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A Proofs

To simplify notation we assume that g(η− 1) = 0. The proofs extend to the

general case by substituting δ̃ ≡ δ + g(η− 1) and γ̃ ≡ γ + g(η− 1) for δ and

γ, respectively.

Lemma 1: Consider the game in which the payoff at time t equals expres-

sion (9); the regulator at time t chooses w(t) ∈ Ω ⊂ R, taking as given

her successors’ control rule χ̂(z); and the state variables h and y obey equa-

tions (4) and (8). Let V (h) equal the value of expression (9) in a MPE (the

value function). A MPE control rule χ(h) ≡ χ̂(z) satisfies the (generalized)

dynamic programming equation (DPE):

K(h) + (γ̃ + h)V (h) = max
w∈Ω

{U(w) + q(h,w)V ′(h)} (10)

with the “side condition”

K(h) ≡ (δ − γ) (1− β)

∫ ∞

0

e−(δ̃τ+y(t,τ))U (χ(h(t+ τ))) dτ . (11)

Proof. The proof is almost direct consequence of Proposition 1 and Remark

2 in [16]. In that paper the state variable is a scalar, but the same results

hold (making obvious changes in notation) when the state is a vector, as

in the present case. Our state variable is z ≡ (h, y) and the flow of utility
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(prior to the event) is e−y(t)U(w(t)). Specializing equation (5) of [16] to our

setting, and using the hyperbolic discount factor in equation (2), yields the

generalized DPE

K̂ (z) + γW (z) = max
w∈Ω

(
e−y(t)U(w(t)) +Whg +Wyh

)
, (A.1)

where W (z) is the value function (with subscripts denoting partial differen-

tiation) and

K̂ (z) = (δ − γ) (1− β)

∫ ∞

0

e−(δt+y(t))U (χ̂ (z)) dt (A.2)

is implied by equation (4) and Remark 2 of [16]

Use the “trial solution” W (z) = e−yV (h) and K̂ (z) = e−yK(h), so Wy =

−e−yV (h) and Wh = e−yV ′(h). Substituting these expressions into equation

(A.1), canceling e−y and rearranging, yields equation (10). Conclude that

χ̂ (z) = χ (h): the equilibrium control depends only on the hazard rate.

Conditional on survival up to time t, the probability of survival until time

s > t equals exp
(
−
∫ s

t
h(τ)dτ

)
= exp (−y(s) + y(t)). Use this fact and the

trial solution to rewrite equation (A.2) as

K(h(t)) = (δ − γ) (1− β) ey(t)
∫∞
t

e−δ(s−t) exp
(
−
∫ s

t
h(τ)dτ

)
e−y(t)U (χ (h (s))) ds

= (δ − γ) (1− β)
∫∞
t

e−δ(s−t) exp
(
−
∫ s

t
h(τ)dτ

)
U (χ (h (s))) ds

(A.3)

Setting t = 0 in equation (A.3) produces equation (11).

Lemma 3: The functions π (h) and σ (h) are increasing over (0, a) with

π (a) = σ (a) = 1, and σ (h) is concave.

Proof. Define

ϖ(h) ≡ π(h)−1 = 1− µ (a− h) ξ′(h).

Differentiating, using equation (17), we obtain

ϖ′(h) = µξ′(h)− µ (a− h) ξ′′(h) < 0.
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Thus,

π′(h) = −ϖ′(h)/ϖ(h)2 > 0.

Differentiating (16), using equation (18), gives

σ′ (h) = −µν ′(h) + µ (a− h) ν ′′ (h) > 0. (A.4)

To establish σ′′(h) < 0, use equation (18) and differentiate three times to

obtain ν ′′′(h) < 0. Differentiating equation (A.4) gives

σ′′(h) = −2µν ′′(h) + µ (a− h) ν ′′′ (h) < 0.

By inspection π (a) = σ (a) = 1.

