(1) Consider the function $f(x) = x_1^2 + x_2^2$.

(a) Evaluate the gradient of f at the point $(1, 1)$

$$\nabla f(x_1, x_2) = (2x_1, 2x_2) \text{ so that } \nabla f(1, 1) = (2, 2).$$

(b) Compute the directional derivative of f at $(1, 1)$ in the direction $h = (1, 3/4)$.

The unit length vector pointing the direction h is $(4/5, 3/5)$. So the directional derivative in this direction is $\nabla f(1, 1)(4/5, 3/5)' = 14/5$.

(c) Using a first order Taylor expansion, approximate the gradient of f at the point $(1 + \epsilon, 1 - \epsilon)$.

The Hessian of f at $(1, 1)$ is $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$, so the first order Taylor approximation to $d\nabla f = \nabla f(1 + \epsilon, 1 - \epsilon) - \nabla f(1, 1) = \begin{bmatrix} 2 \\ 0 \end{bmatrix} [\epsilon, -\epsilon] = \begin{bmatrix} 2\epsilon \\ -2\epsilon \end{bmatrix}$

(d) How does the quality of your approximation depend on ϵ? Explain your answer.

This approximation is exact: from above, $\nabla f(1 + \epsilon, 1 - \epsilon) = (2(1 + \epsilon), 2(1 - \epsilon))$ so that $\nabla f(1 + \epsilon, 1 - \epsilon) - \nabla f(1, 1) = 2(\epsilon, -\epsilon)$. The reason why the approximation is exact is that f is a quadratic, so that all terms in the Taylor expansion of ∇f after the first are zero.
(2) Cecile hates paying too much for things. Not just because the more she pays, the less she can buy. But because she gets a bigger knot in her stomach the higher are the prices she has to pay. Her utility function is
\[u(x, p) = (x_1 - 2)(2 + x_2) - p_1 p_2. \] Suppose that \(p_1 = p_2 = 1 \), and that she has one unit of income. She cannot consume negative quantities of either good.

(a) Set up the Lagrangian to solve her utility maximization problem

\[L(x, p, \lambda) = (x_1 - 2)(2 + x_2) - p_1 p_2 + \lambda_1 (0 - (-x_1)) + \lambda_2 (0 - (-x_2)) + \lambda_3 (1 - x_1 - x_2) \]

(b) Solve her problem graphically.

The objective function in a neighborhood of \((1, 0)\) is locally quasi-convex!

(c) Verify graphically that the mantra is satisfied.

Clearly \(\nabla f \) belongs to the positive cone defined by the two constraints \(\nabla g_2 \) and \(\nabla g_3 \) that are satisfied with equality at \((1, 0)\).

(d) Verify mathematically that the KKT necessary conditions are satisfied.

\[\nabla f(1, 0) = (2, -1) = \lambda_2 (0, -1) + \lambda_3 (1, 1), \] where \(\lambda_2 = 3, \lambda_3 = 2 \).

(e) Now for \(i = 1, 2 \), suppose that the price of good \(i \) increases. Compare the effect of these increases on Cecile’s utility

(i) with the aid of graphs.
As the graph illustrates an increase in p_1 has an effect on the solution through the budget constraint g_3, while an increase in p_2 has no effect through this constraint. However, both prices have an identical effect through the objective function, though this cannot be seen in the figure.

(ii) using the envelope theorem.

\[\frac{du(x^* p^*)}{dp_1} = \frac{\partial u(x^* p^*)}{\partial p_1} - \lambda_3 x_i \]

\[= -(p_j + \lambda_3 x_i) \]

Thus \(\frac{du(x^* p^*)}{dp_1} = -(1 + 2 \cdot 1) = -3 \); while \(\frac{du(x^* p^*)}{dp_2} = -(1 + 0) = -1 \).

Explain how the mathematics in your answer to 2(e)ii relates to the graphs in your answer to 2(e)i

The difference between the left and right panels matches the difference between -3 and -1. The budget set shrinkage affects Cecile's utility only for p_1 and at a rate -2. The remaining -1 in each case affects the vertical height above the solution level set, but doesn't show up in the figure, of course.
(3) Consider the function \(f(x) = x_1 x_2 \).

(a) Using the variables \(x_1, x_2 \) and \(\lambda \), write down a vector that is orthogonal to \(\nabla f(x) \). Verify that it is indeed orthogonal.

For \(\lambda \in \mathbb{R}_+ \), let \(dx = \lambda(x_1, -x_2) \). Since \(\nabla f(x) = (x_2, x_1) \), we have \(\nabla f(x) dx = \lambda(x_1 x_2 - x_1 x_2) = 0 \), so that \(dx \) is indeed orthogonal to \(\nabla f(x) \).

(b) Show that any vector that is orthogonal to \(x \) can be written in the form you identified in (3a).

That is, show that if \(y \) is orthogonal to \(x \), then there exists \(\lambda \in \mathbb{R} \) such that \(y \) can be written in terms only of \(x_1, x_2 \) and \(\lambda \).

