Sufficiency conditions: Key points

- Quasi-concavity and semi-definiteness on a subspace:
 dx' Hf(x)dx ≤ 0, for all dx s.t. ⊽f(x)dx = 0.
- The principal minor representation of strict quasi-concavity: $\forall \mathbf{x}$, and all k = 1, ..., n, the sign of the *k*'th leading principal minor of the bordered matrix $\begin{bmatrix} 0 & \nabla f(\mathbf{x})' \\ \nabla f(\mathbf{x}) & Hf(\mathbf{x}) \end{bmatrix}$ must have $sgn((-1)^k)$, where the *k*'th leading principal minor of this matrix is the det of the top-left $(k+1) \times (k+1)$ submatrix.
- - the role of second order conditions in the sufficiency argument
 - The $\bigtriangledown f(\bar{\mathbf{x}})$ caveat is highly unsatisfactory
- Our sufficiency conditions—quasi $\frac{\text{concavity of } f}{\text{convexity of } g}$ are way strong
 - e.g., max f with elliptical lower contour sets on g with circular ones
 - just need f to be "less quasi-convex" than g

Key Points (continued)

- Understanding the problem of the vanishing gradient
- Defn of pseudo-concavity: *f* is pseudo-concave if

 $\forall \mathbf{x}, \mathbf{x}' \in X, \text{ if } f(\mathbf{x}') > f(\mathbf{x}) \text{ then } \bigtriangledown f(\mathbf{x}) \cdot (\mathbf{x}' - \mathbf{x}) > 0.$

- Pseudo-concavity and its relationship to quasi-concavity: Theorem: Assume *f* is C². Then *f* is pseudo-concave iff *f* is quasi-concave
 ⊘*f*(·) = 0 at **x** implies *f*(·) attains a global max at **x**.

$$\bigtriangledown f(\bar{\mathbf{x}})^T = \mathbf{\lambda}^T J g(\bar{\mathbf{x}})$$

and $\bar{\boldsymbol{\lambda}}$ has the property that $\bar{\lambda}_j = 0$, for each *j* such that $g^j(\bar{\mathbf{x}}) < b_j$.

How do you know if a Hessian is quasi-con?

Definition: The bordered Hessian:

- top row is [0,
 ¬*f*(**x**)];
- left column below top row is $\bigtriangledown f(\mathbf{x})'$
- the rest is the Hessian

Definition: Leading *k*'th principal minor of a bordered Hessian:

• determinant of the top-left $k+1 \times k+1$ submatrix of the bordered matrix

For *f* to be strictly quasi-concave
sgn
$$\begin{pmatrix} k \text{'th leading principal minor of } \begin{bmatrix} 0 & \nabla f(\mathbf{x})' \\ \nabla f(\mathbf{x}) & \text{Hf}(\mathbf{x}) \end{bmatrix} = \text{sgn}((-1)^k).$$

For *f* to be strictly quasi-convex
sgn $\begin{pmatrix} k \text{'th leading principal minor of } \begin{bmatrix} 0 & \nabla f(\mathbf{x})' \\ \nabla f(\mathbf{x}) & \text{Hf}(\mathbf{x}) \end{bmatrix} = -1.$
Two examples follow below

Bordered Hessian check for quasi-concavity: example

• *f* is sqc: $f(\mathbf{x}) = x_1 x_2$; $\nabla f(\mathbf{x}) = (x_2, x_1)$; $Hf(\mathbf{x}) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ Evaluate bordered Hessian at $\mathbf{x} = (1, 1)$.

$$\mathsf{BHf}(\mathbf{x})|_{(1,1)} = \begin{bmatrix} 0 & \nabla f(1,1)' \\ \nabla f(1,1) & \mathsf{Hf}(1,1) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

- First principal minor is det $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} < 0;$
- Second principal minor is det $BHf(\mathbf{x})|_{(1,1)} = 2$.
- Passes test for quasi-concavity

Bordered Hessian check for quasi-convexity: example

• *f* is convex: $f(\mathbf{x}) = 0.5(x_1^2 + x_2^2); \quad \bigtriangledown f(\mathbf{x}) = (x_1, x_2); \quad Hf(\mathbf{x}) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ Evaluate bordered Hessian at $\mathbf{x} = (1, 1).$

$$|\mathsf{BHf}(\mathbf{x})|_{(1,1)} = \begin{bmatrix} 0 & \nabla f(1,1)' \\ \nabla f(1,1) & \mathsf{Hf}(1,1) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

