
Fall 2015 ARE211

Problem Set #06- Answer key

First CompStat Problem Set

(1) In problem 3 on your last problem set, you found the maximum and minimum distance from
the origin to the ellipse x21+x1x2+x22 = 3. Generalize this problem to “minimize/maximize
the distance from the origin to the ellipse x21+x1x2+αx22 = 3” and use the Envelope theorem
(starting from α = 1) to estimate the maximum and minimum distance from the origin to
the following
ellipse,

x21 + x1x2 + 0.9x22 = 3

.

Ans: From problem 3 on the preceding problem set we know that the Lagrangian was:

L = x21 + x22 + λ(3− x21 − x1x2 − x22)

Let’s parameterize the Lagrangian accordingly to estimate the change.

L = x21 + x22 + λ(3− x21 − x1x2 − αx22)

Initially, α = 1. From the envelope theorem we know that the first derivative of the squared

distance M2(α) w.r.t the parameter α is dM2(α)
dα

= δL
δα

= −λx22
Using a first order Taylor expansion we know that:

M2(α+ dα) ≈ M2(α) +
δM2

δα
dα = M2(α) − λx22dα

In the following α = 1, dα = −0.1

(1) x
(1)
1 = 1, x

(1)
2 = 1, λ(1) = 2

3 , M(α = 1) =
√
2 ≈ 1.4142

M2(0.9) ≈ 2− 2
3 ∗ 12 ∗ (−0.1) = 31

15

⇒ M(0.9) =
√

M2(0.9) =
√

31
15 ≈ 1.4376

(2) x
(2)
1 = −1, x

(2)
2 = −1, λ(2) = 2

3 , M(α = 1) =
√
2 ≈ 1.4142

M2(0.9) ≈ 2− 2
3 ∗ (−1)2 ∗ (−0.1) = 31

15

⇒ M(0.9) =
√

M2(0.9) =
√

31
15 ≈ 1.4376

(3) x
(3)
1 =

√
3, x

(3)
2 = −

√
3, λ(3) = 2, M(α = 1) =

√
6 ≈ 2.4495

M2(0.9) ≈ 6− 2 ∗ (−
√
3)2(−0.1) = 6.6

⇒ M(0.9) =
√

M2(0.9) =
√
6.6 ≈ 2.5690

(4) x
(4)
1 = −

√
3, x

(4)
2 =

√
3, λ(4) = 2, M(α = 1) =

√
6 ≈ 2.4495

M2(0.9) ≈ 6− 2 ∗
√
3
2
(−0.1) = 6.6

⇒ M(0.9) =
√

M2(0.9) =
√
6.6 ≈ 2.5690
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(2) a) Prove that the expression α2 − αx3 + x5 = 17 defines x implicitly as a function of α.

Ans: The partial derivative of the expression w.r.t. x is δf
δx

= −3αx2 + 5x4

Evaluated at the point (ᾱ, x̄) = (5, 2) : δf
δx

= −3∗5∗4+5∗16 = 20 6= 0 Since δf(ᾱ,x̄)
δx

6= 0
there exists a neighborhood around (ᾱ, x̄) where x can be written as an implicit function
of α, i.e., x = g(α). in a neighborhood of (ᾱ, x̄) = (5, 2)

b) Estimate the x-value which corresponds to α = 4.8 using a first order approximation.

Ans: The partial derivative of f w.r.t. α is δf
δα

= 2α− x3

Evaluated at the point (ᾱ, x̄) = (5, 2) : δf
δα

= 2 ∗ 5− 8 = 2

From the implicit function theorem we know δg
δα

= −
δf
δα
δf
δx

= − 2
20 = −0.1

Using a first order Taylor expansion: g(α + dα) ≈ g(α) + δg
δα
dα

Hence for α = 5, dα = −0.2, g(4.8) ≈ 2− 0.1 ∗ (−0.2) = 2.02

(3) (a) Consider the function f(x, y, γ) = xy+γy subject to the following constraints: g(x, y, γ) ≤
1, x ≥ 0, y ≥ 0, where g(x, y) = x2 + γy.

(i) For γ = 1, solve this maxmization problem using either the Lagrangian or KKT
method.