Proposition 1: There exists a pure strategy stationary MPE for all 0 < x < 1

and all initial conditions h = h0 ∈ (0, a) if and only if

π (h) < σ (h) , h ∈ (0, a). (23)

Under inequality (23), there exists a MPE with perpetual stabilization (w ≡ 1)

if and only if at the initial hazard h the cost of stabilization satisfies

x < xU (h) ≡ 1− π (h) ; (24)

there exists a MPE with perpetual BAU (w ≡ 0) if and only if at the initial

hazard h the cost of stabilization satisfies

x > xL (h) ≡ 1− σ(h). (25)

Proof. We first establish sufficiency of inequality (23) using a constructive

proof, which also establishes the claims associated with inequalities (24) and

(25). We then show necessity of inequality (23) using a proof by contradic-

tion.

Sufficiency Suppose that σ > π for h ∈ (0, a). We show that there

exists a MPE that satisfies w ≡ 1 (perpetual stabilization) if and only if the
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initial condition h0 = h satisfies equation (24). In a MPE with perpetual

stabilization, it is optimal for the current regulator to stabilize given that she

believes that future values of h lie in the stabilization region (so she believes

that all subsequent regulators will stabilize). The belief that future values

of h lie in the stabilization region (a belief we test below) means that for

initial conditions in the interior of the stabilization region the value function

is given by V S (h), defined in equation (22), and

V S′(h) = U(1)ξ′ (h)

with ξ′ (h) obtained using equation (17).

Using equation (10) (and the belief that future values of h lie in the

stabilization region), it is optimal for the current regulator to stabilize if and

only if

U(1) ≥ U(0) + µ (a− h)U(1)ξ′ (h)

or
U (1)

U (0)
≥ π (h) . (A.5)

If inequality (A.5) is satisfied with strict inequality (as the Proposition re-

quires) at the current time, then regardless of whether the current regulator

uses stabilization or BAU, the inequality is satisfied at neighboring times (the

near future). Thus, the current regulator’s beliefs that future regulators will

stabilize are consistent with equilibrium, regardless of the actions taken by

the current regulator. If inequality (A.5) is not satisfied, then clearly per-

petual stabilization is not an equilibrium. We consider below the case where

the weak inequality (A.5) holds with equality.

We turn now to the equilibrium with perpetual BAU. In a MPE with

perpetual BAU, it is optimal for the current regulator to follow BAU given

that she believes all subsequent regulators will follow BAU. This belief im-

plies that the value function is given by V B (h), defined in equation (21).

It is optimal for the current regulator to pursue BAU if and only if U(0) +
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µ (a− h)U(0)ν ′ (h) > U (1) or, equivalently, if and only if

U (1)

U(0)
< σ (h) ≡ 1 + µ (a− h) ν ′ (h) ,

establishing condition (25).

To complete the demonstration that perpetual stabilization is an equi-

librium, it is necessary to confirm that if equation (25) is satisfied at time t

when the hazard is h, then it is also satisfied at all subsequent times, so that

the regulator’s beliefs are confirmed. The hazard is increasing on the BAU

equilibrium path (and non-decreasing on any feasible path), so it is sufficient

to show that σ′ (h) > 0. This inequality was established in Lemma 3.

Now we return to the case where inequality (A.5) is satisfied with equality.

We want to show that in this case, stabilization is not an equilibrium action.

Suppose to the contrary that it is optimal to stabilize when inequality (A.5)

is satisfied with equality. From equation (14), the current regulator wants to

use BAU if and only if U (1) < U (0) + µ (a− h)V ′(h). In order to evaluate

the right side of this inequality, we need to know the value of V ′ (h); this

(shadow) value of course depends on the behavior of future regulators.

Because π′(h) > 0 from Lemma 3, if the current regulator uses BAU, h

increases and the state is driven out of the stabilization region. Therefore,

the current regulator can discard the possibility that (if she were to use BAU)

all future regulators would stabilize. Future actions could lead to only one

of two possible equilibrium trajectories: (i) All future regulators will follow

BAU; or (ii) future regulators will follow BAU until the state h reaches a

threshold, say h0 < h̃ < a, after which all regulators stabilize. There are no

other possibilities, because once the state enters a stabilization region it does

not leave it. This fact is a consequence of our restriction to pure strategy

equilibria. However, alternative (ii) cannot occur, because h̃ lies to the right

of the curve π (h), and therefore is not an element of the stabilization region.

