluate f”’(-) at 9/4.
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FIGURE 1. Quasi-convex constraint set

Problem 4 (50 points).
Let f : R? — R andg: R? — R be two differentiable functions. Consider the following NPP problem, which

we shall refer to as (9.
maxf(x) s.t.g(x) <0 (4)
x>0

where

(C0) g is a quasi-convex function.

A) (4 points). Draw a constraint set that is consistent with assumption (C0)
See Fig. 1
B) (12 points). Assume in this part thats not quasi-concave.
(@) Alocal solution to (4«) is a pointx € R? such that for some neighborhoddof x, f(x) > f(x'),
for all x # x' € U such thatg(x’) < 0. Say that a local solution is grict local solution if
f(x) > f(x'), for all x # x’ € U such thag(x’) <O0.
Showgraphically that a pointx may exist that is a strict local solution to{(but not a solution.
See Fig. 2. X is a local solution, but X’ belongs to the feasible set and f(x’) > f(x).
(b) Showgraphically that a pointx may exist that satisfies the KT conditions buthi a local
solution to (4).
See Fig. 3.
C) (12 points). Fixx € R? and suppose that
(C1) atx the KT conditions are satisfied.
(C2) f is quasi-concave
(a) Give a condition oflf(-) which,
o differs from M.K.9
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FIGURE 2. A local solution that is not a solution
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FIGURE 3. A point satisfying KT that is not a local solution

e together with (C1) and (C2), guarantees thia a solution to (4).
Denote this condition by (C3).
(C3) The gradient of f never vanishes. That is, for all X in the domain of f, f(x) #0
(b) Provide a graphical example demonstrating that if (C1) and (C2)adisfied but (C3) is not,
thenx may fail to be a solution to (4. If you prefer, your example can be constructed using
functionsf andg that mapR to R.
See Fig. 4. The gradient of f vanishes at X, the KT conditions are satisfied but f is not maximized
on the constraint set at this point.
D) (12 points). An alternative to conditions (C2) and (C3) is the one medieto in the lecture notes as
condition M.K.9. If f satisfies M.K.9 ana satisfies (C1), theffi is a solution to (4).

(a) write down the assumption M.K.9

vx, X € X, if f(x') > f(x) then Of(x)- (X' —x) > 0.



Constraint set

FIGURE 4. A point satisfying (C1) and (C2) that is not a solution

Constraint set

FIGURE 5. A point satisfying M.K.9 but not (C3)

(b) explain why it is preferable to assume M.K.9 than to assume both (C2)G8)dYour explana-
tion should include an example. If you prefer, your example can be cmstr using functions
f andg that mapR to R.
In general, one wants to impose the weakest possible assumption which accomplishes the task
at hand. M.K.9 is much weaker than (C3), and hence preferable on general grounds. More
specifically, if (C3) is imposed, then one cannot obtain an unconstrained solution to the NPP.
Fig. 5 provides an example of an NPP that one would not want to exclude.

E) (10 points). Prove formally that iff is a concave function, thehsatisfies M.K.9.
Hint: Use the fact thatf is differentiable.
If f is concave, then for all x,x’, Of (x)(X'—x) > f(x) — f(x). Therefore, if f(x') — f(x) > 0, then

Of (x)(xX' —x) > f(x') — f(x) > 0. Hence M.K.9 is satisfied.



Problem 5 (50 points).

Fix o > 0 and defindr(a;x,y) = e**Y) 4 x2 +y*. Now consider the unconstrained maximization problem
minimizeh(q;-,-) onRR? (5%)

For your convenience, Fig. 6 on the last page of the exam plete®. Also recall that% =

A) (6 points). Computé(a;0,0).

h(a;0,00 = €&°40%2+0* = & = 1

B) (6 points). Use your answer to part A) to prove that the solution £pi€the same as the following
constrained minimization problem: minimizé(a; -, ) such thak € [—1,1] andy € [-1,1].
If either [x| > 1 or |y| > 1, then either x?> or y* exceeds 1, while the other is positive. Moreover,

h(a;-, ) is nonnegative function. Hence,
h(a;x,y) > €041 > 1 = h;0,0)

. Conclude that a necessary condition for h(a; -, -) to be minimized at (X,Y) is that max(|x|, |y|) < 1.
C) (6 points). Use your answer to part B) to prove tha) (tas a solution. Here and later in the question,
you may take it as given thétis a continuously differentiable function &x R x R ;.
Since h(a; -, ) is continuous, and the set [—1, 1] is a compact set, the Weierstrass theorem implies
that h(a;-,-) attains a minimum on this set. Part B) then implies that this minimum is in fact an
unconstrained minimum for h(a; -, -). This minimum is the solution to (5x).

D) (6 points). For arbitrary,y € R?, compute the Hessian bfa;-,-) at(x,y).

a2et+y) 2 02 (x+y)

Hh(a; X, =
( y) 020 (x+y) o2ed(xty) ]_2y2

E) (6 points). Use your answers to C) and D) to prove tha} (&s aunique solution.



The first principal minor of Hh(a; x,y) is a2e?HY) 12 which is positive. The second principal minor

defHhyy (0Gxy) = 24°%+(2+12%)a?e"*Y > 0

This establishes that h(a,-,-) is strictly convex. A strictly convex function has at most one global
minimum. Combining this with C), we have established that (5x) has a unique solution.
F) (6 points).
a) Write down the first order conditions for«p

The first order conditions are

oh(a;x.y)

= a0 L 2x = 0
0X
%;y)(’y) — aea(x+y> + 4y3 — O

b) Prove that a solution to these first order conditions exist and is unique.
For a strictly convex function, the first order conditions are necessary and sufficient for a unique
solution. Since we’ve proved in C) that (5%) has a solution, it follows that there exists a unique
pair (X,Yy) which solves the equation system in F).

¢) Show that the unique solution to the FOC can be written as the level sespornding to O of a
function fromR2 to R? (to be denoted by).
Define the function f : R3 — R2, defined by

ae?ty) 4 2x

f(a,x, =
(0,%Y) (x+Y)
oe” + 4y3

For each a > 0O, the FOC specify that f(a, X, y) must equal zero. Hence these conditions can be
written as the level set corresponding to O of f.
G) (6 points). Show that for atl > 0, you can apply the implicit function theorem to the functibn
given in Fc).
Consider the function f(a,-,-). Clearly, Jf ) (a,-,-) is the Hessian Hhy y) specified above. We've
already checked that this matrix has a positive determinant. Hence the condition of the implicit function
is satisfied.
H) (8 points). Givero > 0, let(x*(a),y*(a)) denote the solution to . Use Cramer’s Rule to find an
expression for‘@.



Plugging through the implicit function theorem, we obtain

dx*(a) —12y*(a)20e X (0)+y* (@)
da 24y(a)*+ (2+ 12y ()?)acen x|

Dy (@) (L+a(x*(a) +y*(a)))
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FIGURE 6. The graph oz =¢€°




