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Abstract

In many cases the optimal open-loop policy to influence agents who solve dynamic problems

is time inconsistent. We show how to construct a time-consistent open-loop policy rule. We

also consider an additional restriction under which the time-consistent open-loop policy is

stationary. We use examples to illustrate the properties of these tax rules.
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1. Introduction

When non-strategic agents with rational expectations solve dynamic optimization
problems, and a government (or some other ‘‘leader’’) attempts to influence the
agents’ decisions, the government’s optimal program is often time inconsistent.
However, the possibility that the optimal program is time consistent is more general
than is widely believed. We extend results in [6] by developing a simple means of
testing whether a given open-loop policy rule, such as a linear income tax, is time
consistent. This approach also identifies the (possibly non-linear) form of the policy
that ensures time consistency, for a wide class of utility and production functions.
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Alternatively, given a particular functional form for the government’s policy rule, we
can select utility and production functions for which that policy rule is time
consistent. The condition for consistency of the tax policies is intuitive: the effect of
the tax on the agent’s present discounted value of future utility must be independent
of the level of capital (wealth). We then identify a stationary time-consistent policy
rule that is subgame perfect.

2. The model

Our model is standard in the literature on optimal taxation in continuous time (see
[1,6]). A representative agent chooses a consumption trajectory cðtÞ in order to
maximize the present discounted value of utility. The agent’s wealth (capital stock) is
kðtÞ which yields the instantaneous output f ðkðtÞÞ: The tax rule is gðk; tÞ; so after-tax

income is f ðkðtÞÞ � gðk; tÞ and investment is dk
dt
¼ f ðkðtÞÞ � gðk; tÞ � cðtÞ: The

government pays for the flow of a public good, GðtÞ; using taxes, without borrowing,
so GðtÞ ¼ gðk; tÞ: The utility of consumption is UðcÞ and the utility derived from the
public good is VðGÞ; both functions are concave. The agent’s optimization problem
is

max
fcðtÞg

Z N

0

e�rt½UðcðtÞÞ þ VðGðtÞÞ� dt

s:t: dk
dt
¼ f ðkðtÞÞ � gðk; tÞ � cðtÞ; with k0; gðk; tÞ;GðtÞ given: ð1Þ

The agent behaves as if aggregate tax collection, and thus the provision of the public
good, is given. In view of the (assumed) separability of the instantaneous payoff, we
can ignore the term VðGðtÞÞ in studying the agent’s control problem.

We adopt the following assumptions.

Assumption 1. The levels of consumption and the provision of the public good in the
open-loop equilibrium are strictly positive.

Assumption 2. The feasible set of open-loop policy rules does not enable the
government to achieve the first best outcome.

Assumption 3. The government’s tax policy is multiplicatively separable: gðk; tÞ ¼
bðkÞtðtÞ for some functions bðkÞ and tðtÞ:

Assumption 1 rules out uninteresting complications caused by corner solutions.
Assumption 2 states that the tax rule does not give the government enough leverage
to achieve the first best outcome, and thus eliminates a trivial reason for time
consistency. This assumption rules out a poll tax. Assumption 3 allows us to
concentrate on interesting special cases: a linear income tax ðbðkÞ ¼ f ðkÞÞ; a linear
capital tax ðbðkÞ ¼ kÞ; and a non-linear income or capital tax ðbðkÞak; bðkÞaf ðkÞÞ:
(A subsequent footnote explains how our major result changes when we drop
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Assumption 3.) Fixing the function bðkÞ does not restrict the government’s ability to
raise tax revenue for a given level of k; because the government is able to choose tðtÞ:

We use the following:

Definition 1. Conditional on fixed bðkÞ; a tax policy bðkÞtðtÞ is time consistent if and
only if the trajectory tðtÞ that is optimal at time t ¼ 0 remains optimal at every tX0
along the equilibrium trajectory.

If the agent believes that the government will adhere to the announced policy
bðkÞtðtÞ and behaves optimally given this belief, then the government has no
incentive to deviate from the time-dependent part of the policy, tðtÞ:

The qualifier ‘‘conditional on fixed bðkÞ’’ in Definition 1 means that the policy is
‘‘conditionally time consistent’’. Most discussions of time consistency implicitly
contain this kind of conditionality. For example, Xie finds the time-consistent policy
conditional on the use of a linear income tax ðbðkÞ ¼ f ðkÞÞ: Since a major point of
our paper is to show that we can always find a time-consistent policy by the
appropriate choice of bðkÞ; it is important that we make this conditionality explicit.
Hereafter we use the terms ‘‘time consistent’’ and ‘‘conditionally time consistent’’
interchangeably. A time-consistent policy is not necessarily subgame perfect.

