Problem 1
Please use the Pythagorean metric in the following problem. (The Pythagorian metric is another name for the d^2 metric, defined in class as $d^2(x, y) = \sqrt{\sum_{i=1}^{n}(x_i - y_i)^2}$.)

a) Consider the sequence $x_n = 2 + \frac{(-1)^n}{n}$ defined on \mathbb{R}. Prove (i) that the sequence is a convergent sequence using the definition of a convergent sequence and show (ii) that the sequence is a Cauchy sequence using the definition of a Cauchy sequence.

b) Now consider the sequence $x_n = 2 + \frac{(-1)^n}{n}$ defined on $S = \mathbb{R} \setminus \{2\}$. Using your proof from part a) argue that it is still a Cauchy sequence in S. Prove that it is not a convergent sequence in S.

(Note: The set $A \setminus B$ is defined as: $A \setminus B = \{x | x \in A, x \notin B\}$).

Problem 2

a) Prove that a sequence x_n in X converges in the discrete metric if and only if there exists $\bar{x} \in X$ and a $N \in \mathbb{N}$ such that for all $n > N$, $x_n = \bar{x}$.

b) In class we showed that every Cauchy sequence in \mathbb{R} with respect to the Pythagorean metric is also a convergent sequence in \mathbb{R} with respect to the Pythagorean metric. Show that every Cauchy sequence in \mathbb{R} with respect to the discrete metric is also a convergent sequence in \mathbb{R} with respect to the discrete metric.

c) Problem 1 showed you that a Cauchy sequence that is defined on a strict subset of \mathbb{R} does not have to converge in that subset. Again only considering the discrete metric, can we say that every Cauchy sequence defined on a subset $S \subset \mathbb{R}$ is also a convergent sequence in that subset. If yes, show why. If not, give a counter-example.

Problem 3
Show that every convergent sequence (in an arbitrary universe X with respect to any metric defined on $X \times X$) is a Cauchy sequence under the same metric. (Hint: This proof is very short. Use the general definition of a metric).
Problem 4
For each of the following, draw and describe the ϵ-ball $B_d(x, \epsilon; X)$ for some $\epsilon > 0$ around the point x in the specified metric $d(x,y)$ and universe X. (In part (d) you might not be able to draw it, so just sketch parts of it). Give a brief explanation of why the ϵ-ball looks the way it does. For (d) and (e), consider two cases, one where $\epsilon < 1$ and another where $\epsilon > 1$.

<table>
<thead>
<tr>
<th>Part</th>
<th>x</th>
<th>$d(x,y)$</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>3</td>
<td>$</td>
<td>x-y</td>
</tr>
<tr>
<td>(b)</td>
<td>(2,1)</td>
<td>$\max{</td>
<td>x_1-y_1</td>
</tr>
<tr>
<td>(c)</td>
<td>(1,2)</td>
<td>$\sum_{i=1}^2</td>
<td>x_i-y_i</td>
</tr>
<tr>
<td>(d)</td>
<td>2</td>
<td>discrete metric</td>
<td>Rationals \mathbb{Q}</td>
</tr>
<tr>
<td>(e)</td>
<td>(2,2)</td>
<td>Pythagorean metric</td>
<td>$\mathbb{Z} \times \mathbb{Z}$ where \mathbb{Z} are the integers</td>
</tr>
</tbody>
</table>

Problem 5
Show that each subset S of an arbitrary universe X is an open set in X under the discrete metric.

Problem 6
Fix $a, b, c \in \mathbb{R}$ with $a < b < c$. Consider the following two subsets of \mathbb{R}^2:

$$S_h = \{ x \in \mathbb{R}^2 | a < x_1 < b ; x_2 = c \}$$

$$S_v = \{ x \in \mathbb{R}^2 | x_1 = a ; b < x_2 < c \}$$

Loosely speaking, S_h is a line segment parallel to the horizontal axis and S_v is a line segment parallel to the vertical axis.

- You know from Problem 5 that all S_h and S_v are open sets under the discrete metric.
 a) Show that neither S_h nor S_v are open sets under the Pythagorean metric.
 b) Is it possible that all S_h are open sets and all S_v are not open sets under the same metric.
 If yes, then look far and wide and give an example of such a metric. If not, prove why it isn’t possible.
Since we want to keep problem sets shorter, there are two more optional problems below. We do *strongly* recommend that you do them. I will grade them and record that you did them, but the points will not be a part of your grade unless you are a “border-line” case when it comes time to calculate the final grades.

Optional Problem 1
Prove the following: Given $S \subset \mathbb{R}$, $b \in \mathbb{R}$ is a greatest lower bound (infimum) of S iff b is a lower bound for S and $\forall \, \epsilon > 0, \exists \, s \in S$, such that $s - b < \epsilon$. A very similar proof is in the notes; please try this first on your own without referring to that proof.

Optional Problem 2
Recall the definition of point-wise convergence we gave in class. A sequence of functions f_n converges point-wise to a function f on a set X in the metric d if $\forall \, x \in X$, given $\epsilon > 0 \exists \, N(x, \epsilon) \in \mathbb{N}$ such that $n > N$ implies $d(f_n(x), f(x)) < \epsilon$.

This definition implies that N depends on the epsilon *and* on the x. As we discussed in section, it may not be possible to find an N that works for *every* x simultaneously. If you succeed in finding such an N, you have uniform convergence.

We define uniform convergence as: A sequence of functions f_n converges uniformly to a function f on the set X in the metric d if $\forall \, \epsilon > 0 \exists \, N(\epsilon) \in \mathbb{N}$ s.t. $\forall \, x \in X$, $n > N$ implies $d(f_n(x), f(x)) < \epsilon$.

For each of the following state whether they are true or not. If they are correct, prove them. If they are false, give a counter-example.

a) For a given universe X and a metric d, every sequence of functions that converges uniformly also converges point-wise.

b) For a given universe X and the Pythagorian metric, every point-wise convergent sequence of functions also converges uniformly.

c) For a given universe X and the discrete metric, every point-wise convergent sequence of functions also converges uniformly.