Ans: The KKT conditions are
[
y x+ γ

]
= λ

[
2x γ

]
(1)

We’ll try to solve this assuming that the first constraint is binding and the nonneg-
ativity constraints are slack. In this case, y = 1− x2, so that when γ = 1, the KKT
conditions become

[
1− x2 x+ 1

]
= λ

[
2x 1

]

Solving the second equation, we obtain λ = x+1. Substituting into the first, we get
1−x2 = (x+1)2x or 3x2+2x− 1 = 0 or (3x− 1)(x+1) = 0. The unique positive
solution to this equation is x = 1/3, hence y = 8/9, λ = 4/3. Double-checking the
KKT conditions for arithmetic errors, the l.h.s. of (1) is

[
8/9 4/3

]
while the r.h.s.

is 4/3
[
2/3 1

]
=

[
8/9 4/3

]
. We’ve established, then, that the KKT conditions

are indeed satisfied at (x∗, y∗, λ∗) = (1/3, 8/9, 4/3).

(ii) Now, use the envelope theorem to estimate the maximized value of f when
γ = 1.2

Ans: To estimate the required value, we will use a first order Taylor expansion, i..e,

f(x∗(1), y∗(1), 1) + df(x∗(1),y∗(1),1)
dγ

dγ, where dγ = 0.2. By the envelope theorem,
df(x∗(γ),y∗(γ),γ)

dγ
= ∂f(x∗(γ),y∗(γ)),γ)

∂γ
+λ∗(γ)∂g(x

∗(γ),y∗(γ)),γ)
∂γ

. Now ∂f(·,·,·)
∂γ

= ∂g(·,·,·)
∂γ

=

y, so that df(x∗(γ),y∗(γ),γ)
dγ

= y∗(γ)(1 − λ∗(γ)). Plugging in the solution values we

have just obtained, we have f(x∗(1), y∗(1), 1) = 8/9 × (1 + 1/3) = 32/27 while
df(x∗(γ),y∗(γ),γ)

dγ
= y∗(γ)(1 − λ∗(γ)) = 8/9 ×−1/3 = −8/27. Hence, our first order

approximation to f(x∗(1.2), y∗(1.2), 1.2) is 32/27 − 0.2× 8/27 = 152/135.
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(b) Consider the problem maxx f(x;α) s.t. g(x;α) ≤ b, where x, α, b ∈ R, f and g are
twice continuously differentiable, gx(·, α) > 0. Let x∗(α) denote the solution to this
problem, given α. Use the implicit function theorem to identify sufficient conditions
for x∗(·) to be everywhere strictly increasing in α. Are the conditions you identified
necessary as well? If so prove it. If not, provide a counter-example.

Ans: The Lagrangian for this problem is L(x, λ;α) = f(x;α) + λ(b − g(x, α)). To
determine the relationship between x and α we apply the implicit function theorem to the
zero level set of the first order conditions of the Lagrangian. We have

Lx = 0 = fx(x, α) − λgx(x, α)

Lλ = 0 = b− g(x, α)

Applying the implicit function theorem to these conditions, we have
[
Lx,x Lx,λ

Lλ,x Lλ,λ

]

=

[
(fxx − λgxx) −gx

−gx 0

]

while
[
Lx,α

Lλ,α

]

=

[
(fx,α − λgx,α)

−gα

]

and
[
dx/ dα
dλ/ dα

]

= −
[
Lx,x Lx,λ

Lλ,x Lλ,λ

]−1 [
Lx,α

Lλ,α

]

We can now apply Cramer’s rule to obtain

dx/ dα = − det

([
Lx,α Lx,λ

Lλ,α Lλ,λ

])/

det

([
Lx,x Lx,λ

Lλ,x Lλ,λ

])

= − det

([
(fx,α − λgx,α) −gx

−gα 0

])/

−g2x

= −
(
gxgα/ g

2
x

)
= − (gα/ gx)

Since gx is positive by assumption, it follows that dx/ dα will be positive iff gα < 0.

