Preliminaries

Communications: My email address is simon@are.berkeley.edu, and this is the best way to contact me. My office is 221 Giannini Hall and my phone number is (510) 642 8230. I’m also available by appointment. My office hours will be from 2:00-4:00 on Fridays. You should expect to receive multiple emails during the year and will assume that all of you receive them. I will be using the email list associated with the University’s central enrollment file. If you aren’t in that file, you won’t get any emails, so make sure you are!!

Teaching Assistant (not): This year will be a tough year, because of the budget situation. For the first time ever, there is no money for a Teaching Assistant. In past years, the T.A. for this class has been overwhelmed with requests for help. This year, you’ll just have to come to me, which is not something First Years typically like to do.

Section Time: There is a scheduled section time, from 2-3 Friday. You should keep this time available, even though there is no section. I may need to hold sections from time to time.

Discretionary enrollments: Because of the lack of a T.A., I will almost certainly (i.e., with 99% likelihood) not accept any students into the class other than first year ARE graduates.

Make-up classes: I have to be away for three classes, Sep 2,7,9. My preference for making them up is have two 2-hour make-up classes. Two proposed times for these are Tuesday evening, around 6:30-7 (I’m flexible about the time), or Friday 2-4, depending on your preferences. Probable dates would be Tuesday, 9/21 and 9/28 or 9/24 and 10/01. If you have strong preferences about these dates, please email me. I’ll assume that any student who doesn’t email me is available on both Tuesday nights and Friday 2-4.

Grading: There will be weekly problem sets throughout the course. These are an absolutely critical component of the course. Math is learnt not from books but by doing loads of problems. There will be a take-home mid-term (expect it to dominate one weekend) and an in-class, but open-book final. Your final grade will be (more or less) a weighted average of your performance on the exams and homeworks. Exams should be exclusively your own work. Shouldn’t need to say this, but there have been incidents. We enthusiastically encourage joint work except during exams.

Lecture notes: The lecture notes for each class will be available via the Internet, but not until after the lecture. You might want to bookmark the following page
Every year, people ask me to post the lectures before the classes. The reason I don’t is that the lecture notes almost always change, and if they are posted in advance, students get very frustrated because they have to keep downloading revisions.

Books: Here is a list of books for the course, purely for reference purposes. The lectures bear no particular relationship to any particular book. The first in the list is an all-purpose book. The others are useful for specific topics. Together with the first book, most people find that the lecture notes (see below) are sufficient without acquiring other books.

1. Mathematics for Economists, by Carl Simon (no relation) and Larry Blume (SB). This is by far the most appropriate book for the course. Try to master the portions of parts I, III and IV that relate to the course. You need portions of part II, but we’ll hardly do any of it in class.


3. Economists’ Mathematical Manual, by Berck and Sydsaeter. (Fantastic reference book for all manner of formulae, etc., that you often need.)

4. Elementary Classical Analysis, by J. Marsden. This is a straight math book which many, many students have found to be a very helpful adjunct to the analysis part of the course.

5. How to Read and Do Proofs, by Daniel Solow. Proofs are always the hardest part of this course (and others). If you haven’t had much experience doing proofs, you are guaranteed to find it hard. This is a useful book designed for people in this position. I’m not going to assign anything from it, but many people have found it very useful. Try to work your way through it on your own, or in a group.

6. Mathematical Economics, by Michael Carter. Many of the topics in this are too advanced for this class, but it also covers a lot of what we do. Handy as an additional reference.

7. Mathematical Appendix to Microeconomic Analysis, by Hal Varian

8. Mathematical Optimization and Economic Theory, by M. Intrilligator. (good for nonlinear programming section)

9. Microeconomic Theory, by Henderson and Quandt. (Has a lot of old fashioned stuff in it that you can’t find in modern textbooks but actually use a lot.)

10. The Structure of Economics: A Mathematical Analysis, by Eugene Silberberg. (A lot of students like this: it’s clear and does certain basic things in a lot of detail.)