
Contents lists available at ScienceDirect

Journal of
Environmental Economics and Management

Journal of Environmental Economics and Management 70 (2015) 1–16
http://d
0095-06

n Corr
E-m
journal homepage: www.elsevier.com/locate/jeem
Equilibrium resource management with altruistic
overlapping generations

Ivar Ekeland a, Larry Karp b,c,n, Rashid Sumaila d

a CEREMADE, Université Paris-Dauphine, France
b Department of Agricultural and Resource Economics, University of California, Berkeley, United States
c Ragnar Frisch Center for Economic Research, Oslo, Norway
d Fisheries Centre, University of British Columbia, Vancouver, Canada
a r t i c l e i n f o

Article history:
Received 19 August 2013
Available online 19 December 2014

JEL classification:
C73
D64
D90
Q01
Q22
C61

Keywords:
Overlapping generations
Time inconsistency
Hyperbolic discounting
Markov perfect
Renewable resources
x.doi.org/10.1016/j.jeem.2014.12.001
96/& 2014 Elsevier Inc. All rights reserved.

esponding author.
ail addresses: ekeland@math.ubc.ca (I. Ekela
a b s t r a c t

We imbed a classic fishery model, where the optimal policy follows a Most Rapid
Approach Path to a steady state, into an overlapping generations setting. The current
generation discounts future generations' utility flows at a rate possibly different from the
pure rate of time preference used to discount their own utility flows. The resulting model
has non-constant discount rates, leading to time inconsistency. The unique Markov Perfect
equilibrium to this model has a striking feature: provided that the current generation has
some concern for the not-yet born, the equilibrium policy does not depend on the degree
of that concern.
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Introduction

To what extent does the degree of our concern for unborn generations affect the equilibrium management of a resource?
We address this question using a fishery model, both because of fisheries' intrinsic importance, and also in order to provide
focus. However, the research question is central to many resource problems where current decisions have long-lived
consequences. These resource problems are intergenerational, but the standard approach studies them using an infinitely
lived agent model. That model cannot distinguish between two types of intertemporal transfer, the first between the same
agent at different stages of her life, and the second between two different people living at different times. The pure rate of
time preference (PRTP) is appropriate for evaluating the first type of transfer, but there should be no presumption that
society uses the same discount rate to evaluate the second type of transfer. We imbed a two-parameter discounting model
in an overlapping generations (OLG) model. One parameter is the agent's PRTP for their own utility, having the standard
interpretation. The second parameter, reflecting intergenerational altruism, measures society's willingness to forgo current
utility for the sake of future generations. We study the role of altruism by showing the relation between the altruism
parameter and the equilibrium in the natural resource problem.
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The Millennium Ecosystem Assessment identifies fisheries as a critical environmental stock (United Nations, 2005). Due
to overfishing, loss of habitat, and climate change, at least 30% of the world's fisheries are at risk of population collapse
(Sumaila et al., 2011). Fisheries support nations' well-being through direct employment in fishing, processing, and ancillary
services amounting to over US$ 220 billion annually (Dyck and Sumaila, 2010). Fish provide nearly 3.0 billion people with 15
percent of their animal protein needs; including post-catch activities and workers' dependents, marine fisheries support
nearly 8% of the world's population.

The actual fishery management problem is intergenerational: agents alive today have to decide how much of the stock to
retain for future generations. Agents currently alive have a standard optimization problem if they do not care about the not-
yet born, or if they discount the future utility flows of the not-yet-born at the same rate as they discount their own future
utility. In all other cases, their implied discount rate is non-constant, either decreasing, as with hyperbolic discounting, or
increasing. In these cases, the current generation's optimal policy trajectory is not time consistent.

The current generation cannot reasonably believe that it can choose actions that subsequent generations will implement.
We therefore consider a particular class of time consistent equilibria, in which the harvest decision at a point in time is
conditioned on the fish stock – the state variable – at that point in time. We obtain a Markov equilibrium to the dynamic
game amongst the sequence of policymakers. Each policymaker in this sequence is the representative agent at a point in
time. The Markov Perfect Equilibrium (MPE) is a subgame perfect Nash equilibrium to this sequential game: the policy rule
chosen by each representative agent is optimal, given her beliefs about the policy rule future generations will use.

For general functional forms, this game provides few insights into our research question. Most natural resource
problems, like most optimal control problems in other areas of economics, rely on particular functional forms to provide
insights. Perhaps the model most widely used to propose target fishery stocks, and certainly the model most widely used to
explain the management problem, is linear in the harvest rate (Clark and Munro, 1975; Clark et al., 1979; Clark, 2005). With
this model, the benefit per unit of harvest is constant and the cost per unit of harvest is a decreasing convex function of the
fish stock; harvest costs increase as the stock falls. The equation of motion equals the natural growth rate of biomass minus
the harvest. This model provides a plausible, elegant, and easily interpreted recommendation: the stock should be driven as
rapidly as possible to a steady state. The solution is “bang-bang”, i.e. it involves a Most Rapid Approach Path (Spence and
Starrett, 1975). The steady state depends on the per unit benefit of harvest, the growth equation, the harvest cost function,
and importantly, on the discount rate used to evaluate future benefits.1

We imbed this linear-in-control model into the sequential game described above, and obtain a striking conclusion:
provided that the current generation has some concern for the not-yet born, the equilibrium policy rule, and thus the stock
trajectory and the steady state, are all independent of the degree of concern for future generations. The steady state depends
on the agent's pure rate of time preference and the population growth rate, but not on the altruism parameter.2

This independence result has an alternative interpretation: the equilibrium policy depends only on the time-0 value of
the time-varying discount rate used by the social planner who aggregates agents' preferences. This time-varying discount
rate depends on agents' pure rate of time preference, their mortality rate, and their altruism with respect to future
generations. However, the time-0 value of this discount rate depends only on the pure rate of time preference and the
population growth rate. Thus, in our setting, the statement that the policy depends only on the time-0 value of the discount
rate implies that the policy is independent of intergenerational altruism. This alternative interpretation leads to a simple
comparison between the MPE and the equilibrium of the planner who can commit to future actions. The former depends
only on the initial value of the time-varying discount rate, and the latter depends only on the asymptotic value (as time goes
to infinity) of the discount rate.

With more general functional forms, we expect that the MPE depends on all of the discounting parameters. In a MPE, the
current planner directly controls current actions; she can influence future actions only by manipulating the state variable
upon which future equilibrium actions are conditioned. It is plausible in this setting that current actions are especially
sensitive to short run (compared to long run) discount rates. In the linear-in-control problem, we see an extreme form of
this relation: the MPE depends only on the short run discount rate.

We use the fishery model throughout, but it is worth emphasizing that our fundamental result applies in all optimization
problems with this linear-in-control structure. Spence and Starrett (1975) consider two natural resource applications and
three other (non-resource) capital accumulation problems. Their first natural resource application is the fishery model that
we also use, and their second application involves a stock pollutant. Our proofs rely on the linear-in-control structure, but
not on the fishery context. Therefore, one could also apply our results to stock pollutant and other problems.

Discounting assumptions are important in most of these settings. For example, discounting is central to an ongoing
debate about climate policy; greenhouse gasses are the quintessential stock pollutants. Important contributions to this
debate include Stern (2007), Nordhaus (2007), Weitzman (2007), and Dasgupta (2008). Although the prevailing view is that
climate and other environmental policy is very sensitive to discounting assumptions, the evidence for this view is based on
numerical results or on special functional forms. The relation between equilibrium environmental policy and discounting is
1 For readers who are concerned that the linear-in-control model is not general, we note that many insights into difficult problems are generated using
specific functional forms. The log-linear and linear-quadratic dynamic models, along with the linear-in-control model, are the most obvious examples.