Thus, the only equilibrium belief for the current regulator is that the use of

BAU (and the subsequent increase in h) will cause all future regulators to
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use BAU. Consequently, where inequality (A.5) is satisfied with equality, it

must be the case that V ′(h) = V B′(h) = U(0)ν ′ (h). The assumption that

σ(h) > π(h) implies that π(h) lies in the region where perpetual BAU is an

equilibrium strategy. Thus, π(h) does not lie in the stabilization region, as

asserted by the proposition.

Necessity: We use a proof by contradiction, consisting of two parts, to

establish necessity. The first part shows that σ (h) < π (h) cannot hold, and

the second part shows that it cannot be the case that σ (h) = π (h) at any

points in (0, a).

For the first part, suppose that for some interval σ (h) < π (h). Figure A.1

helps to simplify the proof. This figure shows a situation where σ (h) < π (h)

for small h, but it is clear from the following argument that the region over

which σ (h) < π (h) is irrelevant. (An obvious variation of the following

argument can be used regardless of the region over which σ < π, because both

of these curves are monotonic.) Suppose that the value of U(1)
U(0)

lies between

the vertical intercepts of the curves, as shown in the figure; e.g. U(1)
U(0)

=

d. Define h1 implicitly by σ (h1) = d. we want to establish that for any

initial condition h0 = h < h1 there are no pure stationary MPE. Perpetual

stabilization is not an equilibrium because d < π (h1), and perpetual BAU is

not an equilibrium because d > σ (h1). The only remaining possibility is to

follow BAU until the hazard reaches a level h̄ < h1 and then begin perpetual

stabilization. (Recall that once the state enters the stabilization set it cannot

leave that set.) However, this trajectory cannot be an equilibrium because

the subgame beginning at h̄ cannot lead to perpetual stabilization (because

the point (h1, d) lies below the curve π).

For the second part, suppose that σ (h) ≥ π (h) with equality holding at

one or more points in (0, a) (that is, the graphs are tangent at one or more

points). Let ĥ be such a point. The argument above under “sufficiency”

establishes that if U(1)
U(0)

= π
(
ĥ
)
, then at h = ĥ (where equation (A.5) holds

with equality) neither perpetual stabilization not perpetual BAU are MPE.
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Figure A.1: Graphs of σ(h) and π(h) that do not satisfy inequality (23).

The only remaining possibility would be to follow BAU for a time and then

switch to stabilization in perpetuity. However, that cannot be an equilibrium

trajectory, because the initial period of BAU drives the h above ĥ, where
U(1)
U(0)

< π (h), so the subsequent stabilization period cannot be part of a

MPE. Therefore, at h = ĥ there is no MPE if U(1)
U(0)

= π
(
ĥ
)
.

Proposition 2: Suppose that Condition (23) is satisfied. (i) For x > 1− π(h)

the unique (pure strategy) MPE is perpetual BAU. (ii) There are no equilib-

ria with “delayed BAU”. (iii) A necessary and sufficient condition for the

existence of equilibria with delayed stabilization is

Θ(h) < x < 1− π(h). (27)

(iv) For all parameters satisfying 0 ≤ h ≤ a, 0 < β < 1, δ ̸= γ, and µ > 0,

a MPE with delayed stabilization exists for some x ∈ (0, 1).

Proof. We use the following definition

hπ(x) ≡

{
π−1(1− x) for x ∈ [0, 1− π(0))

0 for x ∈ [1− π(0), 1]
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Hazard rates that satisfy h > hπ(x) lie above the curve 1− π in Figure 1.

(i) The stabilization set is absorbing, because if a (pure strategy) MPE

calls for a regulator to stabilize, the hazard never changes. By Proposition

1, there are no equilibria with perpetual stabilization when h(0) ≥ hπ, and

there is an equilibrium with perpetual BAU. The latter is therefore the

unique equilibrium. Claim (ii) follows immediately from the fact that the

stabilization set is absorbing

(iii) We now consider the case where h(0) < hπ; equivalently, x < 1−π (h).

From Proposition 1 we know that there is an equilibrium with perpetual sta-

bilization for these initial conditions; and we know that there is an equilib-

rium with perpetual BAU if x lies between the curves 1−π and 1−σ. Since

the stabilization set is absorbing, we do not need to consider the possibility

of equilibria that begin with stabilization and then switch to BAU. Thus,

we need only find a necessary and sufficient condition under which there is

a “delayed stabilization” equilibrium, i.e. one that begins with BAU and

switches to stabilization when the state reaches a threshold h̃ > h (0). To

conserve notation, throughout the remainder of this proof we use h to denote

an initial condition, and use h (τ), with τ ≥ 0, to denote a subsequent value

of the hazard when regulators use a MPE.

