
ARE211 FINAL EXAM

DECEMBER 12, 2003

This is the final exam for ARE211. As announced earlier, this is an open-book exam. Try to allocate your
180 minutes in this exam wisely, and keep in mind that leaving any questions unanswered is not a good
strategy. Make sure that you do all the easy questions, and easy parts of hard questions, before you move
onto the hard questions.

Problem 1 (15 points)

(1) In Euclidean space, under the Pythagorean metric, assume that a sequence (xn) satisfies

|xn − xn+1| ≤ α|xn − xn−1|

for each n = 2, 3, ... for some fixed 0 < α < 1.
Show that (xn) is a convergent sequence.

Solution: Let c = |x2 − x1|.An easy inductive argument shows that for each n we have |xn+1 − xn| ≤ cαn−1.
Thus,

|xn+p − xn| ≤

p
∑

i=1

|xn+i − xn+i−1| ≤ c

p
∑

i=1

αn+i−2 ≤
c

1 − α
αn−1

holds for all n and all p. Since lim αn = 0, it follows that (xn) is a Cauchy sequence, and hence a convergent
sequence, under this complete metric space.

(2) Let (X, d) be a complete metric space. A function f : X → X is called a contraction if there exists some
0 < α < 1 such that ∀x, y ∈ X,

d(f(x), f(y)) ≤ αd(x, y)

α is called a contraction constant.
Show that for every contraction f on a complete metric space (X, d), there exists a unique point x ∈ X

such that f(x) = x. (Such a point x ∈ X is called a fixed point.)
(Hint: To prove this, construct a sequence that has the property defined in (1). An understanding of com-
pleteness will also be helpful.)

Solution: Note first that if f(x) = x and f(y) = y hold, then the inequality d(f(x), f(y)) ≤ αd(x, y) easily
implies that d(x, y) = 0, and so x = y. That is, f has at most one fixed point. To see that f has a fixed point,
choose some a ∈ X , and then define the sequence (xn) inductively by

x1 = a and xn+1 = f(xn) for n = 1, 2, ...

From our condition, it follows that

d(xn+1, xn) = d(f(xn), f(xn−1)) ≤ αd(xn, xn−1)

holds for n = 2, 3, ...Thus, as in part (1), we have shown that (xn) is a convergent sequence. Let x = lim xn.
Now by observing that f is (uniformly) continuous, we obtain that

x = lim
n→∞

xn+1 = lim
n→∞

f(xn) = f(x)

and so x is a unique fixed point for f .
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Problem 2 (20 points)

In this problem, all scalars are assumed to be real. We define a projection matrix to be a square matrix P

such that
P 2 = P T = P

(1) Show that every eigenvalue of a projection matrix is either 1 or 0.

Solution: Let λ be an eigenvalue of a projection matrix P , and let x be a corresponding eigenvector: x 6= 0, and
Px = λx. Since P = P 2, Px = P (Px), hence λx = P (λx) = λPx = λ2x.Since x 6= 0, it follows that λ = λ2,

so λ is either 1 or 0.

(2) Prove that if Z is an n × r matrix such that ZT Z = Ir, then ZZT is a projection matrix.

Solution: Let Z be an n × r matrix such that ZT Z = Ir.Then ZZT is n × n and

(ZZT )T = ZZT , (ZZT )2 = ZZT ZZT = ZIrZ
T = ZZT

Hence ZZT is a projection matrix.

(3) Let P be an n × n projection matrix such that P 6= 0, show that there is an integer r and an n × r

matrix Z with the following properties: 1 ≤ r ≤ n, ZT Z = Ir , and ZZT = P .
(Hint: Use the result of (1) and consider the following theorem:
If A is a real symmetric matrix, then
(a) all the eigenvalues of A are real numbers;
(b) A is diagonalizable —- there exist a diagonal matrix D and an invertible matrix S, both with entirely
real entries, such that S−1AS = D;
(c) the matrix S of (b) can be chosen so that ST = S−1.)

