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3. Nonlinear Programming Problems and the Kuhn Tucker conditions (cont)

Key points:

(1) Interpretation of the Lagrangian multiplier: λj is the rate at which the maximized value of

the objective increases as the j’th constraint is relaxed.

(a) multipliers increases with the length of the gradient of the objective at the solution

(b) the j’th multiplier decreases with the length of the gradient of the j’th constraint at

the solution

(2) Lots of practice at computation
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3.4. A worked solution to an NPP: S&B #18.18 (on the problem set)

The example: S&B qu 18.18

min 2x2 + 2y2 − 2xy − 9y s.t.

4x+ 3y ≤ 10

y − 4x2 ≥ −2

x ≥ 0

y ≥ 0

Flip the signs so it’s a max problem, respecify nonnegativity constraints as inequalities

max f(x, y) = 2xy + 9y − 2x2 − 2y2 s.t.

4x+ 3y ≤ 10

4x2 − y ≤ 2

−x ≤ 0

−y ≤ 0

Now set up Lagrangian:

L(x, y,λλλ) = (2xy + 9y − 2x2 − 2y2) + λ1(10 − 4x− 3y) + λ2(2− 4x2 + y) + λ3x + λ4y

Recall from (??), that the first order conditions were

∂L(x̄, λ̄λλ)/∂xi = 0; ∂L(x̄, λ̄λλ)/∂λj ≥ 0; λ̄j∂L(x̄, λ̄λλ)/∂λj = 0. (1)
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Figure 1. The feasible set for problem 18.18

In this particular problem, these conditions imply

Lx = 2y − 4x − 4λ1 − 8xλ2 + λ3 = 0

Ly = 2x− 4y + 9 − 3λ1 + λ2 + λ4 = 0

Lλ1
= 10− 4x− 3y ≥ 0

Lλ2
= 2− 4x2 + y ≥ 0

Lλ3
= x ≥ 0

Lλ4
= y ≥ 0
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3) Assume at least one nonnegativity constraint satisfied with equality:

(a) First assume we’re at the origin. x = y = 0;

• Lλ1
> 0; Lλ2

> 0

• λ1 = λ2 = 0

• Lx = 0− 0− 0− 0 + λ3 = 0 =⇒ λ3 = 0;

• Ly = 0− 0 + 9− 0 + 0 + λ4 > 0. ⊗

(b) Now assume just x is positive x > y = 0;

• λ3 = 0;

• Lλ2
= 2− 4x2 ≥ 0 =⇒ x ≤

√
0.5

• Lλ3
> 10− 4

√
0.5 > 0 =⇒ λ1 = 0

• Ly = 2x+ 9 + λ2 + λ4 > 0. ⊗

(c) Now assume just y is positive y > x = 0;

• λ4 = 0;

• Lλ2
= 2 + y > 0

• λ2 = 0;

• Lx = 2y + λ3 − 4λ1 = 0 =⇒ λ1 > 0 =⇒ y = 10/3;

• Ly = −40/3 + 9− 3λ1 < 0; ⊗

4) Conclude that x > 0; y > 0; λ3 = λ4 = 0.

5) Assume both x and y are positive:

(a) Lλ1
= Lλ2

= 0

• λ3 = λ4 = 0 (because both x and y are positive).

• Lλ1
= 10− 4x− 3y = 0 =⇒ y = (10 − 4x)/3

• Lλ2
= 2− 4x2 + (10 − 4x)/3 = 0 =⇒ 3x2 + x− 4 = 0.

• i.e., (3x+ 4) ∗ (x− 1) = 0 =⇒ x = 1 =⇒ y = 2.

• Ly = 4− 8 + 9 > 0; ⊗

(b) Lλ1
> 0;Lλ2

= 0 (only the quadratic constraint satisfied with equality)

• λ1 = λ3 = λ4 = 0

• Lλ2
= 2− 4x2 + y = 0 =⇒ y = 4x2 − 2;

• Lx = 0 =⇒ y ≥ 2x (otherwise Lx < 0).
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• y = 4x2 − 2 and y ≥ 2x =⇒ x ≥ 1 =⇒ y ≥ 2.

• x ≥ 1, y ≥ 2 =⇒ Lλ2
= 10− 4x− 3y ≤ 0; ⊗

(c) Lλ1
> 0;Lλ2

> 0 (solution in the interior of constraint set)

• λλλ = 0; (i.e. the whole vector zero)

• Lx = 0 =⇒ y = 2x;

• Ly = 0 =⇒ 6x = 9 =⇒ x = 1.5;

• y = 3;

• Lλ1
= 10− 4 ∗ 1.5− 3 ∗ 3 = −5; ⊗

6) Computing the solution: Lλ1
= 0;Lλ2

> 0 (only the linear constraint satisfied with equal-

ity)

• λ2 = λ3 = λ4 = 0

• Lλ1
= 10− 4x− 3y = 0 =⇒ y = (10 − 4x)/3

• Lx = 2(10 − 4x)/3− 4x− 4λ1 = 0 or 20− 20x− 12λ1 = 0

• Ly = 2x− 4(10 − 4x)/3 + 9− 3λ1 = 0 or 22x− 13− 9λ1 = 0

Two equations in two unknowns, i.e.,







20 12

22 −9













x

λ1






=







20

13






so x = 0.7568; λ1 = 0.4054.

