
1 23

Environmental and Resource
Economics
The Official Journal of the European
Association of Environmental and
Resource Economists
 
ISSN 0924-6460
 
Environ Resource Econ
DOI 10.1007/s10640-015-9901-5

Dynamic Climate Policy with Both
Strategic and Non-strategic Agents: Taxes
Versus Quantities

Larry Karp, Sauleh Siddiqui & Jon
Strand



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media Dordrecht. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



Environ Resource Econ
DOI 10.1007/s10640-015-9901-5

Dynamic Climate Policy with Both Strategic and
Non-strategic Agents: Taxes Versus Quantities

Larry Karp1,2 · Sauleh Siddiqui3 · Jon Strand4

Accepted: 8 March 2015
© Springer Science+Business Media Dordrecht 2015

Abstract We study a dynamic game where blocs of fossil fuel importers and exporters
exercise market power using taxes or quotas. A non-strategic fringe of emerging and devel-
oping countries consume and produce fossil fuels. Cumulated emissions from fossil fuel
consumption create climate damages. We examine Markov perfect equilibria under the four
combinations of trade policies, and compare these to the corresponding static games. Taxes
dominate quotas for both the strategic importer and exporter; the fringe is better off under
taxes than quotas, because taxes result in lower fuel prices and less consumption by the
strategic importer, lowering climate damages.

Keywords Dynamic game · Fossil fuel markets · Market power · Climate damages ·
Nonstrategic fringe

JEL Classification C63 · C73 · Q41 · Q54

1 Introduction

A small group of countries account for most exports of fossil fuels, in particular oil. Another
group of countries, including most of the OECD, are fuel importers with limited oil produc-
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tion. Countries in the latter group have already established, or may soon establish, policies
for limiting the carbon emissions resulting from their fossil fuel consumption. The global
consumption of fossil fuels increases stocks of greenhouse gasses (GHGs), likely altering
the climate. Climate policy might serve as a coordination device, enabling a strategic bloc
of importers to affect the price of fossil fuels, while also controlling carbon emissions. In a
game involving strategic importers and exporters, the equilibrium policy levels depend on
the choice of instrument, e.g. a trade tax or quota. The equilibrium may also be sensitive to
the presence of nonstrategic (passive) countries with fixed trade policies.1 These nonstrate-
gic countries are “innocent bystanders” in the game among the strategic countries, but their
presence alters the equilibrium to the game. The strategic exporter in our setting represents
OPEC, and the strategic importer represents a subset of developed countries that might at
some point in the future agree on a unified climate policy. That policy would likely involve
trade measures, and would therefore affect both terms of trade and climate-related outcomes.
The nonstrategic “innocent bystander” represents the poorer countries. We have two research
questions: How does the presence of these countries affect the equilibrium outcomes in the
games involving the strategic importer and exporter, under various combinations of policy
instruments? How do the equilibria in the different games affect the welfare of the poorer
countries?

In order to address these questions, we study a model in which a monopsonistic importer
and a monopolistic exporter exercise market power, using either a trade tax or quota. There are
four policy combinations, leading to four different games. We call the nonstrategic agent “R”,
for Rest-of-World. R’s trade policy is fixed and exogenous: free trade in our setting. GHGs
related to fossil fuel consumption accumulate in a stock variable that causes differing levels
of damages to both the strategic importer and R; the strategic exporter incurs no damages.
This assumption captures the idea that climate-related damages differ across countries, both
in their actual effects, and in the way in which countries take these effects into consideration
when determining their climate-related policies. In particular, we assume that, while OPEC
countries may suffer damages from adverse climate developments, such damages are not
reflected in the fuel-related policies of these countries.

In order to understand the forces at work, it helps to begin with a static framework in which
there are no climate damages. In general, a country’s optimal trade tax equals the inverse of
their trading partner’s (tax or quota inclusive) elasticity of import demand or export supply.
If a large importer and exporter are the sole agents in this market, and both use a trade tax, the
Nash equilibrium taxes are positive. These taxes lower aggregate world welfare, but do not
eliminate trade (Johnson 1953) . In contrast, if both of these agents use quotas, there is zero
trade in the Nash equilibrium (Tower 1975). For example, suppose that the importer takes the
exporter’s quota as given, as in a Nash equilibrium. For any export quota, the importer has an
incentive to set a still lower import quota, in order to render the export quota non-binding and
thereby capture all of the quota rents from the exporter. The exporter who takes the import
quota as given has the same incentive. Because this incentive holds for any positive quota,
the only Nash equilibrium in the quota-setting game involves zero quotas for both agents,
and thus zero trade.

In a two stage game where the countries choose their policy instrument (either a tax or a
quota) in the first stage and the level of that policy in the second stage, countries’ first-stage
dominant strategy is a tax. A country does not want to select a quota in the first stage, because
it understands that if it does so, the second stage equilibrium involves zero trade if the rival

1 The presence of a third country can qualitatively alter even a non-strategic setting. For example, a transfer
from country A to B cannot increase country A’s welfare in a two-country world, but it can increase A’s
welfare in a three-country world. Dixit (1983) summarizes and generalizes this paradox.
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also chooses a quota; if the rival chooses a tax, it extracts all of the quota rent by setting its
tax at a level that makes the quota non-binding. This qualitative comparison survives in a
dynamic setting where the level of a policy instrument (tax or quota) changes over time, as the
stock of GHGs or some other state variable changes endogenously (Wirl 2012; Rubio 2005).

