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Abstract

A regulator anticipates learning about the relation between environmental stocks and economic damages. For a model

with linear-quadratic abatement costs and environmental damages, and a general learning process, we show analytically

that anticipated learning decreases the optimal level of abatement at a given information set. If learning causes the regulator

to eventually decide that damages are higher than previously thought, learning eventually increases abatement. Learning

also favors the use of taxes rather than quotas. Using a model that is calibrated to describe the problem of global warming,

we show numerically that anticipated learning causes a significant reduction in first period abatement and a small increase

in the preference for taxes rather than quotas. Even if the regulator’s initial priors about environmental damages are much

too optimistic, he is able to learn quickly enough to keep the expected stock trajectory near the optimal trajectory.

r 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The belief that we will eventually obtain better information about the effects of greenhouse gases is central
to the current debate over efforts to reduce carbon emissions. If we were convinced that current uncertainty
would persist indefinitely, we could model it like any other form of randomness. The anticipation that we will
learn about the relation between greenhouse gases and global warming—together with disagreement about
how this anticipated learning should affect current policies—complicates the debate. If we incur large
abatement costs now and later learn that global warming is not a serious problem, we will have wasted
resources. If we delay cutting emissions and later learn that global warming is a serious problem, we will suffer
avoidable damages. Both sides of the debate claim that the prospect of learning supports their
e front matter r 2005 Elsevier Inc. All rights reserved.
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recommendations. This paper contributes to understanding the role of anticipated learning on optimal
greenhouse gas policy.

We construct a dynamic model of a stock externality in which a regulator anticipates learning about the
stochastic relation between the pollution stock and economic damages. This model nests as special cases the
situations where the regulator expects to obtain information zero times, a finite number of times, or infinitely
often in the future. Our primary result is that anticipated learning increases the optimal level of emissions, i.e.
it reduces abatement, at a given information set. Under learning, the information about damages changes. If
the regulator learns that damages are higher than previously thought, abatement is eventually higher with
learning than without learning (The converse also holds.).

An additional feature of this model is that the regulator and firms have asymmetric information about
abatement costs, and the regulator might use either taxes or quotas to control the externality. Our secondary
result is that anticipated learning about environmental damages favors the use of taxes.

The paper’s third contribution is it’s generalization of the linear-quadratic control problem. This model is a
work-horse in applied economic dynamics, and the discovery that there is still something to be learned about it
is noteworthy—and potentially useful for other applications.

We calibrate the model in order to assess the likely magnitude of the effects of learning on the level of
abatement and the choice between taxes and quotas. We find that anticipated learning causes a significant
reduction in the optimal level of abatement, and causes a small increase in the preference for taxes rather than
quotas. Even if the regulator begins with priors that are much too optimistic, learning occurs quickly enough
that the expected stock trajectory remains close to the full-information optimal trajectory.

Arrow and Fischer [1] and Henry [9] analyze the effect of learning on optimal decisions with irreversibilities.
Epstein [4] provides a more general treatment of this problem; his results have recently been extended by
Gollier et al. [6]. Ulph and Ulph [25] use Epstein’s results to show that in a two-period model of global
warming the effect of learning on first-period emissions is ambiguous in general. Chichilnisky and Heal [2]
explain why anticipated learning may lead to greater initial abatement when irreversibilities are important.
Heal and Kristrom [8] review the role of uncertainty in climate change.

Much of the existing literature concerning climate change uncertainty assumes that information decreases
and eventually resolves uncertainty. Nordhaus and Popp [21] and Peck and Teisberg [22] consider the
difference between ‘‘act and learn’’ and ‘‘learn and act’’. Learning can occur all at once as in Kennedy [15] and
Kolstad [16], or more gradually as a function of time as in Kolstad [17]. Fisher and Narain [5] study the effect
of irreversibilities in the stock of gasses and of abatement capital, holding fixed the amount of learning. Kelly
and Kolstad [14] consider active learning about the relation between greenhouse gas levels and global mean
temperature changes; Leach [18] studies a generalization of their model.

Most of these papers rely on two-period analytic models or complex models that require numerical
solutions. The numerical models permit a rich description of the environment, but their complexity sometimes
makes it difficult to understand the relation between outcomes and specific features of the model. Two-period
models take as exogenous the second-period maximand. When learning can occur over many periods and
where the stock is persistent, as with global warming, the value of being in a particular state in the next
period—the value function—depends on future decisions and on future learning.

We compromise between the two previous approaches by using a model that is linear-quadratic in emissions
and stocks, but which has a very general learning component. Since the effect of learning is ambiguous even in
two-period models, it will also be ambiguous in a more general dynamic model. The fact that we obtain
unambiguous results for the linear-quadratic model does not, of course, mean that learning has the same effect
under other functional forms. Nevertheless, the linear-quadratic model is helpful in understanding the general
problem. The model is simple enough to produce analytic results in a genuinely dynamic context, i.e. one in
which a regulator controls a stock externality and has many opportunities to learn about environmental
damages. The generality of the learning component is important, because it allows for the possibility that the
regulator discovers that environmental damages are extremely high or negligible. The model is also simple to
calibrate and easy to interpret, making it possible to understand the effect of assumptions about parameters.

Several papers, [10,11,20,13], compare taxes and quotas for the control of stock externalities when firms and
the regulator have asymmetric information about abatement costs. The main result from Weitzman’s [26]
static model (where damages are associated with a flow rather than a stock) continues to hold: a flatter
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marginal environmental damage curve, or a steeper marginal abatement cost curve favors the use of taxes.
These models assume that the regulator knows the parameters of the damage function. We extend these
models by including anticipated learning about an uncertain damage parameter.

The intuition for our two analytic results—anticipated learning decreases abatement and favors taxes—is
simple, and is likely to apply in more general settings. If the regulator never learns about the unknown damage
parameter, it is appropriate to solve the problem by maximizing the expectation of the present discounted
stream of utility, using the subjective distribution of the unknown parameter. In the absence of learning, this
distribution is constant. With learning (and a feedback control rule) the regulator knows that future decisions
will be based on the most recent information. If, for example, the regulator begins to believe that damages are
more serious than previously thought, he can reduce future emissions. The ability to adapt makes the bad
news about the damage parameter less bad. Similarly, good news is more valuable when the regulator can
change his future decisions. Thus, anticipated learning has an effect that is similar to that of a more optimistic
subjective distribution about the damage parameter. Consequently, at a given information state the optimal
emissions are higher in the current period, relative to the case without learning.

The same kind of logic explains the effect of learning on the comparison between taxes and quotas:
anticipated learning is similar to a more optimistic prior on the slope of marginal damages. In this context,
greater optimism is equivalent to the belief that marginal damages are flatter. Flatter marginal damages favor
the use of taxes rather than quotas, just as in the static and dynamic linear-quadratic models mentioned above.

Section 2 presents the linear-quadratic model of abatement costs and environmental damages with the
general model of learning. Section 3 establishes the results described above. Section 4 presents a specific model
of learning. Section 5 calibrates the resulting model and assesses the magnitude of the effect of learning.
Section 6 discusses how our qualitative results might change under different assumptions, and relates our
results to the previous literature. Section 7 concludes.

