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against common shocks such as weather shocks. Despite their attractive properties, these products have met
with low demand. We consider the frequent situation where farmers are members of groups with common
interests. We show that this creates strategic interactions among group members in deciding to insure that
reduce the demand for insurance for two reasons. One is free riding due to positive externalities on other
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not be profitable for a risk-averse member to insure if the other members do not. As a consequence, we argue
that the demand for insurance against common shocks could increase if the insurance policy were sold to groups
rather than to individuals.
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1. Introduction

Uninsured weather shocks remain a major challenge in increasing
productivity and reducing poverty among smallholder farmers in
developing countries. In anticipation of shocks, they need to manage
risk by diversifying their incomes toward low productivity activities
(Dercon and Krishnan, 1996) and they may fail to adopt higher-
yielding but higher-risk varieties (Eswaran and Kotwal, 1990).
After the occurrence of a shock, they need to cope with risk by reducing
consumption expenditures, often with irreversible health consequences,
eventually taking children out of school (Jacoby and Skoufias, 1997),
and selling productive assets that will subsequently be difficult to accu-
mulate again (Rosenzweig and Wolpin, 1993).

The revenue of agricultural households in a community is subject to
different kinds of shocks. A typology of shocks is possible according to
the statistical properties of their distribution. The two polar types are
idiosyncratic and common shocks. Idiosyncratic shocks are independent-
ly distributed in the community. As a first approximation, health shocks
are an example of idiosyncratic shocks. Common shocks affect everyone
in the community. Price fluctuations and weather shocks are, again as a
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first approximation, examples of common shocks. Insurance against
idiosyncratic shocks is possible via mutualization. In a celebrated em-
pirical study, Townsend (1994) found that some village communities in
India manage to achieve an outcome close to full insurance against
idiosyncratic shocks via risk-sharing. Insurance against common shocks
is more difficult to achieve. If one abstracts from credit or storage
capacities that allow for intertemporal smoothing, insurance usually
requires the intervention of third-parties like insurance companies and/
or financial markets. For instance, insurance against price fluctuations is
possible on derivative financial markets (Moschini and Lapan, 1995).
Insurance against weather shocks requires the availability of suitable
weather derivatives or the existence of re-insurance companies willing
to diversify their portfolio. Naturally, the idiosyncratic or common nature
of the shock depends on the geographical configuration of the commu-
nity considered.

In this paper, we analyze the demand for insurance against common
shocks such as weather shocks, when farmers belong to communities
with shared interests. We highlight two distinct characteristics of
insurance against common shocks in such communities or groups. The
first is that insurance decisions taken by one individual may exert a
positive externality on other group members. Therefore the demand
for insurance may be plagued by a free-rider problem and it is plausible
that the sum of the individual willingness to pay for insurance is lower
than the group willingness to pay. The second characteristic is that the
value of insurance against common shocks can be positive or negative
for an individual, depending on the insurance decisions of the other
group members. The game played by community members when they
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choose whether or not to take insurance is, in some circumstances, a
coordination game. Group members may fail to coordinate on the
Pareto dominant outcome in which they all choose to take insurance.

As a consequence of these two characteristics, the demand for
insurance against common shocks can increase if policies are offered
at the group rather than at the individual level. This is what we analyze
in this paper.

For most of the analysis, we rely on the following specification for
individual preferences: the utility of individual j in a group of N
members depends on his own wealth and on the aggregate wealth of
the group. If the group of individuals that we consider, for example,
produces a local public good, then under some conditions that are
standard in the literature, the equilibriumutilities of individuals depend
on these two variables. Therefore we believe that our specification is
particularly suitable to study the demand for weather insurance in
agricultural marketing cooperatives or other producer organizations.

A free-riding problem may occur because the decision by one
individual to take insurance reduces the risk associated with aggregate
wealth in the sense of second-order stochastic dominance. This risk
reduction will be valued by other group members. As a consequence,
the sum of the individual inverse demands for insurance, i.e., the sum
of the individual risk premiums, may be lower than what the group as
a whole would be ready to pay, i.e., the group risk premium.

When the two variables, own wealth and aggregate wealth, that
enter individual utility functions are complements, a risk averse in-
dividual may prefer to stay uninsured if other group members do not
take insurance. This occurs because individuals prefer to be rich when
the group as a whole is rich and poor when the group as a whole is
poor rather than poor when the group is rich and rich when the group
is poor. In this case, coordination of group members is necessary for
uptake and coordination may be achieved simply by offering the
insurance policy to the group rather than to the individuals.

It is worth emphasizing that the coordination problem does not
appear if shocks are idiosyncratic. Such a problem is distinctive of
insurance against common shocks. Similarly, while free-riding is
not impossible when insurance covers idiosyncratic shocks, it is
exacerbated when shocks are common.

In recent years, there has been a growing interest in designing
weather index insurance products for farm households in developing
countries (see Barnett and Mahul, 2007; World Bank, 2009).1 Since
2003, there have been experiments in Malawi (World Bank CRMG,
2009), Morocco (Stoppa and Hess, 2003), Peru and Vietnam (Skees
et al., 2007), India (Manuamorn, 2007), and several other developing
countries. Yet, individual uptake for these insurance products has
been disappointingly low (see for instance Giné and Yang, 2009;
Carter et al., 2010). India has achieved the most success in bringing
provision of index insurance for small farmers to scale, with a number
of private weather insurance schemes that together reached 150,000
farmers in 2009, while the public AIC program reached more than 1
millions farmers that year (Hazell et al., 2010).2 In terms of contractual
arrangements, almost all products are individual, even though theymay
1 Most products use a meteorological index such as temperature or cumulative rainfall
at a given geographical location, strongly correlated with farm losses, and condition
payments to the insured on the realized value of the index. Some other products use
indices based on estimates of area yields (e.g. AIC in India), local level livestock mortality
rate (Mongolia), or, more recently, satellite-based measures of available vegetative cover
(livestock insurance in Kenya). Because the index measures a purely exogenous event,
offering these policies is not subject to the moral hazard issues that typically plague
insurance markets. Moreover, because the risk is observable by the insurer, there is no
reason to suspect that adverse selection may be a concern. Finally, the recent availability
of cheaper and more reliable automated meteorological stations has decreased the fixed
costs associated with such products. Index-based products thus seem to be the right
approach to insure the rural poor (Skees et al., 2006).

2 As mentioned before, price shocks are another example of common shocks. In an
interesting experimental study in Ghana, Karlan et al. (2011) found that offering price
insured loans does not increase significantly the demand for loans.
be delivered through a variety of different channels, including small
community-based schemes, NGOs, or micro-finance institutions. There
are a few cases where the policy holder is the group itself: an oxen
insurance that successfully worked for 26 years in Burkina Faso (Roth
and Cord, 2008) and Fondos in Mexico (Ibarra and Mahul, 2004), for
example. The main purposes of these group insurance schemes are to
lowermanagement costs and reduce basis risk, as the group can provide
some loss adjustment among its members.

Several explanations have been proposed for the low individual
demand for weather insurance. For instance, it has been argued that
insurance products are complex and that farm households with little
financial education face difficulties in understanding their logic (see
Cole et al., 2009). It has also been argued that agricultural households
already use a wide array of risk management strategies such as credit
and savings and that weather insurance does not add much to them
(see Gollier, 1994). Others consider that index-based insurance policies
are poor products that leave too much basis risk uninsured (see Clarke,
2011a). Finally, some authors have argued that interlinked transactions
must be taken into account in order to understand the demand for
weather insurance (see Attanasio and Rios-Rull, 2000). In particular, it
is plausible that, in village communities, formal weather insurance
interacts with informal risk sharing (see Mobarak and Rosenzweig,
2012).