3. The time-consistent tax policy

We assume that the necessary conditions to the agent’s control problem provide a
solution to that problem. Given the concavity of UðcÞ; the necessary conditions are
sufficient if f ðkÞ � tðtÞbðkÞ is concave. The function tðtÞbðkÞ is endogenous; we can
check concavity after finding a candidate solution.

Ignoring the function VðGðtÞÞ; we write the current value of the agent’s payoff as
the function Jðk; tÞ: This function solves the Bellman equation (where subscripts
denote partial derivatives):

rJðk; tÞ ¼ max
c

fUðcÞ þ Jkðk; tÞð f ðkÞ � bðkÞtðtÞ � cÞg þ Jtðk; tÞ: ð2Þ

The first order condition to Eq. (2) implies that optimal consumption at a point in
time depends only on the shadow value of capital Jkðk; tÞ:

The standard approach to finding the government’s open loop tax policy is to

maximize
RN
0 e�rt½UðcðtÞÞ þ VðGðtÞÞ� dt with respect to the tax policy ftðtÞgt¼N

t¼0 ;

imposing the necessary conditions to the agent’s optimization problem (1).1 One
necessary condition is the equation of motion for the costate variable for the state k:
Denote this costate variable as qðtÞ: Assuming differentiability of the value function,
we have Jk � q: Xie uses the following:
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In addition to the examples cited in [6], applications include [2–4].
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Definition 2. The costate variable q is ‘‘uncontrollable’’ if and only if its value at time

t is independent of current and future government actions ftðsÞgNs¼t:

Since consumption at a point in time depends only on the costate variable,
consumption is uncontrollable if and only if the costate variable is uncontrollable.

Xie’s Proposition 1 states that the open-loop linear income tax ðgðk; tÞ ¼ f ðkÞtðtÞÞ
is time consistent only if q is uncontrollable. We have a slightly more general result.
(Appendix A contains proofs that are not included in the text.)

Lemma 1. Suppose that Assumptions 1–3 hold. The open-loop tax policy is time

consistent if and only if consumption is uncontrollable.

Using this lemma we obtain:

Proposition 1. Under Assumptions 1–3, the government’s open-loop policy is time

consistent if and only if the agent’s value function is additively separable in the state

variable and time: Jðk; tÞ ¼ WðkÞ þ ZðtÞ for some functions WðkÞ and ZðtÞ:

Proposition 1 implies that time consistency of an open-loop policy requires the
function bðkÞ to be proportional to the reciprocal of the shadow value of capital:

Corollary 1. Suppose that the agent’s value function is additively separable in the state

variable and time. Then there exists a constant a such that

WkðkÞbðkÞ ¼ a: ð3Þ

Proof. From Proposition 1, the optimal consumption rule is a function only of k:
Substituting this optimal rule, c ¼ c�ðkÞ; into Eq. (2) and using Jðk; tÞ ¼ WðkÞ þ
ZðtÞ from Proposition 1, we write the agent’s maximized Bellman equation as

rðWðkÞ þ ZðtÞÞ ¼ Uðc�ðkÞÞ þWkðkÞ½ f ðkÞ � tðtÞbðkÞ � c�ðkÞ� þ ZtðtÞ: ð4Þ

The additive separability of Jðk; tÞ requires that the right side of Eq. (4) must also be
additively separable for any admissible tðtÞ: This requirement implies Eq. (3) with a
equal to a constant. &

The left side of Eq. (4) is the present discounted value of future utility, expressed as
an annuity with discount rate r: The reduction in the value of this annuity (i.e., the
reduction in the value of the agent’s program), caused by the tax, is WkðkÞ½tðtÞbðkÞ�:
Eq. (3) means that this effect of the tax is independent of the value of k: The agent
views a time-consistent tax like a lump sum reduction in the dollar value of future

utility, equal to atðtÞ
r :

