
Sufficiency conditions: Key points

Quasi-concavity and semi-definiteness on a subspace:
dx′Hf (x)dx≤ 0, for all dx s.t. 5f (x)dx = 0.

The principal minor representation of strict quasi-concavity:
∀x, and all k = 1, ...,n, the sign of the k ’th leading principal minor of the

bordered matrix

[
0 5f (x)′

5f (x) Hf(x)

]
must have sgn((−1)k ), where the k ’th

leading principal minor of this matrix is the det of the top-left
(k + 1)× (k + 1) submatrix.
Sufficiency: suppose definiteness properties hold and5f (x̄) 6= 0. If x̄
satisfies KKT, it solves the NPP

the role of second order conditions in the sufficiency argument
The5f (x̄) caveat is highly unsatisfactory

Our sufficiency conditions—quasi concavity of f
convexity of g— are way strong

e.g., max f with elliptical lower contour sets on g with circular ones
just need f to be “less quasi-convex” than g
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Key Points (continued)

Understanding the problem of the vanishing gradient

Defn of pseudo-concavity: f is pseudo-concave if
∀x,x′ ∈ X , if f (x′) > f (x) then 5 f (x) · (x′−x) > 0.

Pseudo-concavity and its relationship to quasi-concavity:
Theorem: Assume f is C2. Then f is pseudo-concave iff

1 f is quasi-concave
2 5f (·) = 0 at x implies f (·) attains a global max at x.

NASC for a solution to the NPP (inequality constraints):
If f is pseudo-concave and the g j ’s are quasi-convex, then a necessary
and sufficient condition for a solution to the NPP at x̄xx ∈ Rm

+ is that there
exists a vector λ̄λλ ∈ Rm

+ such that

5f (x̄)T = λλλ
T Jg(x̄)

and λ̄λλ has the property that λ̄j = 0, for each j such that g j(x̄) < bj .
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How do you know if a Hessian is quasi-con?

Definition: The bordered Hessian:
top row is [0,5f (x)];

left column below top row is5f (x)′

the rest is the Hessian

Definition: Leading k ’th principal minor of a bordered Hessian:
determinant of the top-left k+1×k+1 submatrix of the bordered matrix

For f to be strictly quasi-concave

sgn

(
k ’th leading principal minor of

[
0 5f (x)′

5f (x) Hf(x)

])
= sgn((−1)k ).

For f to be strictly quasi-convex

sgn

(
k ’th leading principal minor of

[
0 5f (x)′

5f (x) Hf(x)

])
=−1.

Two examples follow below
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Bordered Hessian check for quasi-concavity: example

f is sqc: f (x) = x1x2; 5f (x) = (x2,x1); Hf (x) =

[
0 1
1 0

]
Evaluate bordered Hessian at x = (1,1).

BHf(x)|(1,1) =

[
0 5f (1,1)′

5f (1,1) Hf(1,1)

]
=

0 1 1
1 0 1
1 1 0


First principal minor is det

[
0 1
1 0

]
< 0;

Second principal minor is det BHf(x)|(1,1) = 2.
Passes test for quasi-concavity
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Bordered Hessian check for quasi-convexity: example

f is convex: f (x) = 0.5(x2
1 + x2

2 ); 5f (x) = (x1,x2); Hf (x) =

[
1 0
0 1

]
Evaluate bordered Hessian at x = (1,1).

BHf(x)|(1,1) =

[
0 5f (1,1)′

5f (1,1) Hf(1,1)

]
=

0 1 1
1 1 0
1 0 1


First principal minor is det

[
0 1
1 1

]
< 0;

Second principal minor is det BHf(x)|(1,1) =−2.
Passes test for quasi-convexity
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Definiteness plus5f (x̄) 6= 0 imply sufficiency

Theorem: Suppose ∀x,
Hf (x)
Hg(x)

is neg
pos definite on subspace orthog to5f (x).