2 We find one exception to this strong result. If the current generation has literally no concern for future generations (i.e., it discounts those
generations' benefits at an infinite rate), then the steady state is different: there is a discontinuity in the equilibrium decision rule, in the limit as the current
generation's concern for the not-yet born vanishes.
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model-dependent. Our model is linear in the decision variable, but the growth function and the extraction cost function are
general, and we obtain a complete characterization of the unique equilibrium. Thus, our model provides a novel perspective
on the relation between resource policy and discounting.

Our analysis contributes more generally to the literature on non-constant (including hyperbolic) discounting and to the
OLG literature. OLG models used to study policy sometimes assume that the policy maker discounts the utility of each
generation back to the time of their birth, e.g. Calvo and Obstfeld (1988) and more recently Schneider et al. (2012). This
assumption renders preferences time-consistent, making the model appropriate for normative purposes. However, Calvo
and Obstfeld (page 414) recognize that this assumption is “unnatural …[because]…the planner is concerned with [agents']
welfare from the present time onward”. Discounting back to the time of birth is therefore not consistent with a political
economy equilibrium in which the social planner at a point in time represents the preferences of agents alive at that time.
Our sequential game model, and the focus on Markov perfection, provides an alternative that is consistent with such an
equilibrium. All agents alive at a point in time have the same preferences, and care about their own current and future utility
flows, and (possibly) those of their successors. They discount these future flows from the current time, irrespective of their
date of birth.

Preliminaries

Here we review that canonical fishery model that our paper generalizes. In this model, the flow payoff is
uðtÞ ¼ p�cðxtÞð Þht , where the state variable, xt, is the biomass of fish, the decreasing convex function c(x) is the unit cost
of harvest, p is the constant price; the planner chooses the harvest, ht.3 With constant discount rate r, the planner's objective
is to maximize the present discounted value of the stream of payoffs,Z 1

0
e� rt p�cðxtÞð Þht : ð1Þ

The stock of fish evolves according to

dxðtÞ
dt

¼ _xt ¼ f xtð Þ�ht : ð2Þ

To avoid uninteresting technical issues, we assume that harvest is bounded below by 0 and bounded above by ho1.
The solution to this optimal control problem sets the harvest level at its maximum or minimum value (h or 0) in order to

drive the stock as quickly as possible to its steady state level. The steady state is the solution to

r¼ f 0 xð Þ�c0ðxÞf ðxÞ
p�cðxÞ : ð3Þ

Fig. 1 shows the absolute value of the elasticity of steady state stock, with respect to the discount rate, for Pacific halibut
(solid graph) and Antarctic fin whale (dashed graph). The figure uses the Shaefer (i.e., quadratic) growth model and
c xð Þ ¼ c=x, with parameter values taken from Clark (1975), chapter 2. The intrinsic growth rate for whales is much lower than
for halibut. Because it takes whale stocks longer to recover from low levels, compared to halibut stocks, it seems intuitive
that the steady state whale stock would be more sensitive than the halibut stock to the discount rate. A typical value for the
discount rate is close to 0.05, so a value r¼0.2 represents a high discount rate. For ro0:2, i.e. in the plausible range, the
steady state whale stock is indeed more sensitive to the discount rate than is the halibut stock (Clark, 1973). Much higher
discount rates reverse this ranking. As r-1, Eq. (3) implies that the steady stock converges to the open access level, the
solution to p¼ c xð Þ, and the interest rate elasticity converges to 0, independent of the growth rate.

If we replace the constant r by a time-varying function r tð Þ, and if the planner at time 0 can commit to future actions, then
the steady state depends on r1 ¼ limt-1 r tð Þ, but not on values of r tð Þ for to1.4 Under mild assumptions (see Section
“Equilibrium results”), the steady state decreases in r1. Thus under commitment, the steady state depends only on the
asymptotic value of r tð Þ. In contrast, we find that in the MPE, the steady state (and indeed the entire policy function)
depends only on r 0ð Þ.

The model

We first discuss the discounting assumptions; for this purpose we do not need to specify the growth function, and it is
convenient to use a general flow payoff, u tð Þ. We then specialize to the fishery model in Section “Preliminaries”, except that
we replace the exponential discount factor with a generalization having a non-constant discount rate; this generalization
includes the constant discount rate as a special case. We then define the equilibrium.
3 If the price depends on harvest, u tð Þ is not linear-in-control. In that case, neither the results of the standard model nor of our extension with non-
constant discounting hold.

4 This claim requires that the steady state is globally asymptotically stable, a condition met by most optimal control problems used in resource
economics.
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Fig. 1. Dashed graph shows (absolute value of) elasticity of steady state stock of Anartic fin whale, with respect to the discount rate; solid graph shows
elasticity for Pacific halibut. Unit or time¼1 year.
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Discounting

Each measure-zero agent's lifetime is exponentially distributed, with hazard rate (mortality)ω.5 Agents are born at rate α
and die at rate ω, so the population growth rate is g ¼ α�ω. At time t the population size is N(t). The memoryless feature of
the exponential distribution means that all agents alive at a point in time have the same probability of dying over any future
interval, regardless of their current age. There are no other sources of age-dependent differences (e.g. private accumulation),
so agents alive at a point in time are indistinguishable from each other. Conditional on both still being alive, two agents born at
different times have the same preferences. At a point in time, there is literally a representative agent, so in this model there is
no issue of aggregation of preferences over the agents currently alive.6 The population alive at t can delegate to any agent
currently living, the authority to make whatever decisions are available. We refer to that agent as the social planner at time t.
The time inconsistency problem that arises in this model makes it necessary to keep in mind that a social planner is indexed
by the time that she makes a decision. Thus, we refer to “the social planner at time t” rather than merely “the social
planner”.7

Agents care about their own future expected utility flow, which they discount at a constant pure rate of time preference,
δ. Their risk-adjusted discount rate is δþω; the term ω accounts for the mortality risk. To the extent that they are altruistic,
they also care about the utility flows of generations that have not yet been born; they discount those agents' utility at the
constant rate σ. For altruistic agents, σo1. We refer to the welfare that an agent obtains from her own future consumption
as the selfish component, and the welfare that she obtains from the consumption of her successors as the altruistic
component. The sum of these two components comprise the agent's welfare.

We consider only the case where agents have paternalistic altruism: an agent at time t cares about the utility flow
received by all agents born at time s4t. Agent t's welfare aggregates her own utility flow and her successors' utility flows.
This aggregation involves the utility flows, but not the welfare of future agents. The paternalistic agent t cares about the
utility flow of the agent born at t0A t; sð Þ and also about the utility of the agent born at s; but this agent t does not take into
account that agent t0 also cares about agent s. For example suppose that Groucho, Harpo, and Chico live in three successive
periods, and have selfish utility, uG, uH and uC, respectively. Harpo cares about himself and about Chico, so his welfare is a
function WH uH ;uCð Þ, depending on his own and his successor's utility. If Groucho has paternalistic altruism, his welfare is a
function Wpaternal uG;uH ;uCð Þ, depending on his own and all his successors' utility. In contrast, if Groucho has pure altruism,
he cares about Chico's utility both because he cares about Chico, and because he cares about Harpo, who cares about Chico.
With pure altruism, his welfare is a function Wpure uG;WH uH ;uCð Þ;uCð Þ, which depends on the three utility levels, and also on
Harpo's welfare function (Ray, 1987, Andreoni, 1989, Saez-Marti and Weibull, 2005).8

Table 1 collects the definitions of the parameters entering the discount factors.
5 Individual agents have random lifetime, but because these agents are measure-zero, there is no aggregate uncertainty (Yaari, 1965; Blanchard, 1985).
6 Bergstrom (2006) points out that when agents feel benevolence toward others who share both the costs and the benefits of a public good, it is

necessary to count both the “sympathetic costs” as well as the “sympathetic benefits” (those arising from the feeling of benevolence). Here, where
currently living agents are identical, the sympathetic costs offset the sympathetic benefits, so benevolent feelings toward other tribal members currently
living would not affect the cost benefit calculation.

