1. Analysis (cont)

Before proceeding to the next topic, we’ll prove a completely obvious Fact about sequences and subsequences. (We could call it a Lemma, but that’s glorifying it.) Recall that to show that \((y_n)\) is a subsequence of \((x_n)\), you always have to show the existence of a strictly increasing function \(\tau : \mathbb{N} \to \mathbb{N}\) such that for all \(n \in \mathbb{N}\), \(y_n = x_{\tau(n)}\). Now note:

Fact: If \(\tau : \mathbb{N} \to \mathbb{N}\) is a strictly increasing mapping, then for all \(n\), \(\tau(n) \geq n\).

To prove this, we’ll argue by induction.

- **Initial step:** \(\tau(1) \geq 1\) (duh).
- **Inductive step:** suppose that \(\tau(n) \geq n\); then \(\tau(n + 1) \geq n + 1\).

 Proof of the Inductive step: Let \(\tau(n) = k \in \mathbb{N}\); since \(\tau(n + 1) > \tau(n)\) and \(\tau(n + 1) \in \mathbb{N}\), \(\tau(n + 1) \geq k + 1\). Since by assumption \(k \geq n\), \(\tau(n + 1) \geq k + 1 \geq n + 1\).

1.9. Continuous Functions

A function is continuous if it maps nearby points to nearby points. Draw the graph without taking pen off paper. Graph is connected. Formally:
Lemma: Consider \(f : X \to \mathbb{R}^k \). Fix \(x_0 \in X \). The function \(f \) is continuous at \(x_0 \) if whenever \(\{x_m\}_{m=1}^{\infty} \) is a sequence in \(X \) which converges to \(x_0 \), then \(\{f(x_m)\}_{m=1}^{\infty} \) converges to \(f(x_0) \). The function \(f \) is continuous if it is continuous at \(x \), for every \(x \in X \).

We’ll first prove a lemma that we need to prove today’s main result.

Proof of the Lemma: We’ll just show that the function is bounded above, by proving that if \(X \) is compact and \(f \) isn’t bounded, then \(f \) cannot be continuous. Assume that \(f \) isn’t bounded, i.e., for all \(m \in \mathbb{N} \), \(\exists x_m \) such that \(f(x_m) > m \). Since \(X \) is compact, the sequence \(\{x_n\} \) contains a convergent subsequence. Call this subsequence \(\{y_n\} \) and let \(y \in X \) denote its limit. Define \(\tau : \mathbb{N} \to \mathbb{N} \) by \(y_n = x_{\tau(n)} \) for all \(n \). Since \(f \) is defined on \(X \), \(f(y) \in \mathbb{R} \), that is, \(f(y) < N \), for some \(N \in \mathbb{N} \). Now pick \(n \geq N + 1 \) and note that by the Fact above, \(\tau(n) \geq n \geq N + 1 \). Moreover, by assumption, \(f(\tau(n)) = f(x_{\tau(n)}) \geq \tau(n) \geq N + 1 \). Hence for all \(n > N + 1 \), \(f(y_n) - f(y) > 1 \), so that \(f \) is not continuous at \(y \). Similarly, \(f \) is bounded below.

Now for the main result.

Theorem: (Weierstrass) Consider a function \(f : X \to \mathbb{R}^1 \), where both \(X \) and \(\mathbb{R} \) are endowed with the Pythagorean metric. If \(X \) is a compact set and \(f \) is continuous on \(X \), then \(f \) attains a global maximum and a global minimum on \(X \).

Sketch of the Proof:

- show that the image of the function must be bounded.
- let \(\bar{f} \) denote the supremum of the image of the function.
- pick a sequence \(\{x_n\} \) such that the sequence \(\{f(x_n)\} \) gets closer to the supremum.
- while the sequence \(\{x_n\} \) needn’t converge, it follows from the compactness of \(X \) that there must exist a subsequence \(\{y_n\} \) of \(\{x_n\} \) such that \(\{y_n\} \) converges to \(y \in X \).
- since \(f \) is continuous, the sequence \(\{f(y_n)\} \) must converge to \(f(y) \). But by defn of the supremum, \(\{f(y_n)\} \) converges also to \(\bar{f} \). Hence \(f(y) = \bar{f} \).
- Since \(\bar{f} \) is the supremum of the image of \(X \) under \(f \), then \(f(y) = \bar{f} \geq f(x) \), for all \(x \in X \).

