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Problem 1 (25 points).

Let f : R
2 → R andg : R

2 → R be two concave functions and fixααα ∈ R
2. Let

Y = {(y1,y2) ∈ R
2 : ∃x1,x2 ∈ R

2 s.t. y1 ≤ f (x1),y2 ≤ g(x2) andx1 +x2 ≤ααα}.

To give you some intuition, functionsf andg might be interpreted as production functions,x1 andx2 as

input vectors andY as a production set.

A) (3 points) Give a formal definition of a convex set.

A set S is convex if ∀x,y ∈ S and all λ ∈ [0,1], λx+(1−λ)y ∈ S.

B) (3 points) Give a formal definition of a concave function.

A function f : X → Y is concave if the set of points below the graph of the function, i.e.,

{(x,y) ∈ X ×Y : y ≤ f (x)}, is a convex set.

C) (19 points) Using your answers to parts a) and b), prove formally thatY is convex.

Pick (y1,y2)∈Y and θ ∈ [0,1]. We need to prove that yθ = (1−θ)y1+θy2 ∈Y . For i = A,B, since

yi ∈Y , there exists xi1,xi2 ∈ R
2 such that yi

1 ≤ f (xi1), yi
2 ≤ g(xi2) and xi1+xi2 ≤ααα. For j = 1,2, de-

fine xθ j = (1 − θ)xA j + θxB j. Since f and g are concave, we have,

f (xθ1) ≥ (1−θ) f (xA1)+θ f (xB1) and g(xθ2) ≥ (1−θ)g(xB2)+θg(xB2). Therefore

yθ
1 = (1−θ)yA

1 +θyB
1 ≤ (1−θ) f (xA1)+θ f (xB1) ≤ f (xθ1)

yθ
2 = (1−θ)yA

2 +θyB
2 ≤ (1−θ)g(xA2)+θg(xB2) ≤ g(xθ2)

Clearly, xθ1+xθ2 ≤ααα. Therefore, xθ1 and xθ2 satisfy the conditions required for yθ = (yθ
1,y

θ
2) to belong

to Y .

Problem 2 (25 points).

Let f : R
n → R and fixx ∈ R

n.

A) (9 points) Suppose that atx, all of the partial derivatives off exist.

a) Give a mathematical definition of a partial derivative.
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For i = 1, ...,n, let ei ∈ R
n be defined by, for j = 1, ...,n: ei

j =











1 if j = i

0 otherwise

. The i’th partial

derivative of f at x0 is now defined by

∂ f (x0)

∂xi
= lim

|k|→∞

(

f (x0 + ei/k)− f (x0)
)

1/k

b) Explain intuitively what this definition means in terms of the graph off .

It’s the slope at x0 of the cross-section of the graph of f obtained by “slicing” the graph through

the point vertically above x0 and in the direction of ei.

c) Can you say that f is differentiable atx?

No, existence of partials does not imply differentiability. See for example Figure 3 in the lecture

notes CALCULUS2.

d) Does your answer to the previous question change if you are told thatf has directional deriva-

tives in all directions atx?

No, existence of all directional derivatives does not imply differentiability. An example was pro-

vided in §4.3.7 of the lecture notes CALCULUS2

B) (16 points) Now suppose thatf is differentiable atx. and denote byd f x the differential off at x.

a) Doesf have directional derivatives in all directions atx?

Yes, differentiability implies the existence of all directional derivatives.

b) If so, for h ∈ R
n, specify the directional derivative off at x in the directionh in terms of the

differential.

∇ f (x) ·h/||h||.

c) Can you say that the partial derivatives off , if they exist, are continuous atx?

No. Existence of continuous partials is a sufficient but not necessary condition for differentiability.

d) Can you say that the partial derivatives off at x, i.e., the∂ f (x)
∂xi

’s, are continuous?

No. ∂ f (x)
∂xi

is a point, and it doesn’t make sense to say that a point is continuous.

Problem 3 (25 points).

A) (9 points) Consider the functionf : R
2 → R

2 defined byf (x) =







x2/3
1 x1/3

2

x1/3
1 x2/3

2






. Use the differential to

estimate the value off (·) at (997,29).
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J f (x) =







2/3x−1/3
1 x1/3

2 1/3x2/3
1 x−2/3

2

1/3x−2/3
1 x1/3

2 2/3x2/3
1 x−1/3

2






. Now (997,29) = (1000,27)+ (−3,2) so we’ll evaluate

the differential of f at x = (1000,27) at the point dx = (−3,2). Now

f (x) + J f (x)dx =







300

90






+







1
5

100
27

3
100

20
9













−3

2






=







300+ 200
27 − 3

5

90+ 40
9 − 9

100






=







306.8074

94.3544







So that the

B) (8 points) Consider the functionf : R → R defined byf (x) = x4. Use a second-order Taylor approx-

imation of f aboutx = 2 to estimate the value off (3).