2. The model

We first specify the abatement cost and then environmental damages. Our two analytic results—the effect of
anticipated learning on abatement and on the ranking of taxes and quotas—require a model with two different
types of uncertainty: about damages and about abatement costs. Anticipated learning distinguishes our model
from the models in previous papers that compare taxes and quotas for a stock pollutant.

2.1. Abatement costs

Abatement equals the difference between the actual level of emissions and the Business as Usual (BAU)
level. We assume that the abatement costs are quadratic in abatement, so the benefit of emissions is a
quadratic function of emissions. We also assume that the intercept of the marginal benefit function equals a
constant a plus a mean-zero random variable yt with a constant and known variance s2y. The slope of marginal
benefits is a known constant b. In period t the firm, but not the regulator, knows the value of yt. The benefit
function in period t is

~f þ ðaþ ytÞxt �
b

2
x2

t . (1)

When the regulator sets a tax pt per unit of emissions, the firm maximizes the benefit of emissions minus the
cost of tax. Its problem is

max
x

~f þ ðaþ ytÞxt �
b

2
x2

t � ptxt.

The first order condition to this problem implies that the level of emissions is

xn

t ¼
a� pt

b
þ

yt

b
� zt þ

yt

b
. (2)

Hereafter, we assume that the tax-setting regulator chooses zt, the expected level of emissions under a tax.
Substituting xn

t into the firm’s benefit function (1) and taking expectations, gives the expected benefit of



ARTICLE IN PRESS
L. Karp, J. Zhang / Journal of Environmental Economics and Management 51 (2006) 259–279262
emissions under the tax policy zt:

~f þ azt þ
s2y
2b
�

b

2
z2t . (3)

The quota-setting regulator chooses xt, which by assumption is binding with probability 1. Thus, the
expected benefit of emissions under the quota policy xt is simply

~f þ axt �
b

2
x2

t . (4)

The tax-setting regulator determines only the expected level of emissions, whereas the quota-setting regulator
chooses emissions.

2.2. Environmental damages and learning

Let St be the stock of pollutants, and xt be the flow of emissions in period t. All time dependent variables are
constant within a period. The fraction 0pDp1 of the pollutant stock lasts into the next period, so the growth
equation for St is

Stþ1 ¼ DSt þ xt. (5)

With taxes, the flow of emissions and thus the next period pollutant stock, Stþ1, is stochastic since it depends
on the cost shock. With quotas, the regulator is able to exactly determine the change in pollution stock.

The environmental damage in period t is

DðSt;ot;G
nÞ ¼

Gn

2
ðSt � S̄Þ2ot, (6)

where ot is an i.i.d. non-negative random variable with mean 1, and Gn is the true but unknown non-negative
value of the damage parameter. S is a known non-negative constant at which environmental damages are
minimized. The presence of the damage shock ðotÞ means that the regulator might not learn the true value Gn

in finite time.
The functional form of damages implies that the regulator is not able to influence the amount of learning by

manipulating the level of stocks. That is, learning is passive rather than active in this model. To see this, use
Eq. (6) to write the ‘‘data’’ (or signal) at time t as

datat �
2Dt

ðSt � S̄Þ2
¼ Gnot. (7)

By Bayes’s theorem, the posterior on Gn, PrðGn j datatÞ, is proportional to the product of the likelihood
function, Prðdatat j G

nÞ, and the prior, PrðGnÞ. The numerical value of the data at t depends on Gn and ot, but
not on St (A change in St causes an offsetting change in Dt, leaving unchanged the middle expression in Eq.
(7).). Therefore, Prðdatat j G

nÞ is independent of St; consequently, the posterior PrðG
n j datatÞ is independent

of St. In other words, changing St does not change the information (about Gn) that the regulator obtains from
observing Gnot.

2 The regulator is not able to affect the amount of learning by manipulating the pollutant
stock.

The value of Gn might be much higher than the regulator’s expectation of this variable, so damages could be
much higher than currently believed. To this extent, the model captures the uncertainty about global warming.
However, the model makes a number of assumptions that may not hold for global warming, as we discuss in
Section 6.

At time t the regulator’s subjective expectation of the value of Gn is Gt ¼ EtG
n; the operator Et denotes the

expectation conditional on information available at time t. In any period, the expectation of the single-period
payoff is linear in Gt. This linearity implies that if Gt were a constant Ḡ (i.e. there is parameter uncertainty but
2Consider the alternative damage function Gn

2
ðSt � S̄Þ2 þ ot, where o appears additively rather than multiplicatively. In that case, the

data at time t is ðDt;StÞ; a larger value of ðSt � S̄Þ2 causes Gn to explain a greater proportion of the variation in damages. For this additive

model, there exists the possibility of active learning.
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no learning), we could solve the control problem by replacing Gn with Ḡ and simply ignore the uncertainty
regarding Gn. Ḡ is the certainty equivalent value of Gn in the model where Gt is constant. However, parameter
uncertainty together with anticipated learning leads to a non-trivial change in the optimization problem.3

In order to be able to use standard dynamic programming methods, we need to be able to describe the
subjective distribution of Gn using a finite number of parameters. Those parameters are elements of the state
vector. In our model the subjective distribution of Gn at time t is defined by two moments, the mean and
variance, wt � ðGt;s2G;tÞ. However, our proofs do not depend on whether s2G;t is a vector of higher moments or
a scalar (the variance). The regulator cannot predict his future subjective expectation, so his current subjective
expectation is an unbiased estimator of its future value, i.e. EtGtþt ¼ Gt for tX0.

For the purpose of nesting special cases in a more general model, we use the non-negative integer n to
denote the number of periods during which the regulator expects to obtain information about the damage
parameter. In order to avoid uninteresting special cases, we assume that if nX1, learning begins in the current
period and continues for n consecutive periods.

The variance of the subjective distribution (or more generally, the higher moments) changes stochastically.
On average, we expect that learning decreases the subjective variance. However, if the regulator receives a
surprising piece of information, he may decide that he is less certain about the unknown parameter than he
previously thought. In that case, s2G increases. We assume that if the variance ever falls to 0, i.e., if the
regulator ever becomes certain of the value of Gn, it does not subsequently increase. In addition, we assume
that the variance approaches 0 only asymptotically, if at all. The last assumption (adopted only to simplify the
notation) means that the control problem for very large but finite n and for n ¼ 1 are not exactly the same;
they can, of course, be very similar.

If n ¼ 0 the regulator expects never to obtain information about Gn; in that case the regulator solves a
standard control problem without anticipated learning. For given G, the two control problems with n ¼ 0 and
arbitrary s2G, or with s2G ¼ 0 and arbitrary n, are equivalent. In these two cases the regulator never changes his
subjective mean of the damage parameter, either because he never acquires new information ðn ¼ 0Þ or
because he is convinced that he already knows the truth ðs2G ¼ 0Þ.

This model of learning is quite general. It allows for the possibility that the regulator learns about Gn

quickly or slowly. The regulator may discover that it is likely that damages are extremely high, and very
sensitive to changes in the stock, and his subjective variance might either increase or decrease.

2.3. The optimization problem

The model has three types of state variables, the stock S, the moments of the subjective distribution
wt � ðG;s

2
GÞ, and the number of periods of future learning, n. The state w (and under taxes, the state S) changes

stochastically and the state n is deterministic.
The expected payoff in a period is equal to the expected benefits of emissions minus the expected damages.