Define two sets, A =
{
h | ha ≤ h < h̃

}
and B =

{
h | h̃ ≤ h < hb

}
, where

ha < h̃ < hb < hπ. The MPE for initial conditions in set B is to stabilize,

and the MPE for initial conditions in set A is to follow BAU. The existence

of B follows from the fact that it is an equilibrium to stabilize for any initial

conditions in [0, hπ) (in view of Proposition 1). In addition, h remains

constant when the regulator stabilizes. Therefore, any subset of the interval

[0, hπ) qualifies as the set B.

The existence of A is not obvious. We cannot rely on the proof of

Proposition 1, since that proof applies to the case where the regulator follows

BAU in perpetuity. Here we are interested in the case where the regulator

switches from BAU to stabilization at a finite time. We obtain the necessary
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and sufficient condition for the existence of a set A with positive measure.

Suppose (provisionally) that the set A exists. We define the value func-

tion for initial conditions in A ∪ B as V (h; h̃). We include the second

argument in order to emphasize the dependence of the payoff on the switch-

ing value h̃. For convenience, we repeat the definition of the value function,

given the initial condition h ∈ A ∪B.

V
(
h; h̃

)
=

∫ ∞

0

e−y(τ)θ (τ)U(χ (h(τ)) dτ with χ (h) =

{
0 for h ∈ A
1 for h ∈ B

}
,

y(τ) =

∫ τ

0

h(s)ds, h (s) =

{
min

(
a− (a− h) e−µs, h̃

)
for h ∈ A

h for h ∈ B

}
.

Note that for h (τ) ∈ A, h (τ) is a function of the initial condition, h.

For h ∈ A the regulator chooses BAU (under the candidate program).

Using equation (14), this action is part of an equilibrium if and only if

U (0)− U (1) > −µ (a− h)Vh(h; h̃). (A.6)

In order to determine when this inequality holds, we need to evaluate Vh(h; h̃).

For h ∈ A the value function can be split into two parts: the payoff that arises

from following BAU until reaching the threshold h̃, and the subsequent payoff

under stabilization. We state some intermediate results before discussing this

two-part value function.

Define T (h; h̃) as the amount of time it takes to reach the stabilization

threshold (the “time-to-go”), given the current state h ∈ A; T is the solution

to

h̃ = a− (a− h) e−µT ⇒ (A.7)

T
(
h̃; h̃

)
= 0 and

dT

dh
=

−1

µ (a− h)
. (A.8)

For h ∈ A and for τ ≤ T

dy (τ)

dh
=

d
∫ τ

0
h(s)ds

dh
=

∫ τ

0

dh(s)

dh
ds =

∫ τ

0

e−µsds =
1− e−µτ

µ
. (A.9)
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In addition, for h ∈ A and for τ > T

dy(τ)
dh

=
d(

∫ T
0 h(s)ds+h̃(τ−T ))

dh
=∫ T

0
dh(s)
dh

ds+
(
h(T )− h̃

)
dT
dh

=
∫ T

0
e−µsds

The last equality uses the fact that h(T ) = h̃, from the definition of T .

Using equation (A.7) and (A.8), we can invert the function T (h; h̃) to write

the initial condition h as a function of the time-to-go T and the threshold h̃.

Using this fact, equation (A.9) and the definition of y(τ), we have

y(T ) =

∫ T

0

h(s)ds ⇒

dy(T )

dT
= h (T ) +

∫ T

0

dh(s)

dh

dh

dT
ds (A.10)

We now discuss the value function for h ∈ A. Splitting the payoff into

the parts before and after the threshold is reached, this function equals

V
(
h; h̃

)
=

∫ T

0

e−y(τ)θ (τ)U(0)dt+

∫ ∞

T

e−y(τ)θ (τ)U(1)dt

and its derivative with respect to h (using equation (A.9)) is

Vh

(
h; h̃

)
= (U (0)− U (1)) e−y(T )θ (T ) dT

dh
+

∫ T

0

d(e−y(τ))
dh

θ (τ)U(0)dt+
∫∞
T

d(e−y(τ))
dh

θ (τ)U(1)dt

= −(U(0)−U(1))
µ(a−h)

e−y(T )θ (T )−(∫ T

0

(
1−e−µτ

µ

)
e−y(τ)θ (τ)U(0)dt+

∫∞
T

(
1−e−µT

µ

)
e−y(τ)θ (τ)U(0)dt

)
.