7 We use the model in which agents' lifetime is exponentially distributed. An alternative assumes that agents have known finite lifetime, T (Karp, 2013).
This alternative provides a generalization of the β; δ model of quasi-hyperbolic discounting, in which agents live for two periods. We can show that our
main result, Proposition 2, also holds for this alternative. In this respect at least, our results are robust.

8 Karp (2013) shows that, in the case of a constant population ðα¼ωÞ, an agent with pure altruism and parameters δ;σ;α
� �

has the same preferences
as an agent with paternalistic altruism and parameters δ;σþα;α

� �
: the two models are isomorphic (for g¼0).



Table 1
Parameters entering discount factor.

ω α g δ σ

Death rate Birth rate Growth rate α�ω Selfish pure rate of time preference Altruistic discount rate applied to unborn
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The aggregate trajectory of profit, or consumption, uðτÞ� �1
τ ¼ t , is endogenous. We assume throughout that u τð Þ is

bounded. More significantly, we assume that agents' evaluation of their own flow of utility is linear in their share of u tð Þ.
In addition, the weight that an agent attaches to the utility flow of future generations is proportional to the number of
agents alive at that future time. To state these assumptions more formally, denote λ tð Þ as the share of aggregate flow u(t) that
an agent alive at time t obtains. All agents obtain the same share. We restate the assumptions above as

Assumption 1. Given u(t), λ tð Þ, and NðtÞ, (a) an agent's current value of her time t flow is λ tð ÞuðtÞ, and (b) the value the
planner attaches to the flow of agents born later is λ tð ÞNðtÞuðtÞ.

Assumption 1.b states that the weight that a planner attaches to the utility flow of future generations is proportional to
the number of agents alive at that future time.

The value of λ tð Þ depends on whether the flow u(t) is a public or a rival (private) good. With public goods, each agent alive at t
gets the entire flow u(t); there is no need to share, so λ tð Þ � 1. Growth has no effect on the selfish component of welfare. However, a
growing population (g40) increases the weight that an agent today puts on future flows due to the altruistic component of
welfare. There will be more people in the future to enjoy those flows, and the presence of those additional people does not reduce
the share received by the person alive today. Thus, with a public good, higher growth makes future flows more valuable to an agent
currently alive. In the model where u(t) is a private good, the assumption that each agent obtains the same share means that
λ tð Þ � 1=NðtÞ. Here, the altruistic value that a person today attaches to a future flow is λ tð ÞNðtÞuðtÞ ¼ uðtÞ, i.e. it does not depend on
growth. However, the flow that a person alive today receives in the future is uðtÞ=NðtÞ, which decreases with growth: growth
decreases the weight put on future flows in the selfish component of welfare. In summary, if u(t) is a public good, higher growth
increases the value that an agent today attaches to a future flow. Growth has the opposite effect if u(t) is a private good.

In the case of constant population (g¼0) the two models are obviously equivalent. For non-constant population, the
models of public and private goods are isomorphic. That isomorphism, described in Proposition 1, is due to the linearity
embodied in Assumption 1.

In this stationary model, the discount factor applied at calendar time t to a future utility flow at tþτ depends on τ but not t. Our
goal is to find discount functions Dpublic τð Þ and Dprivate τð Þ that aggregate the trajectory uðτÞ� �1

τ ¼ t , yielding welfare for the

representative agent alive at t as Wj tð Þ ¼ R1
t Dj τ�tð Þu τð Þ dτ for jA public; private

� �
. The functions Dj τð Þ are weighted sums of

two exponentials. Many papers use the sum of exponentials to represent non-constant discounting (Li and Lofgren, 2000; Gollier
and Weitzman, 2010; Zuber, 2010; Jackson and Yariv, 2011). In these papers, the convex combination of exponentials results from
aggregating different discount rates; for example, different agents might want to use different discount factors to evaluate future
flows, and the decisionmaker takes a weighted sum of their preferences; or the decisionmaker may be uncertain about the correct
discount rate, and therefore takes the expectation of the associated discount factors. In both of these cases, at t the social planner's
discount factor is a convex combination of the different possible discount factors. Ekeland and Lazrak (2010) provide a different
rationale for this form of discounting. They show that an OLG model with paternalistically altruistic agents who consume a public
good and have exponentially distributed lifetime, induces a discount factor that is a weighted sum (but not necessarily a convex
combination) of exponentials. We extend their result by considering private as well as public goods, and demonstrating the
isomorphism between the two. For this purpose, we define

~σ � σþg and ~δ � δþg ð4Þ
and

σj;inf ¼
g for j¼ public
0 for j¼ private

( )
; ð5Þ

Proposition 1. Suppose that agents are paternalistically altruistic and have exponentially distributed lifetime, that σaαþδ and
that σ4σj;inf for the two cases, j¼public and j¼private. (i) If agents consume a public good, then the discount factor applied by
the representative agent at any time to utility t periods in the future, Dpublic tð Þ, is

Dpublic tð Þ ¼ e� δþωð Þt σ�δ
σ�α�δ

þ α
αþδ�σ

� �
e� σ�gð Þt : ð6Þ

(ii) If agents consume a private good, u(t), and each agent alive at a point in time obtains an equal share of that flow, then the
discount factor applied by the representative agent at any time to utility t periods in the future, DprivateðtÞ, has the same form as
the expression for DpublicðtÞ in Eq. (6), except that ~σ replaces σ and ~δ replaces δ.
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Appendix A collects all proofs.9 For this discount function, welfare converges for any bounded trajectory uðτÞ� �1
τ ¼ t .

In view of the isomorphism described in Proposition 1, we can analyze both the models with the private or the public
good by analyzing just one model. Hereafter (merely to conserve notation), we define the right side of Eq. (6) as “the”
discount factor, and write it as D(t) (with no superscript); we use superscript j for “public”and “private” only where needed
for clarity.

The discount rate corresponding to the discount function D(t), r(t), and its time derivative, are10

r tð Þ ¼ �
dD
dt
D

¼ � ωþδ
� �

σ�δ
� �þα σ�gð Þe� t σ�δ�αð Þ
δ�σ
� �þαe� t σ�δ�αð Þ

dr
dt

¼ αe� t σ�δ�αð Þ σ�δ

δ�σþαe� t σ�δ�αð Þ� 	2 σ�δ�α
� �2

: ð7Þ

The discount rate is constant for two values of σ11:

for σ ¼ δ; rj tð Þ ¼
δ�g if j¼ public
~δ�g¼ δ if j¼ private

(

for σ ¼1; rj tð Þ ¼
δþω if j¼ public
~δþω¼ δþα if j¼ private:

(
ð8Þ

For σ =2 δ;1� �
, the discount rate is decreasing if σoδ and increasing if σ4δ. The initial value of the discount rate is

rjð0Þ ¼
δ�g if j¼ public
~δ�g ¼ δ if j¼ private:

(
ð9Þ

In all cases, rjð0Þ is independent of the altruism parameter, σ.
Define r1 ¼ limt-1 rðtÞ, the asymptotic discount rate. The signs of the derivatives and the asymptotic values of the

discount rate are

for δþαrσo1:
djr
dt

40; rj1 ¼
δþω if j¼ public
~δþω¼ δþα if j¼ private:

(

for δoσrδþα:
drj

dt
40; rj1 ¼

σ�g if j¼ public
~σ�g¼ σ if j¼ private:

(

for σj;minoσoδ:
drj

dt
o0; rj1 ¼

σ�g if j¼ public
~σ�g¼ σ if j¼ private:

(
: ð10Þ

The case σoδ corresponds to hyperbolic discounting, with the discount rate converging to σ�g for a public good, and to σ
for a private good. The case σ4δ corresponds to an increasing discount rate. For σ4δþα, this rate converges to δþω for a
public good and to δþα for a private good. For δþα4σ4δ, this rate converges to σ�g for a public good and to σ for a
private good.