From the constraint that’s satisfied with equality, i.e., 10 − 4x − 3y = 0, we have y =

(10− 4 ∗ 0.7568)/3 = 2.3242. Now let’s check that our answer satisfies the mantra:

▽f = [2y − 4x 2x− 4y + 9]

= [1.6216 1.2162]

For the mantra to be satisfied, ▽f must be collinear with ▽g = [4 3], or, equivalently,

f1/f2 = g1/g2. And 1.6216/12162 indeed equals 4/3, so the mantra is satisfied.

3.5. Computing a solution to an NPP: a simple worked example

How do you actually solve an NPP? Answer is: a process of elimination. You check all the pos-

sibilities to see if you can find a point that satisfies the KT conditions, and then you eliminate

anything that fails this test. Here you are using the fact that the KT conditions are necessary

for a solution, i.e., if they fail this test, they can’t be a maximum. Once you’ve found something
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that does satisfy the KT conditions, then you have to go back and check that the second order

conditions are satisfied.

The example:

max f(x) = (x1 + 2)(x2 − 2) s.t.

p1x1 + p2x2 ≤ y;

xi ≥ 0;

In this case, g is the matrix above, i.e.,












p1 p2

−1 0

0 −1













;

Check the nonvanishing gradient condition: ▽f(x) = 0 iff x1 = −2, x2 = 2. Clearly this point is

outside the constraint set, so we know the gradient is nonvanishing on the constraint set.

Set up Lagrangian:

L(x, λ) = (x1 + 2)(x2 − 2) + λ0(y − p1x1 − p2x2) + λ1x1 + λ2x2

Recall from (??), that the first order conditions were

∂L(x̄, λ̄λλ)/∂xi = 0; ∂L(x̄, λ̄λλ)/∂λj ≥ 0; λ̄j∂L(x̄, λ̄λλ)/∂λj = 0.
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In this particular problem, these conditions imply

Lx1
= x2 − 2− λ0p1 + λ1 = 0

Lx2
= x1 + 2− λ0p2 + λ2 = 0

Lλ0
= y − p1x1 − p2x2 ≥ 0

Lλ1
= x1 ≥ 0

Lλ2
= x2 ≥ 0.

Observe that the last three FOC give you back precisely the constraint conditions.

We will set p1 = p2 = y and solve explicitly for a solution. Under this condition, the solution will

be at a corner. NOTE WELL: this solution depends on the particular specification of parameters.

In general, you could get a solution on the face of the budget line.

Go through the interior, faces and vertices of the constraint set in turn. (Emphasize that while I

can tell by inspection the solution to this problem, so I don’t have to go thru all this hassle, in

general I don’t know the answer in advance, so don’t have a clue about which corner, face, etc. to

start with.)

(1) Try none of the constraints binding; KT says λ̄0 = λ̄1 = λ̄2 = 0. which implies x = (−2, 2).

Contradiction. Assumed that x̄ was nonnegative; found that if there were a x̄ that satisfied

the KT conditions under these assumptions, then x̄1 would be negative. Note that we

couldn’t have had a point satisfying this condition anyway, because of the non-vanishing gradient

property, we checked above

(2) Try x̄1 > 0, x̄2 > 0 and p · x̄ = y. KT conditions say that λ̄1 = λ̄2 = 0; λ̄0 ≥ 0. Plugging

these is gives

x2 − 2 = λ0p1

x1 + 2 = λ0p2
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But when p1 = p2, this means that x2 − x1 = 4. On the other hand, since p1 = p2 = y, the

budget constraint implies that x1 + x2 = 1. Substituting yields 2x2 = 5, which implies x1

MUST be negative, contradicting our initial condition that x1 must be nonnegative.

(3) Try x̄1 > 0, x̄2 = 0 and p · x̄ = y. KT conditions say that λ̄0, λ̄2 ≥ 0; λ̄1 = 0. Plugging

these is gives

Lx1
= x2 − 2− λ0p1 + λ1

= −2− λ0p1 = 0;

which implies λ0 = −2/p1, which is a contradiction.