Proof: Let \(\bar{f} \) denote the supremum of the image of \(X \) under \(f \), i.e., the set \(\{f(x) : x \in X\} \). By the Lemma above, \(\bar{f} \in \mathbb{R} \). By definition of the supremum, for all \(n \), there exists \(x_n \) such that \(f(x_n) > \bar{f} - 1/n \). Since \(X \)
is compact, the sequence \(\{x_n\} \) contains a convergent subsequence. Call this subsequence \(\{y_n\} \) and let \(y \in X \) denote its limit. Since \(f \) is continuous, the sequence \(\{f(y_n)\} \) converges to \(f(y) \in \mathbb{R} \). To complete the proof, we’ll show that \(\{f(y_n)\} \) also converges to \(\bar{f} \). Since a sequence has at most one limit\(^1\), this will imply that \(f(y) = \bar{f} \geq f(x) \), for all \(x \in X \), and hence imply that \(f \) attains a global maximum at \(y \).

Since \(\{y_n\} \) is a subsequence of \(\{x_n\} \), there exists a strictly increasing mapping \(\tau : \mathbb{N} \to \mathbb{N} \) such that for all \(n \), \(y_n = x_{\tau(n)} \). To prove that \(\{f(y_n)\} \) converges to \(\bar{f} \), we need to show that for all \(\varepsilon > 0 \), there exists \(N \in \mathbb{N} \) such that for all \(n > N \), \(f(y_n) \in B(\bar{f}, \varepsilon) \). Note first that for all \(n \), \(f(y_n) \leq \bar{f} \), since \(\bar{f} \) is an upper bound for the set \(\{f(x) : x \in X\} \). Moreover, it follows from the construction of \(\{x_n\} \) that for all \(n \), \(f(y_n) = f(x_{\tau(n)}) > \bar{f} - 1/\tau(n) \geq \bar{f} - 1/n \) (by the above Fact). It follows therefore that for an arbitrarily chosen \(\varepsilon > 0 \), we can pick \(N_{\varepsilon} \in \mathbb{N}, N_{\varepsilon} > 1/\varepsilon \), so that \(1/\tau(N_{\varepsilon}) \leq 1/N_{\varepsilon} < \varepsilon \). To complete the proof, observe that for all \(n > N_{\varepsilon} \),

\[
 f(y_n) \in (\bar{f} - 1/\tau(n), \bar{f}] \subset (\bar{f} - 1/\tau(N_{\varepsilon}), \bar{f}] \subset (\bar{f} - \varepsilon, \bar{f}] \subset (\bar{f} - \varepsilon, \bar{f} + \varepsilon) = B(\bar{f}, \varepsilon)
\]

So we have, \((f(y_n)) \to f(y) \in \mathbb{R} \) and \((f(y_n)) \to \bar{f} \in \mathbb{R} \). Since a function can have only one limit, \(f(y) = \bar{f} \).

Since \(\bar{f} \) is an upper bound for \(\{f(x) : x \in X\} \), we now have \(f(y) \geq f(x) \), for all \(x \in X \). \(\square \)

A common source of puzzlement is: since \(f(x_n) \) already converges to \(\bar{f} \), why do I need to pick a subsequence \(\{y_n\} \) and show that \(f(y_n) \) also converges to \(\bar{f} \)? The reason is that \((x_n) \) doesn’t necessarily converge to some \(x \in X \), so \(y \) can’t invoke continuity to establish that \(f(x_n) \) converges to \(f(x) \), for some \(x \in X \). Here are two examples that illustrate conclusively (I hope) why you absolutely have to pick the subsequence.