Eqs. (8)–(10) show, for different values of σ, how the representative agents' discount rate depends on whether the flow u
is a public or a private good. For example, if agents discount future generations' and their own utility at the same rate
(σ ¼ δ), a growth in population (g40) lowers the discount rate in the case of public goods, because there will be more
people to enjoy the good. With a private good, growth has no effect on the discount rate (for σ ¼ δ) because the benefit of
having additional people enjoy the flow exactly offsets the fact that each person has a smaller share; of course, this result is
due to the linearity built in to Assumption 1.

Now consider the case σ4δþα, where, for a public good, the asymptotic (as t-1) value of the discount rate equals the
pure rate of time preference adjusted for mortality risk, δþω; in contrast, for a private good, the asymptotic rate equals the
pure rate of time preference plus the birth rate, δþα. To understand this difference, consider the limiting case where α¼ 0,
while ω40, so the population shrinks. Because σ is larger than δþα, the effect of altruism vanishes in the long run. For a
public good, only the mortality risk (along with, of course, the pure rate of time preference) matters in the long run.
In contrast, for a private good, the shrinking population means that an agent expects to enjoy an increasing share of the
good. This increasing share exactly offsets the mortality risk when α¼ 0, so the asymptotic discount rate equals δ.

In order to illustrate the different discount rate trajectories, let the unit of time be a year and set δ¼ 0:02, an annual pure
rate of time preference of 2%. Let ω¼ 0:013, corresponding to an expected lifetime of 77 years, and choose the growth rate
9 We adopt the assumption that σaαþδ only to avoid uninteresting special cases. Remark 1, following the proof of the proposition, shows that in the
limiting case σ ¼ αþδ, the discount factor in Eq. (6) equals e� δþωð Þt 1þαtð Þ; the corresponding discount rate is 1=ðtαþ1Þ δ�αþωþtαδþtαω

� �
.

10 Eq. (7) assumes σaδþα. The footnote below Proposition 1 gives the discount factor and rate for the case σ ¼ δþα. This discount rate is used in
equations below to handle the case σ ¼ δþα.

11 The models with σ ¼1 and α¼ 0 are identical. The outcome is the same if agents do not care about future generations (σ ¼1) or if future
generations do not exist (α¼ 0).
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of g¼ 1
200 ln 2, so that population doubles every 200 years. Fig. 2 shows the graphs of r for these parameter values, for two

values of σ and for the cases of both a public and a private good. The labels on the curves indicate the values of σ: σ ¼ 0:06
for the two increasing curves, and σ ¼ 0:005 for the two decreasing curves. The solid curves correspond to the discount rates
in the case of a public good, and the dashed curves correspond to the discount rates in the case of a private good.

With one exception, the discount rate is continuous in parameters. This exception plays an important role in our chief
result, so we note it here. For finite σ, the initial discount rate, rjð0Þ, is independent of σ (see Eq. (9)); for σ ¼1, the discount
rate is constant (see the last part of Eq. (8)). The constants given by the second line of Eq. (8) and by Eq. (9) are not equal,
except in the special case where α¼ 0. For large but finite σ, the discount rate begins at rj 0ð Þ and rises rapidly to its
asymptotic value (as t-1); for σ ¼1, the discount rate begins at its asymptotic value. Thus, there is a discontinuity in the
discount rate at t ¼ 0 for σ ¼1.

Payoff and constraint

The flow payoff, uðtÞ ¼ p�cðxtÞð Þht , and the constraint dx=dt ¼ f xð Þ�h, are the same as in Section “Preliminaries”, but the
discount factor, D sð Þ, replaces the exponential discount factor e� rs. The welfare of the agents alive at time t is the present
discounted value of their selfish and altruistic flow of payoff,Z 1

0
DðsÞ p�cðxtþ sÞð Þhtþ s ds: ð11Þ

If harvest rights are auctioned and the revenue from the sale is used to produce a public good, then the model of a public
good is appropriate. If, instead, each agent alive at a point in time has an equal chance of obtaining this revenue, or if the
revenue is returned in equal shares to all members of the population alive at a point in time, then the model of a private
good is appropriate. In view of Proposition 1, we do not need to decide which model is more relevant. We use the discount
factor in Eq. (6) and the discount rate in Eq. (7), corresponding to a public good. To obtain the model of the private good, we

merely replace σ and δ by ~σ ¼ σþg and ~δ ¼ δþg.

The equilibrium

For σ =2 δ;1� �
the discount rate is non-constant, so a program that maximizes expression (11) subject to Eq. (2) is time

inconsistent. We obtain a time consistent equilibrium by modeling the decision problem as a sequential game amongst
agents who make decisions at different points in time. The agent at time t chooses the current harvest rate, taking as given
the current state variable, xt, under the belief that decisions at time tþs, for all s40, are given by a function χ xtþ sð Þ. We look
for a symmetric, stationary, pure strategy Nash equilibrium to this game, a function χ xð Þ such that ht ¼ χ xtð Þ is the optimal
action for the agent at time t given the state variable xt, when this agent believes that future actions will be htþ s ¼ χ xtþ sð Þ.
These beliefs are confirmed in equilibrium for any possible subgame (any realization of xtþ s). That is, we obtain a MPE.

Karp (2007) studies the MPE for a more general class of games by taking the limit of a discrete stage infinite horizon
game. In that game, each stage lasts for ε units of time, and the discount rate for the first S periods can take arbitrary values,
but is constant for period Sþ1, Sþ2…1. The integral in expression (11) is replaced by an infinite sum, and the differential
Eq. (2) is replaced by a difference equation. Harris and Laibson (2001) obtain the generalized Hamilton–Jacobi–Bellman
(HJB) Equation for the case S¼2, which corresponds to Laibson (1997)'s β; δ model of quasi-hyperbolic discounting. Their
methods are easily extended to obtain the generalized HJB equation for the case of arbitrary finite S. Let T ¼ Sε, the amount
of time (as distinct from the number of periods) during which the discount rate may be nonconstant. Taking the formal limit
of the discrete time generalized HJB equation as ε-0, holding T constant, gives the generalized continuous time HJB
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equation when the discount rate is allowed to be any function of time for 0rtrT , and is constant after T. One then takes
the formal limit of that equation as T-1.

Ekeland and Lazrak (2010) take a different route to studying this problem. They begin with the continuous time problem
with arbitrary discounting function r(s). At any time t, the agent is allowed to choose a policy over t; tþεð Þ, taking as given
the decision rule that will be used after tþε. They obtain the necessary and sufficient condition for this agent's problem and
then take the limit as ε-0. The two approaches lead to the same generalized HJB equation. Karp (2007) interprets this
equation as the standard HJB equation for a “fictitious” optimal control problem: solving one is equivalent to solving the
other. In the case at hand, solving the fictitious control problem turns out to be easier and more transparent than solving the
generalized HJB equation, and we proceed to do so in the next section.

Results

We first explain the methods used to obtain a MPE and then characterize the unique equilibrium.

Obtaining the MPE

Using Proposition 1 and Remark 1 of Karp (2007), we obtain the MPE to our problem by solving the necessary conditions
to the optimal control problem

JðxtÞ ¼max
Z 1

0
e� r1τ p�cðxtþτÞð Þhtþ τ�K xtþ τð Þ
 �

dτ

subject to _xs ¼ f ðxsÞ�hs; xt given: ð12Þ
(Recall that r1 ¼ limt-1 rðtÞ.) Denote χ xð Þ as a (not necessarily unique) MPE decision rule, and define U xð Þ≔ p�cðxÞð Þχ xð Þ as
the flow of payoff under this decision rule, given the state variable x. The function K xð Þ is

K xtð Þ ¼
Z 1

0
DðτÞ rðτÞ�r1ð ÞU xtþτð Þ dτ; ð13Þ

where xtþτ is the solution to Eq. (2) given initial condition xt and given htþ s ¼ χ xtþ sð Þ for sZ0. We refer to the optimization
problem (12) and the definition (13) as the “fictitious control problem”. We use the necessary conditions to this problem to
obtain a MPE to the game.

