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3. Nonlinear Programming Problems and the Kuhn Tucker conditions (cont)

Key points: Sufficient conditions for a solution to the NPP

• Quasi-concavity and semi-definiteness on a subspace:

dx′Hf(x)dx ≤ 0, for all dx s.t. ▽f(x)dx = 0.

• The principal minor representation of strict quasi-concavity:

∀x, and all k = 1, ..., n, the sign of the k’th leading principal minor of the bordered matrix




0 ▽f(x)′

▽f(x) Hf(x)




. must have the same sign as (−1)k, where the k’th leading principal

minor of this matrix is the det of the top-left (k + 1)× (k + 1) submatrix.

• Understanding the problem of the vanishing gradient

• Defn of pseudo-concavity: f is pseudo-concave if

∀x,x′ ∈ X, if f(x′) > f(x) then ▽ f(x) · (x′ − x) > 0.

1
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• Pseudo-concavity and its relationship to quasi-concavity:

if f is C2 then f is pseudo-concave iff f is quasi-concave and if ▽f(·) = 0 at x implies f(·)

attains a global max at x.

• Sufficient conditions for a solution to the NPP:

If f is pseudo-concave and the gj ’s are quasi-convex, then a sufficient condition for a solution

to the NPP at x̄ ∈ R
m
+ is that there exists a vector λ̄ ∈ R

m
+ such that

▽f(x̄)T = λTJg(x̄)

and λ̄ has the property that λ̄j = 0, for each j such that gj(x̄) < bj.

• understanding the role of second order conditions in the sufficiency argument

3.2. Sufficient conditions for a solution to an NPP: Preliminaries

So far we’ve only established necessary conditions for a solution to the NPP. Not surprisingly,

without further restrictions, the KTT conditions aren’t sufficient for a solution. They may be

satisfied at a minimum on the constraint set, or else at a local but not global max. In this lecture

we focus on identifying restrictions we can impose on the objective and constraint functions which

ensure that the KKT conditions will be both necessary and sufficient for a solution. A good place to

start, in our search for restrictions is to assume that objective function f is strictly quasi-concave

while the constraint functions are quasi-convex. (Since the lower contour sets of quasi-convex

functions are convex, and the intersection of convex sets is convex, and the constraint set is an

intersection of lower contour sets, the condition that the constraint functions are quasi-convex

implies that the constraint set is a convex set.) This isn’t quite good enough, as we will see.

Figure Fig. 1 illustrates why quasi-concavity of the objective and convexity of the constraint set are

required as restrictions. It also illustrates why they are not enough to ensure that the a solution

to the KKT is sufficient for a solution to the NPP.

• the left panel has a constraint set that isn’t generated by quasi-convex functions; level set

represents a strictly quasi-concave objective function; the KKT conditions are satisfied at a
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Figure 1. Three examples where KKT conditions are not sufficient for a soln

local tangency, but it’s a local minimum on the north east boundary of the constraint set.

there are points further away that give higher values for the objective function.

• the middle panel has a convex constraint set, but the objective isn’t quasi-concave. In this

case we have a local max on the constraint set that isn’t a solution to the problem. By a

solution we mean a global max on the constraint set.

• the right panel is a more subtle problem. The constraint set, [−1, 1] is convex and compact.

It’s given by g1(x) = x ≤ 1, g2(x) = −x ≤ −1. The objective function f(x) = x3 is strictly

quasi-concave, but at the origin (represented by the big dot, the KKT is satisfied: i.e.,

f ′(x) = 0 = [0, 0] · [1,−1] = 0. But zero is clearly not a solution to the NPP. The problem

in this example is referred to as the “vanishing gradient” problem, because the gradient

vanishes at an x value that is not a global maximum.

These examples make clear that we cannot say that if the objective and constraint functions have

the right “quasi” properties, then satisfying the KKT conditions is sufficient for a max. We will

have to strengthen quasi-concavity just enough so that it excludes function such as f(x) = x3.