The previous results lead to the following necessary and sufficient condition for
time consistency.
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Proposition 2. Under Assumptions 1–3, the government’s open-loop policy is time

consistent if and only if

U 0 r� fkðkÞ
bkðkÞ

� �
bðkÞ þ f ðkÞ

� �
bðkÞ ¼ a: ð5Þ

The proof of this proposition shows that the agent’s consumption rule is

c�ðkÞ ¼ r� fkðkÞ
bkðkÞ

� �
bðkÞ þ f ðkÞ: ð6Þ

We refer to Eq. (5) as the consistency constraint, since the government’s optimal
program is time consistent if and only if it holds.2 Proposition 2 extends Xie’s
Proposition 3 in two respects. First, it shows that the possibility of time consistency
is very general. Given primitive functions U and f ; we can construct b to obtain a
time-consistent tax. Xie restricts bðkÞ � f ðkÞ; i.e. he assumes that the government
must use a linear income tax. Second, our Proposition 2 is a necessary and sufficient
condition, rather than only a sufficient condition.

Given the utility and production functions, the consistency constraint is an
ordinary differential equation (ODE). The solution to this ODE depends on two
parameters, a and a constant of integration that determines the boundary condition
to Eq. (5). Denote this constant of integration by g: The set of time-consistent rules is
the two-parameter family of functions bðk; a; gÞ; when there is no ambiguity, we
suppress the arguments a and g:

4. Stationarity

If the function bðkÞ satisfies the time consistency constraint, then for values of k
along the optimal trajectory the government has no incentive to revise the optimal
time-dependent component of the tax tðtÞ announced at time 0. If for some reason
the state k departs from the equilibrium path, the government might want to change
the original open-loop policy tðtÞ: In that case, the optimal open-loop policy is not
subgame perfect.

However, if for all initial conditions the optimal function tðtÞ announced at time 0
is a constant that is independent of the initial condition (i.e., if the policy is
stationary) then the policy is obviously subgame perfect. The following proposition
provides a restriction involving the primitive functions U ; V ; and f and the tax
policy b that is necessary and sufficient for the optimal t to be a constant. We assume
that the steady state is independent of the initial condition.
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function only requires gðk; tÞ ¼ xðkÞ þ bðkÞtðtÞ for some function xðkÞ (rather than gðk; tÞ ¼ bðkÞtðtÞ as
Assumption 3 maintains). We can repeat the steps used to derive Eq. (5) to obtain the consistency

constraint for the more general tax rule.
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Proposition 3. Suppose that bðkÞ satisfies Eq. (5) (so that the tax is time consistent)
and that c ¼ c�ðkÞ satisfies Eq. (6) (so that the agent behaves optimally). The

government takes bðkÞ and c�ðkÞ as given and chooses the time-dependent component of

the tax tðtÞ; in order to solve

max
ftðtÞg

Z N

0

e�rtðUðc�ðkÞÞ þ VðtbðkÞÞÞ dt

s:t:
dk

dt
¼ f ðkðtÞÞ � tðtÞbðkÞ � c�ðkÞ; k0 given: ð7Þ

The optimal trajectory t�ðtÞ is a constant t (independent of the initial condition) if and
only if there exists a t such that the following equation holds identically in k:

ðrþ ZÞV 0 ¼ ð f 0 þ ZÞU 0 � ðr� f 0 þ tb0ÞtbV 00 ð8Þ
where

Z ¼ � U 0b0

U 00b
þ f 0

� �
: ð9Þ

We refer to Eq. (8) as the stationarity constraint.
We showed above that given the primitive functions U and f ; the set of time-

consistent policy rules bðkÞ is a two-parameter family of functions that depend on a
and g: If the government is required to use a time-consistent policy, then at time 0 it
is able to choose a and g and the open-loop trajectory tðtÞ to maximize its payoff. If
we also impose the requirement that the policy is stationary, then the policy rule bðkÞ
must satisfy Eq. (8). In general, there is no guarantee that there exist functions bðkÞ
and c�ðkÞ that satisfy Eqs. (5), (6), and (8). The next section uses examples to show
that such functions exist in some cases.

It might appear that when imposing the stationarity constraint we obtain an
additional degree of freedom, the parameter t: That is, it might appear that in
selecting a stationary time-consistent policy the government is able to choose three
parameters, a; g and t: This interpretation is incorrect. Without loss of generality,
we can normalize by setting t ¼ 1: The government has only two free parameters,
a and g:

5. Examples with logarithmic utility

We use an example with logarithmic utility to illustrate the relation between the
time-consistent policy and the production function f ðkÞ: We then show how the
stationarity requirement reduces the set of time-consistent policies.