The validity of this approach requires that the value function J xð Þ and the function K(s) are differentiable. We verify
differentiability in Lemma 1 below.12 We obtain a MPE by solving the necessary conditions to a control problem with
constant discount rate r1. The integrand in this control problem equals the integrand in the original game, minus the
function K(x). That function depends on the MPE decision rule, χðxÞ. In general, replacing the original game by the fictitious
control problem does not seem to have advanced matters much, because it appears that we need to know the function K(x)
to solve the control problem, and K(x) depends on the unknown MPE decision rule. In addition, in general we can not give
an intuitive meaning to the function K(x). For the problem at hand, however, there is a simple solution to the problem, and
an intuitive interpretation of K xð Þ.

The simplicity arises because the fictitious control problem is linear in the control variable, harvest. For any policy rule
that results in a differentiable J(x) and K(x), the optimal decision must be on either boundary, h¼0 or h¼ h, unless a
particular function (the “switching function”), defined below, vanishes. The linearity makes this problem tractable.

The asymptotic discount rate, r1, takes two possible values, depending on whether δþαoσo1 or σoδþα. We
consider these two cases separately, because the parameter r1 is used to discount the payoff in the fictitious control
problem, and it also appears in the definition of K(x).

For δþαoσo1, the asymptotic discount rate is r1 ¼ δþω. Some calculations establish

DðtÞ rðtÞ�r1ð Þ ¼ �αe� t σ�gð Þ;

which implies

�K xtð Þ ¼ α
Z 1

0
e�τ σ�gð ÞU xtþτð Þ dτ: ð14Þ

Here, �K is an annuity, which if received in perpetuity and discounted at the birth rate α, equals the present discounted
stream of the future payoff, discounted at σ�g, the altruistic discount rate minus the growth rate. The fictitious control
problem includes this annuity in the flow payoff.

For σoδþα, r1 ¼ σ�g. In this case,

D tð Þ r tð Þ�r1ð Þ ¼ � σ�δ
� �

e� t ωþδð Þ;
12 Karp (2007) assumes at the outset that the policy rule χ xð Þ is differentiable, but that assumption is needed only later in his paper, not for Proposition 1
and Remark 1, which are all that we rely on. However, differentiability of the functions J(x) and K(x) are required. Similarly, Ekeland and Lazrak (2010) assume
that the policy rule is differentiable, but an extension of their argument shows that in the current problem, differentiability of χ xð Þ is not required.
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which implies

�K xtð Þ ¼ σ�δ
� � Z 1

0
e� τ δþωð ÞU xtþτð Þ dτ: ð15Þ

Here, �K is an annuity, which if received in perpetuity and discounted at the rate σ�δ, equals the present discounted
stream of the future payoff, discounted at the risk adjusted rate δþω. Again, this annuity is part of the flow payoff in the
fictitious control problem.

Equilibrium results

To avoid a taxonomy, we adopt the following assumptions regarding Eq. (3):

Assumption 2. For all rZ0 there exists a unique solution to Eq. (3), decreasing in r.

Assumption 3. The growth function f(x) is concave with f ð0Þ ¼ 0 and f 0 0ð Þ40.

Assumption 4. The value of x below which profits are negative, defined as xmin, is positive and f xminð Þ�ho0.13

Assumption 2 implies that in the standard constant discounting problem, a larger discount rate lowers the steady state
stock, thereby lowering the steady state flow of profit. Assumption 3 excludes the possibility of “critical depensation”, the
situation where for sufficiently small initial conditions, the resource is doomed to extinction even in the absence of harvest.
Assumption 4 means that although it is feasible to drive the stock below xmin, it is never part of an equilibrium strategy to do
so. Therefore, the non-negativity constraint on the stock is not binding.

The current value Hamiltonian for the fictitious control problem is

H¼ p�cðxÞ�ψ
� �

h�K xð Þþψ f ðxÞ
where ψ is the current value costate variable, and the function p�cðxÞ�ψ

� �
is known as the switching function. The costate

equation is

_ψ ¼ r1� f 0ðxÞ� �
ψþc0ðxÞhnþK 0ðxÞ; ð16Þ

where hn is the optimal control. (“Optimal” for the fictitious control problem, or “equilibrium” for the sequential game.) Due
to the linearity in h of the Hamiltonian, an optimal harvest rate must be on the boundary unless the switching function is 0.
The harvest rate can be at an interior value for an interval of time (with positive measure) if and only if the switching
function is identically 0 during that interval. Differentiating this identity with respect to time and using Eqs. (2) and (16)
imply that the switching function is identically 0 if and only if x is a solution to

r1 ¼ f 0 xð Þ�c0ðxÞf ðxÞþK 0ðxÞ
p�cðxÞ : ð17Þ

Eqs. (3) and (17) have the same form, apart from the presence of K 0ðxÞ on the right side of the latter.
The following proposition summarizes our main result

Proposition 2. We maintain Assumptions 1–4 and require that σaδþα and σ4σj;inf (defined in Eq. (5)) for j¼public, private.
(i) Within the class of pure strategy equilibria that generate differentiable value functions, the unique MPE to the game amongst
the sequence of representative agents, is to follow a most rapid approach path (MRAP) to drive the stock of fish to a level xn, and
thereafter to maintain that stock by harvesting at rate f ðxnÞ:

hn ¼
0 for xoxn

f ðxnÞ for x¼ xn

h for x4xn:

8><
>: ð18Þ

(iia) For the case of a public good and σo1, the steady state is the solution to Eq. (3) with r¼ δ�g. (iib) For the case of a public
good and σ ¼1, the steady state is the solution to Eq. (3) with r¼ δþω. (iiia) For the case of a private good and σo1, the
steady state is the solution to Eq. (3) with r¼ δ. (iiib) For the case of a private good and σ ¼1, the steady state is the solution to
Eq. (3) with r¼ δþα.

Note that for all cases (both public and private goods, and regardless of whether σ is finite), the discount rate that
determines the steady state equals the initial value of the planner's discount rate, rð0Þ. This result does not, of course, imply
that the planner is myopic. Today's planner's optimal decision depends on actions that future planners take.

The proof requires establishing that K 0ðxÞ exists and finding its value at the steady state. Under the policy in Eq. (18), it is
obvious that K 0 xð Þ exists for xaxn. We need only show that the left and right derivatives are equal at x¼ xn, the point at
13 If f 0ðxÞ�c0ðxÞf ðxÞ=ðp�cðxÞÞ is a decreasing function, and if there exists a carrying capacity xc at which f ðxcÞ ¼ 04 f 0 xcð Þ, then Assumption 4 implies
Assumption 2.
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which there is a discontinuous change in the harvest rate. We also need to evaluate that derivative. This result makes the
proof of Proposition 2 transparent, so we present it in the text:

Lemma 1. Under the policy given in Eq. (18), for σo1, the derivative K 0ðxnÞ is

K 0 xn
� �¼ �α p�c xnð Þð Þ for σ4δþα

� σ�δ
� �

p�c xnð Þð Þ for σoδþα

(
ð19Þ

(The lemma states a “smooth pasting” condition, a phenomena that appears in many contexts, e.g. stochastic control.)
With this lemma, Eq. (17), and the formulae for r1 in Eq. (10), parts (ii) and (iii) of Proposition 2 are established by a short
calculation. This procedure demonstrates the potential usefulness of our method of studying a class of OLG models.

Implication of and intuition for Proposition 2
In the interest of brevity, consider the case of public goods. Proposition 2.ii states that for σo1, the MPE steady state

stock corresponds to the level chosen by a planner with a constant discount rate equal to δ�g¼ δþω�α. This steady state
stock, and the corresponding utility flow, exceeds that of the planner with constant discount rate δþω; the latter
corresponds to the game in which σ ¼1. Thus, not surprisingly, the steady state flow of utility is higher for σo1 compared
to σ ¼1. The noteworthy result is that for σo1, the outcome is invariant with respect to σ. Provided that agents have
some concern for unborn generations, the degree of their concern does not affect equilibrium actions.