3.2.1. First preliminary: the problem of the vanishing gradient. To avoid the problem in the right

panel of Fig. 1, we could simply assume that f has a non-vanishing gradient. But this restriction

throws the baby out with the bath-water: e.g., the problem max x(1 − x) s.t. x ∈ [0, 1] has a

global max at 0.5, at which point the gradient vanishes. More generally, the non-vanishing gradient

assumption excludes any differentiable function that attains a global maximum.
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Figure 2. Weakest condition such that solution to KKT =⇒ soln to NNP

So we need a condition that implies quasi-concavity and also has the property that the gradient

vanishes at x only if x is a global maximizer of the function. The following condition on f—called

pseudoconcavity in S&B (the original name) and M.K.9 in MWG—does just precisely this

∀x,x′ ∈ X, if f(x′) > f(x) then ▽ f(x) · (x′ − x) > 0. (1)

Fig. 2 summarizes the issue: going from the top panel to the bottom, the assumptions on f get

progressively weaker. All but the bottom panel, give us what we want, i.e., a condition that is

sufficient to ensure that a solution to the KKT =⇒ a soln to NNP.

Note that (1) says a couple of things. First, it says that a necessary condition for f(x′) > f(x)

is that dx = (x′ − x) makes an acute angle with the gradient of f . (This looks very much like

quasi-concavity). Second, it implies that

if ▽ f(·) = 0 at x then f(·) attains a global max at x (2)
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Figure 3. ¬-pseudo-concavity implies ¬-quasi-concavity

since if not then there would necessarily exist x,x′ ∈ X s.t. f(x′) > f(x), and ▽f(x) · (x′ − x) =

0 · (x′ − x) = 0, violating (1).

Our next result establishes precisely the relationship between pseudo-concavity and quasi-concavity:

if f is C2 then f is pseudo-concave iff f is quasi-concave and satisfies (2) (3)

To prove the =⇒ direction of (3), we’ll show that (2) together with (¬ quasi-concavity) implies (¬

pseudo-concavity).

Suppose that f is not quasi-concave, i.e., there is an upper contour set that is not convex, i.e.,

∃x′,x′′,x ∈ X such that x = λx′ + (1 − λ)x′′, for some λ ∈ (0, 1) and f(x′′) ≥ f(x′) > f(x). (x

exists by Weierstrass.) Assume w.l.o.g. that f(·) is minimized on [x′,x′′] at x. In this case, by the
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KKT necessary conditions, either ▽f(x) = 0 or ▽f(x) is perpendicular at x to the level set of f

corresponding to f(x). In either case, ▽f(x) · (x′ − x) = 0. Since x′ > x this contradicts (1).

To prove the ⇐ direction of (3), we’ll show that (2) together with
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Figure 4. pseudo-concavity
rules this out

(¬ pseudo-concavity) implies (¬ quasi-concavity). Assume that

there exists x,x′ such that f(x′) > f(x) but ▽f(x) · (x′ −x) ≤ 0..

Since x is not a global maximizer of f , (2) implies that ▽f(x) 6= 0.

By continuity, we can pick ǫ > 0 sufficiently small that for y =

x′ − ǫ▽ f(x), f(y) > f(x). We’ll show that a portion of the line

segment joining y and x does not belong to the upper contour set

of f corresponding to f(x), proving that f is not quasi-concave.

We have

▽f(x) · (y − x) = ▽ f(x) · ((x′ − ǫ▽ f(x))− x)

= ▽f(x) · (x′ − x)
︸ ︷︷ ︸

≤0 by assumption

− ǫ || ▽ f(x)||2
︸ ︷︷ ︸

>0

< 0

Let dxǫ = ǫ(y − x). For all ǫ, ▽f(x) · dxǫ = ǫ ▽ f(x) · (y − x) < 0. Now, by Taylor-Young’s

theorem, if dx 6= 0 is sufficiently small, then the sign of (f(x+dxǫ)− f(x)) is the same as the sign

of ▽f(x) ·dxǫ, i.e., f(x+dxǫ) < f(x). We have now established that a portion of the line segment

joining x and y does not belong to the upper contour set of f corresponding to f(x). �

Conclude that pseudo-concavity is a much weaker assumption than the non-vanishing gradient

condition, and will give us just enough to ensure that the KT conditions are not only necessary but

sufficient as well. In particular, pseudo-concavity admits the possibility that our solution to the

NPP may be unconstrained, whereas quasi-concavity plus “the gradient never vanishes” excludes

this possibility.