Our model scrutinizes this interlinked transactions argument and
illustrates the potential interest of group contracts. Group contracts
were also advocated by Clarke (2011b) on the basis of a costly state
verification model. In his model, group contracts are useful because
they allow crowding in mutual insurance and reduce the overall
verification cost. In contrast, our model is closer to the functioning of
index-based policies and does not incorporate a verification of the
losses.

Ourwork can also be related to Arnott and Stiglitz's (1991)model of
insurance which stresses the crowding out of formal insurance by
informal risk-sharing. In that model of insurance in a moral hazard
setting, informal risk-sharing decreases equilibrium welfare unless
peer-monitoring can be used to discipline group members. Our model
abstracts from moral hazard because we are interested in modeling
index-based policies for which misbehavior is not an issue. Neither do
we consider explicitly informal risk-sharing. However, our specification
of indirect utilities that takes into account interactions among group
members can encompass cases of informal risk-sharing and is used to
explain low demand for, or crowding out of, formal insurance. By
contrast to Arnott and Stiglitz's analysis, interactions among group
members are productive and increase welfare even if they are not
peer-monitored.

The paper is organized as follows. In Section 2we present themodel
and relate our specification to the functioning of farmer cooperatives in
thedevelopingworld. In Section 3weprovide two illustrative examples.
In the first, we compare individual and group risk premiums and show
that the sum of individual premiums can be lower than the group
premium. In the second, we show that insurance against common
shocks can have a negative value. In Section 4we relate these illustrative
examples to general properties of correlated stochastic variables and
offer amore systematic analysis. Section 5 presents concluding remarks.
When proofs do not immediately follow the Lemmas and Propositions,
they can be found in an Appendix.

2. Social preferences in producer cooperatives

2.1. Social preferences

The community we consider is a group of N individuals. Each
individual j ∈ {1,…,N} in the group is endowed with wealth wj.
We denote by W=∑j = 1

N wj the aggregate wealth in the group, and
W−j =∑l ≠ jwl the sum of the wealth of individuals other than j. To
take into account the fact that group members interact, we assume
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that each individual j has preferences given by a von Neumann-
Morgenstern utility function that may depend on the whole vector of
wealths:

uj ¼ uj w1;…;wNð Þ: ð1Þ

Such preferences may be the result of having group members
involved in several interlinked transactionswith each others. Therefore,
everyone in the group cares not only about his own wealth but also
about the wealth of the others in the group. A particular form of
Eq. (1) to which we devote much attention in the following is

uj ¼ uj wj;W
� �

: ð2Þ

With Eq. (2), each individual cares not only about his own wealth
but also about the aggregate wealth of the group. This simple kind of
social preference is, as we explain below, very plausible when the
group considered is a cooperative or any other group of producers.

2.2. Producer cooperatives

In this subsection, we detail examples of the functioning of producer
cooperatives that highlight the public good aspect of some of their
activities. In these examples, preferences of cooperative members can
be represented by indirect utility functions of the form given in Eqs. (1)
and (2). They are inspired by our own work on coffee cooperatives in
Guatemala, but are expected to apply more generally.

2.2.1. Cost-sharing with economies of scale
Some cooperatives are organized to exploit economies of scale and

share the burden of collective production costs. For example, coffee
cooperatives typically own processing equipment and machines to
wash, sort, and dry coffee beans before they are sold. Cooperative
members share capital purchase and maintenance, processing costs,
administrative costs, and marketing costs. Some of these costs are
recurrent and need to be covered by regular contributions of coopera-
tive members. Usually, however, cooperatives do not charge an annual
fee, but meet recurrent costs through a rebate (a tax) on the unit price
they pay to producers for the coffee they brought to be processed at
the cooperative. It is therefore reasonable to assume that the unit
price p(∙) a cooperative pays to producers is an increasing function of
Q=∑lql, the total production of cooperative members.

Suppose that individual j obtains revenue ewj in a first period that
comes from the sale of his production to the cooperative. At this period,
he spends a fixed amount cj tomeet his current consumption needs and
invests the remaining amount ewj−c j for next year's production.

3 This
investment captures decisions concerning the seedlings to be bought,
the fertilizer to be applied, etc. For simplicity, we assume that next
year's production qj(∙) will be proportional to investment and that the
proportion is the same for all cooperative members. Therefore,
qj ewj−c j
� � ¼ b ewj−c j

� �
, and the value of this production is given

by p ∑lql ewl−clð Þð Þqj ewj−cj
� �

. When individual j evaluates future
revenue according to an increasing function v(∙), and by denoting
wj ¼ ewj−c j for all j, W = ∑jwj, we can represent its preferences
with an indirect utility function of the form given in Eq. (2):

uj wj;W
� �

¼ v p bWð Þbwj

� �
:

3 Here we consider for simplicity that consumption is constrained and does not result
explicitly from themaximization of some utility function. In themore complex casewhere
individuals are free to adjust current consumption, the model would be similar to models
of voluntary contributions to an impure public good such as studied by Bardhan et al.
(2007) because individual utility would be a function of consumption cj, own contributionewj−c j , and total contribution ∑l ewl−cl . In such models, equilibrium utilities are a
function of the whole vector of wealths ewl and would take the form given in Eq. (1).
2.2.2. Collective asset
Another important function of many cooperatives is to manage a

collectively owned asset such as a financial contract or a sales contract.
In these situations, the purpose of the cooperative can be to give access
to the market, bypassing intermediaries. This is possible because the
cooperative can contract on volumes that an individual producer is
unable to guarantee. The purpose can also be to give access to formal
credit. Again this is possible because the cooperative can provide some
collateral that an individual producer could not. The management of
this collective asset necessitates time and money to be fully profitable,
and, most importantly, cooperative members must contribute to ful-
filling the contract for its durability. In these situations, the collective
asset can be seen as a public good for cooperative members. It benefits
everyone in the cooperative and generates free-riding problems. Most
cooperatives, for example, count on their members to deliver all of
their production, and trade coffee with large foreign importers on
contracts signed long before they have the coffee under control. This
raises the well-known problem of enforcing deliveries from members
when prices vary over the course of the year inducing the temptation
to side-sell. In that case, implicit monetary contributions include what
members lose by giving up other deals. On the credit side, the coopera-
tive can only pay back its loan andmaintain its reputation and access to
credit if all the members contribute by paying back their loans.

To elaborate on this public good aspect and to derive closed-form
expressions for indirect utility, we assume that the collective asset can
be considered as pure public goods in the sense that it benefits every
cooperative member to the same extent, whatever the individual
contribution of that member. Therefore, each individual cooperative
member j can use his wealth wj to buy a quantity cj of the private
goods and contribute Gj to the functioning of the cooperative. We
normalize the price of both goods to be 1 so that the individual's budget
constraint is wj = cj + Gj. We also denote by Gj = ∑jGj the total
amount contributed to the cooperative functioning. The utility of
individual j depends on his consumption of the private goods and
on the cooperative functioning. We assume that it is given by the
function

U j c j;G
� �

¼ ajc
γ j

j þ bjG
γ j

� � 1
λ j ; ð3Þ

where 0≤γj≤λj, and 0 b aj, 0 b bj.
Whether contribution to the collective asset of the cooperative is

voluntary or mandatory depends on the degree of institutionalization
of collective decision processes in the cooperative. Mandatory contri-
butions are more likely in cooperatives that rely on more formal
transactions.