The second order Taylor expansion of f about x is 4x3dx+6x2dx2. Evaluating at x = 2 and dx = 3−

2= 1, we obtain T2( f ,2,1) = 56. So the second order Taylor approximation to f (3) is f (2)+56= 72.

C) (8 points) At what point must one computef ′′′(·) so that the second order Taylor expansion off

aboutx = 2 (including the remainder term) delivers exactly the difference betweenf (3) and f (2)?

Since f (3) = 81, the second order Taylor approximation to f (3) is 9 short of its target. We need to

make this up by choosing y so that the third order Taylor term T f3(y,dx) = 4ydx = 9. Since dx = 1,

we have y = 9/4. That is, we need to evaluate f ′′′(·) at 9/4.
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x1

x2

∇g

{x : g(x) = 0}

FIGURE 1. Quasi-convex constraint set

Problem 4 (50 points).

Let f : R
2 →R andg : R

2 →R be two differentiable functions. Consider the following NPP problem, which

we shall refer to as (4∗).

max
x≥0

f (x) s.t. g(x) ≤ 0 (4∗)

where

(C0) g is a quasi-convex function.

A) (4 points). Draw a constraint set that is consistent with assumption (C0).

See Fig. 1

B) (12 points). Assume in this part thatf is not quasi-concave.

(a) A local solution to (4∗) is a pointx ∈ R
2 such that for some neighborhoodU of x, f (x) ≥ f (x′),

for all x 6= x′ ∈ U such thatg(x′) ≤ 0. Say that a local solution is astrict local solution if

f (x) > f (x′), for all x 6= x′ ∈U such thatg(x′) ≤ 0.

Showgraphically that a pointx may exist that is a strict local solution to (4∗) but not a solution.

See Fig. 2. x is a local solution, but x′ belongs to the feasible set and f (x′) > f (x).

(b) Showgraphically that a pointx may exist that satisfies the KT conditions but isnot a local

solution to (4∗).

See Fig. 3.

C) (12 points). Fixx ∈ R
2 and suppose that

(C1) atx the KT conditions are satisfied.

(C2) f is quasi-concave

(a) Give a condition of∇ f (·) which,

• differs from M.K.9
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x1

x2

x

x′

∇g

FIGURE 2. A local solution that is not a solution
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FIGURE 3. A point satisfying KT that is not a local solution

• together with (C1) and (C2), guarantees thatx is a solution to (4∗).

Denote this condition by (C3).

(C3) The gradient of f never vanishes. That is, for all x in the domain of f , ∇ f (x) 6= 0

(b) Provide a graphical example demonstrating that if (C1) and (C2) are satisfied but (C3) is not,

thenx may fail to be a solution to (4∗). If you prefer, your example can be constructed using

functions f andg that mapR to R.

See Fig. 4. The gradient of f vanishes at x, the KT conditions are satisfied but f is not maximized

on the constraint set at this point.

D) (12 points). An alternative to conditions (C2) and (C3) is the one referred to in the lecture notes as

condition M.K.9. If f satisfies M.K.9 andx satisfies (C1), thenf is a solution to (4∗).

(a) write down the assumption M.K.9

∀x,x′ ∈ X , if f (x′) > f (x) then ∇ f (x) · (x′−x) > 0.
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x1

x2

f (x)x

Constraint set

FIGURE 4. A point satisfying (C1) and (C2) that is not a solution

x1

x2

f (x)

x

Constraint set

FIGURE 5. A point satisfying M.K.9 but not (C3)

(b) explain why it is preferable to assume M.K.9 than to assume both (C2) and (C3). Your explana-

tion should include an example. If you prefer, your example can be constructed using functions

f andg that mapR to R.

In general, one wants to impose the weakest possible assumption which accomplishes the task

at hand. M.K.9 is much weaker than (C3), and hence preferable on general grounds. More

specifically, if (C3) is imposed, then one cannot obtain an unconstrained solution to the NPP.

Fig. 5 provides an example of an NPP that one would not want to exclude.

E) (10 points). Prove formally that iff is a concave function, thenf satisfies M.K.9.

Hint: Use the fact thatf is differentiable.