For UðcÞ ¼ ln c; Eq. (5) can be written as

db

dk
¼ ab

�rþ df
dk

af � b
: ð10Þ
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Eq. (10) illustrates that (given the utility function) we can treat either the production
function f ðkÞ or the tax function bðkÞ as primitive; using (10) to solve for the other
function, we obtain a time-consistent tax.

Substituting Eq. (10) into Eq. (6) we obtain

c ¼ r� df
dk

að�rþ df
dk
Þ ðaf � bÞ þ f ¼ b

a
: ð11Þ

Thus, under logarithmic utility the use of a time-consistent tax implies that c ¼ b
a:
3

The government chooses the constant a: The relation between b and c does not
depend on the production function f ðkÞ: The time-consistency constraint does not
restrict the ratio between public and private expenditures, since the government is
able to choose the function tðtÞ:

Suppose that we take the production function as primitive4 and moreover we
assume that production is linear: f ðkÞ ¼ Ak; A40: In this case, inspection of
Eq. (10) confirms that the affine tax is a particular solution; i.e. the linear tax is time
consistent. The linear wealth tax in this case is b ¼ arK ; and the corresponding

income tax is b ¼ ar
A
Ak: The general solution to the ODE gives bðkÞ as an implicit

function of k: We can invert that implicit function to write k as an explicit function
of b:

k ¼ b

ar
þ gb

A
�rþA: ð12Þ

Any tax rule that solves this implicit equation is time consistent. Some of these taxes
may give the regulator a higher payoff than the linear tax. Provided that tðtÞ40;
convexity of bðkÞ insures that the necessary conditions to the agent’s problem are
sufficient to give an optimum. Convexity of bðkÞ holds if and only if gp0:5

We now consider the stationary time-consistent policy for the case where UðcÞ ¼
ln c and VðGÞ ¼ lnðGÞ ¼ lnðbÞ: The last equality uses the budget constraint G ¼
tbðkÞ and the normalization t ¼ 1:Using the definition of Z (Eq. (9)) and Eq. (11) we
have

Z ¼ c db
dk

b
� df

dk
¼

db
dk
� a df

dk

a
:
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3 In the case where UðcÞ ¼ c1�s

1�s ; 0oso1; we can show that if the tax rule satisfies the consistency

condition, then the consumption rule is c ¼ a�
1
sb

1
s: This result reduces to Eq. (11) as s-1 (i.e. for

logarithmic utility). Suppose, in addition, that f ðkÞ ¼ ky: In the case where y ¼ s it is straightforward to

show that bðkÞ ¼ f ðkÞ satisfies the consistency condition, as Xie’s Proposition 2 states. For yas we can

solve the consistency condition numerically to obtain time-consistent tax rules.
4As noted above, we can also take the tax function as primitive. An earlier version of this paper shows

that the linear income tax ðbðkÞ � f ðkÞÞ is time consistent if and only if the production function is affine;

the linear capital tax ðbðkÞ � kÞ is time consistent if and only if f ðkÞ ¼ km ln k þ kg; with m � 1�ar
a and

aX1
r:

5For g ¼ 0; bðkÞ is obviously monotonically increasing. For go0; bðkÞ is monotonically increasing for

all k if Aor: If go0 and in addition A4r; then bðkÞ is increasing provided that k is less than a critical

value. This critical value can easily be obtained from Eq. (12).
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Using this expression and Eq. (11), Eq. (8) simplifies to

db

dk
¼ db

dk

c� b

ac
¼ db

dk

b� ab
ab

¼ db

dk

1� a
a

: ð13Þ

Since db
dk
a0 Eq. (13) implies that a ¼ 1

2
:

For logarithmic utility, the time-consistent stationary tax is a solution to Eq. (10)

with a ¼ 1
2
: The stationarity constraint removes one degree of freedom from the

government, by pinning down the value of a: The government still has one degree of
freedom: it chooses the boundary condition to the ODE (10); i.e., the government
chooses the parameter g:

We noted that the time-consistency constraint does not restrict the equilibrium
ratio of public and private expenditures. The stationarity constraint, however,
implies that consumption of the private good is twice the level of consumption of the
public good. This result does not depend on the production function or on the
particular time-consistent stationary tax that the government uses.

