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(1) Consider the function f(x, y, z) = xyz, with y = x2 and z = x1/3.
(a) Rewrite f as a function g : R → R alone and compute g′(·). Using g′, approximate the

change in f when x increases by 0.1 units, starting from (8, 64, 2).
(b) Compute the total derivative of f with respect to x. Using the total derivative, ap-

proximate the change in f when x increases by 0.1 units, starting from (8, 64, 2).
(c) Write down the differential of f at (8, 64, 2). Using the differential, approximate the

change in f when x increases by 0.1 units, starting from (8, 64, 2).
(d) Identify the direction h∗ that (x, y, z) moves in, starting from (8, 64, 2), when x in-

creases. Write down the directional derivative of f in the direction h
∗, i.e., fh∗(·, ·, ·),

and evaluate this derivative at (8, 64, 2). Using fh∗(8, 64, 2), approximate the change
in f when x increases by 0.1 units, starting from (8, 64, 2).

(e) Check to see that all four of these distinct methods give you the same answer!

(2) Recall that a function f : R
n → R

m is nothing more than m functions, f1...fm, each
mapping R

n → R, and stacked on top of each other.
(a) Using this fact, write down a formal definition of the directional derivative of f at x0

in the direction h ∈ R
n, for a function f : Rn → R

m. Your definition should be of the
form

blah, blah = lim
k→∞

blah blah

blah, blah

(b) Consider the function f : R2 → R
2 defined by, for i = 1, 2, f i(x, y) = xi/3y1−i/3. Using

the formal definition in (a) above, compute fh∗(27, 8), where h
∗ = (54, 16). (Hint:

(27, 8) + (54, 16)/k = (27, 8)(1 + 2/k)).
(c) Now compute fh∗(27, 8) using the differential of f at (27, 8).
(d) Check to see that all of these three distinct methods give you the same answer!

(3) Consider the function f(x) = xρ1+xρ2, where ρ ∈ (−∞, 1]. The whole point here is to use the

differential of ▽f to answer the following questions, ie., to answer all parts of the question,

approximate ▽f(x+ h) −▽f(x) using the differential of ▽f at x, evaluated at h. There

are lots of other ways to answer these questions, but the purpose of this question is to give

you practice in using the differential of a vector-valued function.

(a) Check that, up to a first order approximation,1 f is homothetic (cf the notes for lec-
ture CALCULUS3,2 specifically the second example in the subsection entitled Four
Graphical Examples.3)

(b) When ρ > 0, does f exhibit increasing, constant or decreasing returns to scale? Is your
answer true for all ρ ∈ (0, 1]. (Again, your answer should be in terms of what happens
to the gradient vector as you move out along a ray.)

(c) Fix x = (α,α), and consider h = (−0.1, 0.1). Approximate ▽f(x+h), for (i) ρ = 1/2;
(ii) ρ = −1/2; (iii) ρ = −10.

1 The qualifier “up to a first order approximation” means: you should pretend that the answer you get using the differential is
exactly correct, even though in fact it is only approximately correct, and then only for small h’s, because there are non-zero

higher order terms in the Taylor expansion of ▽f .
2 In the example in the notes, you don’t need the caveat about up to a first order approximation, because the higher order

terms in the Taylor approximation are all zero. In this example they are not.
3 The lecture notes tend to change, and sometimes the problem sets don’t keep up. If this reference is no longer current,

please notify Leo.
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(d) How does the curvature of the level sets of this function change as you move out along
a ray through the origin. In particular, discuss the effect of the magnitude of α on the
rate of change in the direction of ▽f as you add h = (−β, β) to x = (α,α). (Hint:
Think of the angle θ between ▽f(x) and▽f(x+h), how would you measure that? You
might try using the fact that ▽f(x) ·▽f(x+h) = ||▽f(x)||× ||▽f(x+h)||× cos(θ)).

(4) Suppose that f : R → R is (n+1) times continously differentiable.
(a) Show that a sufficient condition for f to a attain a strict (local) maximum at x0 is

that for some even number n. the derivatives f (k)(x0) are zero for k = 1...n − 1, and

f (n)(x0) is negative
(b) If f (k)(x0) is zero for k = 1...n − 1 and f (n)(x0) is non-zero, show that there exists an

ǫ-neighborhood around x0 where the absolute value of the nth-order Taylor expansion
is bigger than the absolute value of the remainder term Rn(x).

(c) Give a counter example to show that the result in part (a) would be false if the words
“for some even n” were replaced with “for some n > 0”.

(d) Explain carefully, but in as few a words as possible, why the argument in (a) works for
even n but not for odd n.

(e) Show that the nth-order Taylor expansion around any point x0 of a polynomial of degree
n ( i.e. a function of the form f(x) =

∑n
k=0 αkx

k) is perfectly accurate, regardless of
the magnitude of dx.

(f) Show that if f is an arbitrary polynomial of degree 2, i.e., f(x) = ax2+ bx+ c, then for
any point x0, if you add to f(x0) the 2

nd-order Taylor expansion around f , the expres-
sion you get is precisely the original function f . More precisely, show by writing out the
Taylor expansion explicitly, that for arbitrary dx,
f(x0 + dx) = f(x0) + f ′(x0)dx+ 0.5f ′(x0)dx

2.