3.2.2. Second preliminary: quasi-concavity and the Hessian of f . Recall from earlier that a condi-

tion sufficient to ensure that f is strictly (weakly) concave is to require that the Hessian of f be

everywhere negative (semi) definite. Analogously, as we’ve seen in the Calculus section, a sufficient
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condition for f is strict (weak) quasi-concavity is a weaker “definiteness subject to constraint” prop-

erty for f . The following result, which is a tiny bit stronger than the one we proved earlier, gives

a sufficient condition for strict quasi concavity. Since we’ve already proved the earlier theorem, we

won’t bother to prove this variant.

Theorem (SQC): A sufficient condition for f : Rn → R to be strictly quasi-concave is that for all x

and all dx such that ▽f(x)′dx = 0, dx′Hf(x)dx < 0.

The following condition on the leading principal minors of the bordered hessian of f is equivalent

to this “definiteness subject to constraint” property. for all x, and all k = 1, ..., n, the sign of the

k’th leading principal minor of the following bordered matrix must have the same sign as (−1)k:





0 ▽f(x)′

▽f(x) Hf(x)




. where the k’th leading principal minor of this matrix is the determinant of the

top-left (k +1)× (k+1) submatrix. We emphasize yet again that strict quasi-concavity is a global

property, so that this leading principal minor property has to hold for all x in the domain of the

function in order to guarantee strict quasi-concavity.

Note also that the above condition isn’t necessary for strict quasi-concavity: the usual example,

f(x) = x3, establishes this: f is strictly quasi-concave, but at x̄ = 0, and all dx, ▽f(x̄)dx = 0,

while dx′Hf(x̄)dx = 0.

3.2.3. Third preliminary: “Definiteness subject to constraint” and sufficiency. A sufficient condi-

tion for strict concavity is that for all x, dx′Hf(x̄)dx < 0, and all dx 6= 0. For strict quasi-concavity,

we only require this property of the Hessian holds for vectors that are orthogonal to ▽(x). Simi-

larly, for g to be strictly quasi-convex, we only require that dx′Hg(x̄)dx > 0, and all dx 6= 0 such

that ▽g(x) = 0. These conditions are much weaker, infinitely weaker in fact, than the conditions

for concavity and convexity. However, they are not quite as weak as they look: the condition on

orthogonal vectors also has implications for dx 6= 0’s that are almost orthogonal to ▽(x), and

we need these implications in order to prove that the KT conditions are sufficient for a solution.

Specifically, if ▽f(x̄)dx = 0 implies dx′Hf(x̄)dx < 0, then by continuity, there exists ǫ > 0 such



8 NPP2: THU, SEP 17, 2015 PRINTED: AUGUST 25, 2015 (LEC# 8)

that for any dx 6= 0,

if | ▽ f(x̄)dx| < ǫ, then dx′Hf(x̄)dx < 0 (4a)

similarly, if ▽g(x̄)dx = 0 implies dx′Hg(x̄)dx > 0, then

if | ▽ g(x̄)dx| < ǫ, then dx′Hg(x̄)dx > 0 (4b)

Why is (4) so important?

a) to show that the KKT conditions give us a solution to the NPP, we need to show that

for any dx, if f(x+ dx)− f(x) > 0 then g(x+ dx)− g(x) > 0 (5)

b) We know that ∀ǫ > 0, ∃δ > 0 s.t. if ||dx|| < δ, then the first order Taylor approximations to

both (f(x + dx) − f(x)) and (g(x + dx) − g(x)) have the same signs as the true differences,

except (possibly) if | cos θdx| < ǫ, where θdx is angle between dx and ▽f . Since ▽f and ▽g

are colinear, it follows that θ is also the angle between dx and ▽g.

c) It follows from point b) that condition (5) is established for all dx such that ||dx|| < δ and θdx ≥

ǫ. Specifically, point b) establishes that (f(x+dx)− f(x)) > 0 implies (g(x+dx)− g(x)) > 0.

d) Now pick ǫ > 0 such that conditions (4) hold and consider dx such that ||dx|| < δ and θdx < ǫ.

There are now two cases to consider

i) ▽f(x)dx ≥ 0: Necessarily ▽g(x)dx ≥ 0. But from (4b), we know that the remainder term

is positive also. Conclude that (g(x + dx)− g(x)) > 0 establishing (5) for this dx.

ii) ▽f(x)dx < 0: From (4a), we know that the remainder term is negative also. Conclude

that (f(x+ dx)− f(x)) < 0 so that for this dx, condition (5) does not apply.