If f is concave, then for all x,x′, ∇ f (x)(x′−x) ≥ f (x′)− f (x). Therefore, if f (x′)− f (x) > 0, then

∇ f (x)(x′−x) ≥ f (x′)− f (x) > 0. Hence M.K.9 is satisfied.
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Problem 5 (50 points).

Fix α > 0 and defineh(α;x,y) = eα(x+y) + x2 + y4. Now consider the unconstrained maximization problem

minimizeh(α; ·, ·) onR
2 (5∗)

For your convenience, Fig. 6 on the last page of the exam plotsz = eθ. Also recall thatdeθ

dθ = eθ.

A) (6 points). Computeh(α;0,0).

h(α;0,0) = eα0 +02 +04 = e0 = 1

B) (6 points). Use your answer to part A) to prove that the solution to (5∗) is the same as the following

constrained minimization problem: minimizeh(α; ·, ·) such thatx ∈ [−1,1] andy ∈ [−1,1].

If either |x| > 1 or |y| > 1, then either x2 or y4 exceeds 1, while the other is positive. Moreover,

h(α; ·, ·) is nonnegative function. Hence,

h(α;x,y) > eα(x+y) +1 > 1 = h(α;0,0)

. Conclude that a necessary condition for h(α; ·, ·) to be minimized at (x,y) is that max(|x|, |y|) ≤ 1.

C) (6 points). Use your answer to part B) to prove that (5∗) has a solution. Here and later in the question,

you may take it as given thath is a continuously differentiable function onR×R×R++.

Since h(α; ·, ·) is continuous, and the set [−1,1]2 is a compact set, the Weierstrass theorem implies

that h(α; ·, ·) attains a minimum on this set. Part B) then implies that this minimum is in fact an

unconstrained minimum for h(α; ·, ·). This minimum is the solution to (5∗).

D) (6 points). For arbitraryx,y ∈ R
2, compute the Hessian ofh(α; ·, ·) at (x,y).

Hh(α;x,y) =





α2eα(x+y) +2 α2eα(x+y)

α2eα(x+y) α2eα(x+y) +12y2





E) (6 points). Use your answers to C) and D) to prove that (5∗) has aunique solution.
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The first principal minor of Hh(α;x,y) is α2eα(x+y) +2 which is positive. The second principal minor

is

det(Hh(x,y)(α;x,y)) = 24y2 +(2+12y2)α2eα(x+y) > 0

This establishes that h(α, ·, ·) is strictly convex. A strictly convex function has at most one global

minimum. Combining this with C), we have established that (5∗) has a unique solution.

F) (6 points).

a) Write down the first order conditions for (5∗).

The first order conditions are

∂h(α;x,y)
∂x

= αeα(x+y) + 2x = 0

∂h(α;x,y)
∂y

= αeα(x+y) + 4y3 = 0

b) Prove that a solution to these first order conditions exist and is unique.

For a strictly convex function, the first order conditions are necessary and sufficient for a unique

solution. Since we’ve proved in C) that (5∗) has a solution, it follows that there exists a unique

pair (x,y) which solves the equation system in F).

c) Show that the unique solution to the FOC can be written as the level set corresponding to 0 of a

function fromR
3 to R

2 (to be denoted byf ).

Define the function f : R
3 → R

2, defined by

f (α,x,y) =





αeα(x+y) + 2x

αeα(x+y) + 4y3





For each α > 0, the FOC specify that f (α,x,y) must equal zero. Hence these conditions can be

written as the level set corresponding to 0 of f .

G) (6 points). Show that for allα > 0, you can apply the implicit function theorem to the functionf

given in Fc).

Consider the function f (α, ·, ·). Clearly, J f(x,y)(α, ·, ·) is the Hessian Hh(x,y) specified above. We’ve

already checked that this matrix has a positive determinant. Hence the condition of the implicit function

is satisfied.

H) (8 points). Givenᾱ > 0, let (x∗(ᾱ),y∗(ᾱ)) denote the solution to (5∗). Use Cramer’s Rule to find an

expression fordx∗(ᾱ)
dα .
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Plugging through the implicit function theorem, we obtain

dx∗(ᾱ)

dα
=

−12y∗(ᾱ)2ᾱeᾱ(x∗(ᾱ)+y∗(ᾱ))

24y∗(ᾱ)2 +(2+12y∗(ᾱ)2)ᾱ2eᾱ(x∗(ᾱ)+y∗(ᾱ))

(

1+ ᾱ(x∗(ᾱ)+ y∗(ᾱ))
)



10

−∞ ∞0
0

∞

1

FIGURE 6. The graph ofz = eθ