The expectation is taken with respect to the cost shock, y, the damage shock o and the unknown parameter
Gn. Under taxes, where emissions are given by Eq. (2), the expected single period payoff is

f t þ azt �
bz2t
2
þ

s2y
2b
� ctSt �

Gt

2
S2

t (8)

with f t �
~f � Gt

2
S̄
2
; ct � �GtS.

We discuss the control problem in which the regulator uses taxes. We can obtain the solution under quotas
immediately from the solution under taxes, simply by replacing z with x and setting s2y ¼ 0. (Compare the
expressions (3) and (4).)

The parameter f t affects the value of the payoff but it does not interact with either the stock or the control,
so it has no effect on the optimal policy or on any of our results. Therefore, to simplify notation we replace f t
3Although the single period payoff is linear in the subjective expectation of Gn, the value function is non-linear in this parameter. This

fact means that anticipated learning about Gn affects the optimal program; in contrast, parameter uncertainty in the absence of learning

does not change the optimization problem. Even with a more general specification of the payoff, parameter uncertainty in the absence of

learning is not of any particular interest. For example, if the single period payoff is hðGn;St; zt; ytÞ and there is no learning, we can solve the

control problem as if there were no parameter uncertainty, replacing the single period payoff with HðSt; zt; ytÞ � EGnhðGn;St; zt; ytÞ.
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with a constant, f. Our formulation of damages, Eq. (6), implies that the intercept of marginal damages is the
unknown constant �GnS, so the subjective expectation of the intercept is ct ¼ �GtS. The critical feature in
our model is that the slope of marginal damages is uncertain. The uncertainty about the intercept is an
incidental feature. In order to establish this point, we also consider an alternative model of damages, in which
the intercept is a known constant, c. With this alternative, we need a restriction on the magnitude of the
constant; that restriction is automatically satisfied when the slope is ct ¼ �GtS. We state our results for both
the cases where the intercept of marginal damages is a constant and where it equals �GtS. To simplify
notation we drop the time subscript on ct unless it is needed for emphasis.

With a discount factor b, the tax-setting regulator’s maximized expected payoff at time t is

JðSt;Gt; s2G;t; ntÞ ¼ maxEt

X1
t¼0

bt f þ aztþt �
bz2tþt
2
þ

s2y
2b
� cStþt �

Gn

2
S2

tþt

( )
. (9)

The dynamic programming equation is

JðSt; wt; ntÞ ¼ maxz f þ az�
bz2

2
þ

s2y
2b
� cSt �

Gt

2
S2

t þ bEwtþ1
ðEyt JðStþ1; wtþ1; ntþ1ÞÞ

subject to Stþ1 ¼ DSt þ zþ
yt

b
; ntþ1 ¼ maxðnt � 1; 0Þ. ð10Þ

To evaluate the continuation payoff we take expectations with respect to Stþ1 and wtþ1, the stochastic states.
The maximization in problem (10) is subject to the equations of motion for w, the moments of the subjective
distribution. Since the analytic results do not depend on these equations, we do not specify them at this time.

There are at least three ways that we can think about increasing learning in this model: (i) An increase in n,
the number of times that new information will arrive; (ii) An increase in s2G, the measure of uncertainty about
the unknown parameter—if s2G is close to zero, there is little scope for learning, and if s2G is large, potential
learning is also large; and (iii) An increase in the precision of future information (Section 4 formalizes the
meaning of this third possibility.). The first two changes alter an argument in the value function, and the third
change alters the equation of motion for s2G, thereby altering the value function itself.
3. The effect of learning on emissions and policy ranking

We begin by examining the case where n ¼ 1 in order to show the relation between our model and previous
models in which learning occurs only once. The next subsection states our two major results: anticipated
learning increases emissions in the current period, and it favors the use of taxes rather than quotas. Most
proofs are in the Appendix.
3.1. One-time learning ðn ¼ 1Þ

For any n, the first order condition to problem (10),

a� bz ¼ �bEwtþ1
ðEyt JSðStþ1; wtþ1; ntþ1ÞÞ, (11)

states that the expected marginal benefit of emissions in the current period should equal the discounted
expectation of pollution’s shadow cost (defined as the negative shadow value, i.e. �JS).

Denote the value of Gt when there is no anticipated learning ðn ¼ 0Þ as G0. In the absence of learning, this
value does not change, so we do not use a time subscript. Because Gn enters each period’s payoff linearly, the
value function depends on G0 but not on the higher moment(s) s2G;t when n ¼ 0. Consequently, when n ¼ 0 the
value function can be written as JðSt;Gt;s2G;; 0Þ � ~JðSt;G

0Þ.
We can apply the logic used in previous models where learning occurs only once, e.g. Ulph and Ulph [25], to

compare emissions when n ¼ 1 and n ¼ 0. In both of these cases, n ¼ 0 in the next period. Denote the value of
Gt in the current period as G, so for n ¼ 0, G0 ¼ G; for n ¼ 1, EtGtþ1 � EtG

0 ¼ G.
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In the two cases where n ¼ 0 or n ¼ 1 Eq. (11) specializes to

n ¼ 0 : a� bz ¼ �bðEyt
~JSðStþ1;G

0ÞÞ

n ¼ 1 : a� bz ¼ �bEG0jGðEyt
~JSðStþ1;G

0ÞÞ.

The optimal z is larger under learning ðn ¼ 1Þ relative to no-learning ðn ¼ 0Þ if and only if the function
Eyt

~JSðStþ1;G
0Þ is convex in G0.4 If this function is convex, then

EG0 ðEyt
~JSðStþ1;G

0ÞÞ4ðEyt
~JSðStþ1;EtG

0ÞÞ

by Jensen’s inequality. When moving from no-learning to learning, z must increase in order to maintain the
equality in the first order (11).

For the linear-quadratic specification we have an explicit expression for ~JSðSt;G
0Þ. It is easy to confirm that

this function is convex in G0, so the optimal level of emissions is higher when n ¼ 1 compared to n ¼ 0. This
fact provides the starting point for an inductive proof that establishes that an increase in n increases the level
of emissions.
3.2. Statement of results

We begin with the following simple but useful result.

Lemma 1. For both taxes and quotas, and for any integer nX0, the value function is quadratic in S; that is, the

value function has the form JðS;G;s2G; nÞ ¼ ln þ mnS þ
rn
2

S2, where ln; mn and rn are functions of ðG;s2G; nÞ.

This lemma is important for our analytic results, and it is also useful for numerical work. It enables us to
express the solution to the optimization problem as an explicit functional of ln; mn and rn. We can obtain those
three functions by solving a recursive system of functional equations. This system does not involve optimization,
a fact that greatly simplifies the numerical solution to the system. The proof of Lemma 1 presents this system.

As a consequence of this lemma we have

Proposition 1. The Principal of Certainty Equivalence with respect to the cost shock y holds for any integer nX0.
Consequently, the expected level of emissions under the optimal tax equals the optimal quota.

Proof. Both statements follow from inspection of the control rules, given in the proof of Lemma 1. These
control rules are independent of the variance of the cost shock, and they are identical for taxes and
quotas. &

This fact has been previously noted in a model that does not involve learning about damages [11].
The following lemma identifies a restriction on parameter values needed to insure that when the stock is

sufficiently close to 0, the optimal level of emissions is positive. This restriction makes the problem
economically meaningful. The benefit of emitting in the current period must be great enough to induce the
regulator to allow positive emissions, at least when the stock is low. Here we explicitly consider both the case
where the intercept of marginal damages is a constant c, and where the intercept equals ct ¼ �GtS̄.

