ARE211 FINAL EXAM

DECEMBER 12, 2003

This is the final exam for ARE211. As announced earlier, this is an open-book exam. Try to allocate your
180 minutes in this exam wisely, and keep in mind that leaving any questions unanswered is not a good
strategy. Make sure that you do all the easy questions, and easy parts of hard questions, before you move
onto the hard questions.

Problem 1 (15 points)
(1) In Euclidean space, under the Pythagorean metric, assume that a sequence (z,,) satisfies
|Tn — Tpta| < alzn, — 1]

for each n = 2,3, ... for some fixed 0 < a < 1.
Show that (x,) is a convergent sequence.

Solution: Let ¢ = |xo — x1|.An easy inductive argument shows that for each n we have |x,11 — x,| < ca™ 1.

Thus,
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holds for all n and all p. Since lima™ = 0, it follows that (x,) is a Cauchy sequence, and hence a convergent
sequence, under this complete metric space.

(2) Let (X, d) be a complete metric space. A function f: X — X is called a contraction if there exists some
0 < a < 1 such that Vx,y € X,

d(f(z), f(y)) < ad(z,y)

« is called a contraction constant.

Show that for every contraction f on a complete metric space (X,d), there exists a unique point € X
such that f(x) =z. (Such a point x € X is called a fixed point.)

(Hint: To prove this, construct a sequence that has the property defined in (1). An understanding of com-
pleteness will also be helpful.)

Solution: Note first that if f(z) = x and f(y) = y hold, then the inequality d(f(z), f(y)) < ad(z,y) easily
implies that d(x,y) = 0, and so = y. That is, f has at most one fixed point. To see that f has a fixed point,
choose some a € X, and then define the sequence (x,) inductively by

x1=aand z,41 = f(z,) forn=1,2, ...
From our condition, it follows that
d(mnﬂH 9 wn) - d(.][(ln)~ f(l)nfl )) S Oéd(il?n, :L'nf])

holds for n = 2,3, ...Thus, as in part (1), we have shown that (x,) is a convergent sequence. Let x = limx,,.
Now by observing that [ is (uniformly) continuous, we obtain that

= lim x,11 = lim f(z,) = f(x)

and so x is a unique fixed point for f.



Problem 2 (20 points)

In this problem, all scalars are assumed to be real. We define a projection matrix to be a square matrix P
such that

P?=PT =P

(1) Show that every eigenvalue of a projection matrix is either 1 or 0.

Solution: Let X\ be an eigenvalue of a projection matrix P, and let x be a corresponding eigenvector: x # 0, and
Px = \x. Since P = P?, Px = P(Px), hence \v = P(\x) = APx = \2x.Since x # 0, it follows that A = \2,
so A\ is either 1 or 0.

(2) Prove that if Z is an n x r matrix such that Z7Z = I, then ZZ7 is a projection matrix.

Solution: Let Z be an n X r matrix such that Z*Z = I,.Then ZZ* is n x n and
(2z20T =777, (22" =227 727" = 721,77 = 777
Hence ZZ™ is a projection matrix.

(3) Let P be an n x n projection matrix such that P # 0, show that there is an integer r and an n x r
matrix Z with the following properties: 1 <r <n, ZTZ =1,,and ZZT = P.

(Hint: Use the result of (1) and consider the following theorem:

If A is a real symmetric matriz, then

(a) all the eigenvalues of A are real numbers;

(b) A is diagonalizable —- there exist a diagonal matriz D and an invertible matriz S, both with entirely
real entries, such that S™'AS = D;

(¢) the matriz S of (b) can be chosen so that ST = S~1.)

Solution: By (1), the characteristic polynomial of P is (A — 1)"\"~" for some r. Let D be the diagonal matrix
whose first r diagonal entries are equal to 1 and whose remaining diagonal entries are all zero. Hence, by the
Theorem above, there exists an orthogonal matrix, SST = I, such that P = SDS™. Partition S as [Z Y], where
Z consists of the first r columns. Then the equation SS™ = I,, may be written

z'z Z'v 1 _[1I, 0
YT'Z Y'Y | |0 I,

In particular, Z* Z = I,..Also, the equation P = SDS™T may be written
I, 0 zT
e[y || ]

zt
0

Hence

P:[ZY}{ }:ZZT

as required.



Problem 3 (10 points)

The Taylor series expansion of f(a + h) : is given by

h? h3
fla+h) = fa) +hf'(a) + 55 f"(a) + gf(?’)(a) e

where the right hand side is to be interpreted as a convergent series. The special case of the Taylor series
expansion when a = 0 is called the Maclaurin expansion of f.

(1) For x € R, find the Maclaurin expansion for the exponential function f(x) = e®.