(4) Try x̄1 = 0, x̄2 > 0 and p · x̄ = y. KT conditions say that λ̄0, λ̄1 ≥ 0; λ̄2 = 0. Plugging

these in gives

Lλ0
= y − p2x2 = 0

which implies x2 = y/p2 > 0. Also,

Lx2
= x1 + 2− λ0p2

= 2− λ0p2 = 0

which implies λ0 = 2/p2. Now consider Lx1
, i.e.,

Lx1
= x2 − 2− λ0p1 + λ1

= y/p2 − 2− 2 + λ1 (since λ0 = 2/p1)

= 1− 4 + λ1

which implies that λ1 = 3. So we have a solution, i.e., (0, y/p2) with λ0 = 2/p2, λ1 = 3.

3.6. Computed solution to a NPP: ARE problem set example.

This example was a homework problem for Econ 201A, 1999:
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The example:

maxui(xi) = x1i(4− x2i) s.t.

p1x1i + p2x2i = p1ω1i + p2ω2i;

xi ≥ 0;

where ω1 = (4, 3), ω2 = (1, 0). The problem that 201 students faced was to solve for the xi’s for

i = 1, 2, and for the equilibrium prices. What I’ll do in these notes is to solve for the demand

functions for good #1, and to derive some equilibrium properties of the price vector.

For this problem, g is the matrix above, i.e.,












p1 p2

−1 0

0 −1













;

while b is












p1ω1i + p2ω2i

0

0













;

We’ll normalize by setting p1 = 1 and let ξi : R2 → R
2 denote the demand function for agent i,

i.e., the demand function is now a function only of relative prices. We know from the answer sheet

that

ξ1(p2) =















(

4−p2
2 , 4+7p2

2p2

)

if p2 ≤ −4/7

(4 + 3p2, 0) otherwise

ξ2(p2) =















(

1−4p2
2 , 1+4p2

2p2

)

if p2 ≤ −1/4

(1, 0) otherwise

We’ll now derive the demand functions for agent #1, and check that our answers agree with ξ1.

You should check as an exercise that you can repeat the same steps for agent #2, and arrive at ξ2.
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x1
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ω1

ω2

budget line

▽u(ω1, ω2)

gradient of budget = (1, p2)

Figure 2. The problem facing agent #1

Before embarking on this problem, we’ll get some intuition for the solution. Note first from the

definition of the utility function that

(1) provided that a positive quantity of good 1 is consumed, good 2 is a “bad”;

(2) as x2i increases above 4, then good 1 becomes a bad also, and the gradient of utility is a

negative vector.

(3) it may not be immediately obvious, but when x2i > 4, ui(·) is a strictly quasi-convex

function.

(4) now assume that both prices are both positive:

(a) if x2i < 4, you cannot get an interior (i.e., strictly positive) solution to the KT con-

ditions because the gradient of the constraint is a strictly positive vector while the

gradient of the utility function has one positive and one negative component.

(b) if x2i > 4, you can get an interior solution to the KT conditions because the graident of

the utility function is strictly negative. In this solution, the non-typical constraint will

be binding, i.e., instead of wanting to move NE in the positive quadrant you want to

move SW. However, in this case the utility function is quasi-convex not quasi-concave.
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When you solve for an interior solution to the KT conditions, you’ll have found a

minimum on the constraint set, not a maximum.

(5) conclude from this that you cannot obtain an interior maximum to this problem if both

prices are positive.

Rather than exploring all the possibilities exhaustively, we’ll henceforth assume that p2 < 0, i.e.,

good 2 is a bad. Now we’ll draw the picture. The gradient of the budget constraint points down

and to the right, i.e., SE., and the budget line is a positively sloped line through endowment point.

Fig. 2 indicates the budget line with a relatively small negative price p2; The optimum for this player

is obviously a corner solution. Clearly, in order to get an interior solution to #1’s optimization

problem, you have to flatten the budget line, i.e., lower p2.

From now on, I’m going to dump all the i subscripts since we’re only dealing with

i = 1.

Set up the Lagrangian, setting p1 = 1 and y(p2) = ω1 + p2ω2, i.e., y1(p2) = 4+ 3p2 and y2(p2) = 1.

L(x, λ) = x1(4− x2) + λ1x1 + λ2x2 + λ3(y(p2)− x1 − p2x2) + λ4(x1 + p2x2 − y(p2))

Recall from (??), that the first order conditions were

∂L(x̄, λ̄λλ)/∂xi = 0; ∂L(x̄, λ̄λλ)/∂λj ≥ 0; λ̄j∂L(x̄, λ̄λλ)/∂λj = 0. (??)
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In this particular problem, these conditions imply