Suppose that \(\nabla f(x) y = 0 \). That is, suppose that \(y_1 x_2 + y_2 x_1 = 0 \), so that \(y_2 = -\frac{y_1 x_2}{x_1} \). Let \(\lambda = \frac{y_1}{x_1} \) and observe that \(y = (\lambda x_1, -\lambda x_2) \).

(c) Using your answer to the preceding part, and without using a bordered Hessian argument, verify that \(f(\cdot) \) is strictly quasi-concave on the strictly positive orthant, i.e., \(\mathbb{R}^{++} \).

\(f \) is strictly quasi-concave if for all \(x \) and all \(dx \) such that \(\nabla f(x) dx = 0, \) \(dx' H f(x) dx < 0. \) Now fix \(x \) arbitrarily and pick \(dx = \lambda(x_1, -x_2) \) such that \(\nabla f(x) dx = 0. \) \(H f(x) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \) so that, since \(x \) is strictly positive,

\[
dx' H f(x) dx = \lambda^2 \begin{bmatrix} x_1 & -x_2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ -x_2 \end{bmatrix} = \lambda^2 \begin{bmatrix} x_1 & -x_2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -x_2 \\ x_1 \end{bmatrix} = -2\lambda^2 x_1 x_2 < 0
\]

(d) What can you say about the extension of \(f \) to the nonnegative orthant, i.e., \(\mathbb{R}_+ \). Again, your answer shouldn’t invoke Bordered Hessians.

Once you extend to the nonnegative orthant, \(dx' H f(x) dx \) will be positive whenever \(x \) is strictly positive and zero if either component of \(x \) is positive. Hence the extension of \(f \) to the nonnegative orthant is negative semi-definite.
(4) Consider the following system of equations,

\[
\begin{align*}
3y + 2w &= z + 1 \\
3w + 2z &= 8 - 5y
\end{align*}
\]

We are going to use the implicit function theorem to find \(\frac{dy}{dz} \).

(a) Set this problem up in the format of the implicit function theorem, i.e., identify \(f, x \) and \(\alpha \).

\[
\begin{align*}
x &= (w, y), \quad \alpha = z, \quad f(x, \alpha) = \begin{bmatrix} 2 & 3 & -1 \\ 3 & 5 & 2 \\ y & z \end{bmatrix} \begin{bmatrix} w \\ y \\ z \end{bmatrix}
\end{align*}
\]

(b) Identify the level set of \(f \) that we will stay on as we vary \(z \).

We will stay on the level set \(f(x, \alpha) = \begin{bmatrix} 1 \\ 8 \end{bmatrix} \).

(c) Verify that the condition required to apply the implicit function theorem is satisfied.

The required condition is that the matrix \(\begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} \) is nonsingular. Its determinant is 1, so indeed it has full rank.

(d) Apply the implicit function theorem (and Cramer’s rule) to obtain \(\frac{dy}{dz} \).

\[
\begin{bmatrix}
\frac{\partial w}{\partial z} \\
\frac{\partial y}{\partial z}
\end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}^{-1} \begin{bmatrix} -1 \\ 2 \end{bmatrix} \quad \text{so that} \quad \frac{dy}{dz} = \det \left(\begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix} \right) / \det \left(\begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} \right) = -7
\]

(5) Consider the function \(f(x) = 2x - 5x^2 + \frac{2}{3}x^3 \). This function has one strict local maximum \(\bar{x} \) and a one strict local minimum \(\bar{x} \).

(a) Find \(\bar{x} \) and \(\underline{x} \) and distinguish between them using second order conditions

\[
f'(x) = 2 - 10x + 8x^2. \quad f''(x) = 16x - 10. \quad f'''(x) = 16 \quad f'(x) = 0 \implies (1 - 5x + 4x^2) = 0, \quad \text{i.e.,} \quad x = 1/4 \quad \text{or} \quad x = 1. \quad f'''(1/4) = 4 - 10 = -6 < 0 \quad \text{so} \quad \underline{x} = 1/4 \quad \text{is a local max.} \quad f'''(1) = 16 - 10 = 4 > 0 \quad \text{so} \quad \bar{x} = 1 \quad \text{is a local min.}
\]

(b) Does the function have a global max and/or a global min. If not, why not?

As \(x \) becomes large and positive, the cubed term dominates and the function increases without bound. Similarly As \(x \) becomes large in absolute value and negative, the cubed term again dominates and the function decreases without bound. Conclude that the function has no global max or min.

(c) Using a Taylor expansion, find the largest \(\epsilon \) such that \(f \) has a strict global maximum at \(\bar{x} \) when \(f \) is restricted to the interval \((\bar{x} - \epsilon, \bar{x} + \epsilon) \).

The third order Taylor expansion of \(f \) about \(\bar{x} \) is exact since there are no higher order terms. Hence we have

\[
f(x) - f(1/4) = f'(1/4)dx + f''(1/4)dx^2/2 + f'''(1/4)dx^3/6 = 0 - 3dx^2 + 8/3dx^3
\]

Thus \(f(x) - f(1/4) \geq 0 \) if \(8dx/3 > 3 \) or \(dx > 9/8 \). Therefore, \(f \) has a strict global maximum at \(\bar{x} = 0.25 \) when \(f \) is restricted to the interval \((\bar{x} - 9/8, \bar{x} + 9/8) \).