If x̄ satisfies NPP and5f (x̄) 6= 0, then x̄ solves the NPP

Proof outline
1 Prove that x̄ is a local max on constraint set:

Need to show: ∃ε̄ > 0 s.t. ∀dx with ||dx||< ε̄,
f (x̄ + dx) > f (x̄) =⇒ g j (x̄ + dx) > bj for some j
See argument below

2 Definiteness conditions imply
upper contour sets of f are convex
constraint set is convex.

3 Use convexity properties to prove that x̄ is a global max on constraint set:
suppose for arbitrary dx, f (x̄ + dx) > f (x̄) & g j (x̄ + dx)≤ bj , ∀j .
lower contour sets convex =⇒ g j (x̄ + δdx)≤ bj , ∀j & ∀δ < 1.
since {x : f (x) > f (x̄)} is convex, f (x̄ + δdx) > f (x̄), ∀δ > 0.
∃ sufficiently small δ > 0 s.t. ||δdx||< ε̄

contradiction of point 1
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Sufficient conditions without quasi-concavity: example

Maximize a (quasi-convex) ellipse on a circle:

xUnder

▽f(0,−1)

▽f(2, 0)

Level set of objective f thru x̄

Level set of objective f thru
¯
x

Constraint set g

f decreases along arrow

f increases along arrow

x̄

1
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Sufficient conditions without Quasi-concavity: theory

Maximize an quasi-convex function f s.t. g(x) = b

f (·) is locally maximized at x̄ on constraint
if level set of f (·) thru x̄ is less curved than level set of g(·) thru x̄.

f (·) is locally minimized at x
¯

on constraint
if level set of f (·) thru x

¯
is more curved than level set of g(·) thru x

¯
.

Test: check 2nd-order Taylor expansion of Lagrangian for dx s.t. dx⊥5f (x).

L(λ,x) = f (x) + λ(b−g(x))

L(λ,x + dx)−L(λ,dx) ≈ 5L(λ,x)[0,dx] + 0.5[0,dx]′HL(λ,dx)[0,dx]

= 0.5[0,dx]′HL(λ,dx)[0,dx]

1 f (·) locally max-ed at x̄ if HL(x̄) is neg definite for dx⊥5f (x).
2 f (·) locally min-ed at x

¯
if HL(x

¯
) is pos definite for dx⊥5f (x).

3 quasi- concavity
convexity of f

g is sufficient for (1) but not necessary
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Check definiteness of bordered Hessian from Lagrangian

To get bordered Hessian we need, first construct the Hessian of Lagrangian:

5L(λ,x) =
[

∂L
∂λ

∂L
∂x1

, · · · , ∂L
∂xn

]
=

[
b−g(x), 5f (x)−λ5g(x)

]
when f : R2→ R

HL(λ, x̄) =

 0 g1(x̄) g2(x̄)

g1(x̄) f11(x̄)− λ̄g11(x̄) f12(x̄)− λ̄g12(x̄)

g2(x̄) f21(x̄)− λ̄g21(x̄) f22(x̄)− λ̄g22(x̄)


HL(λ,x) is a bordered Hessian of Hf (x)−λHg(x). We need to check:

dx′
(
Hf(x̄)− λ̄Hg(x̄)

)
dx ≶ 0, for all dx such that 5g(x̄)dx = 0

compute minors of Hessian Hf(x̄)− λ̄Hg(x̄) bordered by5g(x).
neg def iff k ’th principal minor of bordered Hessian has sign (−1)k .
pos def iff k ’th principal minor of bordered Hessian is negative
note that first principal minor is necessarily negative

when f : R2→ R, only have to check second minor
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Sufficient conditions for a solution: one inequality constraint

Assume conditions of the theorem are satisfied at x̄. In particular assume
dx′Hf (x)dx < 0, for all dx s.t. 5f (x)dx = 0.
dx′Hg(x)dx > 0, for all dx s.t. 5f (x)dx = 0.

By continuity, ∃ an open cone C and δ > 0 s.t. ∀y ∈ B(x,δ)
dx′Hf (y)dx < 0, for all dx ∈ C
dx′Hg(y)dx > 0, for all dx ∈ C

For all dx ∈ R\C, ∃ε(dx) > 0 s.t. if ||dx||< ε, then
sgn(f (x+dx)−f (x))=sgn(5f (x)dx);sgn(g(x−dx)−g(x))=sgn(5g(x)dx)
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Figure 1. Second order conditions and sufficiency
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Sufficient conditions for a solution (cont)

Let ε̄ = min[δ,min{ε(dx) : dx ∈ R\C}] be radius of purple circle
sgn(g(x + dx1)−g(x)) = sgn(5g(x)dx1) > 0
sgn(f (x + dx4)− f (x)) = sgn(5f (x)dx4) < 0
g(x + dx2)−g(x) =5g(x)dx2 + 0.5dx2′Hg(y)dx2 > 0,
f (x + dx3)− f (x) =5f (x)dx3 + 0.5dx3′Hf (y)dx3 < 0,

Conclude: ∀dx ∈ B(x, ε̄), f (x + dx) > f (x) =⇒ g(x + dx) > g(x).
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The problem of the vanishing gradient

fx

Constraint set is not convex Objective is not quasi-concave

Gradient vanishes

f(x) = x3

x1x1

x 2x 2

x

Figure 1. Three examples where KKT conditions are not sufficient for a soln
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Weakest condition on f s.t. soln to KKT =⇒ soln to NPP
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Pseudo-concavity definition

Definition: f is pseudo-concave if

∀x,x′ ∈ X , if f (x′) > f (x) then 5 f (x) · (x′−x) > 0.