- First principal minor is det $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} < 0;$
- Second principal minor is det $BHf(\mathbf{x})|_{(1,1)} = -2$.
- Passes test for quasi-convexity

Definiteness plus $\bigtriangledown f(\bar{\mathbf{x}}) \neq 0$ imply sufficiency

Theorem: Suppose $\forall \mathbf{x}$, $\frac{Hf(\mathbf{x})}{Hg(\mathbf{x})}$ is $\frac{\text{neg}}{\text{pos}}$ definite on subspace orthog to $\nabla f(\mathbf{x})$. If $\mathbf{\bar{x}}$ satisfies NPP and $\nabla f(\mathbf{\bar{x}}) \neq 0$, then $\mathbf{\bar{x}}$ solves the NPP

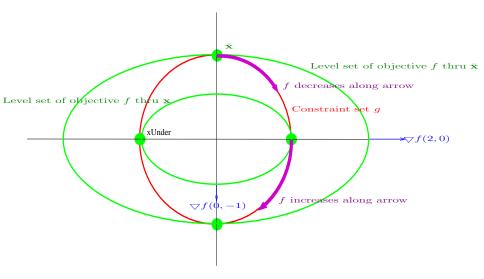
Proof outline

• Prove that $\bar{\mathbf{x}}$ is a *local* max on constraint set:

- Need to show: $\exists \overline{\epsilon} > 0$ s.t. $\forall dx$ with $||dx|| < \overline{\epsilon}$, $f(\overline{x} + dx) > f(\overline{x}) \Longrightarrow g^j(\overline{x} + dx) > b_i$ for some j
- See argument below
- 2 Definiteness conditions imply
 - upper contour sets of f are convex
 - constraint set is convex.
- Use convexity properties to prove that x̄ is a global max on constraint set:
 - suppose for arbitrary $d\mathbf{x}$, $f(\mathbf{\bar{x}} + d\mathbf{x}) > f(\mathbf{\bar{x}}) \& g^j(\mathbf{\bar{x}} + d\mathbf{x}) \le b_j, \forall j$.
 - lower contour sets convex $\Longrightarrow g^j(\bar{\mathbf{x}} + \delta \mathbf{dx}) \le b_j, \forall j \& \forall \delta < 1.$
 - since $\{\mathbf{x} : f(\mathbf{x}) > f(\mathbf{\bar{x}})\}$ is convex, $f(\mathbf{\bar{x}} + \delta \mathbf{dx}) > f(\mathbf{\bar{x}}), \forall \delta > 0$.
 - \exists sufficiently small $\delta > 0$ s.t. $||\delta dx|| < \overline{\epsilon}$
 - contradiction of point 1

Sufficient conditions without quasi-concavity: example

Maximize a (quasi-convex) ellipse on a circle:



Sufficient conditions without Quasi-concavity: theory

Maximize an quasi-convex function f s.t. $g(\mathbf{x}) = b$

- $f(\cdot)$ is locally maximized at $\bar{\mathbf{x}}$ on constraint
 - if level set of $f(\cdot)$ thru $\bar{\mathbf{x}}$ is *less curved* than level set of $g(\cdot)$ thru $\bar{\mathbf{x}}$.
- $f(\cdot)$ is locally minimized at \mathbf{x} on constraint
 - if level set of $f(\cdot)$ thru **x** is more curved than level set of $g(\cdot)$ thru **x**.

Test: check 2nd-order Taylor expansion of *Lagrangian* for dx s.t. $dx \perp \bigtriangledown f(x)$.

$$\begin{array}{lll} L(\lambda,\mathbf{x}) &=& f(\mathbf{x}) + \lambda(b - g(\mathbf{x})) \\ (\lambda,\mathbf{x} + \mathbf{d}\mathbf{x}) - L(\lambda,\mathbf{d}\mathbf{x}) &\approx & \bigtriangledown L(\lambda,\mathbf{x})[0,\mathbf{d}\mathbf{x}] &+ & 0.5[0,\mathbf{d}\mathbf{x}]' HL(\lambda,\mathbf{d}\mathbf{x})[0,\mathbf{d}\mathbf{x}] \\ &= & 0.5[0,\mathbf{d}\mathbf{x}]' HL(\lambda,\mathbf{d}\mathbf{x})[0,\mathbf{d}\mathbf{x}] \end{array}$$

- $f(\cdot)$ locally max-ed at $\bar{\mathbf{x}}$ if $HL(\bar{\mathbf{x}})$ is neg definite for $d\mathbf{x} \perp \bigtriangledown f(\mathbf{x})$.
- **2** $f(\cdot)$ locally min-ed at $\underline{\mathbf{x}}$ if $HL(\underline{\mathbf{x}})$ is pos definite for $\mathbf{dx} \perp \bigtriangledown f(\mathbf{x})$.