Lemma 2. When c is a known constant, in the absence of learning the optimal level of expected emissions is

positive for S ¼ 0 iff

co
að1� bDÞ

b
. (12)

When ct ¼ �GtS̄ with Gn
X0 (so that GtX0) and S̄X0 the optimal level of expected emissions is positive for

S ¼ 0.
4The validity of this assertion depends on the fact that the single period payoff is linear in Gn. If the single period payoff were non-linear

in Gn the comparison between learning and no learning would depend on the convexity Eyt JS with respect to the distribution of Gn, as in

Epstein [4].
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The following lemma provides the basis for understanding the effect of learning on the optimal level of
emissions, and on the comparison of taxes and quotas. The lemma uses the functions rnðwÞ and mnðwÞ
introduced in Lemma 1.

Lemma 3. When the initial variance is s2G40: (a) The function rnðwÞ is increasing in n; (b) The function mnðwÞ is

increasing in n if ct ¼ �GtS̄o0 or if c is a constant and inequality (12) holds.

The geometric intuition for this lemma is straightforward. Additional opportunities to learn must increase
the payoff (provided that s2G40). Thus, for nX1

JðS; w; nÞ � JðS; w; n� 1Þ ¼ ðln � ln�1Þ þ ðmn � mn�1ÞS þ
1

2
ðrn � rn�1ÞS

240. (13)

This inequality must hold for all S, so it must be the case that rn � rn�140 (It must also be true that
ln � ln�140, but this inequality does not influence our two major results, which depend only on the shadow
cost of pollution, equal to �mn � rnS.). There is no reason to suppose—in a general linear-quadratic control
problem—that mn � mn�140. However, that inequality does hold for parameter values that lead to a positive
level of emissions at small stock levels.

Our primary result is

Proposition 2. Suppose that the initial s2G40. (i) An increase in the opportunities for learning (an increase in n)
always increases current emissions provided that S is sufficiently large. (ii) An increase in the opportunities for

learning increases current emissions for all SX0 if c is a constant and inequality (12) holds or if ct ¼ �GtS̄o0.

Proof. By Lemma 1, we can write the first order condition given by Eq. (11) as

a� bz ¼ �bEw½mn�1ðwÞ þ rn�1ðwÞS�. (14)

By Lemma 3(a), the right side is a decreasing function of n for large S. By Lemma 3(a) and (b) it is a decreasing
function of n for all SX0 if c is a constant and inequality (12) holds, or if ct ¼ �GtS̄o0. Under these
conditions, an increase in n requires an increase in current emissions in order to retain equality between the
marginal utility of current emissions and the shadow cost of the stock of pollution. &

Proposition 2 shows (under the stated conditions) that anticipated learning increases emissions in our linear-
quadratic setting. We know from earlier work (especially [25,6]) that in some settings increased learning has an
ambiguous effect on emissions; therefore, anticipated learning might have an ambiguous effect in a more
general dynamic model.

Despite this lack of generality, our result describes a plausible effect of learning. As is evident from the first
order condition, anticipated learning increases emissions if and only if it decreases the expectation of
discounted shadow costs. A sufficient condition for that decrease is for learning (higher n) to decrease the
shadow cost of pollution at any state (i.e., any ðw;SÞ). The shadow cost ð�mn � rnSÞ equals the amount that
the regulator would pay for a marginal decrease in the stock of pollution. It is ‘‘reasonable’’ for anticipated
learning to reduce this shadow cost, because policies can be adjusted to accommodate new information. Here,
the anticipation of learning reduces not only the cost of the stock (i.e., it increases the value of the program, as
inequality (13) states), but it also reduces the marginal cost of the stock.

Proposition 2 describes the effect of anticipated learning at a given information set, i.e. for initial beliefs. Of
course, an important effect of learning is that it changes those beliefs. If learning eventually eliminates
uncertainty, i.e. if s2G;t ! 0 and Gt ! Gn as t!1, the subjective distribution collapses to the true parameter
value. In this case, the regulatory program approaches the abatement rule under full information (with respect
to Gn). The control rule under full information and under no-learning (Eq. (24) in the Appendix) implies that
an increase in Gn or G0 decreases emissions. This observation implies the following:

Remark 1. If s2G;t ! 0 and Gt ! Gn as t!1, anticipated learning eventually increases abatement and
reduces the stock trajectory (relative to no-learning) if and only if G1oGn.

If the regulator initially underestimates damages ðG1oGnÞ but is able to learn the true relation between stocks
and damages, learning eventually increases abatement.



ARTICLE IN PRESS
L. Karp, J. Zhang / Journal of Environmental Economics and Management 51 (2006) 259–279 267
Using superscripts T and Q to denote the value functions under taxes and quotas, we state our second major
result (This result holds regardless of whether the intercept of the marginal damage function equals �GnS̄ or a
known constant; in the latter case, it does not matter whether inequality (12) is satisfied.).

Proposition 3. For s2G40, JT ðS; w; nÞ � JQðS; w; nÞ is an increasing function of n: Increased opportunities for

learning favor the use of taxes rather than quotas.

In the static linear-quadratic problem (where damages are associated with the flow rather than the stock of
pollution), taxes are preferred to quotas if and only if the slope of marginal abatement cost exceeds the
expected slope of marginal damages [26]. In the dynamic version of this problem (i.e., where damages are
caused by the stock) without learning, taxes are preferred to quotas if and only if the slope of marginal
abatement costs exceeds the discounted slope of the shadow cost of the stock, �br0 [11]. The function �br0 is
increasing in the expected value of Gn. The intuition for policy ranking in the static and dynamic problems
(without learning about the damage parameter) is essentially the same.5 Since r0 is convex in G ¼ EGn (as the
proof of Lemma 3 shows), one-time learning ðn ¼ 1Þ decreases Eð�br0Þ. Learning thus has an effect on the
policy ranking that is comparable to a decrease in G, so learning favors the use of taxes. Increased
opportunities to learn (a higher value of rn corresponding to a larger value of n) reinforce this effect, further
favoring the use of taxes.

