Sufficiency conditions: Key points

@ Quasi-concavity and semi-definiteness on a subspace:
dx’Hf(x)dx < 0, for all dx s.t. \7f(x)dx = 0.

@ The principal minor representation of strict quasi-concavity:
Vx, and all k = 1,..., n, the sign of the k’th leading principal minor of the

bordered matrix [ 0 vf(x)’] must have sgn((—1)), where the k’th
Vi(x)  Hi(x) ’
leading principal minor of this matrix is the det of the top-left
(k+1) x (k+ 1) submatrix.
e Sufficiency: suppose definiteness properties hold and 7f(X) # 0. If X
satisfies KKT, it solves the NPP
o the role of second order conditions in the sufficiency argument
e The /f(X) caveat is highly unsatisfactory
concavity of f
convexity of g
@ e.g., max f with elliptical lower contour sets on g with circular ones
@ just need f to be “less quasi-convex” than g

@ Our sufficiency conditions—quasi — are way strong
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Key Points (continued)

@ Understanding the problem of the vanishing gradient
@ Defn of pseudo-concavity: f is pseudo-concave if
vx,x" € X, if f(x') > f(x) then 57 f(x)-(x'—x) > 0.

@ Pseudo-concavity and its relationship to quasi-concavity:

Theorem: Assume f is C2. Then f is pseudo-concave iff
@ fis quasi-concave
@ vf(-) =0atximplies f(-) attains a global max at x.

@ NASC for a solution to the NPP (inequality constraints):
If f is pseudo-concave and the ¢/’s are quasi-convex, then a necessary
and sufficient condition for a solution to the NPP at x € R is that there

exists a vector A € R such that
V(%) =ATJg(x)
and A has the property that 7»,- = 0, for each j such that ¢/(X) < bj.
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How do you know if a Hessian is quasi-con?

Definition: The bordered Hessian:
@ top row is [0,/ f(x)];
@ left column below top row is 7f(x)’

@ the rest is the Hessian

Definition: Leading k’th principal minor of a bordered Hessian:
@ determinant of the top-left k+1x k+1 submatrix of the bordered matrix

For f to be strictly quasi-concave )
sgn (k’th leading principal minor of [ 0 vi(x) ]) =sgn((—1)%).

vi(x)  Hi(x)

For f to be strictly quasi-convex

s ST AR 0 VX)) _ _
sgn (kth leading principal minor of [vf(x) HiGe) )~ "

Two examples follow below
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Bordered Hessian check for quasi-concavity: example

e fissqc: f(X) = xixo; VF(X) = (xo,x1); Hf(x)= [(1) :)]

Evaluate bordered Hessian at x = (1,1).

0 f(1,1)
BHICO) .1 )

[vf(1,1) Hf(1,1)

—_ a2 O
—_ O =
O = -

o First principal minor is det {? (1)} <0;

@ Second principal minor is det BHf(x)|(1 1) =2
@ Passes test for quasi-concavity
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Bordered Hessian check for quasi-convexity: example

o fisconvex: f(x) =050 +x5); VI(X)=(x,%); Hf(x)= [(1) (1)]

Evaluate bordered Hessian at x = (1,1).

0 f(1,1 !
BHI(X) 1 1 ]

[vf(1,1) Hf(1,1)

I
—
QO = =
—_ O -

o First principal minor is det {? ” <0;

e Second principal minor is det BHf(x)|(171) =-2.
e Passes test for quasi-convexity
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Definiteness plus \/f(X) # 0 imply sufficiency
Hf(x)
If X satisfies NPP and s/f(X) # 0, then X solves the NPP

Theorem: Suppose VX, is 1= definite on subspace orthog to v f(x).