Lx1
= (4− x2) + λ1 − (λ3 − λ4) = 0

Lx2
= −x1 + λ2 − (λ3 − λ4)p2 = 0

Lλ1
= x1 ≥ 0

Lλ2
= x2 ≥ 0

Lλ3
= y(p2)− (x1 + p2x2) ≥ 0

Lλ4
= x1 + p2x2 − y(p2) ≥ 0

Note that Lλ3
> 0 implies Lλ4

< 0 while Lλ4
> 0 implies Lλ3

< 0. Conclude that Lλ3
= Lλ4

= 0

leaving open the possibility that either λ3 or λ4 could be positive. Accordingly, it will be convenient

to define λ0 = (λ3 − λ4), which can be either positive negative or zero. Thus for agent 1:

Lx1
= (4− x2) + λ1 − λ0 = 0

Lx2
= −x1 + λ2 − λ0p2 = 0

Lλ0
= x1 + p2x2 − (4 + 3p2) = 0

Lλ1
= x1 ≥ 0

Lλ2
= x2 ≥ 0

By inspection of the figure we can see that there are really two possibilities:

(A) p2 < 0; the budget line alone is binding (if p2 is large in abs value, i.e., budget line relatively

flat). In this case,

λ1 = λ2 = 0, λ0 = λ3 > 0

(B) p2 < 0; the budget line and the nonneg constraint on good 2 are both binding (if p2 is small

in abs value, i.e., budget line relatively steep). In this case,

λ1 = 0, λ2 > 0, λ0 = λ3 > 0
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On the other hand, Fig. 2 suggests that there are several possibilities that we can exclude based on

the Lagrangian conditions. We’ll focus on one of them, just for practice, but there are many more

that we won’t check.

(C) p2 > 0 and xi > 0, i = 1, 2, i.e., the budget line is the only constraint satisfied with equality.

We’ll begin with (C), write down the Lagrangian system and show that all of the requirements

cannot simultaneously be satisfied. From the mantra, we know the reason: the gradient of the

budget line and the gradient of the objective have to be co-linear, but they can’t be, because the

objective’s gradient points NE, while the budget’s gradient points SE. Our task now is to show this

using the Lagrangian. The conditions are:

Lx1
= (4− x2)− λ0 = 0

Lx2
= − x1 − λ0p2 = 0

Lλ0
= x1 + p2x2 − (4 + 3p2) = 0

λ1 = 0; λ2 = 0;

From Lx1
we have that

From Lx2
and p2 > 0, we have that

λ0 = 4− x2λ0 = −x1/p2 < 0

so that, substituting into Lx1

(4− x2) +
x1
p2

= 0, (2)

or, since x1 > 0,

(x2 − 4) =
x1
p2

> 0
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But from Lλ0
, we have that

x1 + p2x2 = 4 + 3p2 > 4

or

4− x2 >
x1
p2

> 0 (3)

But, obviously, (2) and (3) cannot simultaneously be satisfied, so we’ve established that the set

of conditions listed in (C) cannot hold. Note, moreover, that we obtained the contradiction by

showing that if p2 > 0, then the combination of Lx1
and Lx2

would then be inconsistent with Lλ0
.

Now let’s consider the possibilities which from the figure, we know are possible. We will take each

of possibilities (A) and (B) in turn, and see their implications for the Lagrangian system;

(A) the budget line alone is binding:

Lx1
= (4− x2)− λ0 = 0

Lx2
= −x1 − λ0p2 = 0

Lλ0
= x1 + p2x2 − (4 + 3p2) = 0
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Solving this in the usual way:

(a) 0 = (4− x2) +
x1
p2

(from Lx1
)

(b) 0 = p2(4− x2) + x1 (rearranging (a))

= x1 − p2x2 + 4p2

(c) (4 + 3p2) = x1 + p2x2 (from Lx2
)

(d) (4 + 3p2) = 2p2x2 − 4p2 (subtracting (b) from (c))

(e) x2 =
4 + 7p2
2p2

(rearranging (d))

(f) x1 =
4− p2

2
(subst (3) into (c))

Note that x2 ≥ 0 iff |p2| ≤ 4/7. Summarizing, (e) and (f) give us agent #1’s demand

function for p2 ∈ (−∞,−4/7], i.e.,

ξ1(p2) = (
4 + 7p2
2p2

,
4− p2

2
)

(B) both budget line and nonneg constraint on 2 are binding:

Lx1
= 4− λ0 = 0

Lx2
= −x1 + λ2 − λ0p2 = 0

Lλ0
= x1 − (4 + 3p2) = 0

From Lx1
= 0, λ0 = 4. From Lλ01

= 0, x1 = (4 + 3p2). Plugging both values into Lx2
= 0,

Lx2
= −(4 + 3p2) + λ2 − 4p2

= −4− 7p2 + λ2 = 0;

Now Lx2
can be zero with λ2 ≥ 0 iff −7p2 − 4 ≤ 0, i.e., if |p2| ≤ 4/7. Therefore, we have

now computed agent #1’s demand function for p2 ∈ (−4/7, 0], i.e.,

ξ1(p2) = (4 + 3p2, 0)