Here’s the above argument in more detail. Now as we’ve discussed over and over again, you

can’t find this ball just by using first order conditions. You need your second order conditions

to be cooperative in the region where the first order conditions fail you. If they are sufficiently

uncooperative, i.e., if the signs of the quadratic terms in (4) are all reversed, then for any given

ǫ-ball, there are going to be dx’s that



ARE211, Fall2015 9

����
����
����
����

����
����
����
����

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
�����������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

C

x1

x2

▽f

▽g

dx1

dx2

dx3

dx4

x̄

Figure 5. Second order conditions and sufficiency

• make an angle close to 90◦ with both ▽f(x) and ▽g(x), resulting in almost zero inner

products ▽f(x)dx and ▽g(x)dx, which are dominated by

• a positive second order term for f , resulting in a net increase in f , and

• a negative second order term for g, resulting in a net decrease in g, so you remain in the

constraint set.

• in which case you don’t have a maximum on the constraint set.
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On the other hand, suppose that the point x in Fig. 5 satisfies the KKT conditions for the canonincal

NPP with one constraint, i.e., max f(x) s.t. g(x) ≤ b. We will make the following assumptions:

(1) the KKT conditions are satisfied;

(2) the constraint is satisfied with equality;

(3) the two parts of (4) are satisfied for any vector dx in the double cone labeled C.

(4) for any vector dx in the shaded circle but not in the set C, the first order terms in the

Taylor expansions of f and g dominate, i.e., the signs of the first order terms ▽f(x)dx and

▽g(x)dx agree with, respectively, f(x+ dx)− f(x) and g(x+ dx)− g(x)..

The following four part argument is a very informal sketch of the proof that x solves the constrained

maximization problem.

(1) For a vector such as dx1 which makes an acute angle with ▽g(x), but does not belong to

C, the positive first order term in the expansion of g dominates, so that g(x+ dx) > g(x),

implying that x+ dx does not belong to the constraint set.

(2) For a vector such as dx4 which makes an obtuse angle with ▽f(x), but does not belong to

C, the negative first order term in the expansion of f dominates, so that f(x+dx) < f(x).

(3) For a vector such as dx2 ∈ C which makes a near 90◦ acute angle with ▽g(x), the second

order term 0.5dx′Hg(x̄)dx > 0 reinforces rather than offsets the negligible first order term,

ensuring that x+ dx does not belong to the constraint set.

(4) For a vector such as dx3 ∈ C which makes a near 90◦ obtuse angle with ▽f(x), the second

order term 0.5dx′Hf(x̄)dx < 0 reinforces rather than offsets the negligible first order term,

ensuring that f(x+ dx) < f(x).

How small is “sufficiently small” in (4)? The following example shows that the requirement for

sufficiently small gets tougher and tougher, the less concave is f . Example: Consider the function

f(x,y) = (xy)β , which is strictly quasi-concave but not concave for β > 0.5. We’ll illustrate that

regardless of the value of β, dx′Hfλdx < 0, for any vector that is almost orthogonal to ▽f , but

that the criterion of “almost” gets tighter and tighter as β gets larger. That is, the higher is β

(i.e., the less concave is f), the closer to orthogonal does dx have to be in order to ensure that
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dx′Hfλdx is negative.

We have ▽f(x1,x2) = β
(

x
β−1
1 x

β
2 ,x

β
1x

β−1
2

)

and Hf(x1,x2) = β






(β − 1)xβ−2
1 x

β
2 βx

β−1
1 x

β−1
2

βx
β−1
1 x

β−1
2 (β − 1)xβ

1x
β−2
2




.

Evaluated at (x1,x2) = (1, 1), we have Hf(1, 1) = β2






β−1
β

1

1 β−1
β




 = β2






λ 1

1 λ




, where λ = β−1

β
.

Note that λ → 1 as β → ∞.

Now choose a unit length vector dx and consider

dx′Hfλdx = λ(dx21+dx22)+2dx1dx2 = (dx1+dx2)
2−(1−λ)(dx21+dx22) = (dx1+dx2)

2−(1−λ)

For dx such that x1 = −x2, dx
′Hfλdx < 0, for all λ < 1, verifying that f is strictly quasi-concave.

