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Roadmap for the NPP segment:

1 Preliminaries: role of convexity
2 Existence of a solution
3 Necessary conditions for a solution: inequality constraints
4 The constraint qualification
5 The Lagrangian approach
6 Interpretation of the Lagrange Multipliers
7 Constraints that are binding vs satisfied with equality
8 Necessary conditions for a solution: eq and ineq constraints
9 Sufficiency conditions

1 Bordered Hessians
2 Pseudo-concavity

1 The relationship between quasi- and pseudo-concavity

10 The basic sufficiency theorem
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Separating Hyperplanes

Theorem: If A and B are convex, with int(A)∩ int(B) = /0, then A and B can be
separated by a hyperplane.
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Want to be able to separate by a hyperplane
upper contour set of objective function

constraint set

Role of quasi-ness properties of functions
A function is quasi-concave (quasi-convex) if all of its upper (lower)
contour sets are convex

A function is strictly quasi-concave (convex) if
all of its upper (lower) contour sets are “strictly” convex sets (no flat edges)
all of its level sets have empty interior

To make everything work nicely
1 Require your objective function to be strictly quasi-concave
2 Define your feasible set as the intersection of lower contour sets of

quasi-convex functions,
e.g., g j (x)≤ bj , for j = 1, ...m.
intersection of convex sets is convex
your feasible set is convex
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Convexity and quasi-ness properties

If there’s only one constraint:
First order necessary condition is “kissing point of mutual tangency”

gradients of objective and constraint are collinear
appropriate quasiness assumptions ensure that FOC is also sufficient

x1x1

x 2x 2

FOC doesn’t imply max FOC is local max but not soln

Constraint set is not convex Upper contour set of objective not convex

1
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Existence

Preliminaries:
The canonical form of the nonlinear programming problem (NPP)

maximize f (x) subject to g(x)≤ b (1)

Conditions for existence of a solution the NPP:
Theorem: If f : A→ R is continuous and strictly quasi-concave, and A is
compact, nonempty and convex, then f attains a unique maximum on A.
Want to apply this theorem to guarantee a solution to (1)

{x : g(x)≤ b} convex if each g j is quasi-convex
but quasi-ness can’t guarantee us compactness

Theorem: If f : Rn→ R is continuous and strictly quasi-concave and
g j : Rn→ R is quasi-convex for each j , then if f attains a local maximum
on A = {x ∈ Rn : ∀j,g j(x)≤ bj}, this max is the unique global maximum
of f on A.
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KKT necessary conditions for a soln: inequality constraints

The KKT conditions in Mantra format:
(Except for a bizarre exception) a necessary condition for x to solve a
constrained maximization problem is that the gradient vector of the
objective function at x belongs to the nonnegative cone defined by the
gradient vectors of the constraints that are satisfied with equality at x.

The KKT conditions in math format: Note absence of Lagrangian!!
If x̄ solves the maximization problem and the constraint qualification holds
at x̄ then there exists a vector λ̄λλ ∈ Rm

+ s.t.

5f (x̄)′ = λ̄λλ
′
Jg(x̄)

Moreover, λ̄λλ has the property: g j(x̄) < bj =⇒ λ̄j = 0.
The KKT conditions vs the Lagrangian: exactly the same.

The Lagrangian is scalar-based, “long-hand”
The KKT is in vector form
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Complementary Slackness conditions: univariate function

x x

f f

max f(x) s.t. g(x) = −x ≤ 0max f(x) s.t.

