
Appendix (not intended for publication) for
Indeterminacy with Environmental and Labor

Dynamics

Larry Karp∗and Thierry Paul†

September, 2005

∗207 Giannini Hall,Department of Agricultural and Resource Economics, University of California, Berkeley
CA 94720. Email: karp@are.berkeley.edu

†IDEP/ GREQAM, 2 rue de la Charité, Centre de la Vieille Charité, 13002 Marseille. Email : tpaul@univ-aix.fr



This appendix proves Proposition 2 and Remark 2 from the paper. It explains why we have
not been able to exclude the possibility that the projection of a trajectory leaves Ω before satis-
fying the boundary condition. It discusses the numerical algorithm used in the Section 5.

Proof of Proposition 2
Part (i). The function φ is quadratic in γ. The positive root of φ = 0 is
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Part (ii). Using the formulae for φ,
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Evaluating this derivative at γ = γ∗ gives
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Consequently, φ > 0 for γ > γ∗.

Part (iii). We first establish that ∂γ∗

∂g
< 0. Using the definition of γ∗ we have

∂γ∗

∂g
=
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q
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The sign of this derivative depends on the sign of N . This function, evaluated at g = 0 is−4r6,
so for small g we have ∂γ∗

∂g
< 0. To complete the argument, we need to show that N never
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changes signs. The roots of N = 0 are
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so there are no real positive roots, and N does not change signs for r > 0.
We now establish that ∂γ∗

∂r
> 0. Using the definition of γ∗ we have
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The function M evaluated at g = 0 equals 4r5 > 0. The roots of M = 0 are
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so M > 0 for all positive real values of r and g.

Part (iv). In view of Parts (ii) and (iii),

φ > 0⇒ γ > γ∗ ≥ min
g

γ∗ = lim
g→∞

γ∗.

A necessary condition for φ > 0 is that γ is sufficiently large, that is, such that φ > 0 in the
limit as g →∞. The leading term (by powers of g) of φ is

g4

27
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,

which is positive if and only if γ > r2

4
.

Proof of Remark 2
We begin by writing the three dimensional system as a single third order differential equa-

tion. We use this equation to show how the initial conditions and the boundary conditions de-
termine the unknown constants. Using this formula we show that the iso-T curves are straight
lines.

To obtain a third order equation, we first differentiate equation (8) (from the paper) with
respect to time,
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Using (6) and the above equation yields
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Differentiating (A2) with respect to time leads to
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Combining with (7) and (A1), we get

...
q + (g − r)

..
q − rg

.
q + γgq = 0. (A3)

The general solution of the third order differential equation (A3) is

q(t) = C1e
v1t + C2e

v2t + C3e
v3t (A4)

where v1, v2 and v3 are the roots of the characteristic polynomial of the dynamic system, C1, C2
and C3 are constants whose values are found using the boundary conditions of the model

Given the closed form solution (A4), we can recover l(t) and e(t) using equations (8) and
(A2)

l(t) = −1
g
(
..
q − (r − g)

.
q − rgq)

= d1(t)C1 + d2(t)C2 + d3(t)C3

e(t) =
.
q − rq

= f1(t)C1 + f2(t)C2 + f3(t)C3

where di(t) = −evit

g
[v2i − (r − g)vi − rg] , fi(t) = (vi − r)evit.

Using this general solution, a trajectory with initial condition w0 = (l0, e0), w0 ∈ B(k) (for
k = −0.5 or k = 0.5) is a solution to the system if and only if there exist real T > 0 and
C1, C2, C3, that satisfy

A(T )C = F, (A5)
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where
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0

⎞⎟⎟⎟⎟⎟⎠
The first two equations of system (A5) reproduce the initial condition w0 = (l0, e0) and the last
two equations reproduce the terminal conditions lT = k and q(T ) = 0.