Pseudo-concavity defn simply assumes away the vanishing gradient problem.

Note: if f is pseudo-concave,5f (x) = 0 =⇒ x is a global max on X

suppose x were not a global max on X , i.e., ∃x′ ∈ X , s.t. f (x′) > f (x)

since f is pseudo-concave,5f (x) · (x′−x) > 0.

therefore5f (x) can’t be zero
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Pseudo-concavity and Quasi-concavity

Theorem: Assume f is C2. Then f is pseudo-concave iff
1 f is quasi-concave
2 5f (·) = 0 at x implies f (·) attains a global max at x.

Proof: =⇒ Assume f is not quasi-concave
there’s a non-convex upper contour set
∃x′,x′′ ∈ X & x = λx′+ (1−λ)x′′, s.t. f (x′′)≥ f (x′) > f (x).
assume w.l.o.g. that x minimizes f (·) on [x′,x′′].
by KKT,5f (x) · (x′−x) = 0 but f (x′) > f (x), so f not pseudo-concave

x2

x1

x′
x′′

x

▽f(x)

Figure 1. ¬-pseudo-concavity implies ¬-quasi-concavity
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Pseudo-concavity and Quasi-concavity: necessity

Proof:⇐ Assume f is not pseudo-concave

∃x,x′ ∈ X s.t. f (x′) > f (x) and 5 f (x) · (x′−x)≤ 0.
by continuity, ∃x,y ∈ X , s.t. f (y) > f (x) and 5 f (x) · (y−x) < 0.
let dx = ε(y−x). If ε small enough, f (x + dx) < f (x);
f is not quasi-concave
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Figure 1. ¬-quasi-concavity implies ¬-pseudo-concavity
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Sufficient conditions for a soln to NPP
Theorem: Assume: f , g j ’s are C3, f is pseudo concave & g j ’s are quasi-convex.

If the KKT are satisfied at x̄, then x̄ solves the NPP

Proof:
1 suppose x̄ does not solve the NPP, i.e., for some dx;

f (x̄ + dx) > f (x̄) & g j (x̄ + dx)≤ bj , ∀j .
since f is pseudo-concave,5f (x̄)dx > 0.
we’ll show x fails the KKT:

i.e., consider any λλλ ∈ Rm
+ s.t. g j (x̄) < bj =⇒ λj = 0;

we’ll show below that5f (x̄) 6= λλλT Jg(x̄)

2 lower contour sets convex =⇒ g j(x̄ + δdx)≤ bj , ∀j & ∀δ < 1
3 therefore, ∀j s.t. g j(x̄) = bj , ∀δ < 1, g j(x̄ + δdx)−g j(dx)≤ 0.

it then follows from Local Taylor that for each such j ,5g j (x̄)dx≤ 0,
to see this, suppose to the contrary that for one such j ,5g j (x̄)dx > 0;
� then by Local Taylor: for δ≈ 0, g j (x̄ + δdx) > g j (dx) = bj , contradicting (2);

note: we can’t conclude that for j s.t. g j (x̄) < bj ,5g j (x̄)dx≤ 0 .
but this won’t invalidate (4) since by assumption, if g j (x̄) < bj then λj = 0.

4 Part (3) now implies (λλλT Jg(x̄)) ·dx = ∑
m
j=1 λj5g j(x̄) ·dx≤ 0

5 But since5f (x̄)dx > 0,5f (x̄) 6= λλλT Jg(x̄), i.e., x̄ fails the KKT.
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KKT conditions satisfied but sufficiency conditions aren’t

x̄
x̄

dx
dx

x1x1

x
2

x
2

▽f(x̄)

▽f(x̄)
▽g(x̄)

▽g(x̄)

g(x̄+ δdx) > b, δ ≈ 0 ▽f(x̄)dx < 0

lower contour set is not convex
f is not pseudo-concave
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