If we specialize further by choosing linear production, f ðkÞ ¼ Ak; the stationary

time-consistent tax is a solution to Eq. (12) with a ¼ 1
2
: Suppose, in addition, we

assume that government uses an affine tax, i.e. a tax of the form b ¼ bk þ f:
Substituting this expression into Eq. (10) and equating coefficients of powers of k; we
conclude that f ¼ 0 and b ¼ r

2
: Since income equals f ðkÞ ¼ Ak; the unique affine

income tax is r
2A
: This result reproduces Eq. (23) in Xie. The result also shows (for

logarithmic utility and linear production) that any affine tax is linear: it never
involves a lump sum tax/subsidy.

The linear tax does not enable the government to achieve the first best outcome.

Under the linear tax c ¼ 2b ¼ rk; and under the first best outcome c ¼ b ¼ r
2
k:

Consequently we cannot rule out the possibility that the government has a higher

payoff if it uses one of the nonlinear taxes that solve Eq. (12) with a ¼ 1
2
:

Appendix. Proofs

Proof of Lemma 1. The argument that establishes Xie’s Proposition 1 also
demonstrates the ‘‘only if’’ part of the claim in the more general case where gðk; tÞ ¼
bðkÞtðtÞ; e.g. where bðkÞaf ðkÞ; we do not repeat the argument here. To establish the
‘‘if ’’ part, note that in the case where consumption is not controllable, the
government has a control problem with one state variable, k; the initial value of
which is predetermined. (When qt ¼ qðktÞ; i.e., when qðtÞ is independent of
tðsÞ; sXt; the initial value of q is not free.) The solution to this kind of control
problem satisfies the dynamic programming Principle of Optimality, and is thus time
consistent. &

The proof of Proposition 1 requires an intermediate result. A perturbation of a
‘‘reference’’ tax policy is

tðtÞ ¼ t�ðtÞ þ ahðtÞ;
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where t�ðtÞ is the reference tax policy, hðtÞ is a continuously differentiable function of
time which represents a perturbation, and a is a scaling parameter for perturbation.
When a ¼ 0 we obtain the reference policy. The value function of the consumer is
now parameterized by a; given the perturbation function hðtÞ and the policy function

t�ðtÞ: We write this value function as J̃ðkt; ftðsÞgNs¼tÞ to emphasize that the agent’s

payoff depends on the future trajectory of taxes. For a fixed tax trajectory ftðsÞgNs¼t

the only exogenous time-dependent change arises from the change in the minimum

value of the time dummy, s ¼ t: Thus, J̃ðkt; ftðsÞgNs¼tÞ � Jðkt; tÞ: In other words, the

second argument in the function Jðkt; tÞ ‘‘summarizes’’ the effect, on the agent’s

payoff, of the future sequence of taxes, ftðsÞgNs¼t: Using this notation we obtain:

Lemma A.1. Suppose Assumptions 1–3 hold. The open-loop optimal tax policy is time

consistent if and only if

@

@a

@J̃ðkt; ftðsÞgNs¼tÞ
@k

¼ 0 ðA:1Þ

for all admissible t�ðtÞ and hðtÞ:

Proof. By the first order condition to the Bellman equation (2), consumption equals

U 0�1ðJkÞ; i.e. consumption depends only on the shadow value of capital. By the

identity J̃ðkt; ftðsÞgNs¼tÞ � Jðkt; tÞ; the shadow value of the state, Jk (and thus

consumption) is uncontrollable if and only if Eq. (A.1) holds for all admissible t�ðtÞ
and hðtÞ: By Lemma 1, Eq. (A.1) is therefore necessary and sufficient for time
consistency. &

Proof of Proposition 1. We first establish the ‘‘only if’’ part of the proposition. From

Lemma A.1, time consistency implies Eq. (A.1), which implies that
@J̃ðkt;ftðsÞgNs¼tÞ

@K ¼
cðkÞ for some function cð�Þ: Taking the integral of both sides,

J̃ ¼
Z k

cðkÞ dk þ ZðtÞ; ðA:2Þ

where ZðtÞ is the constant of integration. The identity J̃ðkt; ftðsÞgNs¼tÞ � Jðkt; tÞ
completes the demonstration.

To establish the ‘‘if’’ part of the proposition we can simply note that Eq. (A.2)
implies Eq. (A.1), and then invoke Lemma A.1. &

Proof of Proposition 2. The proof of the sufficient part is an adaptation of [6,
Proposition 3, p. 419]. Suppose that Eq. (5) is satisfied. It suffices to show that under
this condition, the consumption path is independent of the time-dependent part of
tax policy.