Proof outline
@ Prove that X is a local max on constraint set:
o Need to show: 3¢ > 0 s.t. Vdx with ||dx|| <,
f(X+dx) > f(X) = ¢/(X+dx) > b; for some j
o See argument below
@ Definiteness conditions imply
@ upper contour sets of f are convex
o constraint set is convex.
© Use convexity properties to prove that X is a global max on constraint set:
suppose for arbitrary dx, f(X +dx) > f(X) & ¢/(X+dx) < bj, V.
lower contour sets convex = ¢/(X + 8dx) < bj, Vj & V8 < 1.
since {x : f(x) > f(X)} is convex, f(X + ddx) > f(x), V& > 0.
3 sufficiently small § > 0 s.t. ||ddx|| < €
contradiction of point 1
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Sufficient conditions without quasi-concavity:

Maximize a (quasi-convex) ellipse on a circle:

<

Level set of objective f thru x

f decreases along arrow

Level set of ofjective f thfu x

Constraint set g

f(2,0)

saSes along arrow
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Sufficient conditions without Quasi-concavity: theory

Maximize an quasi-convex function f s.t. g(x) = b

o f(-) is locally maximized at X on constraint

o if level set of f(-) thru X is less curved than level set of g(-) thru X.
o f(-) is locally minimized at x on constraint

o if level set of f(-) thru x is more curved than level set of g(+) thru x.

Test: check 2nd-order Taylor expansion of Lagrangian for dx s.t. dx L \/f(x).

L(vx) = f(x)+Mb—g(x))
L(A,x +dx) — L(A,dx) v L(A,x)[0,dx] + 0.5[0,dx] HL(A,dx)[0,dx]
= 0.5[0,dx]'HL(\,dx)[0,dx]

%

@ f(-) locally max-ed at X if HL(X) is neg definite for dx L <7f(x).
X

@ f(-) locally min-ed at x if HL(x) is pos definite for dx L <7f(x).

© quasi- zggsgzig of gis for (1) but not necessary
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Check definiteness of bordered Hessian from Lagrangian

To get bordered Hessian we need, first construct the Hessian of Lagrangian:

Vi) = [ e 3]
= [b—g(x), V(x)—Avg(x)]

when f:R2 - R _ _
0 91(X) 92(X)

HL(A,X) = | g1(X) f11(X) _ZLQH (X) fz(x) _2912()_()
G2(X)  B1(X) —Ag2i(X)  f2(X) —Ageo(X)

HL(,x) is a bordered Hessian of . We need to check:
dx’ (Hf(X) — AHg(X)) dx < 0, for all dx such that <7 g(X)dx = 0

@ compute minors of Hessian Hf(x) — AHg(X) bordered by 7g(x).
o neg def iff k’th principal minor of bordered Hessian has sign (—1)X.
o pos def iff k’th principal minor of bordered Hessian is negative
o note that first principal minor is necessarily negative
@ when f:R? — R, only have to check second minor
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Sufficient conditions for a solution: one inequality constraint

Assume conditions of the theorem are satisfied at X. In particular assume
e dx'Hf(x)dx < 0, for all dx s.t. 57f(x)dx = 0.

e dx'Hg(x)dx > 0, for all dx s.t. /f(x)dx = 0.

By continuity, 3 an open cone C and § > 0 s.t. Yy € B(x,d)
e dx'Hf(y)dx <0, foralldx € C

e dx'Hg(y)dx >0, foralldx € C
For all dx € R\ C, J¢(dx) > 0 s.t. if ||dx|| < €, then

sgn(f(X+d>§)—f(X))=sgn(vf(X)dX): sgn(g(x—dx)—g(x))=sgn(vg(x)dx)

level set of f
.

level set of g = = =

\dx?

0 October 13, 2015

10/18



Sufficient conditions for a solution (cont)

Let € = min[§, min{e(dx) : dx € R\ C}] be radius of purple circle
@ sgn(g(x+dx') — g(x)) = sgn(vg(x)dx') >0
@ sgn(f(x+dx*) —f(x)) = sgn(s/f(x)dx*) <0
o g(x+dx2) —g(x) = vg(x)dx2 +0.5dx2" Hg(y)dx2 > 0,
o f(x+dx3) —f(x)= ( x)dx3 +0.5dx3 Hf(y)dx® < 0,

Conclude: Vdx € B(x,£), f(x +dx) > f(x) = g(x+dx) > g(x).
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The problem of the vanishing gradient

g g

fa) = a?