However, the closer is λ to unity, the smaller is the set of unit vectors for which dx′Hfλdx < 0.

3.3. Sufficient Conditions for a solution to the NPP: the theorem

The following theorem gives sufficient conditions for a solution (not necessarily unique) to the NPP.

Theorem (S): (Sufficient conditions for a solution to the NPP): If f is pseudo-concave and the gj ’s

are quasi-convex, then a sufficient condition for a solution to the NPP at x̄ ∈ R
m
+ is that there

exists a vector λ̄ ∈ R
m
+ such that

▽f(x̄)T = λTJg(x̄)

and λ̄ has the property that λ̄j = 0, for each j such that gj(x̄) < bj .

Note that Theorem (S) doesn’t guarantee that a solution exists. Need compactness for this. Note

also that the sufficient conditions are like the necessary conditions, except that you don’t need the

CQ but do need pseudo-concavity and quasi-convexity. (MWG’s version of Theorem (S)—Theorem

M.K.3—is just like mine except that they do include the constraint qualification. This addition is

unnecessary (they’re not wrong, they just have a meaningless additional condition). The C.Q. says

that you can have a maximum without the non-negative cone condition holding. If you assume
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as in (S) that the nonnegative cone property holds, then, obviously, you don’t need to worry that

perhaps it mightn’t hold!

Proof of Theorem (S):

(1) suppose x̄ does not solve the NPP, i.e., for some dx;

• f(x̄+ dx) > f(x̄) & gj(x̄+ dx) ≤ bj, ∀j.

• since f is pseudo-concave, ▽f(x̄)dx > 0.

• we’ll show x fails the KKT:

– i.e., consider any λλλ ∈ R
m
+ s.t. gj(x̄) < bj =⇒ λj = 0

– we’ll show ▽f(x̄) 6= λλλTJg(x̄)

– that is,

⋄ the KKT necessary conditions state that in order for x̄ to solve the NPP, there must exist a λλλ vector

satisfying a certain property (the complementary slackness condition), and also satisfies equation (6).

⋄ we’ll show that this condition cannot be satisfied for any λλλ vector in the specified class.

(2) since for all j, gj(x̄) ≤ bj and gj(x̄+ δdx) ≤ bj, it follows from the convexity of gj ’s lower

contour sets that ∀δ < 1, gj(x̄+ δdx) ≤ bj.

(3) there are now two cases to consider

(a) suppose gj(x̄) = bj: in this case, ∀δ < 1 gj(x̄+ δdx)− gj(dx) ≤ 0.

• Local Taylor implies that for such a j, ▽gj(x̄)dx ≤ 0,

– suppose instead that for such a j, ▽gj(x̄)dx > 0;

⋄ then Local Taylor implies: for δ ≈ 0, gj(x̄+ δdx) − gj(dx) > 0, a contradiction.

(b) suppose gj(x̄) < bj: in this case,

• it’s not necessarily true that ∀δ < 1 gj(x̄+ δdx)− gj(dx) ≤ 0.

(we can’t rule out the possibility that gj(dx) ≪ bj, while gj(x̄+ dx) = bj.)

• so we can’t conclude ▽gj(x̄)dx ≤ 0.

• but we have, by assumption, that λj = 0.

(4) Whichever case hold in part (3), we have that λj ▽ gj(x̄) · dx ≤ 0:

• for (3a), it holds because λj ≥ 0 and ▽gj(x̄) · dx ≤ 0:

• for (3b), it holds because λj = 0.
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(5) That is, (λλλTJg(x̄)) · dx =
∑m

j=1 λ
j ▽ gj(x̄) · dx ≤ 0

(6) Combining (1) and (5), and factoring out dx, we have
(
▽f(x̄)− λλλTJg(x̄))

)
· dx > 0.

(7) Hence, the vector
(
▽f(x̄)−λλλTJg(x̄))

)
6= 0.

(8) But since KKT requires equality of the expression in (7) to be zero, x̄ fails the KKT.

3.4. Second Order conditions Without Quasi-Concavity

This is a hard section that I’m not going to teach this year. Rather than include it in the notes,

I’ve suppressed the entire section to save paper. If anybody is interested I’ll print off the section.