1. Let \(X = (0, 1) \) and consider \(f : X \to \mathbb{R} \), defined by \(f(x) = x \). Clearly \(f \) doesn’t attain a maximum on \(X \). The theorem doesn’t apply because \(X = (0, 1) \) isn’t compact. Here’s where the proof would break down if we tried to apply it. Using the notation of the proof, \(\bar{f} = 1 \). Pick \(x_n = 1 - 1/(n + 1) \) and note that for all \(n \), \(f(x_n) > \bar{f} - 1/n \). But we can’t go past this point, because without compactness, we can’t pick a subsequence \(\{y_n\} \) and \(y \in X \) such that \(y_n \to y \). The point of the example is that having the sequence \(x_n \) such that the \(f(x_n) \)’s approach \(\bar{f} \) doesn’t do us much good, without further help.

2. Consider the function \(f \) and sequence \(\{x_n\} \) graphed in Fig. 1 below. The example illustrates the point that even though the sequence \(\{f(x_n)\} \) converges to \(\bar{f} \), the sequence \(\{x_n\} \) doesn’t converge. However, \(\{x_n\} \) has two convergent subsequences, each of which work fine.

Our last result in the analysis section establishes a useful alternative definition of continuity.

\(^1\) We noted this in Lecture 6 but didn’t prove it. Prove it as an exercise.
Definition: Given a mapping $f : X \to Y$, and $O \subset Y$, $f^{-1}(O)$ is the subset of X that f maps into Y, i.e., $f^{-1}(O) = \{ x \in X : f(x) \in O \}$. $f^{-1}(O)$ is called the inverse image of O under f.

The result is that a function is continuous iff the inverse image of every open subset of the range of the function is an open set in the domain.

Theorem: A function $f : X \to Y$ is continuous iff for every open set $O \subset Y$, $f^{-1}(O)$ is an open subset of X.

Proof:

(1) first prove that continuity implies inverse images of open sets are open. Fix an arbitrary set $S \subset Y$ such that $f^{-1}(S)$ isn’t open in X. We’ll argue that S isn’t open in Y. This will prove that when f is continuous, S open in Y implies $f^{-1}(S)$ is open in X.

- if $f^{-1}(S)$ isn’t open there must exist a point x in $f^{-1}(S)$ (i.e. such that $f(x) \in S$) which is a boundary point of $f^{-1}(S)$.

Figure 1. Why (x_n) isn’t enough: you need to pick a subsequence (y_n)
• i.e., there’s a sequence of points x^n converging to x all of which get mapped to points outside of S, that is, for all n, $f(x^n) \notin S$.
• since f is continuous, $f(x^n)$ must converge to $f(x)$.
• but this means that $f(x)$ is a boundary point of S.
• conclude that S isn’t open

(2) now prove that inverse images of open sets are open implies continuity, for the case $Y = \mathbb{R}$. We’ll show that if f is not continuous, then there exists an open set $O \subset Y$ such that $f^{-1}(O)$ isn’t open in X.

• if f isn’t continuous, there exists $x \in X$ and a sequence $\{x_n\}$ which converges to x such that $f(x^n)$ doesn’t converge to $f(x)$, i.e., there exists $\epsilon > 0$ and a subsequence $\{y^n\}$ of $\{x^n\}$ such that for each n, $|f(y^n) - f(x)| > \epsilon$. Let $O = (f(x) - \epsilon, f(x) + \epsilon)$. Clearly $f(x) \in O$ so that $x \in f^{-1}(O)$. We’ll show that x is not an interior point of $f^{-1}(O)$ and conclude that $f^{-1}(O)$ is not open.

• pick an arbitrary open set W containing x. Since $\{y_n\}$ converges to x, there exist n sufficiently large that $y^n \subset W$. But since by assumption, $f(y^n) \notin O$, it follows that $y^n \notin f^{-1}(O)$. Since W was chosen arbitrarily, we have established that there does not exist an open set which contains x and is itself contained in $f^{-1}(O)$. Conclude that $f^{-1}(O)$ is not open in X.