4. The log-normal learning model

In order to calibrate a model for greenhouse gasses, we need an explicit learning rule. We assume that the
distribution of the damage shock in Eq. (6) is lognormal:

ot�i:i:d: lognormal �
s2o
2
;s2o

� �
. (15)

We express the subjective moments in terms of g � lnG. The regulator begins in period t with normal priors
on gn ¼ lnGn, with mean gt and variance s2g;t:

gn�Nðgt;s
2
g;tÞ. (16)

Given distribution (16), the subjective distribution of Gn is log-normal with

EtG
n � Gt ¼ exp gt þ

1

2
s2g;t

� �
;s2G;t � vartðG

nÞ ¼ expð2gt þ s2g;tÞðexpðs
2
g;tÞ � 1Þ. (17)

Since damages are a product of independent log-normally distributed variables, the regulator has log-normal
priors on damages. After observing damages and the current stock, the Bayesian regulator updates his belief
about gn. The moment estimator of gn, denoted ĝt, is

ĝt ¼ ln
2Dt

ðSt � S̄Þ2
þ

s2o
2

(18)

with variance s2ĝ ¼ s2o. The posterior for gn is normally distributed with the posterior mean gtþ1 and posterior
variance s2g;tþ1:

gtþ1 ¼
s2o

s2o þ s2g;t
gt þ

s2g;t
s2o þ s2g;t

ĝt, (19)

s2g;tþ1 ¼
s2g;ts

2
o

s2o þ s2g;t
) s2g;t ¼

s2g;0s
2
o

s2o þ ts2g;0
, (20)

where s2g;0 is the prior at the beginning of the initial period, t ¼ 0 [7, pp. 407–410].
5With quotas the regulator chooses emissions exactly, and with taxes the regulator chooses the expected value of emissions. Since the

damage function is convex, expected damages are higher when emissions (in the static problem) or the stock (in the dynamic problem) are

random variables—as they are under taxes. A larger value of G increases the convexity of damages and therefore favors quotas.
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A smaller value of s2o is equivalent to greater precision of future information. Using (19), greater precision
of information implies that this period’s posterior mean, gtþ1, is more responsive to information obtained in
the current period. Using (20), greater precision of information means that the posterior variance decreases
over time more rapidly. Thus, greater precision of information increases the amount of learning, as stated in
Section 2.3.

The subjective distribution for the unknown damage parameter Gn collapses to the true value of this
parameter as the number of observations approaches infinity. Appendix B1, available through JEEM ’s online
archive for supplementary material at http://www.aere.org/journal/index.html, proves this result.

If the regulator begins with too optimistic a prior ðg0ognÞ gt increases over time, on average. This increase
can be enough to offset the decrease in s2g;t, leading to an increase in vartðGtÞ (using (17)). In this case, during a
phase of the learning process the regulator becomes less certain about the value of Gn, although he eventually
learns the correct value with probability 1. It is also straightforward to show that the regulator’s current
expectation of Gn is an unbiased estimate of the future expectation: EtGtþt ¼ Gt, 8tX0.

In the absence of anticipated learning, the regulator solves the control problem treating Gt as a constant. In
this case the constant Ḡ � Gt ¼ expðgt þ

s2g;t
2
Þ is the certainty equivalent value of Gn.

5. Quantitative results

We calibrate the model to describe the problem of controlling CO2 emissions in order to limit the possible
damages caused by global warming. Most global warming models contain a more complex relation between
greenhouse gas stocks and environmental damages. In some respects these models reflect more accurately the
current state of art of the physical sciences.

This model is much simpler. It is easy to discover how assumptions about the likely consequences of
increased carbon stocks and about abatement costs determine the optimal level and method of abatement, and
to explore the role of learning. Our model is consistent with the more complex models, because our calibration
uses much of the same data and opinions. The numerical results provide an indication of the quantitative
effect of learning on both the optimal level of abatement and on the choice between taxes and quotas.

5.1. Calibration of a global warming model

Most readers would find it difficult to decide whether a particular value of g (or G) should be considered
large or small. Therefore, we describe our calibration in terms of the parameter f, defined as the expected
percentage reduction of Gross World Product (GWP) due to a doubling of stocks from their pre-industrial
level. The parameters f and G are linearly related, as described in the online Appendix B2. The values
f ¼ 0:3;f ¼ 1:33 and f ¼ 3:6 represent low, moderate, and high estimates of damages. Table 1 contains the
Table 1

Base-line parameters

Parameter Note Value

s2o Variance of ln(damage shock) 0.6349

S̄ Zero damage stock, billion tons of carbon 590

a Intercept of the marginal benefit,

$/(ton of carbon) 224.26

x̄ BAU decade emissions,

billion tons of carbon 116.73

b Slope of the marginal benefit, 1.9212

billion $/ðbillion tons of carbonÞ2

sy Standard deviation of cost shock, 5.5945

$/(ton of carbon)

D An annual decay rate of 0.0083 0.9204

b A continuous yearly discount rate of 3% 0.7408

http://www.aere.org/journal/index/html
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baseline parameter values. The online Appendix B2 explains how we obtain these values, and the relation
between our calibration and previous models.

5.2. Numerical results

We present four sets of simulations in order to assess the magnitude of the effect of learning on abatement
and on the comparison between taxes and quotas. We assume that learning continues indefinitely ðn ¼ 1Þ. We
obtain the control rule in this case by numerically solving the recursive fixed point equations (27) and (28) in
the Appendix.

Fig. 1 shows the optimal abatement in the first period, when S ¼ 781 billions tons of carbon, equivalent to
the current atmospheric CO2 concentration. This abatement is expressed as a percentage of the BAU level of
emissions, using three different values of f (defined as the regulator’s initial point estimate of the annual
percentage loss in GWP due to a doubling of carbon stocks). As noted above, the values f ¼ 0:3;f ¼ 1:33 and
f ¼ 3:6 represent low, moderate, and high estimates of damages. In performing this simulation we change s2g;1
and make offsetting changes in g1 so that G1 ¼ E1Gn ¼ expðg1 þ

1
2 s

2
g;1Þ remains constant. As we hold G1 fixed

and increase s2g;1, the initial expectation of damages remains constant but the amount of uncertainty increases.
Consequently, the potential for learning increases. We show the results as s2g;1 varies from the minimum level,
0, to the level in our calibration, 0.63. As s2g;1 varies over this range, the coefficient of variation of damages
varies from 0.94 to 1.6.

As we previously noted, in the absence of anticipated learning, the optimal decision depends on the certainty
equivalent parameter G1, but it does not depend on the amount of uncertainty about the parameter Gn.
Therefore, the dotted lines labeled ‘‘without learning’’ are constant with respect to s2g;1. In the absence of
learning, optimal abatement is sensitive to the estimate of damages; a 170% increase in the estimate of
damages, from f ¼ 1:33 to f ¼ 3:6, results in a 138% increase in abatement.
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The potential for learning increases with the amount of parameter uncertainty. Not surprisingly, the
difference between the optimal level of abatement with and without learning also increases with this
uncertainty. When f takes the values 0.3, 1.33 and 3.6, (fixing s2g ¼ 0:63) the potential for learning decreases
the level of abatement by 16%, 19% and 20%, respectively.

The second experiment studies the effect of learning as a function of the variance of the damage shock. As
this variance increases, the signal becomes less informative. Consequently, learning occurs more slowly, so the
anticipation of learning has a smaller effect on the optimal decision. Our base-line calibration assumes that the
damage shock and the parameter uncertainty contribute equally to the overall level of uncertainty about
damages: s2g;0 ¼ s2o ¼ 0:63.

Fig. 2 shows how the variance of the damage shock affects the optimal level of abatement. For very large
variances (e.g. s2o4400), learning occurs so slowly that it is virtually worthless, and there is a negligible
difference between the optimal first period policy with and without learning. However, even if the variance of
the damage shock is substantially larger than in our calibration, the effect of anticipated learning remains
significant.

The third experiment investigates the importance of anticipated learning in the ranking of taxes and quotas.
For our calibration, the expected payoff under taxes is approximately 30 billion dollars larger than the
expected payoff under quotas, for 1:3pfp3:6 (Fig. 3). The difference decreases with f, in line with previous
analytic results [11].6 For f ¼ 3:6 and s2g;0 ¼ 0:63, anticipated learning increases the difference in payoffs
6The difference in payoffs under taxes and quotas is proportional to the variance of the cost shock, a parameter about which we have

little information. Nevertheless, $30 billion is a fairly small amount, since it is the difference in value functions. With our decade discount

factor of b ¼ 0:74, $30 billion is equivalent to a flow of approximately $7.8 billion per decade.
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under taxes and quotas from $29.6 to $30 billion, an increase of about 1.3%. For this calibration, anticipated
learning has a very small effect on the policy ranking.