Solution: f(z) = f'(z) = --- = f"(z) = e®,whence f(0) = f'(0) = --- = f(™(0) = 1.The Maclaurin
expansion is therefore
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(2) Use the Maclaurin expansion for e to find lim xe™*.(You don’t need to prove the limit.)
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Solution: From the series for e*,
C_lipzLTy
r 21 3l

. 2 @ . _
As x — o0, % +1 — 1, and the terms % % ... all — oo; hence % — 00, so lim xze % = 0.

r— 00



Problem 4 (20 points)

(1) Use first order conditions to find all the critical points of f(z,y) = = + y? subject to the constraint
222 +y? = 1.

Solution: x* is a critical point of f, if f'(x*) = 0. This condition requires that x*not be an endpoint of the
interval under consideration. The graph of f on the constraint is plotted below:
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(2) Use the second order conditions to classify the critical points you have identified in (1), i.e., to
distinguish between the following four categories: (a) local max; (b) local min; (c) global max on the
constraint set; (d) global min on the constraint set.

Solution: This part has exactly the same spirit as the last question in problem set 9. Minimum is (—
Maximum is (%, :I:g); Local minimum at (

,0);
1
73 0):
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Problem 5 (20 points)
Consider the following problem:

max f (21, 22) = af + 21 + 423
T1,T2

s.t. 2x1 + 229 < 1,20 > 0,29 >0

(1) Solve this maximization problem using either the Lagrangian or the Kuhn-Tucker method.

Solution: See Example 18.13 in Simon and Blume.

(2) Apply the Envelope Theorem to estimate the solution to the following problem (which is identical
except for the coefficient on x3 in the objective function).

max f(x1,12) = 2% + x1 + 4.123
T1,T2

s.it. 21 + 229 < 1,21 > 0,20 >0

Solution: This part has exactly the same spirit as the first question in problem set 10.

max f(z1,22) = af + 21 + a3
T1,T2

sit. 201 + 222 < 1,20 > 0,290 >0

L= T% +x1 + (]T% - A1(21’1 + 2.1’2 - 1) + )\2.’131 + )\37’2
Fora=4, 27 =0,25 =05\ =2,\5 =3,\5 =0, and f* = 1. At these values,

or

o 3% =052 =0.25
SO
oL

FL) )+ 5

Aa=1+0.25(0.1) = 1.025



Problem 6 (15 points)

Consider a supply-demand model for two goods A and B, the markets for which are interrelated in the
following way: the supply of each good depends only on its only price, i.e.54 = Sa(pa), S = Sp(pg), but
the demand for each good depends on both prices and on income. We assume that both goods are normal.

Let the demand function for good i(i = A, B) be D;(pa,pn,y), where p; is the price of good i, and y is
income as before; let the supply function be S;(p;). We assume that

0D 4 dSa 0Da 0Dp dSg 0Dp
<0<+, =50, —<0< =2, —=—=2>0
Opa dpa’ Oy Opp dpp’ 0y

dDp
Opa *

For the moment, we make NO assumptions about the cross-price effects, i.e. the signs of %}% and

Defining the excess demand functions

E-DA(pAvavy) = DA(pAvavy)_SA(pA)
EDg(pa,ps,y) = Dp(pa.ps,y)— S(Pn)

(1) Give the equilibrium condtions for this market using excess demand functions.
Solution: ED4(p%,ph,y) =0 and EDp(p%.p5.y) =0

(2) Assume that, for a given value of y, there is a unique pair of equilibrium prices (p,p5) which satisfy
the equilibrium conditions given above. Now please give a comparative statics analysis of the impact

. ep . . - dp* dp? .
of a change in income on equilibrium prices, i.e. the sign of dL; and dL;. Explain how the results depend
on the signs of 224 and 2P=  and also the signs of 224 and 2Pz

Ops Opa Oy oy

Solution: To apply comparative statics, let us consider the Jacobian matrix

OED 4 OED 4
_ Opa Opp
‘] - OEDp OEDg

Opa Ops

The implicit function theorem tells us that if J is invertible at the given equilibrium, there is a unique local
solution for p4 and pp in terms of y, which may be differentiated as follows:

dps OED 4
dy _ _ 71 0
dpp =—J 8E%B

dy dy

Let A = detJ. Now assume that A > 0, which implies that cross-price effects on demand are not so big as to
swamp the own-price effects on supply and demand. Given that A > 0, the matrix J is invertible. We have

1 JOEDp __OEDgy
Jfl I OZ)B . opB
A __O0EDp OED 4
Opa Opa




It follows that
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dy - 3513 Ipp 2]
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For example, we therefore have the following information about the sign of C%j: if 88%3“ > 0,then ‘%;‘ > 0, if
% < 0, then % could be negative if 88’% were large enough relative to %Lyf‘. The similiar analysis applies
to ‘%“. Next, conduct the similiar analysis assuming A < 0.



