Roadmap for the NPP segment:

©0000000COCO

Preliminaries: role of convexity

Existence of a solution

Necessary conditions for a solution: inequality constraints
The constraint qualification

The Lagrangian approach

Interpretation of the Lagrange Multipliers

Constraints that are binding vs satisfied with equality

Necessary conditions for a solution: eq and ineq constraints
Sulfficiency conditions

@ Bordered Hessians
@ Pseudo-concavity

@ The relationship between quasi- and pseudo-concavity

The basic sufficiency theorem
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Separating Hyperplanes

Theorem: If A and B are convex, with int(A) Nint(B) = 0, then A and B can be
separated by a hyperplane.
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Want to be able to separate by a hyperplane
@ upper contour set of objective function

@ constraint set

Role of quasi-ness properties of functions
@ A function is quasi-concave (quasi-convex) if all of its upper (lower)
contour sets are convex
@ A function is strictly quasi-concave (convex) if

e all of its upper (lower) contour sets are “strictly” convex sets (no flat edges)
o all of its level sets have empty interior

To make everything work nicely
@ Require your objective function to be strictly quasi-concave

@ Define your feasible set as the intersection of lower contour sets of
quasi-convex functions,
o eg.,g(x)<b,forj=1,..m.
e intersection of convex sets is convex
e your feasible set is convex
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Convexity and quasi-ness properties

If there’s only one constraint:
@ First order necessary condition is “kissing point of mutual tangency”
o gradients of objective and constraint are collinear

@ appropriate quasiness assumptions ensure that FOC is also sufficient
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FOC doesn’t imply max FOC is local max but not soln
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Existence

Preliminaries:
@ The canonical form of the nonlinear programming problem (NPP)

maximize f(x) subject to g(x) < b (1)

@ Conditions for existence of a solution the NPP:
Theorem: If f : A— R is continuous and strictly quasi-concave, and A is
compact, nonempty and convex, then f attains a unique maximum on A.
@ Want to apply this theorem to guarantee a solution to (1)
o {x:g(x) <b} convex if each ¢ is quasi-convex
o but quasi-ness can't guarantee us compactness
@ Theorem: If f: R” — R is continuous and strictly quasi-concave and
¢ :R" — R is quasi-convex for each j, then if f attains a local maximum
on A= {x € R":Vj,¢/(x) < b;}, this max is the unique global maximum
of f on A.
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KKT necessary conditions for a soln: inequality constraints

@ The KKT conditions in Mantra format:
(Except for a bizarre exception) a necessary condition for x to solve a
constrained maximization problem is that the gradient vector of the
objective function at x belongs to the nonnegative cone defined by the
gradient vectors of the constraints that are satisfied with equality at x.

@ The KKT conditions in math format: Note absence of Lagrangian!!
If X solves the maximization problem and the constraint qualification holds
at X then there exists a vector A € R s.t.

vI(x) = Jg(X)

Moreover, A has the property: gdRX) < b= 7»,- =0.
@ The KKT conditions vs the Lagrangian: exactly the same.

e The Lagrangian is scalar-based, “long-hand”
o The KKT is in vector form
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Complementary Slackness conditions: univariate function

! 1 s
gi(@)=z—2x=<0
max f(x) s.t. P max f(x) s.t. g(z) = —2 =0
f(x) {'1"(%') T z<0 f(x) g(x)
2, # and an interior x all satisfy KKT 0 and an interior = both satisfy KKT
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The KKT and the mantra

a necessary condition ... is that the gradient vector of the objective
function at x belongs to the nonnegative cone defined by the gradient
vectors of the constraints satisfied with equality at x

@ 3 dotted curves represent level sets of 3 different objective functions

@ in each case, dashed black arrows (gradients of objectives) belong to
appropriate non-negative cone, defined by solid arrows

@ red arrows: \/'s of constraints not satisfied with = at point being examined
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Necessary conditions for a Maximum

In this picture the mantra fails
@ 1/f doesn't belong to cone defined by 7g' and /g
@ dashed line perp"® to v/f intersects the interior of constraint set
e angle between dx and t/f is acute
e angles between dx and the /g"’s are obtuse
@ direction dx increases f & strictly decreases BOTH constraints
@ conclude: the x value at tail of red arrow can’t solve the NPP

