
Fall 2015 ARE211

Problem Set #05- Answer key

First NPP Problem Set

(1) Consider the following maximization problem (solve it graphically):
maxx1,x2

f(x1, x2) with f(x1, x2) = −x1
subject to g1 : −x31 + x2 ≤ 0 and g2 : −x31 − x2 ≤ 0.
a) What is the solution to the maximization problem?

Ans: The feasible set is displayed in the left graph of figure 1. Since it is the task to
maximize −x1, one has to pick the point with the lowest x1 value in the feasible set, which
is the point (0,0).

b) Are the KKT conditions satisfied for the solution to part a). If yes, write the gradi-
ent of the objective function as a postive linear combination of the gradients of the
contstraints that are satisfied with equality. If not, explain why?

Ans: The gradient of the objective function and the gradient of the constraints that are
satisfied with equality are displayed in the right side of figure 1. Note that the gradient of
the objective function does not lie in the nonnegative cone defined by the gradients of the
constraints that are satified with equality. The reason is that the constraint qualification is
not satisfied, i.e., the two gradients of the constraints satified with equality are collinear.

c) Now, slightly change the problem and let the second constraint be g2 : −x31−ǫx1−x2 ≤
0 for ǫ > 0 Again, what is the solution to your problem?

Ans: The feasible set is displayed in the upper graph of figure 2 for ǫ = 0.1. Since it is the
task to maximize −x1, one has to pick the point with the lowest x1 value in the feasible
set, which is again the point (0,0).

d) For the revised problem in part c), is the Mantra satisfied. If yes, write the gradi-
ent of the objective function as a postive linear combination of the gradients of the
contstraints that are satisfied with equality. If not, explain why?

Ans: The gradient of the objective function and the gradient of the constraints that are
satisfied with equality are displayed in the lower graph of figure 2. Now, the gradient of
the objective function does lie in the nonnegative cone defined by the gradients of the
constraints that are satified with equality.

▽f =
1

ǫ
▽g1 +

1

ǫ
▽g2

(2) Consider the following minimization problem

min
x1,x2

2x21 + 2x22 − 2x1x2 − 9x2

subject to the following constraint set:

g1 : x1 ≥ 0

g2 : x2 ≥ 0

g3 : 4x1 + 3x2 ≤ 10

g4 : −4x21 + x2 ≥ −2
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Figure 1. Feasible set (left) and Mantra at point (0,0) (right)
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Write down the Lagrangian and solve the first order necessary condition.
Hint: (1) show that the cases x1 = 0, x2 > 0 and x1 > 0, x2 = 0 and x1 = x2 = 0 lead to
a contradiction. Infer that a possible solution must satisfy: x1 > 0, x2 > 0. Note well:

You can only make this inference once you have checked in each of the three cases that
the constraint qualification is satisfied. Otherwise you haven’t excluded the possibility that
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Figure 2. Feasible set (top) and Mantra at point (0,0) (bottom)
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you’ve reached a contradiction even though a solution does exist.

Ans: Consider the equivalent maximization problem in standard form:

max
x1,x2

−2x21 − 2x22 + 2x1x2 + 9x2

subject to the following constraint set:

g1 : −x1 ≤ 0

g2 : −x2 ≤ 0

g3 : 4x1 + 3x2 ≤ 10
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g4 : 4x21 − x2 ≤ 2

Note: The gradient of the objective function is: ▽f =

(

−4x1 + 2x2
−4x2 + 9

)

.

Hence the gradient vanishes at the point (98 ,
9
4 ) which is oustide the feasible set as g3(

9
8 ,

9
4) =

11.25 > 10.
Since the gradient is non-vanishing in the feasible set the maximum must occur on the
border, i.e., where at least one constraint is satified with equality.

For future reference, the Jacobian of the constraints is:









−1 0
0 −1
4 3

4x1 −1









Consequently the Lagrangian becomes:

L = −2x21 − 2x22 + 2x1x2 + 9x2 + λ1x1 + λ2x2 + λ3(10− 4x1 − 3x2) + λ4(2− 4x21 + x2)

The first order necessary conditions are:
(1) δL

δx1
= −4x1 + 2x2 + λ1 − 4λ3 − 8λ4x1 = 0

(2) δL
δx2

= −4x2 + 2x1 + 9 + λ2 − 3λ3 + λ4 = 0

(3) δL
δλ1

= x1 ≥ 0 (7) λ1x1 = 0 (11) λ1 ≥ 0

(4) δL
δλ2

= x2 ≥ 0 (8) λ2x2 = 0 (12) λ2 ≥ 0

(5) δL
δλ3

= 10− 4x1 − 3x2 ≥ 0 (9) λ3(10− 4x1 − 3x2) = 0 (13) λ3 ≥ 0

(6) δL
δλ4

= 2− 4x21 + x2 ≥ 0 (10) λ4(2− 4x21 + x2) = 0 (14) λ4 ≥ 0

(2) Look at the

4 positivity cases for λ3, λ4 (i.e., where each of them is strictly greater than zero or zero).