• quasi- $\frac{\text{concavity}}{\text{convexity}}$ of $\frac{f}{g}$ is sufficient for (1) but not necessary

Check definiteness of bordered Hessian from Lagrangian

To get bordered Hessian we need, first construct the Hessian of Lagrangian:

$$\nabla L(\lambda, \mathbf{x}) = \begin{bmatrix} \frac{\partial L}{\partial \lambda} & \frac{\partial L}{\partial x_1} & , \cdots, & \frac{\partial L}{\partial x_n} \end{bmatrix}$$

$$= \begin{bmatrix} b - g(\mathbf{x}), & \nabla f(\mathbf{x}) - \lambda \nabla g(\mathbf{x}) \end{bmatrix}$$
when $f : \mathbb{R}^2 \to \mathbb{R}$

$$HL(\lambda, \bar{\mathbf{x}}) = \begin{bmatrix} 0 & g_1(\bar{\mathbf{x}}) & g_2(\bar{\mathbf{x}}) \\ g_1(\bar{\mathbf{x}}) & f_{11}(\bar{\mathbf{x}}) - \bar{\lambda}g_{11}(\bar{\mathbf{x}}) & f_{12}(\bar{\mathbf{x}}) - \bar{\lambda}g_{12}(\bar{\mathbf{x}}) \\ g_2(\bar{\mathbf{x}}) & f_{21}(\bar{\mathbf{x}}) - \bar{\lambda}g_{21}(\bar{\mathbf{x}}) & f_{22}(\bar{\mathbf{x}}) - \bar{\lambda}g_{22}(\bar{\mathbf{x}}) \end{bmatrix}$$

 $HL(\lambda, \mathbf{x})$ is a bordered Hessian of $Hf(\mathbf{x}) - \lambda Hg(\mathbf{x})$. We need to check:

 $d\mathbf{x}' \left(\mathsf{Hf}(\bar{\mathbf{x}}) - \bar{\lambda} \mathsf{Hg}(\bar{\mathbf{x}}) \right) d\mathbf{x} \leq 0$, for all $d\mathbf{x}$ such that $\bigtriangledown g(\bar{\mathbf{x}}) d\mathbf{x} = 0$

- compute minors of Hessian $Hf(\bar{\mathbf{x}}) \bar{\lambda}Hg(\bar{\mathbf{x}})$ bordered by $\nabla g(\mathbf{x})$.
 - neg def iff k'th principal minor of bordered Hessian has sign $(-1)^k$.
 - pos def iff k'th principal minor of bordered Hessian is negative
 - note that first principal minor is necessarily negative
 - when $f : \mathbb{R}^2 \to \mathbb{R}$, only have to check second minor

Sufficient conditions for a solution: one inequality constraint

Assume conditions of the theorem are satisfied at x̄. In particular assume • dx' Hf(x)dx < 0, for all dx s.t. ∇f(x)dx = 0.</p>

• $d\mathbf{x}' Hg(\mathbf{x}) d\mathbf{x} > 0$, for all $d\mathbf{x}$ s.t. $\nabla f(\mathbf{x}) d\mathbf{x} = 0$.

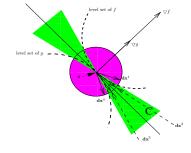
By continuity, \exists an open cone *C* and $\delta > 0$ s.t. $\forall y \in B(\mathbf{x}, \delta)$

• $d\mathbf{x}' Hf(\mathbf{y}) d\mathbf{x} < 0$, for all $d\mathbf{x} \in C$

• dx'Hg(y)dx > 0, for all $dx \in C$

For all $\mathbf{dx} \in \mathbb{R} \setminus C$, $\exists \epsilon(\mathbf{dx}) > 0$ s.t. if $||\mathbf{dx}|| < \epsilon$, then

 $\operatorname{sgn}(f(\mathbf{x}+\mathbf{dx})-f(\mathbf{x}))=\operatorname{sgn}(\nabla f(\mathbf{x})\mathbf{dx});\operatorname{sgn}(g(\mathbf{x}-\mathbf{dx})-g(\mathbf{x}))=\operatorname{sgn}(\nabla g(\mathbf{x})\mathbf{dx})$



Sufficient conditions for a solution (cont)

Let $\bar{\epsilon}=\text{min}[\delta,\text{min}\{\epsilon(\textbf{dx}):\textbf{dx}\in\mathbb{R}\backslash\mathcal{C}\}]$ be radius of purple circle