We provide intuition for this invariance in three steps. Step 1 reiterates the immediate consequence of the linearity of the
model. Step 2 notes that this consequence implies that actions are “weak strategic substitutes”: if a positive measure of
planners deviate in one direction from their equilibrium action, this causes a positive measure of subsequent planners to
change their actions in the other direction, and all other planners to not change their actions (thus the modifier “weak”).
(See Jun and Vives, 2004 for a recent discussion of strategic substitutability in dynamic games.) The third step explains why
a change in σ has offsetting effects on the incentives of each planner.

Step 1. The fact that the current generation's problem is linear in its control regardless of the Markovian policies that future
generations use is a direct consequence of our assumption that the flow payoff and equation of motion are linear in the
harvest. This linearity implies that each agent's action is always at the boundary of its feasible set, unless the state variable is
on the singular arc. In the one-state variable model, this singular arc is a point, and equals the steady state; thus, any MPE
involves a MRAP to the steady state. Planner t knows exactly how her successors would respond to her deviation from
equilibrium: they would follow a MRAP to the steady state. Here there is no possibility of indeterminacy of beliefs about the
consequence of out-of-equilibrium play. This determinacy of beliefs, together with mild assumptions on the primitives of
the model, and our restriction to the class of equilibria that yield differentiable value and annuity functions (J and �K ,
respectively) insure that the steady state, and thus the entire equilibrium, is unique for a given value of sigma. These facts
and assumptions do not, however, explain the invariance of the equilibrium with respect to σ.

Step 2. The fact that the equilibrium policy is a MRAP means that, for given σ, the policy is a non-decreasing step function
in x (with an isolated point at the step). Thus, actions are weak strategic substitutes, defined above. For example, if the stock
is above the steady state, the only feasible deviation from equilibrium is to reduce extraction. A feasible deviation by a small
positive measure of agents, when the stock exceeds the steady state, causes some future agents to harvest more than they
would have, and all other future agents to harvest the same amount as they would have, absent the deviation. A parallel
explanation applies if the stock is below the steady state. If the stock is at the steady state, deviations in either direction are
feasible, and again any deviation causes some subsequent planners to change their decision in the opposite direction. The
direction of change of future decisions is weakly the opposite of the direction of a deviation.

Step 3. In the interest of brevity, we consider the invariance with respect to σ, for σA σmin;public; δþα
� �

, i.e., for the case of
hyperbolic discounting, where the discount rate falls over time. (A symmetric argument applies if σA δþα;1� �

.) Section
“Preliminaries” notes that if the planner were able to commit, the steady state stock would depend on the asymptotic value
of the discount rate, r1, but not on previous values. For hyperbolic discounting, and under Assumption 2, the steady state
under commitment exceeds the steady state in the MPE. If today's planner could bind her successors to a sequence of
actions, she would like to increase her own extraction and instruct her successors to extract less than their own first-best
(commitment) level. (See Li and Lofgren, 2000 for a formal analysis of this problem.) Today's planner cannot exert this direct
control over her successors in the MPE; there, her only means of influencing successors is to change the stock she bequeaths
them. Because actions are weak strategic substitutes, the desire to influence successors (the strategic incentive) encourages
the planner today to increase her extraction. However, the fact that in equilibrium her successors extract more than she
would like them to, means that she considers the future stock too low. In order to compensate, she tends to reduce her
extraction. Thus, the planner today has competing incentives: the strategic desire encourages higher current extraction (as a
means of influencing successors), but their relatively low future savings encourages high current savings (low extraction).
A change in σ makes the problem either more or less similar to the problem of constant discounting (where σ¼δ) but in
either case the change magnifies or diminishes both of the conflicting incentives. In the linear-in-control model, the change
in incentives exactly cancel, causing the equilibrium to be invariant to σ.

This intuition uses the fact that there are offsetting incentives regarding current harvest, and that a change
in σ reinforces or diminishes both incentives. We do not claim to have economic intuition for why these changes exactly
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cancel.14 However, the mathematical explanation for this relation is straightforward. For σA σmin;public; δþα
� �

, the right side
of Eq. (17) is r1 ¼ σ�g, and the left side contains the term �K 0ðxnÞ=ðp�cðxnÞÞ ¼ σ�δ. The difference between these terms is
δ�g, which is independent of σ. A parallel argument holds for rA δþα;1� �

.

Discussion

This research seeks to improve our understanding of the extent to which the degree of concern for unborn generations
affects equilibrium management of a resource. This issue is at the heart of much environmental and resource economics.

Most environment/resource models are based on the infinitely lived agent model, where future utility flows are
discounted using a (typically constant) pure rate of time preference. The well-understood drawback of this approach is that
it treats agents living at widely different times as the same individual. In fact, our own future utility flows and those of the
not-yet born belong to different categories, and there is no reason to apply the same degree of impatience to discount them.
An overlapping generations model, in which current generations might discount their own future utility flows and those of
successive generations at different rates avoids this conflation of distinct categories, but typically leads to the problem of
time inconsistency of optimal programs. Because it is unreasonable for people living today to believe that they can choose
policies that will be in effect generations from now, we replace the optimization problem usually used to study resource
issues with a sequential game amongst planners; planner t represents the agents alive at time t.

Imbedding a linear-in-control fishery model in an OLG setting, we obtain a striking conclusion: provided that agents have
some concern for future generations, their degree of concern has no affect on equilibrium resource management. The
intuition for this result is that in a world with non-constant discount rates, a planner at a point in time faces conflicting
incentives. If future planners save too little, from the perspective of the current planner, then the current planner has an
incentive to save more. The current planner also has a strategic incentive that induces her to alter her own savings with a
view to influencing her successors. When actions are strategic substitutes, this strategic incentive encourages the current
planner to save less. The value of the parameter (σ) that measures concern for future generations also determines the
dissimilarity between the sequential game and the control problem with constant discounting. A change in this parameter
either increases or diminishes both of the conflicting incentives. For the linear-in-control model, the two changes in
incentives exactly cancel. Thus, the change in concern for future generations has no effect on the equilibrium.

This invariance property is a consequence of the assumption that the flow payoff and the equation of motion are linear in
the decision variable. In a more general setting, we know that a change in the concern for future generations does affect
equilibrium outcomes. Our results are significant for at least three reasons. First, and most importantly, they provide a
striking contrast to the prevailing view on the importance of altruism, and they do so in a setting that is simple enough to
understand (nearly) completely the forces at work. They thus improve our intuition about the equilibrium consequences, to
resource management, of changes in concern for future generations. Second, the linear-in-control model is central to fishery
economics, and important to resource economics in general. We have revealed a fundamental feature of this model. Third,
the results show how methods that were developed to study non-constant discounting can be used to study OLG models.

We noted that there is another way to interpret the conclusion that the MPE is independent of altruism: the MPE
depends only on the initial value of the planner's discount rate. Because the planner directly selects the current action, but
can influence future actions only indirectly, by changing future values of the stock variable, it is intuitively plausible that the
equilibrium is more sensitive to short run than to long discount rates. This conjecture holds “in an extreme way” for the
linear-in-control model.
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Appendix A

Appendix A.1 contains routine calculations needed to establish Proposition 1. Appendix A.2 proves our main result, and is
not routine.
14 An analogy may be useful here. We know that a higher current interest rate increases current consumption via the income effect, and decreases
current consumption via the substitution effect. It is not surprising that there is some utility function for which the two effects cancel. The fact that this
special utility function is logarithmic in current consumption has a simple mathematical explanation, but not a strictly economic one.
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A.1. Proof and discussion of Proposition 1
Proof. To establish the first part of the proposition, we begin with the observation that because the N0egtα dt agents born
during the interval t; tþdtð Þ die at rate ω, and because they discount their own utility at rate δ, the present discounted value
of their selfish payoff from the program uðsÞ� �1

s ¼ t is (with N�N0)