Solution: By (1), the characteristic polynomial of P is (λ − 1)rλn−r for some r. Let D be the diagonal matrix
whose first r diagonal entries are equal to 1 and whose remaining diagonal entries are all zero. Hence, by the
Theorem above, there exists an orthogonal matrix, SST = I , such that P = SDST . Partition S as [Z Y ], where
Z consists of the first r columns. Then the equation SST = In may be written

[

ZT Z ZT Y

Y T Z Y T Y

]

=

[

Ir 0
0 In−r

]

In particular, ZT Z = Ir.Also, the equation P = SDST may be written

P = [Z Y ]

[

Ir 0
0 0

] [

ZT

Y T

]

Hence

P = [Z Y ]

[

ZT

0

]

= ZZT

as required.
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Problem 3 (10 points)

The Taylor series expansion of f(a + h) : is given by

f(a + h) = f(a) + hf ′(a) +
h2

2!
f ′′(a) +

h3

3!
f (3)(a) + · · · ,

where the right hand side is to be interpreted as a convergent series. The special case of the Taylor series
expansion when a = 0 is called the Maclaurin expansion of f .

(1) For x ∈ R, find the Maclaurin expansion for the exponential function f(x) = ex.

Solution: f(x) = f ′(x) = · · · = f (n)(x) = ex,whence f(0) = f ′(0) = · · · = f (n)(0) = 1.The Maclaurin
expansion is therefore

ex =
∞
∑

n=0

1

n!
xn = 1 + x +

1

2!
x2 + · · · +

1

n!
xn + · · · (x ∈ R)

(2) Use the Maclaurin expansion for ex to find lim
x→∞

xe−x.(You don’t need to prove the limit.)

Solution: From the series for ex,
ex

x
=

1

x
+ 1 +

x

2!
+

x2

3!
+ · · ·

As x → ∞, 1
x

+ 1 → 1, and the terms x
2! ,

x2

3! , ... all → ∞; hence ex

x
→ ∞, so lim

x→∞
xe−x = 0.
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Problem 4 (20 points)

(1) Use first order conditions to find all the critical points of f(x, y) = x + y2 subject to the constraint
2x2 + y2 = 1.

Solution: x∗ is a critical point of f, if f ′(x∗) = 0. This condition requires that x∗not be an endpoint of the
interval under consideration. The graph of f on the constraint is plotted below:
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(2) Use the second order conditions to classify the critical points you have identified in (1), i.e., to
distinguish between the following four categories: (a) local max; (b) local min; (c) global max on the
constraint set; (d) global min on the constraint set.

Solution: This part has exactly the same spirit as the last question in problem set 9. Minimum is (− 1√
2
, 0);

Maximum is ( 1
4 ,±

√
7

8 ); Local minimum at ( 1√
2
, 0).
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Problem 5 (20 points)

Consider the following problem:

max
x1,x2

f(x1, x2) = x2
1 + x1 + 4x2

2

s.t. 2x1 + 2x2 ≤ 1, x1 ≥ 0, x2 ≥ 0

(1) Solve this maximization problem using either the Lagrangian or the Kuhn-Tucker method.

Solution: See Example 18.13 in Simon and Blume.

(2) Apply the Envelope Theorem to estimate the solution to the following problem (which is identical
except for the coefficient on x2

2 in the objective function).

max
x1,x2

f(x1, x2) = x2
1 + x1 + 4.1x2

2

s.t. 2x1 + 2x2 ≤ 1, x1 ≥ 0, x2 ≥ 0

Solution: This part has exactly the same spirit as the first question in problem set 10.