The final experiment illustrates the effect of learning about the damage parameter on the expected stock
trajectory. Fig. 4 shows the expected stock trajectories under four scenarios: Business as Usual; the case where
the regulator believes that f ¼ 1:33 and does not learn; the case where he knows that f ¼ 3:6; and the case
where the true value is f ¼ 3:6, the regulator begins with the belief that f ¼ 1:33 and he anticipates learning.
The other parameters equal the baseline values in Table 1, and we use s2g;1 ¼ 0:63. The right panel shows the
trajectories over a horizon of 50 periods (500 years) and the left panel shows the trajectories during the first
three periods.

All of the stock trajectories begin at the same initial level. Abatement is positive with or without learning, so
the stock trajectories under regulation always lie below the BAU trajectory. Initial abatement with learning is
lower (emissions are higher) under anticipated learning, compared to no-learning, for given initial beliefs that
f ¼ 1:33. Therefore, the expected trajectory under anticipated learning lies above the expected trajectory
without learning, for early periods (the left panel). Both of those trajectories lie above the expected trajectory
when the regulator is certain that f ¼ 3:6. With learning, the regulator increases his subjective expectation of
Gn. The level of abatement in the scenario with learning is eventually greater than under no-learning, and the
expected stock is lower in the former case. Within 5 periods (fifty years) the expected stock is very close to the
level under perfect information about Gn.

For our parameterization, learning occurs quickly enough that the stock remains close to its optimal level,
even though the regulator’s initial belief about damages is much too optimistic. The stock decays slowly and
emissions during a decade are a small fraction of the stock; the stock changes slowly relative to the speed of
learning. This example illustrates Remark 1.
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6. Model sensitivity

The functional forms for abatement costs and environmental damages (but not for learning in the
theoretical model) are restrictive, and the model ignores a number of features of the global warming problem.
In assessing the applicability of the model, it is worth distinguishing between these two types of limitations.
This section discusses the effect of allowing inequality constraints, catastrophic changes, or different types of
abatement activities.

Our results hold even if D ¼ 1, i.e. if the stock does not decay. However, the model does not include
inequality constraints, such as xtX0. Thus, even when D ¼ 1 the stock is reversible. The possibility (in a more
general model) that an irreversibility constraint might bind is one reason that anticipated learning could
increase abatement [2]. This possibility does not arise in our model.

Kolstad [16] finds that a non-negativity constraint on emissions does not bind for reasonable
parameterizations of the DICE model, provided that the stock of abatement capital is reversible. In this
situation, in his simulations anticipated learning has negligible effect on abatement. Ulph and Ulph [25] find
that a non-negativity constraint on emissions binds only for extreme parameter values, using Maddison’s [19]
model. When the constraint does bind, the effect of anticipated learning is ambiguous. When it does not bind,
learning decreases abatement, typically by a small amount.

We conducted numerical experiments (reported in the online Appendix B3) which show that the probability
that it is optimal to set emissions less than 0 is not measurably different from 0. In our model and for our
calibration, the constraint xX0 is (essentially) never binding. Thus, imposing the constraint xX0 would not
alter our qualitative results.
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The model excludes the possibility of catastrophic changes. There are a variety of ways to model such a
change, but the two obvious alternatives are to assume that the probability that the catastrophe occurs is a
function of the stock [3] or that the catastrophe occurs when the state crosses an unknown threshold [23]. Tsur
and Zemel [24] show that under plausible circumstances, either type of risk reduces the steady state stock
(conditional on the catastrophe not having yet occurred). In this case, the risk increases abatement, at least
asymptotically.

We are not aware of any analysis of the effect of anticipated learning about such a risk. This anticipation
increases the value of being in a pre-catastrophe state in the next period. If, as seems likely, anticipated
learning also increases the shadow cost of the stock in a pre-catastrophe state, it encourages abatement in the
current period. Again, we would have to use numerical methods to test whether this conjectured effect exists,
and if so, whether it would outweigh the effect described in Proposition 2.

In our model, abatement in the current period and in future periods both decrease future stocks, relative to
BAU levels. In that sense, the current and future actions are substitutes. In some situations, actions in different
periods might be complements. For example, in the current period it may be possible to undertake research (or
some other type of investment) that can only be used in subsequent periods.

Karp and Zhang [12] study the case where investment increases a stock of abatement capital that reduces
future marginal abatement costs. Current investment and future abatement are complements, but the relation
between the two is independent of the information about environmental damages. In this setting, anticipated
learning about environmental damages is likely to have the same effect as in the model without capital.
Anticipated learning about damages decreases the shadow cost of the stock of pollution, and therefore
decreases the level of investment and the level of abatement at a given information state.

However, the fruits of current research (or investment) might be more useful the more we know about
global warming. For example, research might enable us to respond more flexibly to future information about
global warming. The value of this flexibility might depend on the quality of our information. In this case,
anticipated learning increases the shadow value of current research, increasing current R&D. Examples that
go in the opposite direction are also easy to construct. For example, anticipated learning might increase the
benefit of waiting to invest, until we learn what type of technology is appropriate.

7. Conclusion

There is tremendous scientific uncertainty regarding the relation between greenhouse gasses and global
warming; the science is likely to improve. There are many reasons why people disagree about the appropriate
response to the danger of greenhouse gasses. One reason is that they hold different views about how the
anticipation of learning should affect the regulatory decision. There is good reason for these differing views:
even in two-period models the effect of learning is ambiguous. In a more realistic multi-period problem the
comparison will also be ambiguous.

Despite the impossibility of a general answer to the question ‘‘How does anticipated learning affect optimal
regulation of greenhouse gasses?’’, economic models can shed light on the issue. We adapted a linear-quadratic
model to include anticipated learning about a damage parameter. In this model, anticipated learning always
reduces abatement, for a given set of beliefs (Learning eventually increases or decreases abatement, relative to
no-learning, depending on how the beliefs change.). The intuition for this result is simple: the ability to
respond to new information reduces the threat of future damages, and therefore has an effect that is similar to
a more optimistic view of future damages. The simplicity of this intuition is important because it suggests that
the result is robust to functional forms. We also showed that anticipated learning favors the use of taxes rather
than quotas.

We confirmed numerically that the absence of an explicit irreversibility constraint on the level of emissions is
not important in our model. However, the possibility of irreversible catastrophic changes resulting from the
accumulation of greenhouse gasses, would be likely to weaken, and might overturn the conclusion that
anticipated learning reduces abatement efforts. The assessment of that possibility requires a more complicated
model, which could probably be analyzed only by using numerical methods.

An important advantage of the linear-quadratic formulation is that it permits a simple calibration. We
know little about the relation between greenhouse gas stocks and global warming, and little about the relation
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between global warming and economic costs. Rather than attempting to model both of these relations, we
posit a direct relation between stocks and damages which we calibrate using estimates that have appeared in
the literature.