Negtα dt
Z 1

t
e�δ s� tð Þe�ω s� tð Þu sð Þ ds: ð20Þ

We assume that all integrals converge, and then confirm that this assumption is satisfied by the two assumptions σ4g and
σaαþδ. The representative agent alive at time 0 discounts the payoff of generations born in the future at rate σ, so this
representative agent's altruistic value of the selfish utility received by the agents born during t; tþdtð Þ is

Ne g�σð Þtα dt
Z 1

t
e�δ s� tð Þe�ω s� tð Þu sð Þ ds:

The current representative agent's value of the selfish utility received by all agents who will be born in the future is
therefore the integral of this expression,

Nα
Z 1

0
e g�σð Þt

Z 1

t
e�δ s� tð Þe�ω s� tð Þu sð Þ ds

� �
dt

¼Nα
Z 1

0
e� ωþδð Þsu sð Þ e α�σþδð Þs�1

α�σþδ

 !
ds:

The equality follows from changing the order of integration and simplifying. Note that ðe α�σþδð Þs�1Þ=ðα�σþδÞ40 for s40, so
the altruistic component places a positive weight on future generations' utility flows. For bounded u(s), this integral converges if
ωþδ40 (which always hold, because ω and δ are positive) and if ωþδ�αþσ�δ¼ σ�g40, which holds by assumption.
The current representative agent discounts the future utility of those currently alive at rate δ and knows that these agents

die at rate ω, so her risk-adjusted discount rate for them is δþω. Her (selfish) valuation of their lifetime welfare is therefore

N
Z 1

0
e� δþωð ÞsuðsÞ ds:

The representative agent's total welfare is the sum of welfare attributed to the utility of the agents who will be born in the
future (the altruistic component), and of the agents who are currently alive (the selfish component):

N
Z 1

0
e� ωþδð Þsα e α�σþδð Þs�1

α�σþδ

 !
þe� δþωð Þs

" #
u sð Þ ds:

The discount factor for the time t utility flow is

D tð Þ≔e� ωþδð Þtα e α�σþδð Þt�1
α�σþδ

 !
þe� δþωð Þt : ð21Þ

Simplifying the right side of this equation yields Eq. (6). The discount factor is the sum of exponentials, each of which
converges to 0 as t-1, in view of the assumption σ4g. Because the utility flows are also bounded (by assumption), all
integrals above converge.
We now prove the second part of the proposition. With a private good, the division of a profit flow is a zero sum game.

Our assumption that agents receive equal shares at every point means that each receives the share 1=NðtÞ. Denote the
population at time 0 as N, so the population at time t is Negt. There are Negtα dt agents born during the interval t; tþdtð Þ.
At time sZt each of these obtains the flow u sð Þ=Negs. The aggregate selfish life-time welfare of these agents is

Negtα dt
Z 1

t
e�δ s� tð Þe�ω s� tð Þ u sð Þ

Negs
ds: ð22Þ

Expressions (20) and (22) differ because the latter equation assumes that the sum of shares equals 1, whereas the former assumes
that each agent's share is 1, so that their sum is N(s). This difference reflects the difference between a private and a public good.
The representative agent (who aggregates the preferences of her generation) alive at time 0 discounts the selfish payoff of

generations born in the future at rate σ, so this representative agent's altruistic value of the selfish utility received by the
agents born during t; tþdsð Þ is15

e�σtNegtα dt
Z 1

t
e�δ s� tð Þe�ω s� tð Þ u sð Þ

Negs
ds:
15 This expression equals the aggregate value that all agents alive at time 0 attribute to the selfish welfare of agents born during t; tþdtð Þ. It is not the
value that a single agent alive at time 0 attributes to this welfare; if it were, we would have to multiply it by N to obtain the aggregate value.
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The current representative agent's altruistic value of the direct utility received by all agents who will be born in the future is
therefore the integral of this expression,Z 1

0
e�σtNegtα dt

Z 1

t
e�δ s� tð Þe�ω s� tð Þ u sð Þ

Negs
ds

� �

¼ α
Z 1

0
e� gþωþδð ÞsuðsÞ

Z s

0
e� σ�g�δ�ωð Þtdt

� �
ds

¼
Z 1

0
α
1�e� σ�α�δð Þs

σ�α�δ
e� gþωþδð Þsu sð Þ ds

The first equality follows from changing the order of integration and the second follows from integrating. Note that
ð1�e� σ�α�δð ÞsÞ=ðσ�α�δÞ40 for s40, so the altruistic component places a positive weight on future generations' utility
flows. This discount factor also converges to 0 as t-1 if and only if both gþωþδ¼ αþδ40 (which is true because both α
and δ are positive) and if σ�α�δþgþωþδ¼ σ40, which is true by assumption.
The current representative agent's aggregation of her generation's preferences attributed to their selfish welfare is

N
Z 1

0
e� δþωð Þs uðsÞ

egsN
ds¼

Z 1

0
e� αþδð Þsu sð Þ ds:

Here also the discount factor is positive and converges to 0 because αþδ40. The total welfare is the sum of the altruistic
and the selfish components:Z 1

0
α
1�e� σ�α�δð Þs

σ�α�δ
e� gþωþδð Þsþe� αþδð Þs

 !
u sð Þ ds:

The discount factor is

D tð Þ ¼ α
1�e� σ�α�δð Þs

σ�α�δ
e� gþωþδð Þsþe� αþδð Þs

¼ σ�δ
σ�α�δ

e� αþδð Þs�α
e�σs

σ�α�δ
ð23Þ

Using the definitions in Eq. (4), we can write this discount factor as

Dprivate tð Þ ¼ e� ~δþω
� �

t ~σ� ~δ
~σ�α� ~δ

þ α

αþ ~δ� ~σ

� �
e� ~σ �gð Þt □

Remark 1. Write the discount function in Eq. (6) as

1
σ�α�δ

e� δþωð Þt σ�δ
� ��αe� σ�gð Þt

� 	
:

Both the numerator and denominator approach 0 as σ-αþδ. Using L'Hopital's rule, we have the discount function at
σ ¼ αþδ

DpublicðtÞ ¼ e� δþωð Þt 1þαtð Þ:
With this discount function, it is easy to establish that the payoff

R1
0 DpublicðtÞuðtÞo1 for bounded u(t).

A.2. Proof of Proposition 2

We first prove Lemma 1, then state and prove a second lemma, and then prove Proposition 2.

Proof (Lemma 1). We provide details for the case σ4δþα, where r1 ¼ δþω. Define PðϵÞ as the amount of time it takes the
state variable to move from xnþε to xn using the control rule in Eq. (18); ε may be either positive or negative, but is small.
With this definition, the control rule (18), and Eq. (14), we have

�KðxnþεÞ ¼ α hn

Z P εð Þ

0
e�τ σ�gð Þ p�c xtþ τð Þð Þ dτþ p�c xn

� �� �
f xn
� � Z 1

P εð Þ
e� τ σ�gð Þdτ

� �
: ð24Þ

The first integral on the right side is the contribution to �K of the flow payoff during the approach to the steady state value
xn; the second integral equals the contribution due to the steady state flow payoff.
We want to show that the left and right derivatives are equal, i.e. limε-0 dKðxnþεÞ=dε has the same value regardless of

whether ε approaches 0 from above or below. Consider the case where ε40, so hn ¼ h over 0; P½ Þ. Integrating Eq. (2) we
have �ε¼ R tþP

t dx¼ R P
0 ðf xtþ τð Þ�hÞ dτ. (The first term is �ε because here ε40, so xtþP ¼ xnoxnþε¼ xt .) In this case,

dP
dε

¼ �1

f ðxnÞ�h
: ð25Þ
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Using Eqs. (24) and (25) we have

lim
ε-0þ

dKðxnþεÞ
dε

¼ �α p�c xn
� �� �

h� f xn
� �� 	 1

f ðxnÞ�h
¼ �α p�c xn

� �� �
:

Now consider the case where εo0, so hn ¼ 0 over 0; P½ Þ. Here, �ε¼ R tþP
t dx¼ R P