Consider first that contributions to the collective asset are man-
datory. These contributions result from a collective choice rule adopted
by the group, as studied for instance in Epple and Romano (2003). For
simplicity let us assume that public goods provision is financed through
a proportional tax enforced at the group level. In that case, if we denote
by T the tax rate, it is straight forward to establish that

U j c j;G
� �

¼ U j 1−Tð Þwj; T
X
l

wl

 !
¼ uj wj;W

� �
:

With Eq. (3), we obtain up to an increasing and linear transfor-
mation

uj wj;W
� �

¼ α jw
γ j

j þ β jW
γ j

� � 1
λ j ; α j;β jN0: ð4Þ

When γj=λj=0, we get the Cobb–Douglas function

uj wj;W
� �

¼ w
α j

j Wβ j : ð5Þ



5 Full insurance is an extreme assumption that we adopt here in order to facilitate
interpretation of the results. The free-riding effect that we want to highlight in this
Section would still hold with partial insurance but would be more difficult to isolate.
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Moreover it can be shown (see Appendix A) that in the latter case, the
preferred tax rate of individual j does not depend on the level of his
wealth wj. This property ensures that any collective choice procedure
based on individual preferenceswill select a tax rate that does not depend
on the distribution of wealth in the group.

Consider now that individuals contribute voluntarily to the coope-
rative. We assume that the public goods provision game is a strategic
form game in which individuals decide simultaneously and non-
cooperatively how much to contribute. When preferences are given
by Eq. (3), this game has a unique Nash equilibrium (see Bergstrom
et al. (1986) or Cornes and Hartley (2007)). Let us assume that in
equilibrium every individual contributes a positive amount to the
public goods, which occurs when individuals are not too asymmetric.
When preferences are given by Eq. (3), the equilibrium utilities are
given up to an increasing and linear transformation by

uj Wð Þ ¼ W
γ j
λ j : ð6Þ

Similarly, when γj=λj=0,

uj wj;W
� �

¼ Wα jþβ j : ð7Þ

See Appendix B. In the equations above, the indirect utility depends
only on aggregate wealth in the community and not on an individuals'
own wealth. This is a direct consequence of the well-known fact that
private provision of a public good is independent of the distribution of
income (Warr, 1983).4 In a sense, here, the public goods contribution
mechanism achieves an indirect mutualization of wealth. A similar
indirect utility would also arise in the case of a productive association
that pulls all members' proceeds together before sharing income.

3. Free-riding and coordination: illustrative examples

Now, we elaborate on the indirect utilities described in Eq. (2) to
study the demand for insurance by individuals in the group.

In order to study insurance, we introduce risk in the environment.
We assume that the initial wealth profilew=(w1,…,wN) is a stochastic
variable that takes values in the interval w;w½ �N. Thewealth of individuals
is subject to shocks that can be idiosyncratic and/or common.

Risk-sharing inside the group, i.e. mutual insurance, can be used to
provide insurance against idiosyncratic shocks. Mutual insurance
consists in redistributing wealth among individuals without changing
the aggregate wealth of the group. It will be valued by all individuals
in the group provided that their indirect utilities exhibit risk aversion
with respect to own wealth and individuals are not too different
concerning their risk exposure, i.e. the shocks they face are not too
asymmetric. This last point is easy to understand: if individual 1 is risk
averse and individual 1's wealth is not subject to shocks while individual
2's wealth is, then individual 1will not agree to share riskwith individual
2. On the other hand, if the two levels of wealth are given by i.i.d.
stochastic variables w1 and w2 and the two individuals are risk averse,
then it is clear that they both benefit from replacing their stochastic
wealth w1 by (w1+w2) / 2, i.e. they both benefit from risk-sharing.

Notice that when indirect utility is given by Eqs. (6) and (7), mutual
insurance is unnecessary. In particular, when indirect utility depends
only on aggregatewealth because it comes from a public goods voluntary
contribution game, individuals are already insured against idiosyncratic
shocks by the public good contribution game.

Below we focus on risks that cannot be dealt with using mutual
insurance, i.e. we focus on shocks that affect the aggregate wealth in the
group such as weather shocks. For this reason, we simplify the problem
by assuming that individual wealths wj are subject to the same common
4 To be precise, this result requires that the set of contributors does not change when
one changes the distribution of wealth.
shock, i.e. for all j,wj=wwherew is a positive and non-degenerate real-
valued random variable distributed according to g. The notation Eg and ŵ
are used for the expectation operator and expected value of w, respec-
tively. For simplicity, we also consider a group of N identical individuals
whose indirect utility functions are given as before by u(w,W).

In such a setting, we provide formal examples to illustrate the
existence of free-riding and coordination problems in insurance uptake
decisions.

A more general treatment is postponed to Section 4.

3.1. Free-riding

When preferences of individuals depend on their own wealth
and on the aggregate wealth in the group, it is likely that insurance
decisions create externalities. Indeed, when one individual takes insu-
rance, this decision modifies the distribution of his own wealth and, by
a composition effect, modifies also the distribution of the aggregate
wealth. Therefore the insurance of one individualmay change thewelfare
of all individuals in the group. In what follows we provide an example
where these externalities generate free-riding in the sense that the
group is ready to pay more for insurance than the sum of what each
individual is ready to pay.

To model the insurance decisions, we assume that an insurance
company proposes to fully insure the risk, i.e. to replace one individual
wealth w by its expected value ŵ, for a positive price.5

Assumption 1. The indirect utility function u(w, W) is increasing in w,
strictly increasing in W, and concave.6

Suppose that insurance is offered to the group and that its price is
shared equally among group members. Let us denote by c the per
member price of insurance. Individuals in the group will unanimously
decide to buy insurance whenever

Egu w;Nwð Þ≤u ŵ−c;N ŵ−cð Þð Þ:

We now define cg the group risk premium, i.e. the highest price
group members are ready to pay when insurance is offered at the
group level. This risk premium is given by

Egu w;Nwð Þ ¼ u ŵ−c g
;N ŵ−c g� �� �

: ð8Þ

It exists and is positive and unique under Assumption 1.
Suppose now that insurance is offered to the individuals. Each

individual j is offered insurance at a price cj. When he anticipates that
all other individualswill buy insurance at their offeredprice, an individual
jwill buy insurance whenever

Egu w;wþ N−1ð Þŵ−
X
l≠ j

cl

0@ 1A≤u ŵ−c j;Nŵ−
X
l≠ j

cl−c j

0@ 1A:

Lemma 1. Under Assumption 1, and if the insurance companywants to
sell insurance to all groupmembers, themaximal price it can charge for
insurance is the same for all individuals in the group. It is given by ci

which solves

Egu w;wþ N−1ð Þ ŵ−ci
� �� �

¼ u ŵ−ci;N ŵ−ci
� �� �

: ð9Þ
6 Since the function u has two arguments, concavity means that u(λw1 = (1 − λ)
w2,λW1 + (1− λ)W2)≥ λu(w1,W1)+ (1− λ)u(w2,W2) for any (w1,W1) and (w2,W2) and
any λ∈ [0,1].