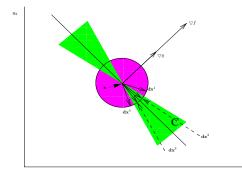
•
$$\operatorname{sgn}(g(\mathbf{x} + \mathbf{dx}^1) - g(\mathbf{x})) = \operatorname{sgn}(\bigtriangledown g(\mathbf{x})\mathbf{dx}^1) > 0$$

•
$$\operatorname{sgn}(f(\mathbf{x} + \mathbf{dx}^4) - f(\mathbf{x})) = \operatorname{sgn}(\bigtriangledown f(\mathbf{x})\mathbf{dx}^4) < 0$$

•
$$g(\mathbf{x} + \mathbf{dx}^2) - g(\mathbf{x}) = \bigtriangledown g(\mathbf{x})\mathbf{dx}^2 + 0.5\mathbf{dx}^2 Hg(\mathbf{y})\mathbf{dx}^2 > 0,$$

•
$$f(\mathbf{x} + \mathbf{dx}^3) - f(\mathbf{x}) = \bigtriangledown f(\mathbf{x})\mathbf{dx}^3 + 0.5\mathbf{dx}^{3'}Hf(\mathbf{y})\mathbf{dx}^3 < 0,$$

Conclude: $\forall d\mathbf{x} \in B(\mathbf{x}, \overline{\epsilon}), f(\mathbf{x} + d\mathbf{x}) > f(\mathbf{x}) \Longrightarrow g(\mathbf{x} + d\mathbf{x}) > g(\mathbf{x}).$



The problem of the vanishing gradient

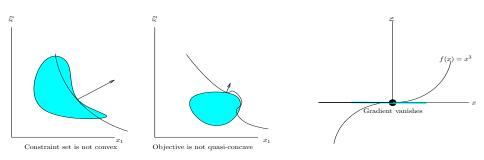
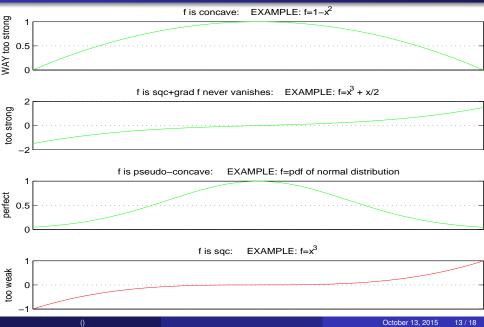


FIGURE 1. Three examples where KKT conditions are not sufficient for a soln

Weakest condition on f s.t. soln to KKT \implies soln to NPP



Definition: f is pseudo-concave if

$$\forall \mathbf{x}, \mathbf{x}' \in X$$
, if $f(\mathbf{x}') > f(\mathbf{x})$ then $\nabla f(\mathbf{x}) \cdot (\mathbf{x}' - \mathbf{x}) > 0$.

Pseudo-concavity defn simply assumes away the vanishing gradient problem.

Note: if *f* is pseudo-concave, $\nabla f(\mathbf{x}) = 0 \Longrightarrow \mathbf{x}$ is a global max on *X*

- suppose **x** were not a global max on X, i.e., $\exists \mathbf{x}' \in X$, s.t. $f(\mathbf{x}') > f(\mathbf{x})$
- since *f* is pseudo-concave, $\nabla f(\mathbf{x}) \cdot (\mathbf{x}' \mathbf{x}) > 0$.
- therefore $\bigtriangledown f(\mathbf{x})$ can't be zero

Pseudo-concavity and Quasi-concavity

Theorem: Assume *f* is \mathbb{C}^2 . Then *f* is pseudo-concave iff **f** is quasi-concave

2 $\bigtriangledown f(\cdot) = 0$ at **x** implies $f(\cdot)$ attains a global max at **x**.

Proof: \implies Assume *f* is not quasi-concave

there's a non-convex upper contour set

•
$$\exists \mathbf{x}', \mathbf{x}'' \in X \& \mathbf{x} = \lambda \mathbf{x}' + (1 - \lambda)\mathbf{x}'', \text{ s.t. } f(\mathbf{x}'') \ge f(\mathbf{x}') > f(\mathbf{x}).$$

• assume w.l.o.g. that **x** minimizes $f(\cdot)$ on $[\mathbf{x}', \mathbf{x}'']$.