0 f xtþτð Þ dτ, and
dP
dε

¼ �1
f ðxnÞ: ð26Þ

Using Eqs. (24) and (26) we have

lim
ε-0�

dKðxnþεÞ
dε

¼ �α p�c xn
� �� �

0� f xn
� �� � �1

f ðxnÞ ¼ �α p�c xn
� �� �

:

Thus, the left and right derivatives are equal, as shown in the first line of Eq. (19).
The argument for σoδþα parallels the above. In this case, using the control rule (18), and Eq. (15), we have

�K xnþε
� � ¼ σ�δ

� �
hn

Z P εð Þ

0
e� τ δþωð Þ p�c xtþτð Þð Þ dτþ p�c xn

� �� �
f xn
� � Z 1

P εð Þ
e� τ δþωð Þdτ

� �
:

Eq. (25) still applies for ε40 and Eq. (26) for εo0. We have

lim
ε-0þ

dKðxnþεÞ
dε

¼ � σ�δ
� �

p�c xn
� �� �

h� f xn
� �� 	 �1

f ðxnÞ�h

 !
¼ � σ�δ

� �
p�c xn

� �� �
:

A similar argument shows that the left derivative limε-0� dKðxnþεÞ=dε, has the same value, shown in the second line of
Eq. (19).
We note that an argument that parallels the proof of this lemma shows that the value function is differentiable. Therefore,

the costate variable, ψ can be written as a continuous function of x, ψ ¼ψ xð Þ; the costate variable equals J0 xð Þ. □

Statement and proof of a second lemma

Lemma 2. A trajectory that drives the resource to the point where it is not economically viable and thereafter keeps it at that
level is not an equilibrium.

In a sense, this result is obvious, but we need it in order to prove Proposition 2.

Proof. We use a proof by contradiction. Define T as the date at which the resource reaches xmin in the candidate that
contradicts the Lemma. At T the fictitious control problem effectively ends; there is no scrap value, so the continuation
payoff at T is 0. In addition, KðxminÞ ¼ 0 from the definition of K(S) and the fact that the equilibrium flow payoff for t4T is
identically 0 in this candidate. In the fictitious control problem, a necessary condition for a program that drives the stock to
xmin is that the Hamiltonian vanish at T:

H Tð Þ ¼ p�cðxÞ�ψ
� �

h�K xð Þþψ f ðxÞ
 �
∣x ¼ x Tð Þ ¼ xmin

¼ p�cðxÞ�ψ
� �

h�K xð Þþψ f ðxÞ
h i

∣x ¼ x Tð Þ ¼ xmin

¼ 0⟹ψ Tð Þ f ðTÞ�h
� 	

¼ 0⟹ψ Tð Þ ¼ 0⟹p�cðxÞ�ψ Tð Þ ¼ 0: ð27Þ

(An obvious abuse of notation replaces the arguments xT ¼ xmin by T.) The third line of Eq. (27) follows from the fact that
KðxminÞ ¼ 0 and Assumption 4, which states f ðxminÞ�ho0. Thus, the switching function is 0 at x¼ xmin. In order for the
hypothesized trajectory to be optimal, the switching function must be positive for larger values of x. That is, the switching
function must approach 0 from above, as t-T . Consequently, the time derivative of the switching function must be non-
positive at t¼T.
We need to know whether the switching function, π Sð Þ�ψ , approaches 0 from above or below as t-T . Consider the case

where σ4δþα where r1 ¼ δþω. Using Eq. (14),

K 0 xð Þ ¼ σ�gð ÞKþα p�c xð Þhð Þ
f ðxÞ�h

:

Substitute this equation into the costate Eq. (16) to write the time derivative of the switching function, on the candidate
equilibrium, in the neighborhood of T (where h¼ h):

d p�cðxÞ�ψ
� �

dt
¼ �c0 xð Þ f xð Þ�h

� 	
� δþω� f 0 xð Þ� �

ψ xð Þþc0 xð Þhþ σ�gð ÞKþα p�c xð Þhð Þ
f ðxÞ�h

� 

Evaluating the right side of this equation at x¼ xmin, the right side simplifies to �c0 xminð Þf xminð Þ40. This inequality is our
contradiction, because our hypothesis requires that the time derivative of the switching function is non-positive at x¼ xmin.
A parallel argument deals with the case where σoδþα. □
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Proof (Proposition 2). We provide the argument for the case of a public good, and then use Proposition 1 to obtain the
results for the case of a private good (part iii). The Markov assumption means that at any value of the stock, the equilibrium
harvest does not depend onwhether the stock has approached this value from above or from below. In a model with a single
state variable, pure strategy Markov equilibrium trajectories cannot cycle. In view of the linearity of the problem, harvest
takes a boundary value unless x satisfies Eq. (17). We proceed under the hypothesis that the control rule is a MRAP of the
form of Eq. (18), and we then verify this hypothesis.
For 14σ4δþα, Eq. (10) states that r1 ¼ δþω. Using this equality and the first line of Eq. (19) implies that xn is the

solution to

δþω¼ f 0 xð Þ�c0ðxÞf ðxÞ�α p�c xð Þð Þ
p�cðxÞ

⟹δþω�α¼ δ�g ¼ f 0 xð Þ�c0ðxÞf ðxÞ
p�cðxÞ : ð28Þ

For σoδþα, Eq. (10) states that r1 ¼ σ�g. Using this value of r1 and the second line of Eq. (19) implies that xn is the
solution to

σ�g¼ f 0 xð Þ�c0ðxÞf ðxÞ� σ�δ
� �

p�c xð Þð Þ
p�cðxÞ ;

which reproduces Eq. (28). By Assumption 2, there is a unique solution to this equation.
We now confirm that the control rule must be the MRAP in Eq. (18) with xn equal to the solution to Eq. (28). The

hypothesis that the control rule is a MRAP is equivalent to the claim that the graph of the switching function,
p�cðxÞ�ψ xð Þ� �

is negative for xoxn and positive for x4xn. A proof by contradiction establishes this claim.
We first show that p�cðxÞ�ψ xð Þ� �

is negative for xoxn. The switching function cannot be positive in the neighborhood of
x¼ xmin, the largest stock value at which average profits are 0. If the switching function were positive in this neighborhood,
then for values of x close to xmin the solution to the fictitious control problem would drive the stock of fish to xmin and then
harvest at the rate that keeps it there, f ðxminÞ. Lemma 2 establishes that this is not an equilibrium outcome. (This outcome
results in a zero flow of profit at the steady state xmin. Any deviation involving lower harvest for an interval of time results in
positive profits. Therefore, the proposal to drive x to xmin can not solve the fictitious control problem, and hence is not a
MPE.) Therefore, if the switching function is positive for any xoxn it must cross the x axis at some xoxn, so that the
switching function is negative in the neighborhood of xmin. This multiple crossing violates Assumption 2, which requires a
unique solution to Eq. (3).
A similar argument establishes that We first show that p�cðxÞ�ψ xð Þ� �

is positive for x4xn. In the neighborhood of the
carrying capacity (defined as the value of x40 at which f ðxÞ ¼ 0), the switching function is not negative. If it were negative,
then for fish stocks sufficiently close to the carrying capacity, it would be a MPE to extract nothing forever. That cannot be an
equilibrium, because any deviation gives a higher payoff. Therefore, if for any x4xn the switching function is negative, it
must cross the x axis again from below, at a point where x4xn. That possibility violates Assumption 2, which requires a
unique solution to Eq. (3).
If σ ¼ δ then the original problem involves the constant discount rate δ�g. The result is a standard problem, for which the

solution is well-known: follow a MRAP until reaching xn, the solution to Eq. (28). The only remaining case is where σ ¼1,
where again we have a standard problem, but here the constant discount rate is δþω. The solution is to follow a MRAP to xn,
the solution to Eq. (3) with r¼ δþω.
We obtain part (iii) of the proposition by invoking Proposition 1. This completes the proof. □
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