max
x1,x2

f(x1, x2) = x2
1 + x1 + ax2

2

s.t. 2x1 + 2x2 ≤ 1, x1 ≥ 0, x2 ≥ 0

L = x2
1 + x1 + ax2

2 − λ1(2x1 + 2x2 − 1) + λ2x1 + λ3x2

For a = 4, x∗
1 = 0, x∗

2 = 0.5, λ∗
1 = 2, λ∗

2 = 3, λ∗
3 = 0, and f∗ = 1. At these values,

∂L

∂a
= x∗2

2 = 0.52 = 0.25

so

f∗(4.1) ≈ f∗(4) +
∂L

∂a
∆a = 1 + 0.25(0.1) = 1.025
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Problem 6 (15 points)

Consider a supply-demand model for two goods A and B, the markets for which are interrelated in the
following way: the supply of each good depends only on its only price, i.e.SA = SA(pA), SB = SB(pB), but
the demand for each good depends on both prices and on income. We assume that both goods are normal.

Let the demand function for good i(i = A, B) be Di(pA, pB , y), where pi is the price of good i, and y is
income as before; let the supply function be Si(pi). We assume that

∂DA

∂pA

< 0 <
dSA

dpA

,
∂DA

∂y
> 0,

∂DB

∂pB

< 0 <
dSB

dpB

,
∂DB

∂y
> 0

For the moment, we make NO assumptions about the cross-price effects, i.e. the signs of ∂DA

∂pB
and ∂DB

∂pA
.

Defining the excess demand functions

EDA(pA, pB, y) = DA(pA, pB , y) − SA(pA)

EDB(pA, pB, y) = DB(pA, pB , y) − SB(pB)

(1) Give the equilibrium condtions for this market using excess demand functions.

Solution: EDA(p∗A, p∗B , y) = 0 and EDB(p∗A, p∗B , y) = 0

(2) Assume that, for a given value of y, there is a unique pair of equilibrium prices (p∗
A, p∗B) which satisfy

the equilibrium conditions given above. Now please give a comparative statics analysis of the impact

of a change in income on equilibrium prices, i.e. the sign of
dp∗

A

dy
and

dp∗

B

dy
. Explain how the results depend

on the signs of ∂DA

∂pB
and ∂DB

∂pA
, and also the signs of ∂DA

∂y
and ∂DB

∂y
.

Solution: To apply comparative statics, let us consider the Jacobian matrix

J =

[

∂EDA

∂pA

∂EDA

∂pB

∂EDB

∂pA

∂EDB

∂pB

]

The implicit function theorem tells us that if J is invertible at the given equilibrium, there is a unique local
solution for pA and pB in terms of y, which may be differentiated as follows:

[

dp∗

A

dy
dp∗

B

dy

]

= −J−1

[

∂EDA

∂y
∂EDB

∂y

]

Let ∆ = det J . Now assume that ∆ > 0, which implies that cross-price effects on demand are not so big as to
swamp the own-price effects on supply and demand. Given that ∆ > 0, the matrix J is invertible. We have

J−1 =
1

∆

[

∂EDB

∂pB
−∂EDA

∂pB

−∂EDB

∂pA

∂EDA

∂pA

]
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It follows that
[

dp∗

A

dy
dp∗

B

dy

]

= −
1

∆

[

∂EDB

∂pB
−∂EDA

∂pB

−∂EDB

∂pA

∂EDA

∂pA

] [

∂EDA

∂y
∂EDB

∂y

]

= −
1

∆







(−)
∂EDB

∂pB

(+)
∂DA

∂y
− ∂DA

∂pB

(+)
∂DB

∂y

−∂DB

∂pA

(+)
∂DA

∂y
+

(−)
∂EDA

∂pA

(+)
∂DB

∂y







For example, we therefore have the following information about the sign of dpA

dy
: if ∂DA

∂pB
> 0,then dpA

dy
> 0; if

∂DA

∂pB
< 0, then dpA

dy
could be negative if ∂DB

∂y
were large enough relative to ∂DA

∂y
. The similiar analysis applies

to dpA

dy
. Next, conduct the similiar analysis assuming ∆ < 0.

7