We find that the effect of anticipated learning causes a 15–20% reduction in the optimal level of abatement.
Even if learning occurs much more slowly than our baseline assumes, it still causes a significant reduction in
abatement. Learning has a small effect on the ranking of taxes and quotas. Even if the regulator begins with
priors that are much too optimistic, the expected stock trajectory remains close to the full information optimal
level. The numerical results suggest that a substantial level of abatement is optimal even with anticipated
learning. The results therefore do not support a policy of ignoring the dangers of global warming while
learning takes place.

Appendix A. Proofs

The Appendix proves the results stated in Section 3.2. In the proofs, the operator E takes expectations of the
moments in the next period, w0 ¼ ðG0; s20GÞ. Note that the proofs do not require that s2G be a scalar. In the text
we refer to s2G as the variance, but we pointed out that it could also be viewed as a vector of higher moments.

Proof of Lemma 1. We use a proof by induction. We begin the induction with n ¼ 0, where we have the well-
known linear-quadratic model without anticipated learning. The value function when n ¼ 0 is quadratic in S,
i.e. JðS; w; 0Þ ¼ l0 þ m0S þ

1
2
r0S2. Here we merely present the formulae for the coefficients of the value

function and the control rule when the regulator uses taxes. By comparing the expected payoff functions under
taxes and quotas, we can obtain the coefficients of the value function and of the control under quotas simply
by replacing z with x and by setting s2y ¼ 0.

We use the definition:

C �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG2b2 þ 2bGbþ 2Gb2bD2 þ b2

� 2b2bD2 þ b2b2D4Þ

q
40.

The formulae for the coefficients of the value function are

r0 ¼
1

2b
ð�Gbþ b� bbD2 �CÞo0, (21)

m0 ¼
�cbr0 þ bc� abr0D
�bþ br0 þ bbD

, (22)

l0 ¼
1

2

br0 þ b

ð1� bÞb2
s2y þ
�a2 � b2m20 � 2abm0 � 2fbþ 2f br0

2ð�bþ br0Þð1� bÞ
. (23)

The optimal control is

z0 ¼
aþ bm0 þ br0DS

b� br0
. (24)

For14nX1 we use an inductive argument to show that the value function is quadratic in S and to obtain
the formulae for the coefficients of the value function and the control rule. Suppose that the value function is
quadratic at n� 1 (as we know is true when n ¼ 1): JðS;G;s2G; n� 1Þ ¼ ln�1 þ mn�1S þ

rn�1
2

S2. The dynamic
programming equation when there are n future learning periods is

JðS;G;s2G; nÞ ¼ maxz f þ az�
bz2

2
þ

s2y
2b
� cS �

G

2
S2

þ bE ln�1 þ mn�1ðDS þ zÞ þ
rn�1

2
ðDS þ zÞ2 þ

rn�1

2

s2y
b2

� �
. ð25Þ

The functions ln�1;mn�1, and rn�1 depend on the index n and also on the values of the state in the next period,
G0;s20G ; we suppress those arguments.
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The operator E takes the expectation of the next period value ðG0;s20GÞ, conditional on the subjective
moments in the current period, ðG;s2GÞ. In writing the DPE (25) we took expectations with respect to the
current cost shock, y. This operation accounts for the presence of the terms involving the variance of the cost
shock, s2y. We also took expectations with respect to the damage shock, o, using Eo ¼ 1.

The optimal control rule, obtained by performing the maximization, is

zn ¼
aþ bEmn�1 þ bErn�1DS

b� bErn�1

. (26)

Substituting this control rule into the DPE, using the trial solution JðS;G;s2G; nÞ ¼ ln þ mnS þ
rn
2

S2 and then
equating coefficients in orders of S, we obtain the coefficients in the current period

rn ¼
ðGbþ bbD2ÞErn�1 � bG

b� bErn�1

o0, (27)

mn ¼
�bcþ bðaDþ cÞErn�1 þ bbDEmn�1

b� bErn�1

, (28)

ln ¼
1

2

bþ bErn�1

b2
s2y

þ
ð�2f b� 2b2Eln�1ÞErn�1 þ 2abEmn�1 þ 2bbEln�1 þ 2bf þ b2ðEmn�1Þ

2
þ a2

2ðb� bErn�1Þ
. ð29Þ

In order to establish the inequality in Eq. (27) we use the definitions of rn and induction. We start the
inductive chain using the inequality in Eq. (21).

If we set c ¼ SGn, an unknown parameter, we repeat the steps above. The parameter c is replaced by SG, its
current estimate, in the above equations. &

Proof of Lemma 2. Using the formula for m0 and z0, Eqs. (22) and (24), the value of z0 when S ¼ 0 is

aþ bm0
b� br0

¼
aðbD� 1Þ þ bc

br0 þ bðbD� 1Þ
.

Since r0o0, this expression is positive if and only if Eq. (12) holds. &

Proof of Lemma 3. Part (a). We use an inductive proof. In Step 1 we start the induction by showing that r0ðGÞ
is a convex function of G, which implies that r1ðG;s

2
GÞ4r0ðGÞ. (This inequality is part of the condition that

insures that a single learning period reduces emissions, as described in Section 3.1.) In Step 2 we complete the
induction.

Step 1: Recall our comment in the text that JðS;G;s2G; 0Þ is independent of s2G. Consequently, r0 is
independent of s2G. If the regulator does not expect to learn in the future, the optimal decision depends on the
expectation of Gn, but not the higher moments of the subjective distribution. The formula for r0, Eq. (21),
implies

d2r0
dG2
¼

2b2b2D2

ðCÞ3
40,

so r0 is a convex function of G. Jensen’s inequality implies,

E½r0ðG
0Þ j ðG; s2GÞ�4r0ðE½G

0 j ðG;s2GÞ�Þ ¼ r0ðGÞ (30)

whenever s2G40. The equality in (30) is a consequence of the fact that JðS;G; s2G; 0Þ is independent of s
2
G.

In order to ease the notation, define the right side of Eq. (27) as the function

hðr;GÞ �
Gbrþ bbD2r� bG

b� br
.
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In this function, r is the proxy for Ern�1; hð�Þ is strictly increasing in r: hr40. Using this definition we rewrite
r0 and r1 as

r0ðGÞ ¼ hðr0;GÞ,

r1ðG;s
2
GÞ ¼ hðE½r0ðG

0Þ j ðG;s2GÞ�;GÞÞ.

In view of the fact that h is increasing in its first argument, and using inequality (30), we have

r1ðG;s
2
GÞ4hðr0ðE½G

0 j ðG; s2GÞ�Þ;GÞ ¼ hðr0ðGÞ;GÞ ¼ r0ðGÞ

for all G and for all s2G40.
Step 2: We now compare the functions rnðG;s

2
GÞ and rn�1ðG; s

2
GÞ for nX2. Note that we are comparing

these two functions evaluated at the same argument, ðG; s2GÞ. We want to show how the number of
opportunities for learning, n, affects the functions for given beliefs (i.e., given subjective moments).

Suppose that for some nX2 the following relation holds: rn�1ðG; s
2
GÞ4rn�2ðG;s

2
GÞ for all G and for all

s2G40. (We know from Step 1 that this relation is true for n ¼ 2.) This inequality implies that

rn�1 � E½rn�1ðG
0;s02GÞ j G;s

2
G�4E½rn�2ðG

0; s02GÞ j G;s
2
G� � rn�2

for all G and for all s2G40. Consequently,

rn ¼ hðrn�1;GÞ4hðrn�2;GÞ ¼ rn�1.