V9

KTGradients

[§] September 30, 2015 9/28



Important issues

@ The role of the constraint qualification (CQ):

@ it ensures that the linearized version of the constraint set is, locally, a good
approximation of the true nonlinear constraint set.
@ a sufficient (but not necessary) condition for the CQ to hold

@ the CQ will be satisfied at x if the gradients of the constraints that are satisfied
with equality at x form a linear independent set

@ Interpretation of the Lagrangian
@ Constraint satisfied with equality vs binding constraints.
@ The KKT and equality constraints
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The Constraint Qualification
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The Constraint Qualification with quasi-convex constraints
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CQ holds iff linearized constraint set ~ original set

KKT conditions are necessary for soln to problem in the right-hand panel
@ they are necessary for soln to problem in the middle panel

< only if the two problems are essentially the same in nbd of soln to former
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CQ fails if linearized constraint set differs from original set

KKT conditions are necessary for soln to problem in the right-hand panel
@ since it doesn’t have a solution, the KKT conditions can’t be satisfied
@ KKT conditions tell us nothing about the problem in the left panel

/ Linearized Constraint
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14/28



KKT and the Lagrangian Approach

The Lagrangian function for f : R” -+ R, g: R" — R™ and b € R".
m
Lx,A) = f(x)+Mb—g(x)) = f(x)+) M(b—g(x))
j=1

The first order conditions for an extremum of L on R” x R are: 3(x,A) s.t.

fori=1,..n,dL(Xx,A)/dx; = O 2)
forj=1,..m,dL(X,A)/d\; > 0 (3)
MOL(x,A) /0N = 0. (4)
Compare KKT with (2 _
e S = 2o

AM(x)/ox = ii 99/ (%) /9x;

(3) says for j=1,...m, (bj— g/(x)) > 0 or, in vector notation, (b— g(x)) > 0.
(4) “complementary slackness”: (bj — ¢/(x)) > 0 implies A; = 0;
Note no nonnegativity constraints: we treat these like any other constraints
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Lagrangians as “shadow values”

Theorem: At a solution (X,A) to the NPP, L(X,A) = f(X).

M(b) = LX(b)AD) = fR)+Mb—g(x) = f(X(b)).
Iue\fJn-c/tion =0

Interpretation: M is the “shadow value” of the j'th constraint:

dM(b)  dL(xX(b),A(b)) n { _ m ‘e dx;
- : - £(x(b) — Y Au(b)gk(X(b }—
I dhk =
+ Y~ (b — g (x(b))) + My(b)
ole
@ For each i, the term in curly brackets is zero, by the KT conditions.
@ For each k,
o If (bx — g"(X(b))) =0, then ‘”‘k(bk— k(x(b))) is zero.
o If (bx —g¥(X(b))) < 0, then A(-) =0 on a nbd of b, so L) =0,
o The only term remaining is A;(b).

@ Conclude that dM(b) = i(b)

[§] September 30, 2015 16/28



Interpretation of the Lagrangian: One inequality constraint

Gradient of objective and constraint are collinear: Vi, afa(; ) — k*%.
@ i.e., Ais the ratio of the norms of the two gradlents '
@ in both figures, dashed line represents relaxation of constraint by Ab = 1.
@ the arrows represent /f(x) and 57g(x).
e inone panel ||/ f(x)|| small; || 7 g(x)]|| big;
e in the other, || 7 f(x)|| big; || 7 g(x)|| small
which is which? Picture provides no info about 5/, only about /g.

() or vg(x)? TV o T(x)?