Using this expression, we can write the optimality condition (A.6) as

U (0)− U (1) > (U (0)− U (1)) e−y(T )θ (T )+

µ (a− h)
(∫ T

0

(
1−e−µτ

µ

)
e−y(τ)θ (τ)U(0)dt+

∫∞
T

(
1−e−µT

µ

)
e−y(τ)θ (τ)U(0)dt

)
.

(A.11)
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It is convenient to treat T as the independent variable, recognizing that the

initial condition h is a function of T (from equation (A.7)): h = h(T ). The

existence of a set A with positive measure requires that inequality (A.11)

holds for small positive values of T , i.e. for initial conditions h close to but

smaller than h̃.

The first order Taylor expansion of the first term on the right side of

inequality (A.11) is

(U (0)− U (1))− (U (0)− U (1))
(
h̃+ r(0)

)
T + o (T ) . (A.12)

This expansion uses equations (3) and (A.10) and the fact that θ (0) = 1.

Using the fact that 1− e−µT = 0 at T = 0, the first order Taylor expansion

of the second term on the right side of inequality (A.11) is

µ
(
a− h̃

)
T
∫∞
0

e−y(τ)θ (τ)U(1)dt+ o (T ) =

µ
(
a− h̃

)
T
∫∞
0

e−h̃τθ (τ)U(1)dt+ o (T ) =

µ
(
a− h̃

)
T (1−β)γ+βδ+h̃

(h̃+γ)(h̃+δ)
U(1) + o (T ) .

(A.13)

Substituting expressions (A.12) and (A.13) into inequality (A.11), dividing

by T and letting T → 0 (from above) produces the inequality

(U (0)− U (1))
(
h̃+ r(0)

)
> µ

(
a− h̃

) (1− β) γ + βδ + h̃(
h̃+ γ

)(
h̃+ δ

) U(1). (A.14)

Using x ≡ 1− U(1)
U(0)

and r(0) = βγ+δ(1−β) (from equation (3)), and replacing

h̃ with h, inequality (A.14) can be expressed as

x

1− x
(h+ βγ + δ(1− β)) > µ(a− h)

(
β

h+ γ
+

1− β

h+ δ

)
or, equivalently,

x > Θ(h),
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where Θ(h) is defined in equation (26), establishing part (iii).

(iv) Using

−ξ′(h) =

∫ ∞

0

te−htθ(t)dt =
β

(h+ γ)2
+

1− β

(h+ δ)2
,

we express π(h), defined in (15), as

π(h) =
1

1 + µ(a− h)
(

β
(h+γ)2

+ 1−β
(h+δ)2

) .
Expanding 1− π(h)−Θ(h) as a polynomial in β and collecting terms gives

(after some algebraic manipulations) equation (28).

Proposition 3: Given the initial hazard h ∈ [0, a], the optimal restricted-

commitment policy is to stabilize if and only if x ≤ xC(h). This policy is

time consistent for all h ∈ [0, a] and x ∈ [0, 1] if and only if dxc

dh
≤ 0. A

sufficient condition for this inequality is µ ≥ a+ δ + g(η − 1).

Proof. (i) This claim follows from differentiating the functions ν(h) and ξ(h)

and by inspection. (ii) We begin with

yB(t, h) ≡
∫ t

0

(a− (a− h)e−µτ )dτ = at− (a− h)
1− e−µt

µ
, (A.15)

where yB(t, h) is a specialization of y(0, t), defined in (8), when the hazard

process under BAU evolves (following equation (4)) according to

h(t) = a− (a− h0)e
−µt. From equations (18), (17) and (A.15),

ν(h)− ξ(h) =

∫ ∞

0

θ(t)
(
e−yB(t,h) − e−ht

)
dt. (A.16)