{
g1(x) =

¯
x− x ≤ 0

g2(x) = x− x̄ ≤ 0

0 and an interior x both satisfy KKT
¯
x, x̄ and an interior x all satisfy KKT

x̄

¯
x

0

1
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The KKT and the mantra

x1

x2

1

a necessary condition ... is that the gradient vector of the objective
function at x belongs to the nonnegative cone defined by the gradient
vectors of the constraints satisfied with equality at x

3 dotted curves represent level sets of 3 different objective functions

in each case, dashed black arrows (gradients of objectives) belong to
appropriate non-negative cone, defined by solid arrows

red arrows: 5’s of constraints not satisfied with = at point being examined
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Necessary conditions for a Maximum

In this picture the mantra fails
5f doesn’t belong to cone defined by5g1 and5g2

dashed line perpular to5f intersects the interior of constraint set
angle between dx and5f is acute
angles between dx and the5g i ’s are obtuse

direction dx increases f & strictly decreases BOTH constraints
conclude: the x value at tail of red arrow can’t solve the NPP

▽g1

▽g2

▽f

dx

θ(dx,▽f) < 90◦

θ(dx,▽g2) > 90◦

KTGradients

1
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Important issues

The role of the constraint qualification (CQ):
1 it ensures that the linearized version of the constraint set is, locally, a good

approximation of the true nonlinear constraint set.
2 a sufficient (but not necessary) condition for the CQ to hold

the CQ will be satisfied at x if the gradients of the constraints that are satisfied
with equality at x form a linear independent set

Interpretation of the Lagrangian

Constraint satisfied with equality vs binding constraints.

The KKT and equality constraints
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The Constraint Qualification

▽g1(x∗) ▽g2(x∗)

▽f(x∗)

constraint set

linearized constraint set

1

Natural question
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The Constraint Qualification with quasi-convex constraints

▽g1(x∗) ▽g2(x∗)

▽f(x∗)

constraint set

linearized constraint set

1
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CQ holds iff linearized constraint set ≈ original set

KKT conditions are necessary for soln to problem in the right-hand panel

they are necessary for soln to problem in the middle panel
� only if the two problems are essentially the same in nbd of soln to former

▽g1(x∗) ▽g2(x∗)

▽f(x∗)

1

▽g1(x∗) ▽g2(x∗)

▽f(x∗)

1

▽f(x∗)

1
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CQ fails if linearized constraint set differs from original set

KKT conditions are necessary for soln to problem in the right-hand panel
since it doesn’t have a solution, the KKT conditions can’t be satisfied
KKT conditions tell us nothing about the problem in the left panel

▽g1(x∗) ▽g2(x∗)

▽f(x∗)

constraint set

linearized constraint set

1

▽f(x∗)

Linearized Constraint

1
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KKT and the Lagrangian Approach

The Lagrangian function for f : Rn→ R, g : Rn→ Rm and b ∈ Rm.

L(x ,λλλ) = f (x) +λλλ(b−g(x)) = f (x) +
m

∑
j=1

λj(bj −g j(x))

The first order conditions for an extremum of L on Rn×Rm
+ are: ∃(x̄ ,λ̄λλ) s.t.

for i = 1, ...n,∂L(x̄ ,λ̄λλ)/∂xi = 0 (2)

for j = 1, ...m,∂L(x̄ ,λ̄λλ)/∂λj ≥ 0 (3)

λ̄j∂L(x̄ ,λ̄λλ)/∂λj = 0. (4)

Compare KKT with (2)
5 f (x̄)T = λ̄λλ

T
Jg(x̄)

∂f (x̄)/∂xi =
m

∑
j=1

λ̄j ·∂g j(x̄)/∂xi

(3) says for j = 1, ...m, (bj −g j(x̄))≥ 0 or, in vector notation, (b−g(x̄))≥ 0.
(4) “complementary slackness”: (bj −g j(x̄)) > 0 implies λ̄j = 0;
Note no nonnegativity constraints: we treat these like any other constraints
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Lagrangians as “shadow values”

Theorem: At a solution (x̄ ,λ̄λλ) to the NPP, L(x̄ ,λ̄λλ) = f (x̄).

M(b)︸ ︷︷ ︸
value function

= L(x̄(b),λ̄λλ(b)) = f (x̄) + λ̄λλ(b−g(x̄))︸ ︷︷ ︸
= 0

= f (x̄(b)).