FIGURE 1. Interpretation of the Lagrangian
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Interpretation of the Lagrangian: a mountain

contoured peak

(side view)

— — — — 1,000

glevation above sea level

{top view)
September 30, 2015

contour map
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Interpretation of the Lagrangian: One inequality constraint

Gradient of objective and constraint are collinear
@ A is the ratio of the norms of the two gradients
o left panel: || 7 f(x)|| small; || 57 g(x)|| big; interpretation
e right panel: || 57 f(x)|| big; || 7 g(x)|| small; interpretation
@ A is the “shadow value” of the constraint: “bang for a buck”

‘!g(x*) =b+1 (gt given dx)

‘ég(x*):bﬁ»l (g 11 given dx)
L 9x) =0b

g = b

— IZFC g apme — IZFCN 6 pio

A= ZICln small A= Ll i big
9 )
S f(x) - Vg(xt)

LN = Fx) + BIG Af

&;Eg = J;Eizg + small Af £ = F(x*)

FIGURE 1. Interpretation of the Lagrangian
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Interpretation of the Lagrangian: Two inequality constraints

Gradient of objective and red constraint are nearly collinear
o A!is relatively large
o relatively large gain utility gain from Ab' =¢.
® A2 is relatively small
e relatively small utility gain gain from Ab? = €.
@ In limit, when v/f is collinear with /g, adding € to b? changes nothing

1(x) < bl

% 4"

) <b +e

2(x) < by

L{.qz(X)Sbwrf
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Constraint satisfied with equality vs binding

Informal defn: a constraint is binding if the maximized value of objective
increases when the constraint is slightly relaxed.
@ which constraint is binding in the figure below?
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One constraint binding; the other is satisfied with equality

¢ (x) = b;,j=1,2i.e., both constraints satisfied with equality
@ when by increases, optimum moves, utility increases, so g' is binding
@ when b, increases, optimum doesn’'t move, so not g? is not binding

() September 30, 2015
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A > 0 = constraint binding but bindingness =~ A > 0

f(z) =28
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KKT with equality constraints defined as inequalities

KKT with equality constraints
@ g(x)<bvsg(x)=hb.
@ Two differences: in the latter case but not the former
e the constraint can bind “in either direction”
o there is no complementary slackness condition

Z2

-V g(x)

Lower contour set of g corresponding to b
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KKT necessary conditions: equality & inequality constraints

The KKT conditions in full generality

fR" R, g:R"—=R™ h:R"— R’ are twice continuously diff20'®
beR™and c € R’
The canonical form of the nonlinear programming problem (NPP)

maximize f(x) subject to g(x) <band h(x) =c¢

The KKT conditions:
If X solves the maximization problem and the constraint qualification holds
at X then there exist vectors A € RT and 1 € R’ s.t.

vix) = AJg(Xx) + @Ih(X)

Moreover, A has the property: ¢/(X) < by = A; = 0.

Note the two differences between A and H
o A must be nonnegative;
e there is no complementary slackness condition on u
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KKT necessary conditions: an example

This is question 2 on the NPP1 problem set, I'm going to give you a start on it

max 2xiXxp+9xp —2x2 —2x5  sit.

X1,X2
g1: —X4 < 0
(o 3 —Xo < 0
g3 . 4x1 +3x < 10
s 4x2—x < 2
KKT necessary conditions
vi(x) = NJg(x)
-1, 0
(26 —4x1, 24 —4%+9] = [M, A, Ag, A4 0
9 ) ) 9 4’ 3
8X1, —1
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KKT example: check if x = 0 satisfies necessary conditions

KKT Conditions:
-1, O
0, —1
[2X2—4X1, 2X1—4X2+9] = [7~1, Aa, As, 7L4] 4 3
8X1, —1

If x =0, then g3(x) =4x1+3x2 =0 < 10and ga(x) =4x2 —xo =0 < 2.
Complementary slackness condition now implies A3 = A4 = 0.

KKT conditions now become :

O R S [ R Y

Can'’t solve 2nd equation if A > 0; conclude x = 0 can’t solve NPP
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KKT example: check if x;y > xo = 0 satisfies KKT condition

onditions: 1, 0
[2xo—4x1, 2x1—4x2+9] = [M, Ao, A3, A4 2: 31
8x1, —1
lfxo=0,thengy(x) = 4x2—xx < 2 = x < 1/2
x1<\1/2 = @g(x) = 4x+3x < 4/1/2 < 10.
If x; > xo = 0 and g4(x) < 2, then g1(x) < 0 and g3(x) < 0.
Complementary slackness condition now implies Ay = Az = 0.
KKT conditions now become :
[axi, 2449 = [ Ad [8?(1 :]] = [Bhaxi, —ho—Ad]

Can'’t solve either equation if A > 0; conclude x; > x» = 0 can’t solve NPP
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