Ans:

a) First, consider the 4 positivity cases for x1, x2
case I: Assume x1 = 0, x2 > 0.

(i) From (8) and (10) we therefore know that λ2 = λ4 = 0.
(ii) If we assume λ3 = 0 we know from (1) that λ1 = −2x2 < 0 which contradicts

(11). Hence λ3 > 0.
(iii) Using λ3 > 0 and x1 = 0 in (9) yields x2 =

10
3 .

(iii) However, using x1 = 0 and (i) and (iii) in (2) implies that λ3 =
1
3(9−4∗ 10

3 ) =

−13
9 < 0 which contradicts (13).

case II: Assume x1 > 0, x2 = 0.
(i) From (7) we therefore know that λ1 = 0.
(ii) Using x2 = 0 as well as (i), (13), and (14) in (1) we therefore know: −4x1 +

2x2 + λ1 − 4λ3 − 8λ4x1 ≤ −4x1 < 0 which gives us again a contradiction.
Check the constraint qualification: if x2 = 0, then the two constraints that are
satisfied with equality are g2 and g4 (since g4 is satisfied with equality when x2 =
√

1/2, at which point g3 is satisfied with strict inequality). x2 = 10/3. The matrix

defined by the gradients of these two constraints is

[

0 −1

4
√

1/2 −1

]

which has full

rank, so the CQ is satisfied.
case III: Assume x1 = x2 = 0.
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(i) From (9) and (10) we therefore know that λ3 = λ4 = 0.
(ii) However, using x1 = x2 = 0 and (i) in (2) yields λ2 = −9 which contradicts

(12).
Check the constraint qualification: if the x vector is strictly positive, then the two con-
straints that are satisfied with equality are g3 and g4 The matrix defined by the gradients

of these two constraints is

[

4 3
4x1 −1

]

which, since x1 > 0, has full rank so the CQ is

satisfied.

Hence the only possible solution is: x1 > 0, x2 > 0. (15)
From (7) and (8) we know that λ1 = λ2 = 0 (16)

b) Second, consider the 4 positivity cases for λ3, λ4

case I: Assume λ3 > 0, λ4 > 0.
(i) From (9) we know 10−4x1−3x2 = 0 and from (10) we know that 2−4x21+x2 = 0.
(ii) Adding three times the second equation in (i) to the first yields 16− 12x21 − 4x1 =

0 ⇔ 12(x1 − 1)(x1 +
4
3) = 0. Since x1 > 0 after (15) the only possible solution is

x1 = 1 ⇒ x2 = 2.
(iii) Using (ii) and (16) in (1) yields −4(λ3 + 2λ4) = 0 which contradicts the inital

assumption of λ3 > 0, λ4 > 0
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case II: Assume λ3 = 0, λ4 > 0.
(i) From (10) we know that 2− 4x21 + x2 = 0 ⇔ x2 = 4x21 − 2
(ii) Using λ3 = 0 as well as (16) and (i) in (2) we get

−4(4x21 − 2) + 2x1 + 9 + λ4 = 0 ⇔ −16x21 + 2x1 + 17 + λ4 = 0.
The quadratic equation has one negative solution (that violates (3)) and x1 =

−1
16 +√

4+4∗16(17+λ4)

16 ≥ −1
16 +

√
4+4∗16∗17

16 ≥ 2
(iii) Using (ii) in (i) we know that x2 ≥ 14.
(iv) However x1 ≥ 2, x2 ≥ 14 clearly violate (5).

case III: Assume λ3 = λ4 = 0.
(i) Using λ3 = λ4 = 0 and (16) in (1) we obtain −4x1 + 2x2 = 0 and in (2) we get

−4x2 + 2x1 + 9 = 0.
(ii) Adding twice the the second equation in (i) to the first we get −6x2 + 18 = 0 or

x2 = 3. Hence from (i) x1 =
3
2 .

(iii) However x1 =
3
2 , x2 = 3 contradicts (5).

Hence the only possible solution is: λ3 > 0 λ4 = 0. (17)

From (9) we know 10− 4x1 − 3x2 = 0 ⇔ x1 =
5
2 −

3
4x2 (18)

Using (18) in (1) we get: 5x2 = 10 + 4λ4 (19)
Using (18) in (2) we get: 11

2 x2 = 14− 3λ4 (20)

Add three times (19) to four times (20): 15x2 + 22x2 = 86 ⇔ x2 =
86
37

Hence from (18) x1 =
5
2 −

3
4 ∗ 86

37 = 185−129
74 = 56

74 and x1 =
28
37

And from (19) (λ3 =
5
4 ∗ 86

37 − 5
2 = 215−185

74 = 30
74 and λ3 =

15
37

Note: Since the feasible set is compact and the objective function is continous, it must obtain
a maximum. And there is only one potential point that satifies the necessary conditions.
Hence it must be the unique maximum.

(3) Find the maximum and minimum distance from the origin to the ellipse x21+x1x2+x22 = 3.

(Hint: instead of using the distance
√

x21 + x22, maximize or minimize the square of the
distance which is much easier)
a) Set up the Lagrangian and derive the first order necessary conditions.

