Preliminaries

Communications: My email address is simon@are.berkeley.edu, and this is the best way to contact me. My Berkeley phone number is (510) 642 8230. I’m in Davis on Mondays all day and Wednesday mornings. My official office here is 2132 SSH, but when I’m here I hang out whenever possible in Rachael Goodhue’s office. My office hours will be from 1:00-2:00 on Mondays. I’m also available by appointment. You should expect to receive multiple emails during the year and will assume that all of you receive them. I will be using the email list associated with the University’s central enrollment file. If you aren’t in that file, you won’t get any emails, so make sure you are!!

Teaching Assistant: This year the T.A. is Pierre Merel, who has already contacted you.

Make-up classes: I have to be away on October 18. My preference for making up this class would be to meet late one Monday afternoon, if that’s possible for (almost) everybody. Otherwise, we’ll have to work something out.

Grading: There will be weekly problem sets throughout the course. These are an absolutely critical component of the course. Math is learnt not from books but by doing loads of problems. There will be an in-class mid-term and a final, both open book. Your final grade will be (more or less) a weighted average of your performance on the exams and homeworks. Exams should be exclusively your own work. Shouldn’t need to say this, but there have been incidents. We enthusiastically encourage joint work except during exams.

Lecture notes: The lecture notes for each class will be available via the Internet, but not until after the lecture. You might want to bookmark the following page

http://are.berkeley.edu/courses/ARE211/currentDavis

Every year, people ask me to post the lectures before the classes. The reason I don’t is that the lecture notes almost always change, and if they are posted in advance, students get very frustrated because they have to keep downloading revisions.

Books: Here is a list of books for the course, purely for reference purposes. The lectures bear no particular relationship to any particular book. The first in the list is an all-purpose book. The others are useful for specific topics. Together with the first book, most people find that the lecture notes (see below) are sufficient without acquiring other books.
(1) Mathematics for Economists, by Carl Simon (no relation) and Larry Blume (SB). This is by far the most appropriate book for the course. Try to master the portions of parts I, III and IV that relate to the course. You need portions of part II, but we’ll hardly do any of it in class.


(3) Economists’ Mathematical Manual, by Berck and Sydsaeter. (Fantastic reference book for all manner of formulae, etc., that you often need.)

(4) Mathematical Economics, by Michael Carter. Many of the topics in this are too advanced for this class, but it also covers a lot of what we do. Handy as an additional reference.

(5) Mathematical Appendix to Microeconomic Analysis, by Hal Varian

(6) Mathematical Optimization and Economic Theory, by M. Intrilligator. (good for nonlinear programming section)

(7) Microeconomic Theory, by Henderson and Quandt. (Has a lot of old fashioned stuff in it that you can’t find in modern textbooks but actually use a lot.)

(8) The Structure of Economics: A Mathematical Analysis, by Eugene Silberberg. (A lot of students like this: it’s clear and does certain basic things in a lot of detail.)