Consider the consumption plan given by Eq. (6). We can verify that this
consumption plan satisfies the first order conditions for the agent’s control problem
and the transversality condition. (This verification uses the same steps as Xie’s
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proof.) Moreover this consumption plan is independent of the time-dependent part
of tax policy, tðtÞ and therefore is uncontrollable.

The necessary part follows from Corollary 1. Using (3) in (4) we obtain an
equation for WðkÞ:

rWðkÞ ¼ Uðc�ðkÞÞ þWkðkÞ½ f ðkÞ � c�ðkÞ�: ðA:3Þ

Eqs. (3) and (A.3) hold identically. We differentiate them with respect to k to obtain

WkkbþWkbk ¼ 0; ðA:4Þ

rWk ¼ Wkkð f � cÞ þWkfk: ðA:5Þ

Using (A.4) and (A.5) we can solve for the optimal consumption rule c�ðkÞ to
obtain Eq. (6). Finally, using the first order condition U 0ðcÞ ¼ Wk and Eqs. (3) and
(6) we obtain Eq. (5). &

We use a lemma to establish Proposition 3. Denote toðt; k0Þ as the open-loop

representation of the solution to the problem (7), and denote tfbðkÞ as the feedback
representation of the solution to this problem. We assume that the steady state to
this problem, kss; is independent of the initial condition. The proof of Proposition 3
uses the following lemma:

Lemma A.2. Given a time-consistent policy rule bðkÞ; the optimal toðtÞ; is a constant

(independent of the initial condition) for all initial conditions k0akss if and only if the

feedback form of the policy, tfbðkÞ is independent of k.

Proof. Taking as given the parameters a and g; Eqs. (6) and (5) determine the
functions cðk; a; gÞ and bðk; a; gÞ: Given these functions, the government solves an
autonomous control problem. The value of its program is a function Sðk; a; gÞ that
satisfies the Bellman equation

rSðkÞ ¼ max
t

fUðcðkÞÞ þ VðtbðkÞÞ þ SkðkÞð f ðkÞ � cðkÞ � tbðkÞÞg: ðA:6Þ

The solution to the government’s stationary control problem is a policy rule tfbðkÞ:
Using this function and the agent’s control rule, we can solve the equation for dk

dt
to

obtain keðt; k0Þ; the equilibrium value of the state (‘‘e’’ denotes equilibrium) at time t:
Substituting keðt; k0Þ into the government’s policy rule, we obtain the open-loop

representation of the policy, toðt; k0Þ � tfbðkeðt; k0ÞÞ: Since k0akss; dke

dt
a0 along the

optimal trajectory. Therefore toðt; k0Þ is a constant if and only if tfbðkÞ is
independent of k: &

Proof of Proposition 3. In view of Lemma A.2 we need to show that the feedback

form of the government’s control rule, tfbðkÞ is independent of k: We begin with
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some notation, for the purpose of simplifying the derivations. Use Eq. (6) to write

f � c ¼ �r� f 0

b0
b: ðA:7Þ

Define

Z � d

dk

r� f 0

b0
b

� �
: ðA:8Þ

With this notation we have

f 0 � c0 ¼ �Z: ðA:9Þ
Differentiating both sides of Eq. (5) with respect to k; using definition (A.8), implies

U 0b0 þU 00½Zþ f 0�b ¼ 0:

Rearranging this expression gives Eq. (9).
We now proceed with the main argument. Using Eq. (A.7), we rewrite the

government problem (A.6) as

rS ¼ max
t

U þ V � S0 r� f 0

b0
þ t

� �
b

� �
: ðA:10Þ

The first order condition to (A.10) is

V 0ðtbðkÞÞ ¼ S0ðkÞ: ðA:11Þ
Eq. (A.11) implicitly defines the optimal tax rule tðkÞ: Substituting this tax rule into
Eq. (A.11) and taking the derivative of both sides, we obtain

S00 ¼ V 00ðtb0 þ bt0Þ: ðA:12Þ
Substituting the optimal tax rule tðkÞ into (A.10) we obtain the maximized

Bellman equation. We take the derivative with respect to k of both sides of the
maximized Bellman equation to obtain

rS0 ¼ U 0c0 þ V 0tb0 � S0ðZþ tb0Þ � S00 r� f 0

b0
bþ tb

� �
: ðA:13Þ

We then use Eqs. (A.9) to eliminate c0; and Eqs. (A.11) and (A.12) to eliminate S0

and S00 from Eq. (A.13). The resulting equation and the identity t0ðkÞ � 0 are both
satisfied if and only if Eq. (8) holds identically in k: &
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