Ans:

Note: The gradient of the objective function is: ▽f =

(

2x1
2x2

)

.

Hence the gradient vanishes at the point (0, 0) which is oustide the feasible set.
Since the gradient is non-vanishing in the feasible set the Lagrange multiplier of the
single equality constraint has to be non-negative: λ 6= 0 (hence we can divide by it)
(1)

Consequently the Lagrangian becomes:

L = x21 + x22 + λ(3− x21 − x1x2 − x22)
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The first order necessary conditions are:
(2) δL

δx1
= 2x1 − 2λx1 − λx2 = 0 ⇔ 2x1 = λ(2x1 + x2)

(3) δL
δx2

= 2x2 − 2λx2 − λx1 = 0 ⇔ 2x2 = λ(2x2 + x1)

(4) δL
δλ

= 3− x21 − x1x2 − x22 = 0

b) Solve the first order necessary conditions.

Ans: From (2) we know that λ = 2x1

2x1+x2
(5)

Dividing (2) by (3) yields: x1

x2
= 2x1+x2

2x2+x1

Cross-multiplying gives: 2x1x2 + x21 = 2x1x2 + x22 ⇔ x21 = x22
Let’s denote the distance to the origin by M =

√

x21 + x22

case I: x1 = x2
Using x2 = x1 in (4) results in: 3 = 3x21.

Hence x
(1)
1 = 1, x

(1)
2 = 1, λ(1) = 2

3 , M =
√
2 ≈ 1.4142

and x
(2)
1 = −1, x

(2)
2 = −1, λ(2) = 2

3 , M =
√
2 ≈ 1.4142

case II: x1 = −x2
Using x2 = −x1 in (4) results in: 3 = x21.

Hence x
(3)
1 =

√
3, x

(3)
2 = −

√
3, λ(3) = 2, M =

√
6 ≈ 2.4495

and x
(4)
1 = −

√
3, x

(4)
2 =

√
3, λ(4) = 2, M =

√
6 ≈ 2.4495

c) Check the bordered Hessian for the second-order sufficiency conditions.

Ans: From (2) we know that λ = 2x1

2x1+x2
(5)

Dividing (2) by (3) yields: x1

x2
= 2x1+x2

2x2+x1

Cross-multiplying gives: 2x1x2 + x21 = 2x1x2 + x22 ⇔ x21 = x22
Let’s denote the distance to the origin by M =

√

x21 + x22

case I: x1 = x2
Using x2 = x1 in (4) results in: 3 = 3x21.

Hence x
(1)
1 = 1, x

(1)
2 = 1, λ(1) = 2

3 , M =
√
2 ≈ 1.4142

and x
(2)
1 = −1, x

(2)
2 = −1, λ(2) = 2

3 , M =
√
2 ≈ 1.4142

case II: x1 = −x2
Using x2 = −x1 in (4) results in: 3 = x21.

Hence x
(3)
1 =

√
3, x

(3)
2 = −

√
3, λ(3) = 2, M =

√
6 ≈ 2.4495

and x
(4)
1 = −

√
3, x

(4)
2 =

√
3, λ(4) = 2, M =

√
6 ≈ 2.4495
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c) The bordered Hessian becomes:





0 2x1 + x2 2x2 + x1
2x1 + x2 2− 2λ −λ
2x2 + x1 −λ 2− 2λ





Let’s plug in the different values for (x
(i)
1 , x

(i)
2 , λ(i)):

(1) x
(1)
1 = 1, x

(1)
2 = 1, λ(1) = 2

3 :
The second order leading principal minor is:
∣

∣

∣

∣

∣

∣

0 3 3
3 2

3 −2
3

3 −2
3

2
3

∣

∣

∣

∣

∣

∣

=-12 - 12 = -24 (develop after 1st column)

Hence the second order condition for a constraint min is fullfiled.

(2) x
(2)
1 = −1, x

(2)
2 = −1, λ(2) = 2

3 :
The second order leading principal minor is:
∣

∣

∣

∣

∣

∣

0 −3 −3
−3 2

3 −2
3

−3 −2
3

2
3

∣

∣

∣

∣

∣

∣

=-12 - 12 = -24 (develop after 1st column)

Hence the second order condition for a constraint min is fullfiled.

(3) x
(3)
1 =

√
3, x

(3)
2 = −

√
3, λ(3) = 2:

The second order leading principal minor is:
∣

∣

∣

∣

∣

∣

0
√
3 −

√
3√

3 −2 −2

−
√
3 −2 −2

∣

∣

∣

∣

∣

∣

=12 + 12 = 24 (develop after 1st column)

Hence the second order condition for a constraint max is fullfiled.

(4) x
(4)
1 = −

√
3, x

(4)
2 =

√
3, λ(4) = 2:

The second order leading principal minor is:
∣

∣

∣

∣

∣

∣

0 −
√
3

√
3

−
√
3 −2 −2√
3 −2 −2

∣

∣

∣

∣

∣

∣

=12 + 12 = 24 (develop after 1st column)

Hence the second order condition for a constraint max is fullfiled.