This condition is not necessary however for x∗(·) to be strictly increasing in α. For example,
let f(x;α) = x, and let g(x;α) = x − α3. Our maximization problem is now maxx x
s.t. x ≤ b + α3. Clearly the solution to this problem is globally strictly increasing in α.
However, when α = 0, then gα = 0. Hence the condition gα < 0 is not necessary for x∗(·)
to be strictly increasing in α.
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(4) Consider the equation α3
1 + 3α2

2 + 4α1x
2 − 3x2α2 = 1. Does this equation define x as an

implicit function of α1, α2

Ans: The partial derivative of f w.r.t. x is δf
δx

= 8α1x− 6α2x

The partial derivative of f w.r.t. α1 is δf
δα1

= 3α2
1 + 4x2

The partial derivative of f w.r.t. α2 is δf
δα2

= 6α2 − 3x2

a) in a neighborhood of (ᾱ1, ᾱ2) = (1, 1)

Ans: f(x, 1, 1) = 1 + 3 + 4x2 − 3x2 − 1 = 0 ⇔ x2 = −3
which will not be satisfied for any real x. Hence, f(x, α1, α2) does not define x as an
implicit function of α1, α2.

b) in a neighborhood of (ᾱ1, ᾱ2) = (1, 0)

Ans: f(x, 1, 0) = 1 + 0 + 4x2 + 0− 1 = 0 ⇔ x2 = 0 ⇔ x = 0
δf(0,1,0)

δx
= 0 + 0 = 0 and we cannot use the implicit function theorem to express x as a

function of α1, α2. However, the implicit function theorem is only a sufficient but not a
necessary condition that there exists an implicit function.
So does there exists a neighborhood around (1,0) where x can be expressed as an implicit
function of α1, α2? Well consider α1 = 1 + δ where δ > 0. Then
f(x, 1 + δ, 0) = (1 + δ)3 + 0 + 4(1 + δ)x2 + 0− 1 = 0

⇔ x2 = 1−(1+δ)3

4(1+δ) < 0.

Which does not have a real solution for x. Hence for any α1 > 1 there does not exist a
x such that f(x(α1, α2), α1, α2) = 0. Consequently, there does not exist a neighborhood
where x can be expressed as an implicit function of α1, α2.

c) in a neighborhood of (ᾱ1, ᾱ2) = (0.5, 0)

Ans: f(x, 12 , 0) =
1
8 + 0 + 2x2 + 0− 1 = 0 ⇔ x2 = 7

16 ⇔ x = ±
√
7
4

As
δf(

√
7

4
, 1
2
,0)

δx
= 8 ∗ 1

2 ∗
√
7
4 =

√
7 6= 0 and

δf(−
√

7
4

, 1
2
,0)

δx
= −

√
7 6= 0 there exist a neighbor-

hood around (
√
7
4 , 12 , 0) and (−

√
7

4 , 12 , 0) where x can be expressed as an implicit function
of α1, α2, i.e., x = g(α1, α2). You can pick either one.

Let’s pick (
√
7
4 , 12 , 0). We know that:

δf(
√

7
4
, 1
2
,0)

δα1
= 3 ∗ 1

4 + 4 ∗ 7
16 = 5

2

δf(
√

7
4
, 1
2
,0)

δα2
= 0− 3 ∗ 7

16 = −21
16

Hence, using the implicit function theorem:

δg(
√

7
4
, 1
2
,0)

δα1
= −

δf(

√
7
4 , 12 ,0)

δα1

δf(

√
7
4 , 12 ,0)

δx

= −
5
2√
7
= − 5

2
√
7

δg(
√

7
4
, 1
2
,0)

δα2
= −

δf(

√
7
4 , 12 ,0)

δα2

δf(

√
7
4 , 12 ,0)

δx

= −− 21
16√
7

= 3
√
7

16

If so, compute ∂x
∂α1

and ∂δx
∂α2

at this point.

(5) The economy of Iceland can be expressed by the following three variables:
x : hard-core liquor to survive dark cold winters
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y : imported oil for heating in the cold winter
z : beaver pelts for people crazy enough to leave the house

The equilibrium is given by the two equations:

2xz + xy + z − 2
√
z = 11 (2)

xyz = 6 (3)

Assume the economy finds itself at the initial equlibrium where x = 3, y = 2, z = 1. The
government fixes the number of allowances to hunt beaver exogenously.

Ans: There are several ways to solve a system of several implicit functions. You can either just
use the formula of the Jacobians or totally differentiate each equation and then use Cramer’s rule
to come up with the same conclusion. I will follow the second approach. Totally differentiate
the two equilibrium identities:

{2z + y} dx+ {x} dy+ {2x+ 1− 1√
z
} dz = 0

{yz} dx+ {xz} dy+ {xy} dz = 0

a) If the prime minister raises z to 1.1, calculate the change in x and y.