7 In a sense, offering the insurance at the group level helps the group deal with free-
riding on insurance purchases. It would be unnecessary if the group were able to achieve
costless discipline among its members.

231A. de Janvry et al. / Journal of Development Economics 106 (2014) 227–238
Proof. Appendix C.
This lemma shows that when individuals are symmetric, the

equilibrium of the insurance market is necessarily symmetric: the risk
premium is necessarily identical for all individuals. It is equal to the
premiumagent j is ready to paywhen the other agents take full insurance
and pay a premium.

We nowprovide conditions underwhich cgNci. We focus on the case
where the individual indirect utility functions are identical for all
individuals in the group, depend on aggregate wealth only, and exhibit
constant relative risk aversion:

u w;Wð Þ ¼ u Wð Þ ¼
W1−σ

1−σ
with σ≠1;

log Wð Þ with σ ¼ 1:

8<: ð10Þ

Suppose first, that insurance is offered at the group level and that the
total cost is shared equally among agents. Applying Eq. (8), each agent
can be charged an amount up to cg with

Egu Nwð Þ ¼ u N ŵ−c g� �� �
: ð11Þ

Suppose now that insurance is offered at the individual level.
Applying Eq. (9), agent j can be charged an amount up to ci with

Egu wþW− j

� �
¼ u ŵ−ci þW− j

� �
;

where W− j ¼ N−1ð Þ ŵ−ci
� �

N 0 is the constant aggregate level of
wealth obtained by the other agents taking the full insurance.

Proposition 1. Suppose that individual utility functions are given by
Eq. (10), then cib cg.

Proof. Appendix C.
Here, when an agent decides to buy insurance coverage, he creates a

positive externality on the welfare of others. This occurs because, as we
demonstrate formally in Section 4, a reduction in the risk of any wj

reduces the variability of the sum W, holding all else equal. When
insurance is offered at the individual level, nobody internalizes these
externalities and the equilibrium results in underprovision, i.e. in our
setting, ci b cg. The discrepancy between the individual and the group
risk premia is non-negligible as the next numerical example shows.

Example. To evaluate the difference between ci and cg, let us
consider the following numerical application. Assume that the utility
of individuals is only a function of aggregate wealth (or coffee
production) u(W)= log W. Individual production w is equal to 2 in
good years, and falls to 1 whenever there is catastrophic excess
rainfall. The probability of this extreme rainfall event is 1/7. The
group risk premium cg solves

6
7
log2 ¼ log

13
7

−c g
� �

;

which gives

c g≈ 0:0457:

The individual risk premium ci solves

1
7
log 1þ N−1ð Þ 13

7
−ci

� �� �
þ 6
7
log 2þ N−1ð Þ 13

7
−ci

� �� �
¼ log N

13
7

−ci
� �� �

:

For N=2, this gives

ci≈ 0:0133:

In a group of two individuals, the sum of individual premia is less
than one third of the group premium.

For N=15, this gives

ci≈ 0:0022;

which implies that, in a group of 15 individuals, the sum of the
individual premia is 20 times less than the group premium.

To solve the free-riding problem, it is possible to offer the insurance
at the group level. When group members have to choose between
insurance for everybody in the group and insurance for nobody in the
group they will be ready to pay the higher premium cg. In order to
extract this higher premium, it is important that individuals in the
group are not offered the opportunity of buying individual insurance
instead.7

3.2. Coordination

In the preceding subsection we analyzed the individual incen-
tives to take insurance under the hypothesis that the other group
members purchase insurance. Whatever individual j decided, i.e. to
take or not to take insurance, it was assumed that the other group
members took insurance. As will become clear in this section, fixing
the other group member decisions was necessary because individual
incentives depend on the other's insurance decisions. In fact, the
externalities we highlighted in the preceding subsection imply that
purchasing or not insurance is a strategic decision. To gain a better
understanding of this issue, it is useful to recast the insurance
decision problem in terms of a strategic form game in which each
group member must decide simultaneously to take or not to take
insurance. In this game, the payoffs are the ex ante expected utilities
(computed before the realization of the shock on the wealth
distribution). We show below that this game can be a coordination
game with multiple equilibria. In particular, we provide an example
where insurance has a negative value: even if insurance is costless,
nobody in the group wants to buy insurance if he (correctly)
anticipates that the others in the group will not buy insurance. It
illustrates the fact that the demand for insurance against common
shocks can give rise to multiple equilibria with either all agents or
none being insured.

In this subsection it is assumed that insurance is perfect and sold
at an actuarially fair price. This extreme hypothesis is considered in
order to give the best chances to the insurance policy. With imper-
fect or costly insurance, the negative value result would only be
more likely to hold.

We assume that indirect utilities are given by Eq. (5), i.e.:

u w;Wð Þ ¼ wαWβ
; α N 0;β N 0;α þ β b 1: ð12Þ

Suppose that agents can obtain full insurance for free, i.e. they can
choose to exchange their stochastic wealth w for a certain wealth
equal to the expected value ŵ. As mentioned above, we are interested
in the strategic form game in which individuals simultaneously choose
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to take the insurance or not to take the insurance. The payoffs in this
strategic form game are as follows. If k other individuals choose to
take the insurance, individual j gets

Egu ŵ; kþ 1ð Þŵþ N−k−1ð Þwð Þ ¼ ŵαEg kþ 1ð Þŵþ N−k−1ð Þwð Þβ ;

if he takes insurance and

Egu w; kŵþ N−kð Þwð Þ ¼ Egw
α kŵþ N−kð Þwð Þβ ;

if he does not.
If all agents except agent j take the insurance, it is in the interest of

that agent to take the insurance as well because, in this case, his utility
is given by wα wþ N−1ð Þŵð Þβ which is strictly concave with respect
to w and therefore

Egw
α wþ N−1ð Þŵð Þβb ŵα Nŵð Þβ :

The insurance game in which the agents simultaneously choose to
take or not the actuarially fair insurance always possesses an equilibrium
in which all agents take the insurance. But it may not be the only
equilibrium of that game. To see this, suppose that no other individual
takes the insurance. If individual jdoes not take the insurance his payoff is

Egw
α Nwð Þβ ;

while, if he takes the insurance, it is

ŵαEg ŵþ N−1ð Þwð Þβ :

Proposition 2. Suppose indirect utilities are given by Eq. (12) and w is
distributed on 0;wf g with probabilities {p, 1−p}.

• For any value ofN, there are admissible values for α, β and p such that
there is an equilibrium of the insurance game in which nobody takes
the insurance.

• For any admissible values of α, β and p, there are values of N such that
there is an equilibrium of the insurance game in which nobody takes
the insurance.

Proof. Appendix C.
In that case, the insurance game has twoNash equilibria: onewith full

insurance, i.e. insurance taken by all agents, the other with no insurance,
i.e. insurance taken by no agent. Of course, the full insurance equilibrium
Pareto dominates the no-insurance equilibrium, nevertheless there is a
priori no guarantee that agents will manage to coordinate on the full
insurance equilibrium.8 In order to illustrate Proposition 2, we provide a
numerical example below.