Interpretation: λ̄j is the “shadow value” of the j ’th constraint:

dM(b)

dbj
=

dL(x̄(b),λ̄λλ(b))

dbj
=

n

∑
i=1

{
fi(x̄(b))−

m

∑
k=1

λ̄k (b)gk
i (x̄(b))

}dxi

dbj

+
m

∑
k=1

dλk

dbj
(bk −gk (x̄(b))) + λ̄j(b)

For each i , the term in curly brackets is zero, by the KT conditions.
For each k ,

If (bk −gk (x̄(b))) = 0, then dλk
dbj

(bk −gk (x̄(b))) is zero.

If (bk −gk (x̄(b))) < 0, then λ̄k (·) = 0 on a nbd of b, so dλk (·)
dbk

= 0.

The only term remaining is λ̄j(b).

Conclude that dM(b)
dbj

= λ̄j(b)
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Interpretation of the Lagrangian: One inequality constraint

Gradient of objective and constraint are collinear: ∀i, ∂f (x∗)
∂xi

= λ∗ ∂g(x∗)
∂xi

.
i.e., λ is the ratio of the norms of the two gradients
in both figures, dashed line represents relaxation of constraint by ∆b = 1.
the arrows represent5f (x) and5g(x).

in one panel ||5 f (x)|| small; ||5g(x)|| big;
in the other, ||5 f (x)|| big; ||5g(x)|| small

which is which? Picture provides no info about5f , only about5g.

▽f(x∗) or ▽g(x∗)? ▽f(x∗) or ▽g(x∗)?

Figure 1. Interpretation of the Lagrangian

1
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Interpretation of the Lagrangian: a mountain
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Interpretation of the Lagrangian: One inequality constraint

Gradient of objective and constraint are collinear
λ is the ratio of the norms of the two gradients

left panel: ||5 f (x)|| small; ||5g(x)|| big; interpretation
right panel: ||5 f (x)|| big; ||5g(x)|| small; interpretation

λ is the “shadow value” of the constraint: “bang for a buck”

g(x∗) = b+ 1 (g ↑↑ given dx)

g(x∗) = b

▽g(x∗)

▽f(x∗)

f(·) = f(x∗)
f(·) = f(x∗) + small ∆f

λ = ||▽f(x∗)||
||▽g(x∗)|| is small

g(x∗) = b+ 1 (g↑ given dx)

g(x∗) = b

▽f(x∗)

▽g(x∗)

f(·) = f(x∗)

f(·) = f(x∗) + BIG ∆f

λ = ||▽f(x∗)||
||▽g(x∗)|| is big

Figure 1. Interpretation of the Lagrangian

1
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Interpretation of the Lagrangian: Two inequality constraints

Gradient of objective and red constraint are nearly collinear
λ1 is relatively large

relatively large gain utility gain from ∆b1 = ε.
λ2 is relatively small

relatively small utility gain gain from ∆b2 = ε.
In limit, when5f is collinear with5g1, adding ε to b2 changes nothing

g1(x) ≤ b1
g1(x) ≤ b1 + ǫ

g2(x) ≤ b2

g2(x) ≤ b2 + ǫ

▽g1(x∗)

▽g2(x∗)

▽f(x∗)

Figure 1. Two multipliers, one big, one small

1
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Constraint satisfied with equality vs binding

Informal defn: a constraint is binding if the maximized value of objective
increases when the constraint is slightly relaxed.

which constraint is binding in the figure below?

g1(x) ≤ b1

g2(x) ≤ b2

▽g1(x∗)

▽g2(x∗)

▽f(x∗)

1
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One constraint binding; the other is satisfied with equality

g j(x) = bj , j = 1,2 i.e., both constraints satisfied with equality

when b1 increases, optimum moves, utility increases, so g1 is binding
when b2 increases, optimum doesn’t move, so not g2 is not binding

▽g1(x∗)

▽g2(x∗)

▽f(x∗)