Ans: Rewrite the totally differentiated equations from above such that the exogenous
variables appear on the right hand side:

[
2z + y x
yz xz

] [
dx
dy

]

=

[ −2x− 1 + 1√
z

−xy

]

dz

Plug in the current equilibrium (x, y, z) = (3, 2, 1)
[
4 3
2 3

] [
dx
dy

]

=

[
−6
−6

]

dz

You can use the implicit function theorem if the determinant of the Jacobian w.r.t the
endogenous variables (the matrix on the left hand side above) is different from zero. In
our example the determinant is 12− 6 = 6 6= 0. Hence we can use Cramer’s rule to derive
the partial derivatives:

( δx
δz

=

∣

∣

∣

∣

∣

−6 3
−6 3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

4 3
2 3

∣

∣

∣

∣

∣

= −18+18
12−6 = 0

6 = 0

δy
δz

=

∣

∣

∣

∣

∣

4 −6
2 −6

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

4 3
2 3

∣

∣

∣

∣

∣

= −24+12
12−6 = −12

6 = −2

Using a first order Taylor approximation we therefore know that
dx = δx

δz
∗ dz = 0 ∗ 0.1 = 0 and

dy = δy
δz

∗ dz = −2 ∗ 0.1 = −0.2

b) The anti-drug alliance argues that too much alcohol is consumed in the country. They
therefore argue to fix the amount of alcohol consumed exogenously by law at 2.95
and instead abolish the beaver hunting constraint. Can they use the implicit function
theorem to estimate the changes in y and z?
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Ans: Rewrite the totally differentiated equations from above such that the exogenous
variables appear on the right hand side:

[
x 2x+ 1− 1√

z

xz xy

] [
dy
dz

]

=

[
−2z − y
−yz

]

dx

Plug in the current equilibrium (x, y, z) = (3, 2, 1)
[
3 6
3 6

] [
dx
dy

]

=

[
4
2

]

dz

Now the determinant of the Jacobian w.r.t the endogenous variables (the matrix on the
left hand side above) is −18+18 = 0. Hence we can’t use the implicit function theorem.
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(6) Assume you are given a competitive industry of identical firms with open entry. (i.e., two
equations characterize the system: (1) producers are profit maximizers and the derivative

of the price w.r.t a firm’s own quantity is zero δp(Q)
δqi

= 0 and (2) new entry into the market

occurs until profits are zero).
The government is thinking about imposing a lump-sum tax on firms. What would be

the effects on a firm’s individual output q, it’s profit π, the total market output Q, the price
p(Q) and the number of firms in the industry n?

This problem involves one of the many internal contradictions that economists make all

the time. First you assume that
δp(Q)
δqi

= 0, i.e., that individual firms face perfectly elastic

demand curves. Then you asume that the industry faces a downward sloping demand curve,

i.e., that
dp(Q)
dQ

< 0. Mathematically this is of course absurd, since Q = nqi, but economists

have been doing this shamelessly for centuries. There’s a way of “fixing” this contradiction,

but we’re not going to get into it. So just do it and shudder quietly to yourselves.

Ans: We will follow the standard approach to solving comparative statitics problems:

a) Define your variables:
n number of firms in the industry
qi output of each individual firm i=1...n
ci(qi) cost function of firm i as a function of its output
Q market output Q =

∑n
i=1 qi

p(Q) price as a function of market output (inverse demand curve)
πi profit of each individual firm i=1...n
T lump-sum tax imposed by the government

b) Write down the identities that characterize your system:
First, profit maximization on behalf of firms gives us the following equalities. The profit of
an individual firm i is:

πi = p(Q)qi − ci(qi)− T (4)

The FOC for profit maximization is (recall that in a competive industry firms are price
takers and thus the derivative of the price with respect to its own quantity is zero).

δπi
δqi

= p(Q)− c′i(qi) = 0 (5)

Always write down the second order conditions as it later on helps you to sign things. The
SOC for profit maximization becomes

δ2πi
δq2i

= −c′′i (qi) < 0 (6)

Which simply implies that the marginal cost curve is rising at the equilibrium level.
Second, the free entry condition implies that profits are driven down to zero. Using equation
(4) we know

πi = p(Q)qi − ci(qi)− T = 0 (7)

Our system is characterized by the two identies given in equation (5) and (7).
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Ans:

c) Write down what other assumptions / information you know about the economic system.
First we are given that all firms are identical and we hence know that the output, cost-
function and profit functions are identical

qi = q ∀i = 1...n (8)

ci(qi) = c(q) ∀i = 1...n (9)