Example. When u w;Wð Þ ¼ w1
3W

1
3, p ¼ 1

7, N=7 and w ¼ 1,

Egu w;Nwð Þ≈ 1:639;

Egu ŵ; ŵþ N−1ð Þwð Þ ¼ 1:621;

and

Egu w;Nwð Þ N Egu ŵ; ŵþ N−1ð Þwð Þ:

If nobody else takes insurance, individual j prefers not to take insurance.
8 The game theory literature has repeatedly stressed the fact that in coordination games
there is a priori no reason to focus exclusively on the Pareto dominant equilibrium. See for
instance Harsanyi and Selten (1988) and Carlsson and van Damme (1993).
Group insurance can solve the coordination problem because it
would let the group choose between the two equilibrium outcomes:
full insurance or no insurance. In this case, there would be unanimous
agreement on the full insurance outcome since strict concavity of u
guarantees that Egu w;Nwð Þ b u ŵ;Nŵð Þ.

4. Free-riding and coordination: more general results

In this sectionwegobeyond the illustrative examples of thepreceding
section and scrutinize the conditions under which free-riding and
coordination problems appear in insurance purchase settings. To do so,
we consider settings in which shocks on individual wealth can be
idiosyncratic or common, i.e. the individualwealths can be independently
distributed or not. We also consider settings in which the indirect utility
functionsmay depend on ownwealth only, on ownwealth and aggregate
wealth or on the whole vector of individual wealth in an arbitrary way.
The section is organized as follows. In Section 4.1,we introduce the notion
of mean-preserving spread for multidimensional settings which
characterizes risk-reduction. In Section 4.2, we establish several lemmas
that relate individual insurance decisions to multidimensional risk-
reduction. In Section 4.3, we exploit these lemmas to scrutinize when
free-riding and coordination problems occur.

4.1. Mean-preserving spread and multidimensional risk

To understand the value of insurance for risk averse individuals, it
is convenient to use the notion of a mean-preserving spread. This
notion captures the fact that a lottery, i.e. a stochastic variable, is
more risky than another with the same mean, or equivalently that
any risk averse decision maker prefers the former to the latter.
When two stochastic variables X and Y take values inℝ, the following
well-known and simple characterization is due to Rothschild and
Stiglitz (1970).

Definition 1. When the stochastic variables X and Y take values in ℝ, Y
is a mean-preserving spread of X if and only if (i) and (ii) hold

(i) The two stochastic variables have the same mean, E(Y)=E(X);
(ii) For all x∈ℝ,Z x

−∞
FY vð Þ∂v ≥

Z x

−∞
FX vð Þ∂v;

where FY (resp. FX) denotes the cumulative distribution of Y (resp. X).
When individuals in a group have indirect social preferences as in

our model, their welfare depends not only on the distribution of their
own wealth but on the distribution of the wealth profile in the group.
To study the behavior of individual j it is not sufficient to scrutinize
the properties of the one-dimensional stochastic variable wj that
describes his own wealth. It is necessary to scrutinize the properties of
the multidimensional stochastic variable w=(w1,w2,…,wN) that takes
value in ℝN and describes the wealth profile in the group. We therefore
present the definition of stochastic dominance for multidimensional
variables, and analyze in Lemmas 2 to 5 some specific cases of wealth
distributions where stochastic dominance prevails. In what follows, X
and Y are two multidimensional stochastic variables that take values
in ℝN.

Definition 2. The multidimensional stochastic variable Y is a mean-
preserving spread of the multidimensional stochastic variable X when
the equivalent statements (i) or (ii) hold

(i) For all continuous and concave functions f, E( f(Y))≤E( f(X));
(ii) There exists a stochastic variable Z such that Y has the same

distribution as Z and (X,Z) is a martingale, i.e. E(Z|X)=X.

Equivalence between the two statements is established by the
Blackwell–Sherman–Stein theorem (see, for instance, chapter 7 in
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Shaked and Shantikumar (2007)). It follows that (ii) is a suitable
definition of increasing risk because all risk averse decision makers,
those whose preferences are represented by a concave function, prefer
X to Y, according to (i).

4.2. Insurance and mean-preserving spread

In what follows, the wealth of individual j is given by a stochastic
variable wj. We denote by gj the marginal distribution of wj, Eg j the
expectation operator with respect to that distribution, and ŵ j ¼ Eg j

wj the mean value or expectation of wj. In this setting, what we call
insurance is the possibility for an individual to replace his
own stochastic wealth wj by its mean value ŵ j . The stochastic
variables wj may be independently distributed. In that case, the
density of (w1,…,wN) is the product of the marginal distributions
g = ∏j = 1

N gj. The stochastic variables wj may also be correlated and
g ≠ Πj = 1

N gj. In what follows, we consider both possibilities, unless
specified otherwise.

Lemma 2. Suppose that individual wealths wj are independently
distributed. The stochastic variable (w1,…wj − 1,wj,wj + 1…wN)
is a mean-preserving spread of the stochastic variable w1;…;ð wj−1; ŵ j;

wjþ1;…;wNÞ.

Proof. It is straightforward to verify statement (ii) in Definition 2 with
Y=Z=(w1,…,wN) and X ¼ w1;…; ŵ j;…;wN

� �
:

This lemma shows that when shocks on wealth are idiosyncratic, i.e.
the random variables wj, j = {1,…,N} are independently distributed,
replacing the stochastic wealth of any individual j by its expected value
ŵ j induces a reduction in risk. Therefore, any risk averse individual
will find insurance against idiosyncratic shocks profitable even if his
preferences depend on the distribution of the whole wealth profile of
the group.

The next lemma shows that even if shocks on wealth are not
purely idiosyncratic, individual insurance is also desirable for any
risk averse individual when all other group members are already
insured.

Lemma 3. Suppose that individual wealths are given by the stochastic
variables wj with mean ŵ j . The stochastic variable ŵ1;…; ŵ j−1

�
;wj;

ŵ jþ1;…; ŵNÞ is amean-preserving spreadof the (degenerate) stochastic
variable w1;…; ŵ j;…; ŵN

� �
.

Proof. It is straightforward to verify statement (ii) in Definition 2 with
Y ¼ Z ¼ ŵ;…; ŵ;w; ŵ;…; ŵð ÞÞ and X ¼ ŵ;…; ŵð Þ.

If one recasts the insurance decision problem as a strategic form
game played by all group members in which they must simultaneously
decide whether or not to take insurance, as we did in Section 3.2,
Lemma 3 establishes that it is always a Nash equilibrium for everyone
to take insurance, and Lemma 2 establishes that it is the only
equilibrium if wealths are independently distributed. In the latter case,
it is actually a dominant strategy equilibrium.

In contrast, when shocks on wealth are common then the random
variables wj, j={1, …,N} are perfectly correlated. In this case the result
established in Lemma 2 no longer holds, and we have the following
property:

Lemma 4. Suppose that individual wealths are given by the same (non
degenerate) stochastic variable wwith mean ŵ. The stochastic variable
(w, …,w) is not a mean-preserving spread of the stochastic variable
w;…; ŵ;…;wð Þ.

Proof. Consider two stochastic variables X and Z such that X ¼ w;…ð ;

ŵ;…;wÞ and E(Z|X) = X. If Z puts positive weights only on diagonal
elements of the form (z,z, …,z), then E(Z|X) can only be a diagonal
element. This is in contradiction with the equality E(Z|X) = X and
the fact that X does not put positive weights only on diagonal
elements because w is non degenerate (i.e. w ¼ ŵ is not always
true). Therefore Z necessarily puts positive weights on elements
outside the diagonal and cannot possess the same distribution as
Y=(w, …,w).