Suppose that w0 = (l0, e0) ∈ B(k) (for k = −0.5 or k = 0.5) and let T ∗ be the amount of
time it takes to reach lT = k. From above, we know that there exists a vector C 0 = (C1,C2,C3)0

that satisfy

eA(T ∗)C = eF
where eA(T ∗) is a 3x3 matrix obtained by removing the first row of matrix A(T ∗) and eF is 3x1
vector obtained by removing the first element of vector F . From the above equation, we obtain
C = eA−1(T ∗) eF

Using system (A5) to solve for l0, we have

l0 = d(0)0 eA−1(T ∗) eF + 0.5
where d(0)0 = (d1(0), d2(0), d3(0)). Since eA−1(T ∗) eB is linear in e0, the above expression can
be rewritten as

l0 = X(T ∗) + Y (T ∗)e0 (A6)

For a given T ∗, equation (A6) defines a straight line; from any point (l0, e0) lying on that line,
there exists a trajectory starting from this point and reaching lT = k in T ∗ units of time.

Do trajectories remain in Ω?
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Figure 1: Examples of trajectories leaving Ω

Figure 1 illustrates the difficulty of proving that projections of trajectories onto the (l, e)
plane do not leave Ω before satisfying the boundary condition. Let P be the plane that is
spanned by the characteristic vectors associated with the unstable roots of F ; P is the stable
manifold for the reversed time system. Let P ∗ be the intersection of this plane and the (l, e)
plane. The heavy line segment shows the feasible boundary values at T , given specialization
in Agriculture (using Proposition 3).

Consider the reversed-time system of our original three-dimensional system, and choose an
initial condition l(0) = −0.5, q(0) = 0, and 0 < e(0) < 0.5, such as either the point L or K in
figure 1. From Proposition 3, the projection (onto the (l, e) plane) of this trajectory (running
in reversed time) enters Ω, as shown. The solid part of the projected trajectory represents
the portion where l̇ > 0 (in reversed time), i.e. q < 0, and the dashed part represents the
portion where the direction is reversed. The two hypothetical trajectories from K and L reverse
direction at points I and J , respectively.

A trajectory cannot cross the plane P , since any trajectory that touches this plane remains
on it. Consequently, no trajectory can pass through the (e, l) plane on different sides of P ∗.
This fact means that trajectory #1, through points K and I, cannot occur. However, we cannot
exclude the possibility shown by trajectory #2. In particular, we cannot rule out the possibility
that the projection of this trajectory reenters Ω and reaches point M .

If such a trajectory exists, then in the normal time system there is a trajectory beginning at
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point M (with q > 0) that satisfies the differential equations (in normal time) and the boundary
conditions for specialization in Agriculture. This trajectory would not be an equilibrium, since
it leaves Ω. Consequently, satisfaction of the differential equations and the boundary condi-
tions would not imply that M ∈ B(−0.5). Analysis of the differential system and boundary
conditions in this case is not sufficient to reach conclusions about the ROI.

The numerical algorithm
We write the three dimensional system as a single third order differential equation as above.

The solution to this equation requires three constant Ci, i = 1, 2, 3, and a terminal time T . We
express the constant Ci as functions of the terminal time T using the initial conditions e0, l0 and
the terminal condition lT = k ∈ {−0.5, 0.5). We then use the transversality condition q(T ) = 0
to obtain an implicit function which gives the equilibrium values of T as a function of e0, l0 and
lT :

H(T ; e0, l0, lT ) = 0.

If, for a given initial value (e0, l0) and boundary value lT = −0.5, there exists a real and
positive solution T , then there is at least one trajectory converging toward full specialization in
Agriculture. We then need to confirm that this trajectory reaches the boundary without exiting
Ω. If these conditions are satisfied, then (e0, l0) ∈ B(−0.5). (If (e0, l0) is near U and φ > 0

there may be many real, positive roots of H, and many trajectories to the boundary.) The
method of determining which points belong to B(0.5) is symmetric.
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