πi = π ∀i = 1...n (10)

Second, we usually assume that the demand function is downward sloping

p′(Q) < 0 (11)

d) This step should help you to organize things. It is the most difficult step for most people.
Once you have finished it, the rest is pure mechanics.
Separate your endogenous variables in primary and secondary endogenous variables. You
should have as many primary endogenous variables as equations in part (b) and the equa-
tions in part (b) can only contain primary endogenous variables as well as the exogenous
variables: Exogenous variable(s): T
Primary endogenous variable(s): n, q
Secondary endogenous variable(s): Q,π Hint: try to reduce your system to as few equa-
tions and primary endogenous variables as possible because it makes things much easier
later on. (I.e., instead of including a third equation Q = nq and a third endogenous variable
Q, substitute in the relationships Q = nq). So our two identities from part (b) that are
given in equation (5) and (7) can be rewritten using equation (8) to (11) and only using
the primary endogenous variables:

p(nq)− c′(q) = 0 (12)

p(nq)q − c(q) − T = 0 (13)

The relating equations for the secondary endogenous variables are

Q = nq (14)

π = p(Q)q − c(q)− T (15)
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Ans:

e) Totally differentiate your identities containing the primary endogenous variables in part (d)
w.r.t the exogenous variable(s) and your primary endogenous variable(s)
Note: up until know we always included the arguments of functions (e.g., p(nq)) because
when we differentiate we need to know what the arguments of a functions are. After this
step you won’t have to differentiate again and it makes things much easier if you drop all

arguments

{qp′} dn+ {np′ − c′′} dq+ {0} dz = 0
{q2p′} dn+ {nqp′ + p− c′} dq+ {−1} dT = 0

Rewrite the totally differentiated equations such that the exogenous variable appear on the
right hand side: (recall from equation (5) that p− c′ = 0).

[
qp′ np′ − c′′

q2p′ nqp′

] [
dn
dq

]

=

[
0
1

]

dT

Note that the determinat of the Jacobian w.r.t the primary endogenous variables (the
matrix on the left hand side) will appear several times. Therefore, let’s denote it by D and
look at it first:

D =

∣
∣
∣
∣

qp′ np′ − c′′

q2p′ nqp′

∣
∣
∣
∣

= qp′ ∗ nqp′ − q2p′ ∗
(
np′ − c′′

)

= nq2(p′)2 − nq2(p′)2 + q2p′c′′

= q2
︸︷︷︸

>0

∗ p′
︸︷︷︸

<0

∗ c′′
︸︷︷︸

>0

< 0 (16)

Use Cramer’s rule and the implicit function theorem to sign the partial derivatives of the
primary endogenous variable(s) with respect to the exogenous variable.

δn

δT
=

∣
∣
∣
∣

0 np′ − c′′

1 nqp′

∣
∣
∣
∣

D
=

−n ∗
<0
︷︸︸︷

p′ +

>0
︷︸︸︷

c′′

D
︸︷︷︸

<0

< 0 (17)

δq

δT
=

∣
∣
∣
∣

qp′ 0
q2p′ 1

∣
∣
∣
∣

D
=

>0
︷︸︸︷
q ∗

<0
︷︸︸︷

p′

D
︸︷︷︸

<0

> 0 (18)

f) Totally differentiate your secondary endogenous equations in part (d) w.r.t the exogenous
variable
We know that Q = nq and hence δQ

δT
= q δn

δT
+ n δq

δT
.

Using equations (17) and (18):

δQ

δT
= q

δn

δT
+ n

δq

δT

=
−qnp′ + qc′′

D
+

qnp′

D
=

>0
︷︸︸︷
q ∗

>0
︷︸︸︷

c′′

D
︸︷︷︸

<0

< 0 (19)
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Furthermore as p = p(Q) we know by the chain rule that δp
δT

= p′ δQ
δT

.
Using equations (11) and (19) we therefore know that

δp

δT
= p′

︸︷︷︸

<0

∗ δQ

δT
︸︷︷︸

<0

> 0 (20)

Finally, from equation (7) we know that the free entry condition always drives profit down
to zero and consequently

δπ

δT
= 0 (21)

In summary, a lump-sum tax will increase the output of each individual firm but decrease the
number of firms in the industry. The overall market output will also decrease as the decrease
in the number of firms outweights the increase of each company’s output. The reduced market
output will lead to a rise in the price.