The fact that one individual insures himself against his own wealth
variations does not imply a reduction in risk concerning the distribution
of the whole wealth profile. As a consequence, when the utility of an
individual depends not only on his ownwealth but on thewholewealth
profile, and even if this utility function is concave because the individual
is risk-averse, insurance may not be valuable. Actually, as shown in
Proposition 2 it is sufficient that the utility depends on own wealth
and aggregate wealth for this to happen, i.e. for insurance to decrease
one's utility in some circumstances.

It can be inferred from Lemma 3 and Lemma 4 that the
problem is one of coordination because the value of being insured
may depend on the decisions of others. If all other group
members are insured, insurance is necessarily valuable. If other
group members are not insured, the value of insurance can be
positive or negative.

In our initial model specified in Eq. (2), individual preferences
depend on the vector of wealths in a specific way: indirect utilities are
functions of own wealth and aggregate wealth. To go a little further,
we can also scrutinize the behavior of aggregate wealth when one
introduces insurance.

Lemma 5. Suppose that individual wealths are given by the same
stochastic variable w with mean ŵ. For 0≤ k bN, define the aggregate
wealth when k group members take insurance as Wk ¼ kŵþ N−kð Þw.
The real valued stochastic variable Wk is a mean-preserving spread of
the real valued stochastic variableWk+1.

Suppose that the individual wealths are given by i.i.d. stochastic
variableswjwithmeanŵ. DefineWk as above. The real valued stochastic
variable Wk is a mean-preserving spread of Wk+1.

Proof. First, it is clear that in both cases E(Wk)=E(Wk+1).
Consider the first case, i.e. of a purely common shock. The aggregate

wealth Wk is less than a given threshold x whenever

N−kð Þwþ kŵ ≤ x;

or equivalently

w ≤ ŵþ x−Nŵ
N−k

:

The right-hand side of the above inequality is increasing (resp.
decreasing) in k when x is above Nŵ (resp. below Nŵ). Therefore, the
cumulative density FWk

of Wk is increasing with k (resp. decreasing
with k) above Nŵ (resp. below Nŵ). As a consequence,Z x

−∞
FWk

yð Þ−FWkþ1 yð Þdy ≥ 0;∀x∈R;

and, according to Definition 1,Wk is a mean-preserving spread ofWk+1.
Consider now the second case, i.e. idiosyncratic shocks. In that

case, Lemma 2 ensures that the vector of individual wealths when
k individuals get insurance is a mean-preserving spread of the
vector of wealths when k + 1 individuals get insurance. Consider
then any concave function f defined over R and the linear function
Σ which is the sum of N real valued variables. The function Σ maps
RN onR. It is straightforward to see that the function f ∘Σ is a concave
function defined over hbbRN. Therefore, by applying Definition 2, we
know that

E f Wkð Þð Þ≤ E f Wkþ1
� �� �

;

which according to Definition 2 again ensures that Wk is a mean-
preserving spread of Wk+ 1.
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This lemma shows that when shocks are common and one
individual takes insurance, it decreases the risk associated with the
distribution of aggregate wealth. Such a property holds also when
shocks are idiosyncratic, i.e. when individual wealths wj are
independently distributed. However, such a property does not hold
without restrictions on the distribution of shocks. It is easy to see that
if N = 2 and shocks are negatively correlated such that w1 = − w2,
aggregate wealths as defined in Lemma 5 are such that W0=W2=0,
while W1 is a non-degenerate stochastic variable and is not a mean-
preserving contraction of W0.

As a consequence of Lemma 5, if indirect utilities depend only on
the aggregate wealth of group members and shocks are either common,
i.e. individual wealths are given by the same stochastic variable, or
idiosyncratic, i.e. individual wealths are given by i.i.d. stochastic variables,
then we obtain that insurance cannot have a negative value and
that insurance decisions create positive externalities, i.e. a risk-averse
individual is better off when someone else in the group takes insurance.

4.3. Externalities and the value of insurance

In this subsection, we detail the conditions under which free-
ridingand coordination problems may occur with respect to the
demand for insurance. We study settings in which the utility
functions may depend on the individual's own wealth, the aggregate
wealth, or both individual and aggregate wealths. The shocks affecting
wealth may be idiosyncratic or common, i.e. stochastic wealths may
be independently distributed or not.

By adopting this broad perspective, we highlight the fact that
the common nature of the shocks and the fact that individuals
have social preferences, i.e. that their indirect utility functions
depend not only on their own wealth but also on the other group
member's wealth, are crucial for our results. They exacerbate the
free-riding problem and open the possibility for a coordination
problem.

We start with a simple observation.

Observation. Suppose that the utility of individuals depends only on
one's ownwealth and is given by concave functions uj(wj) then insurance
is always valued positively by individuals, whatever the nature of the
shocks, i.e. idiosyncratic or common. Moreover, the decision by one
individual to be insured does not modify the incentives of any other
group member to get insured.

When individuals only care about their own wealth, no matter
whether shocks are idiosyncratic or common, the free-riding and
coordination problems emphasized in Section 3 cannot occur. In this
case, the insurance decision problem is separable and can be studied
in isolation for each individual.

Proposition 3. Suppose that the utility of individuals depends on
aggregate wealth and is given by concave functions uj(W).

• If individual wealths are given by independent stochastic variableswj

then insurance by one individual is always positively valued by all
individuals.

• If individual wealths are given by the same stochastic variable w, then
insurance by one individual is always positively valued by all indivi-
duals.

• For fixed and identical marginal distributions of individual wealths, the
group's willingness to pay for insurance is higher when shocks on
wealth are purely common, i.e. when individual wealths are given
by the same stochastic variable, than when shocks on wealths are
idiosyncratic, i.e. when individual wealths are given by i.i.d. stochastic
variables.

Proof. The first two items are direct consequences of Lemma 5 which
establishes the fact that when one individual takes insurance, this
induces a mean-preserving contraction of aggregate wealth. This in
turn is positively valued by any risk-averse individual whose utility
depends on aggregate wealth only.

To prove the third item, let us remind the definition of the group
willingness to pay for insurance cg, which we introduced in
Section 3.1 for the case of purely common shocks, as the unique
solution to

Egu Nwð Þ ¼ u N ŵ−c g� �� �
:

If shocks are idiosyncratic, i.e. thewj are i.i.d. with the samemarginal
distributions as w and mean ŵ , the group willingness to pay for
insurance, ecg is given by

Egu
XN
j¼1

wj

0@ 1A ¼ u N ŵ−ec g� �� �
;

or equivalently by

Egu N
1
N

XN
j¼1

wj

0@ 1A0@ 1A ¼ u N ŵ−ec g� �� �
:

In order to establish thatec g≤cg, it is sufficient to establish thatw is a
mean-preserving spread of 1

N∑
N
j¼1wj . This in turn comes from the fact

that w and the wj have the same marginal distributions and for any
concave function f,

Eg f wð Þ ¼ 1
N

XN
j¼1

Eg f wj

� �
≤ Eg f

1
N

XN
j¼1

wj

0@ 1A:

The interpretation of Proposition 3 in terms of free-riding
behavior and a coordination problem is the following. When indirect
utility depends on aggregate wealth only and shocks on groupmembers'
wealths are either idiosyncratic or purely common, it is always profitable
for one individual to take an actuarially fair insurance. Therefore, the
coordination problem that was emphasized in Section 3.2 cannot
appear.