Part (b). We concentrate on the case where c is a known constant and then briefly consider the case where
ct ¼ �S̄Gt. We first obtain an intermediate result, we then start the inductive chain by considering the case
where n ¼ 0 and we then complete the inductive argument.

Step 1: We first note some characteristics of the mapping in Eq. (28), which we repeat for convenience.

mn ¼
�bcþ abDErn�1 þ cbErn�1 þ bbDEmn�1

b� bErn�1

.

Using the right side of this equation, we define the function

s �
�bcþ abDrþ cbrþ bbDq

b� br
.

In this function, r is the proxy for Ern�1 and q is the proxy for Emn�1. We note that

ds

dq
¼

bbD
b� br

40 for b� br40, (31)

ds

dr
¼ bDb

aþ bq

ðb� brÞ2
40 for aþ bq40, (32)

d2s

dqdr
¼

bb2D

ðb� brÞ2
40. (33)

An increase in q and r when b� br40 and aþ bq40 increases the value of the function s.
The inequalities (31)–(33) imply that the following is a set of sufficient conditions to conclude that mn4mn�1.

Condition 1. (a) b� bErn�140. (b) Ern�14 Ern�2. (c) Emn�14Emn�2. (d) aþ bEmn�140.

The inequality in Eq. (27) establishes that Condition 1(a) holds for all nX1 and the proof of Lemma 3(a)
shows that condition 1(b) holds for all nX2.

Step 2: We now establish that m14m0. To verify this inequality we begin by showing that m0 is convex in G.
We use the chain rule to obtain

dm0
dG
¼

qm0
qr0

qr0
qG
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and

d2m0
dG2
¼

q2m0
qr20

qr0
qG

� �2

þ
qm0
qr0

q2r0
qG2

� �
.

Eq. (22), the formula for m0, implies

qm0
qr0
¼ �bbD

cb� aþ abD

ð�bþ br0 þ bbDÞ2
,

q2m0
qr20
¼ 2b2bD

cb� aþ abD

ð�bþ br0 þ bbDÞ3
.

The last three equalities imply

d2m0
dG2
¼ 2b2bD

cb� aþ abD

ð�bþ brþ bbDÞ3
dr0
dG

� �2

� bbD
cb� aþ abD

ð�bþ brþ bbDÞ2
d2r0
dG2

� �

¼
ðcb� aþ abDÞ

ð�bþ br0 þ bbDÞ2
2b2bD

ð�bþ br0 þ bbDÞ
dr0
dG

� �2

� bbD
d2r0
dG2

� �" #
. ð34Þ

The term in square brackets is negative, so m0 is a convex function of G iff cb� aþ abDo0, i.e. iff Eq. (12)
holds. For all G;s2G Jensen’s inequality implies,

Em0ðG;s
2
GÞ4m0ðEG;s2GÞ (35)

(iff co að1�bDÞ
b ) (Recall that m0, like r0, depends on G but not on s2G. The expectation of m0 with respect to G

obviously does depend on s2G.).
Eqs. (31)–(33), (35), and the facts that Er04r0 and b� bEr040 establish that m14m0. Consequently,

Em14Em0 and aþ bEm14aþ bEm040 (by Lemma 2, given that Eq. (12) holds). Therefore, Conditions
1(a)–(d) hold for n ¼ 2.

Step 3: We now consider the case for nX2. Suppose that Condition 1 holds for some nX2 (The previous
paragraph confirms this hypothesis for n ¼ 2.). For this value of n we have mn4mn�1 (by part b, Step 1) so
Emn4Emn�1; thus, Condition 1(c) holds for nþ 1. In addition, aþ Emn4aþ Emn�140, so Condition 1(d)
holds for nþ 1. Condition 1(b) holds by virtue of part a of this proof. Condition 1(a) holds in view of Eq. (27).
Thus Condition 1 holds for nþ 1. This completes the proof when c is a known constant.

Step 4: In the case where ct ¼ �SGt, the outline of the argument is unchanged, but the formula for d2m0
dG2 is

more complicated because m0 now depends directly on G ¼ EGn. There is still the indirect effect of G on m0 via
the parameter r0. Taking into account this direct effect, Eq. (34) is replaced by

d2m0
dG2
¼
ðcb� aþ abDÞ

ð�bþ br0 þ bbDÞ2

�
2b2bD

ð�bþ br0 þ bbDÞ
qr0
qG

� �2

� bbD
q2r0
qG2
�

bbDbb2D

ð�bþ br0 þ bbDÞ2

" #
.

The only difference is that an additional negative term appears in the square brackets. The rest of the
argument remains the same as in the case where c is a known constant. &

Remark 2. The proof of Lemma 3 shows that the functions mn and rn are increasing in n, and the proof of
Lemma 1 show that rn is bounded above by 0. The value function ln þ mnS þ 1

2
rnS2 is bounded above by

1
1�b ðf þ

a2þs2y
2b
Þ, so both ln and mn are bounded above. Consequently, the two sequences of functions mnðG;s

2
GÞ

and rnðG;s
2
GÞ converge to functions m1ðG;s

2
GÞ;r1ðG; s

2
GÞ as n!1. These limits are the solution to the fixed

point mapping obtained by removing the subscript n in Eqs. (27) and (28). We solve this fixed point mapping
to obtain the control rule for n ¼ 1. &
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Proof of Proposition 3. We rearrange Eq. (29) and use a superscript T to denote taxes. Under taxes, the
constant (with respect to S) in the value function obeys the difference equation

lT
n ¼

1

2

bþ bErn�1

b2
s2y þ bElT

n�1 þ
1

2

�2f bErn�1 þ 2bf þ 2abEmn�1 þ a2 þ b2ðEmn�1Þ
2

b� bErn�1

.

The expression for the constant (with respect to S) in the value function under quotas, denoted lQ
n , obeys the

same difference equation, except that the term that multiplies s2y is absent (As we noted in the proof of
Proposition 1, rn and mn are the same under taxes and quotas.). Defining Dn � lT

n � lQ
n , we have

Dn ¼
1

2

bþ bErn�1

b2
s2y þ bEDn�1. (36)

We want to show that Dn4Dn�1. We use an inductive proof, and first show that this inequality holds for
n ¼ 1. Using Eq. (23) to compute D0 gives

D0 ¼
s2y

2ð1� bÞb2
ðbþ br0Þ.

Taking expectations at n ¼ 1 and substituting this function into Eq. (36) gives

D1 ¼
s2y

2ð1� bÞb2
ðbþ Ebr0Þ.

Using the convexity of r0 in G we confirm that D14D0.
Now suppose that Dn�14Dn�2 for some nX2 (We have already confirmed that this hypothesis is true, using

n ¼ 2.). This hypothesis implies EDn�1 � EDn�240. We have

Dn �Dn�1 ¼
bðErn�1 � Ern�2Þ

2b2
s2y þ bðEDn�1 � EDn�2Þ.

The first term on the right side is positive by Lemma 3a and the second is positive by the hypothesis, thus
confirming Dn �Dn�140.

This proof does not involve the parameter c, so it does not matter whether we view it as a known constant or
as SG.
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