• by KKT,
$$\nabla f(\mathbf{x}) \cdot (\mathbf{x}' - \mathbf{x}) = 0$$
 but $f(\mathbf{x}') > f(\mathbf{x})$, so f not pseudo-concave

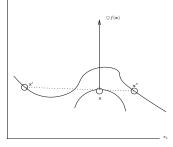


FIGURE 1. ¬-pseudo-concavity implies ¬-quasi-concavity

Pseudo-concavity and Quasi-concavity: necessity

Proof: \leftarrow Assume *f* is not pseudo-concave

- $\exists \mathbf{x}, \mathbf{x}' \in X \text{ s.t. } f(\mathbf{x}') > f(\mathbf{x}) \text{ and } \bigtriangledown f(\mathbf{x}) \cdot (\mathbf{x}' \mathbf{x}) \leq 0.$
- by continuity, $\exists \mathbf{x}, \mathbf{y} \in X$, s.t. $f(\mathbf{y}) > f(\mathbf{x})$ and $\bigtriangledown f(\mathbf{x}) \cdot (\mathbf{y} \mathbf{x}) < 0$.
- let $d\mathbf{x} = \varepsilon(\mathbf{y} \mathbf{x})$. If ε small enough, $f(\mathbf{x} + d\mathbf{x}) < f(\mathbf{x})$;
- f is not quasi-concave

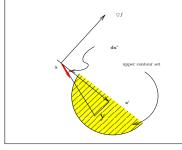


FIGURE 1. ¬-quasi-concavity implies ¬-pseudo-concavity

Sufficient conditions for a soln to NPP

Theorem: Assume: f, g^{j} 's are \mathbb{C}^{3} , f is pseudo concave & g^{j} 's are quasi-convex. If the KKT are satisfied at $\bar{\mathbf{x}}$, then $\bar{\mathbf{x}}$ solves the NPP

Proof:

suppose x̄ does not solve the NPP, i.e., for some dx;

- $f(\bar{\mathbf{x}} + \mathbf{dx}) > f(\bar{\mathbf{x}}) \& g^j(\bar{\mathbf{x}} + \mathbf{dx}) \le b_j, \forall j.$
- since f is pseudo-concave, $\nabla f(\bar{\mathbf{x}}) d\mathbf{x} > 0$.
- we'll show x fails the KKT:
 - i.e., consider any $\mathbf{\lambda} \in \mathbb{R}^m_+$ s.t. $g^j(\bar{\mathbf{x}}) < b^j \Longrightarrow \lambda^j = 0;$
 - we'll show below that $\nabla f(\bar{\mathbf{x}}) \neq \mathbf{\lambda}^T Jg(\bar{\mathbf{x}})$
- 3 lower contour sets convex $\Longrightarrow g^j(\bar{\mathbf{x}} + \delta \mathbf{dx}) \le b_j, \forall j \& \forall \delta < 1$
- $\textbf{ iherefore, } \forall j \text{ s.t. } g^j(\bar{\mathbf{x}}) = b^j, \forall \delta < 1, g^j(\bar{\mathbf{x}} + \delta \mathbf{dx}) g^j(\mathbf{dx}) \leq 0.$
 - it then follows from Local Taylor that for each such $j, \nabla g^j(\bar{\mathbf{x}}) d\mathbf{x} \leq 0$,
 - to see this, suppose to the contrary that for one such $j, \nabla g^j(\bar{\mathbf{x}}) d\mathbf{x} > 0$;
 - \diamond then by Local Taylor: for $\delta \approx 0$, $g^j(\bar{\mathbf{x}} + \delta \mathbf{dx}) > g^j(\mathbf{dx}) = b_j$, contradicting (2);
 - note: we can't conclude that for j s.t. $g^j(\bar{\mathbf{x}}) < b^j$, $\nabla g^j(\bar{\mathbf{x}}) d\mathbf{x} \le 0$.
 - but this won't invalidate (4) since by assumption, if $g^{j}(\bar{\mathbf{x}}) < b^{j}$ then $\lambda^{j} = 0$.
- Part (3) now implies $(\lambda^T Jg(\bar{\mathbf{x}})) \cdot d\mathbf{x} = \sum_{j=1}^m \lambda^j \bigtriangledown g^j(\bar{\mathbf{x}}) \cdot d\mathbf{x} \le 0$
- Solution Since $\nabla f(\bar{\mathbf{x}}) d\mathbf{x} > 0$, $\nabla f(\bar{\mathbf{x}}) \neq \boldsymbol{\lambda}^T Jg(\bar{\mathbf{x}})$, i.e., $\bar{\mathbf{x}}$ fails the KKT.

KKT conditions satisfied but sufficiency conditions aren't