In addition and still when shocks on group members' wealths are
either idiosyncratic or purely common, Proposition 3 establishes that
when one individual takes insurance, this creates positive externalities
on other group members: insurance by one individual increases the
welfare of all the others in the group. This property is key for the free-
riding behavior highlighted in Section 3.1.

Therefore, free-riding behavior can appear when shocks on
wealths are idiosyncratic or purely common. The last item in the
proposition establishes that in a sense, the free-riding problem is
more acute when shocks on wealths are common than when they
are idiosyncratic. Indeed, for fixed marginal distributions of shocks,
it is easy to see that the individual willingness to pay for insurance
provided everyone else takes insurance is the same whatever the
correlation among individual shocks. Therefore, the last item
establishes that when individual willingness to pay for insurance is
lower than the group's willingness to pay, it is more so if shocks
are common. The following example illustrates this point.

Example. Let us come back to the numerical application developed in
Section 3.1. Assume that the utility of individuals is only function of
aggregate wealth u(W)= logW. Individual wealth w is equal to 2 with
probability 6/7 and is equal to 1 with probability 1/7. We consider
below the case N = 2. As we already know, when shocks on wealth
are purely common, the group risk premium is

c g≈ 0:0457:
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Now if shocks on wealths are idiosyncratic so that individual
wealths are given by i.i.d. stochastic variables with the same marginal
distributions as w, the group risk premium ecg solves
36
49

log4þ 12
49

log3þ 1
49

log2 ¼ log 2
13
7

−ec g
� �� �

;

which gives

ec g≈ 0:0194:

In the latter case, the group's willingness to pay for insurance is still
higher than the individual's willingness to pay, ci≈ 0.0133, but less so
than when shocks are purely common.

Proposition 4. Suppose the utility of individuals is given by concave
functions uj(wj,W). If individual wealths are independent stochastic
variables, i.e. shocks are purely idiosyncratic, then insurance by one
individual is always positively valued by all individuals.

Proof. Consider any concave function uj(wj,W) defining the indirect
utility of individual j. Define the function Uj(w1,…,wN)=uj (wj,W). Such
a function Uj inherits the concavity properties of uj. When one individual,
say individual l, decides to get insured, he replaces his stochastic wealth
w1 by itsmeanvalueŵl and, according to Lemma2, this induces amean-
preserving contraction of the stochastic vector of wealths, whatever the
insurance decisions of other group members. Because Uj is concave,
such an insurance decision increases the expected utility of individual j.

As a consequence of Proposition 4, when shocks on wealth are
idiosyncratic, free-riding problemsmay occur but coordination problems
cannot.

To understand why an actuarially fair insurance can have a negative
value as in the case of Proposition 2, we must realize that individual
insurance decisions have two effects. The first effect is a reduction of
the risk associated with variation in own wealth. This is certainly
positively valued by risk averse individuals. The second effect is a
modification of the joint distribution of (wj,W). In particular, if shocks
are highly correlated among individuals and individual j is the only
one taking insurance, this may result in a lower correlation between
the two variables wj and W. In some circumstances detailed below,
individuals prefer to have the two variables that enter their utility
function highly correlated. This second effect can therefore be negatively
valued and can also dominate the first effect. This is what happened for
Proposition 2 to hold.

As is now more clear, complementarities between individual
wealth and aggregate wealth of the other group members are key
to explain the negative value of insurance against common shocks
at the individual level. Because of these complementarities, it is
preferable for individual i that his own wealth be subject to the
same shocks as the wealth of other group members, rather than
being insured against these shocks. Beyond the example provided
in the preceding section, we now present sufficient conditions on
the indirect utility functions that guarantee that insurance against
common shocks can have a negative value.

Assumption 2. For each j, the indirect utility function uj (w,W) is a real
valued function defined on [0;+∞[2, increasing, concave, increasing in
the second argument, differentiable, and such that uj(0,0)≠− ∞ and
for all w,

lim
W→þ∞

∂uj

∂w w;Wð Þ ¼ þ∞:

The last part of Assumption 2 is not equivalent to the hypothesis of
constant sign of the cross-partial derivative ∂2u j

∂w∂W, it neither implies or is
implied by single-crossing. But it is linked to it. It is in particular weaker
than the hypothesis of a strictly positive and bounded away from zero
cross-derivative. It is another way of capturing some elements of
complementarity between the two variables. Assumption 2 is satisfied
by the preferences given in Eq. (12).

Proposition 5. Suppose that the indirect utility functions of individuals
satisfy Assumption 2, then insurance against a common shock can have
a negative value for any individual if no one else is insured.

Proof. Appendix C.
For example,when indirect utilities are given by Eq. (4), Assumption 2

is satisfied, and insurance against common shocks can have a negative
value at the individual level.

To summarize this subsection, we established that free-riding and
coordination problems are the more likely to plague the demand for
insurance when group members are interdependent and shocks are
common. Coordination problems appear onlywhen shocks are common
(Proposition 4). As a consequence, the demand forweather index-based
insurance among agricultural smallholders is certainly themost likely to
be affected by free-riding and coordination problems.
5. Final remarks

Themodel we developed in this paper sheds light on two important
phenomena that may arise when insurance is offered to individuals
who are members of groups with shared interests. First, in that context,
insurance decisions may create positive externalities and induce free-
riding if insurance policies are offered directly to individuals. While
these externalities can exist when insurance covers an idiosyncratic
shock, they are exacerbated when it covers a common shock. Second,
and contrary to what occurs with independent shocks, insurance
against a common shock may have a negative value: if an individual
anticipates that the others in the group will not take insurance, he
may find insurance for himself unprofitable. Both phenomena
contribute to explaining the low uptake of index-based weather
insurance among farmers with interlinked interests. They also suggest
that the demand for index-based weather insurance could increase if
contracts are sold to intermediaries such as producers cooperatives
as opposed to individual farmers.

Practitioners in the weather insurance sector are aware of the
potential interest of dealing directly with cooperatives. As E. Meherette,
Nyala Insurance S.C.'s deputy CEO, explains:

“Nyala has found that farmers' unions serve as effective delivery
channels for the weather insurance products. By working with
cooperative unions, Nyala insures all farmers who belong to the
cooperative under the same contract. The cooperative is responsible
for both paying the premium and distributing potential payouts to
each insured farmer, reducing transaction costs for Nyala”
(Meherette, 2009).

From the point of view of insurance companies, group policies
certainly decrease transaction costs. They also contribute to the scaling
up necessary to recover fixed costs. Beyond these advantages, we
showed that group policies can also increase the demand for insurance.

In the microfinance sector, group contracts have been extensively
used for credit. Group loans with joint liability have been an important
contributor to the success of micro-credit institutions. Theoretical
arguments have been proposed to explain their superiority over
individual loans in terms of overcoming adverse selection and moral
hazard problems (see Armendariz de Aghion and Morduch (2005) for a
synthesis of the different arguments). The case for group insurance, as
developed in this paper, relies on largely distinct arguments. In particular,
group insurance must be targeted at individuals that share a common
interest.What occurs after the insurance contract is signed is not changed
by the fact that it is a group contract. What is changed is mainly what
occurs in interlinked transactions that affect the uptake decision.
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Appendix A. Mandatory contribution to the public good

Consider the case where preferences are given by Eq. (5). With a tax
rate T, the log-linearized utility of agent i is

αi log 1−Tð Þωið Þ þ βi log T
XN
j¼1

ω j

0@ 1A:

This function is concave in T and themost preferred tax rate of agent
i is

Ti ¼
βi

αi þ βi
;

which does not depend on the wealth of individual i but only on his
preference parameters αi and βi.