1

g1(x) ≤ b1

g2(x) ≤ b2

g2(x) ≤ b2 + ǫ

1
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λ > 0 =⇒ constraint binding but bindingness =⇒/ λ > 0

x

f(
x)

f(x) = x3

1
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KKT with equality constraints defined as inequalities

KKT with equality constraints
g(x)≤ b vs g(x) = b.
Two differences: in the latter case but not the former

the constraint can bind “in either direction”
there is no complementary slackness condition

Lower contour set of g corresponding to b

Upper contour set of g corresponding to b

x1

x2

g(x) = b

x1

x2

x3

▽g(x)

▽f(x)

▽f(x)

−▽ g(x)

1
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KKT necessary conditions: equality & inequality constraints

The KKT conditions in full generality
f : Rn→ R, g : Rn→ Rm, h : Rn→ R` are twice continuously diffable

b ∈ Rm and c ∈ R`.

The canonical form of the nonlinear programming problem (NPP)

maximize f (x) subject to g(x)≤ b and h(x) = c

The KKT conditions:
If x̄ solves the maximization problem and the constraint qualification holds
at x̄ then there exist vectors λ̄λλ ∈ Rm

+ and µ̄µµ ∈ R` s.t.

5f (x̄)′ = λ̄λλ
′
Jg(x̄) + µ̄µµ′Jh(x̄)

Moreover, λ̄λλ has the property: g j(x̄) < bj =⇒ λ̄j = 0.

Note the two differences between λ̄λλ and µ̄µµ
λ̄λλ must be nonnegative;
there is no complementary slackness condition on µ̄µµ
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KKT necessary conditions: an example

This is question 2 on the NPP1 problem set, I’m going to give you a start on it

max
x1,x2

2x1x2 + 9x2−2x2
1 −2x2

2 s.t.

g1 : −x1 ≤ 0

g2 : −x2 ≤ 0

g3 : 4x1 + 3x2 ≤ 10

g4 : 4x2
1 − x2 ≤ 2

KKT necessary conditions

5f (x)′ = λλλ
′Jg(x)

[
2x2−4x1, 2x1−4x2 + 9

]
=

[
λ1, λ2, λ3, λ4

]



−1, 0
0, −1
4, 3

8x1, −1
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KKT example: check if x = 0 satisfies necessary conditions

KKT Conditions:

[
2x2−4x1, 2x1−4x2 + 9

]
=

[
λ1, λ2, λ3, λ4

]



−1, 0
0, −1
4, 3

8x1, −1




If x = 0, then g3(x) = 4x1 + 3x2 = 0 < 10 and g4(x) = 4x2
1 − x2 = 0 < 2.

Complementary slackness condition now implies λ3 = λ4 = 0.

KKT conditions now become :

[
0, 9

]
=

[
λ1, λ2

][−1, 0
0, −1

]
=

[
−λ1, −λ2

]

Can’t solve 2nd equation if λλλ≥ 0; conclude x = 0 can’t solve NPP
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KKT example: check if x1 > x2 = 0 satisfies KKT condition
KKT Conditions:

[
2x2−4x1, 2x1−4x2 + 9

]
=

[
λ1, λ2, λ3, λ4

]



−1, 0
0, −1
4, 3

8x1, −1




If x2 = 0, then g4(x) = 4x2
1 − x2 ≤ 2 =⇒ x1 ≤

√
1/2

x1 ≤
√

1/2 =⇒ g3(x) = 4x1 + 3x2 ≤ 4
√

1/2 < 10.

If x1 > x2 = 0 and g4(x)≤ 2, then g1(x) < 0 and g3(x) < 0.

Complementary slackness condition now implies λ1 = λ3 = 0.

KKT conditions now become :
[
−4x1, 2x1 + 9

]
=

[
λ2, λ4

][ 0, −1
8x1, −1

]
=

[
8λ4x1, −λ2−λ4

]

Can’t solve either equation if λλλ≥ 0; conclude x1 > x2 = 0 can’t solve NPP
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