It is easy to verify that 1−e−µt

µ
is strictly decreasing in µ for µ > 0 and equals

t at µ = 0. Therefore, yB(t, h) > ht when h < a and µ > 0, and the

right-hand side of equation (A.16) is negative. (iii) This claim is merely a

summary of the derivation in the text above equation (29).
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(iv) (Sufficiency) Suppose that λ (h) is non-decreasing. Then for any

1 − x ≥ λ (h) it is optimal to stabilize. Since h does not change under

stabilization, it is also optimal to stabilize at any point in the future. For

any 1 − x < λ (h) it is optimal to follow BAU. Since h increases along

the BAU trajectory, the inequality 1−x < λ (h) continues to hold along this

trajectory and BAU remains optimal. (Necessity). Suppose that λ is strictly

decreasing over some interval 0 ≤ h1 < h < h2 ≤ a. Choose a value of h

in this interval (the initial condition h (0)), and choose 1− x = λ (h (0))− ϵ,

where ϵ is small and positive. At this initial condition and for this value

of 1 − x, it is optimal to follow BAU, causing h to increase. Because λ

is decreasing in this neighborhood, there is a future time t > 0 at which

1−x = λ (h (t)). At this time, it becomes optimal to stabilize, so the initial

decision to pursue BAU in perpetuity is not time consistent.

(v) Using (21) and (22), we express λ(h) as

λ(h) =

∫∞
0

e−yB(t,h)θ(t)dt∫∞
0

e−htθ(t)dt
. (A.17)

Using equation (A.15) we have

yBh (t, h) ≡ ∂yB(t, h)/∂h =
1− e−µt

µ
. (A.18)

The argument h in yB(t, h) is the initial hazard. Differentiating (A.17) with

respect to h, we see that λ′(h) > 0 if and only if∫ ∞

0

e−yB(t,h)θ(t)dt

∫ ∞

0

e−httθ(t)dt >

∫ ∞

0

e−htθ(t)dt

∫ ∞

0

e−yB(t,h)yBh (t, h)θ(t)dt.

(A.19)

Noting
∫∞
0

e−htθ(t)dt = β
h+γ

+ 1−β
h+δ

and
∫∞
0

e−httθ(t)dt = β
(h+γ)2

+ 1−β
(h+δ)2

and

using (A.18), we express (A.19) as(
β

(h+γ)2
+ 1−β

(h+δ)2

) ∫∞
0

e−yB(t,h)θ(t)dt >(
β

h+γ
+ 1−β

h+δ

) ∫∞
0

e−yB(t,h)θ(t)1−e−µt

µ
dt.

(A.20)
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Since δ > γ, the right-hand side of inequality (A.20) is smaller than(
β

(h+ γ)2
+

1− β

(h+ δ)2

)∫ ∞

0

e−yB(t,h)θ(t)
(h+ δ)(1− e−µt)

µ
dt. (A.21)

Thus, it suffices to show that the left-hand side of (A.20) exceeds (A.21), i.e.,

that ∫ ∞

0

e−yB(t,h)θ(t)

(
1− (h+ δ)(1− e−µt)

µ

)
dt > 0,

which is guaranteed to hold if µ > h + δ. Since h ≤ a and h approaches a

under BAU, the inequality holds at all h ∈ [0, a] if µ > a+ δ.

Proposition 4: Under constant discounting (with β = 0), it is optimal to

stabilize in perpetuity when x ≤ 1−σ0 (h) and it is optimal to follow BAU in

perpetuity when x > 1−σ0 (h). The function σ0 (h) determines the boundary

between the BAU and stabilization regions and π0 (h) is irrelevant.

Proof. We first point out that existence of a solution to the optimal control

problem requires that σ0 (h) ≥ π0 (h) over h ∈ [0, a]. We then show that

there is no solution to the regulator’s optimization problem that involves

delayed stabilization. We then show that stabilization is optimal if and only

if x ≤ 1− σ0 (h).

If σ0 (h) ≥ π0 (h) over h ∈ [0, a] were not satisfied, then (using the argu-

ment in the proof of Proposition 1) there would be some initial h and values

0 < U(1)
U(0)

< 1 for which there is no Markov perfect solution. However, the

objective function under constant discounting is bounded and a solution to

the optimal control problem exists. Therefore, σ0(h) ≥ π0(h).