Appendix B. Voluntary contribution to the public good

We derive the unique equilibrium of the voluntary contribution
game by using the technique suggested by Cornes and Hartley (2007).
Consider the case where individual preferences are given by Eq. (5).
The marginal rate of substitution of individual j is given by

MRSj c j;G
� �

¼ α j

β j

G
c j
:

For an aggregate level of public good provision equal to G, individual
j maximizes his payoff if and only if his contribution Gj satisfies

Gj ¼ r j Gð Þ ¼ max 0;wj−
α j

β j
G

( )
;

because either his contribution equals zero and the marginal rate of
substitution is less than 1 (corner solution) or the marginal rate of
substitution is equal to 1 (interior solution). By summing over j we
obtain:

XN
j¼1

r j Gð Þ ¼
XN
j¼1

max 0;wj−
α j

β j
G

( )
:

Let us denote

I Gð Þ ¼ j∈N : wj−
α j

β j
G N 0

( )
:

When the players are not too asymmetrical, we will have I(G⁎)=N
i.e. all the players contribute a strictly positive amount to the public
good. In that particular case, equilibrium conditions give:

G� ¼
XN

j¼1
wj

1þ
XN

j¼1
α j

β j

;

c�j ¼ wj−G�
j ¼

α j

β j

XN
i¼1

wi

1þ
XN

i¼1
αi
βi

:

So that the equilibrium utility of a particular player j is:

uj wj;W
� �

¼ Wα jþβ j :
Suppose now that the utility of individuals is given by Eq. (3). In this
case, the marginal rate of substitution of individual j is given by

MRSj c j;G
� �

¼ aj

b j

G
ci

� �1−γ j

:

In an interior equilibrium of the voluntary contribution game, there
is a linear relation between cj and G. The same argument as developed
above establishes that, in an interior equilibrium, i.e. when everyone
contributes, the public good quantity G is proportional to the aggregate
wealth W and the indirect utility function of individuals is of the form

uj Wð Þ ¼ W
γ j
λ j :

Appendix C. Proofs

C.1. Proof of Lemma 1

We prove by contradiction that individuals cannot differ in the
maximal amount they are ready to pay for insurance, given that all the
others pay their maximal amount and get insurance. Let us denote cj

i

the maximal amount individual j is ready to pay and assume that
there exist k and l such that cki N cli. We know that

Egu w;wþ N−1ð Þŵ−
X
j≠k

cij

0@ 1A ¼ u ŵ−cik;Nŵ−
X
j

cij

0@ 1A:

The fact that u is increasing in wi ensures that

Egu w;wþ N−1ð Þŵ−
X
j≠k

cij

0@ 1A≤ u ŵ−cil;Nŵ−
X
j

cij

0@ 1A;

or

Egu w;wþ N−1ð Þŵ−
X
j≠k

cij

0@ 1A≤ Egu w;wþ N−1ð Þŵ−
X
j≠l

cij

0@ 1A:

When u is strictly increasing in its second argument, this last
equation is in contradiction with ck

i N cl
i. Therefore, the individual risk

premium is necessarily the same for all agents and solves Eq. (9).

C.2. Proof of Proposition 1

From the definition of the individual risk premium ci, and by
denotingW−i ¼ N−1ð Þŵ−∑ j≠ici, we know that

Egu wþW−ið Þ ¼ u ŵ−ci þW−i

� �
:

In words, ci is the risk premium an individual with utility given by
u(⋅+W−i) would be ready to pay. Now we use the fact that when u(∙)
exhibits constant relative risk aversion, then it exhibits strictly
decreasing absolute risk aversion. So that an individualwith preferences
given by u(⋅+W−i) is strictly less risk averse than an individual with
utility given by u(∙). A standard result in risk theory (see Pratt (1964)
or Gollier (2001) for a synthetic presentation) tells us that for any
non-degenerate lottery, the risk premium of the latter individual is
larger than the risk premium of the former. According to Eq. (11), cg is
the risk premium of the latter individual and we deduce that cib cg.
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C.3. Proof of Proposition 2

We have to compare the payoff of individual i without insurance

1−pð ÞNβw αþβ
;

to the payoff with insurance

1−pð Þαw α p 1−pð Þwð Þβ þ 1−pð Þ 1−pð Þwþ N−1ð Þwð Þβ
� �

:

After simple manipulations, we obtain that individual i prefers no
insurance whenever

g N; pð Þ ¼ 1−pð Þαþβ−1 p
Nβ þ 1−pð Þ N−p

N 1−pð Þ
� �β� 	

b 1:

Notice that

lim
N→þ∞

g N;pð Þ ¼ 1−pð Þα b 1;

which proves the second assertion.
To establish the first assertion, we study the properties of g(N,p)

when p is close to zero. It is straightforward to establish that

g N;0ð Þ ¼ 1;

and

∂g
∂p N;0ð Þ ¼ 1

Nβ −α− β
N
:

When N=2, this partial derivative is negative when β ¼ 1
2 and α N

2
ffiffi
2

p
−1

4 . Andbecause ∂g
∂p N;0ð Þ is decreasingwithN, forNN2, it is also possible

to find values for α and β such that ∂g
∂p N;0ð Þ is negative.

We conclude that for these values ofα and β, g(N,p) is smaller than 1
for sufficiently small values of p.

C.4. Proof of Proposition 5

Weassume that the shock on individualwealths is commonand given
by the random variable w which takes value in 0;wf g, with w N0. The
distribution of w is such that w=0 with probability 1/2 and w¼w with
probability 1/2. Consider individual i and suppose the others do not take
insurance. His expected payoff if he does not take insurance is

1
2
ui w;Nwð Þ þ 1

2
ui 0;0ð Þ;

while if he takes insurance he gets

1
2
ui

w
2
;
w
2
þ N−1ð Þw

� �
þ 1
2
ui

w
2
;
w
2

� �
:

The agent strictly prefers not to take insurance whenever

ui w;Nwð Þ−ui
w
2
; N−1

2

� �
w

� �
N ui

w
2
;
w
2

� �
−ui 0;0ð Þ;

where ui(0,0) is distinct from −∞. Because the function ui is increasing
in its second argument and differentiable, we know that

ui w;Nwð Þ−ui
w
2
; N−1

2

� �
w

� �
≥ui w;Nwð Þ−ui

w
2
;Nw

� �
¼
Z w

w
2

∂ui

∂wi
x;Nwð Þ∂x:
Because ui is concave we obtain

ui w;Nwð Þ−ui
w
2
; N−1

2

� �
w

� �
≥ w

2
∂ui

∂wi
w;Nwð Þ:

Under Assumption 2, the right-hand side of the last equation goes to
+∞ asN goes to+∞. Suppose now that starting from an initial group of
size N0 with possible heterogeneous individuals, we replicate this
economy by creating k avatars of each initial individual-type. As k goes
to +∞, the size of the replicated group, N= kN0,goes to infinity while
keeping the number of individual-type fixed. Therefore it is possible to
find k sufficiently high such that for all individual i in the group

ui w;Nwð Þ−ui
w
2
; N−1

2

� �
w

� �
N ui

w
2
;
w
2

� �
−ui 0;0ð Þ:
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