-
Gradient vanishes

1 1
Constraint set is not convex Objective is not quasi-concave

F1GURE 1. Three examples where KKT conditions are not sufficient for a soln
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perfect too strong WAY too strong

too weak

Weakest condition on f s.t. soln to KKT — soln to NPP

fis concave: EXAMPLE: f=1-X

B——— —
_— T

fis sqc+grad f never vanishes: EXAMPLE: =X + x/2

N

o
T

|
N

f is pseudo—concave: EXAMPLE: f=pdf of normal distribution

,///////4/ \\\\\\‘\\\

—
0.5 o \
-

fissqc:  EXAMPLE: f=x°
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Pseudo-concavity definition

Definition: f is pseudo-concave if
vx,x' € X, if f(x') > f(x) then 57 f(x) - (x' —x) > 0.

Pseudo-concavity defn simply assumes away the vanishing gradient problem.

Note: if f is pseudo-concave, /f(x) = 0 = x is a global max on X

@ suppose x were not a global max on X, i.e., 3x’ € X, s.t. f(x’) > f(x)
@ since f is pseudo-concave, 7f(x) - (x' —x) > 0.
o therefore 7f(x) can’t be zero
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Pseudo-concavity and Quasi-concavity

Theorem: Assume f is C2. Then f is pseudo-concave iff
@ fis quasi-concave

@ vf(-) =0 atx implies f(-) attains a global max at x.

Proof: = Assume f is not quasi-concave
@ there’s a non-convex upper contour set

o I x' e X&x=A+(1-A)x", st f(x") > f(x) > f(x).
@ assume w.l.o.g. that x minimizes f(-) on [x’,x"].
@ by KKT, \7f(x) - (x' —x) = 0 but f(x") > f(x), so f not pseudo-concave

1GURE 1. ~pscudo-concavity implics —-quasi-concavity
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Pseudo-concavity and Quasi-concavity: necessity

Proof: <= Assume f is not pseudo-concave
e Ix,x' € X s.t. f(x') > f(x) and v/ f(x) - (x' —x) <0.
@ by continuity, 3x,y € X, s.t. f(y) > f(x) and 7 f(x) - (y —x) <O0.
@ let dx = g(y — x). If € small enough, f(x +dx) < f(x);
@ fis not quasj-concave
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Sufficient conditions for a soln to NPP

Theorem: Assume: f, g’s are C3, f is pseudo concave & g’’s are quasi-convex.
If the KKT are satisfied at X, then x solves the NPP

Proof:
@ suppose x does not solve the NPP, i.e., for some dx;

o f(X+dx) > f(X) & ¢(X+dx) < b, V.

e since f is pseudo-concave, v/f(X)dx > 0.

o we'll show x fails the KKT:
e i.e., consider anyA € RT s.t. g(X) < b/ = M =0;
o we'll show below that 77(X) # A7 Jg(X)

@ lower contour sets convex = g/(X+ 8dx) < by, Vj & V8 < 1
Q therefore, Vj s.t. ¢/(X) = b/, V8 < 1, g/(X+ 8dx) — ¢/ (dx) < 0.
e it then follows from Local Taylor that for each such j, 7¢/(X)dx < 0,
@ to see this, suppose to the contrary that for one such j, vgf()_()dx > 0;
< then by Local Taylor: for § ~ 0, ¢/ (X +8dx) > ¢/ (dx) = by, contradicting (2);
e note: we can't conclude that for j s.t. ¢/(X) < b/, 7g/(X)dx <0.
o but this won't invalidate (4) since by assumption, if g/(X) < b/ then M/ = 0.
Q Part (3) now implies (A7Jg(x)) -dx =Y, N 7 ¢/(X) -dx <0
@ But since f(X)dx > 0, \7f(X) #ATJg(X), i.e., X fails the KKT.
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KKT conditions satisfied but sufficiency conditions aren’t

T2
T2

g(x+ddx) > b, ~0

x1

lower contour set is not convex

f is not pseudo-concave
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