Constant discounting occurs when β = 0 or β = 1 or γ = δ. It is clear

from equation (28) that condition (27) is not satisfied in any of these cases,

implying, in view of Proposition 2 Part (iii), that there can be no equilibrium

with delayed stabilization.

We now turn to the main part of the proof. For h close to but smaller

than a, σ0 (h) > π0 (h). (We established the weak inequality above; here

14



we need the strict inequality.) This claim uses a Taylor expansion. The

Taylor expansion uses the facts that σ0 (a) = π0 (a) = 1 and the derivatives

evaluated at h = a:

σ0
h (a) =

µ

(a+ µ+ δ) (δ + a)
<

µ

(δ + a)2
= π0

h (a) .

Thus, for some parameter values and initial conditions, π0 (h) < U(1)
U(0)

< σ0 (h)

holds. For parameters that satisfy this inequality, in view of Proposition 1,

the DPE (30) admits two solutions. With constant discounting, however, the

solution to the optimization problem is unique. The possibility that there

are multiple solutions to the necessary condition (the DPE), even though

there is a unique optimal policy, also occurs in other control problems [e.g.,

29]. We use the same line of reasoning as in the “Skiba problem” to identify

the optimal policy.

Consider the situation where π0(h) < U(1)
U(0)

< σ0(h). Denote V S (h) and

V B (h) as the value functions that satisfy the DPE (30) under stabilization

and BAU, respectively, and let V (h) = max
{
V S (h) , V B (h)

}
denote payoff

under the optimal decision. The arguments used in the proof of Proposition

1 imply that for U(1)
U(0)

< σ0(h), V B (h) satisfies

V B (h) = 1
δ+h

max
{
U(1), U (0) + µ (a− h)V B

h (h)
}

= 1
δ+h

(
U (0) + µ (a− h)V B

h (h)
)
> 1

δ+h
U(1).

(A.22)

Similarly, for U(1)
U(0)

> π0(h), V S (h) satisfies

V S (h) = 1
δ+h

max
{
U(1), U (0) + µ (a− h)V S

h (h)
}

= 1
δ+h

U (1) ≥ 1
δ+h

(
U (0) + µ (a− h)V S

h (h)
)
.

(A.23)

From (A.22) and (A.23) we see that V B(h) > V S(h) when π0 (h) < U(1)
U(0)

<

σ0 (h). Therefore, when π0 (h) < U(1)
U(0)

< σ0 (h) the (unique) optimal policy

is BAU.

Again using the arguments in Proposition 1, V S (h) is the only solution

to the DPE when U(1)
U(0)

> σ0 (h); when this inequality is satisfied, the optimal

15



solution is to stabilize. V B (h) is the only solution when U(1)
U(0)

< π0 (h); when

this inequality is satisfied, BAU is the optimal solution. By convention, we

break the tie, which occurs when U(1)
U(0)

= σ0 (h), by choosing stabilization.

B Additional numerical analysis

This section presents graphs (as functions of h) of 1 − π, xc and Θ. For

x < 1 − π there is a MPE with immediate stabilization, and for x < xc

instant stabilization is the optimal policy under restricted commitment. For

some parameter values 1 − π > xc for all h, in which case there are MPE

with “excessive stabilization”, relative to the restricted commitment baseline.

For other parameter values 1 − π < xc, in which case for some levels of the

cost parameter x, there are no MPE that involve stabilization even though

stabilization is optimal under restricted commitment. In other cases, the

two curves cross.

The figures also show the graph of Θ, which is always less than 1−π. In

some cases, the distance between these graphs is large, so for a non-negligible

range of parameter values there are MPE with delayed stabilization.
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Figure B.1: Graphs of 1− π(h), xC(h) and Θ(h) when g = 1% and η = 1.1.
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Figure B.2: Graphs of 1− π(h), xC(h) and Θ(h) when g = 2% and η = 1.1.
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Figure B.3: Graphs of 1− π(h), xC(h) and Θ(h) when g = 1% and η = 2.
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Figure B.4: Graphs of 1− π(h), xC(h) and Θ(h) when g = 2% and η = 2.
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Figure B.5: Graphs of 1− π(h), xC(h) and Θ(h) when g = 1% and η = 4.
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Figure B.6: Graphs of 1− π(h), xC(h) and Θ(h) when g = 2% and η = 4.

19