The introduction of a nonstrategic third agent, R, into the static game qualitatively alters
incentives, and therefore potentially alters the equilibrium (Karp 1988). Suppose for exam-
ple that the exporter sets a quota and R has a downwardly sloping excess demand for the
commodity. The combination of the export quota and R’s excess demand function causes the
strategic importer to face a kinked, but not perfectly inelastic excess supply function. In this
situation, the strategic importer does not, in general, want to set its trade policy to render the
exporter’s quota non-binding. Such a policy still eliminates the exporter’s quota rents, but it
(typically) is too costly for the importer, because most or all of the rents might be transferred
to R. The exporter faces an analogous situation. It does not matter whether, in equilibrium,
R is an importer or an exporter; its mere presence causes a country, whose rival uses a trade
quota, to face a downwardly sloping excess demand function for some range of prices. Thus,
the introduction of R eliminates both of the earlier results: the quota equilibrium does not
drive trade to zero, and it may not be the case that choosing a tax is a dominant strategy in
the first-stage game where countries choose their policy instrument. Even with R, the use of
a quota causes the partner to face a less elastic excess supply or demand curve (relative to the
curves under a tax). Thus, using a quota encourages the trading partner to use an aggressive
trade policy. For that reason, the forces that promote the adoption of taxes rather than quotas
operate even with the presence of R, but they might no longer be determinative.

Our chief policy question concerns the equilibrium welfare effect, of different policy
choices, on the poorer countries, R. In our setting, R is a net importer of fossil fuels. The
strategic importer has two targets, its terms of trade and climate-related damages, and a single
(state-dependent) instrument, the tax or quota. Both of its objectives encourage the importer to
restrict trade. Its trade restriction lowers the equilibrium world fossil fuel price and slows the
growth of the GHG stocks. R is a free rider; it benefits from both of these changes, because it is
an importer and it suffers climate-related damages. R therefore prefers the strategic importer
to use an aggressive trade restriction. The strategic exporter has a single target, improving
its terms of trade, and a single instrument. A more aggressive export restriction raises the
world price, harming R, and slows the accumulation of GHGs, benefiting R. Therefore, the
welfare effect, on R, of the export policy is ambiguous. The presence of R causes carbon
leakage. As the importer lowers the market price by restricting its own demand for fossil fuel
imports, R increases its demand for those imports. As the exporter increases the market price
by restricting its exports, R shifts from imports to domestic production.

Our calibration assumes that climate-related damages are small to moderate relative to the
benefit of consuming fossil fuel. As a consequence, terms of trade considerations are more
important than climate-related damages for both the strategic importer and R. Higher pollu-
tion stocks cause the strategic importer to use more aggressive equilibrium trade restrictions,
in order to reduce future damages. As this importer’s demand for fossil fuels diminishes,
with higher pollution stocks, the strategic exporter also lowers its export quota. The higher
stocks directly harm the strategic importer, but affect the strategic exporter only indirectly,
via reduced importer demand. Consequently, the importer’s policy is much more sensitive to
the pollution stock, compared to the exporter’s policy: higher stocks reduce both equilibrium
(strategic) imports and exports, but the effect on the former is greater. Therefore, higher
pollution stocks increase the supply of imports available for R. At least for low stock levels
(and in some policy scenarios for all stock levels), climate-related damages actually increase
R’s welfare, simply because these damages cause I to reduce its demand for imports.
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We also find that R’s payoff is highest when the strategic importer uses a tax, and the
strategic exporter uses a quota. The exporter’s use of a quota encourages the strategic importer
to use a high tariff, in order to capture quota rents. The high tariff reduces the world fossil fuel
price, benefitting R. If the strategic countries can choose the policy instrument (in addition to
choosing the state-contingent level of the policy), the unique Nash equilibrium in the policy
selection game is for each to use a tax, just as in the simple static model without R. The tax
is a dominant strategy for both players at every level of stock, so this equilibrium is subgame
perfect. Given our calibrations, the first-best stock trajectory under the social planner who
uses a Pigouvian tax lies above the equilibrium trajectories in the games corresponding to the
four combinations of trade policy. The emissions reductions arising from strategic countries’
desire to improve their terms of trade, exceed the reductions due to the Pigouvian tax. Under
the Pigouvian tax, there are no terms of trade incentives.

To check robustness, we consider other calibration assumptions. Plausibly, the climate
externality could dominate the consumption benefits for some countries, notably countries in
the fringe R; many of these could suffer substantial climate damages. In such cases, welfare
to R would be higher in the long run, when bloc I uses quotas. I ’s use of the quota lowers
accumulation of atmospheric carbon, benefitting R in the long run.

Recent papers compare taxes and quotas in static models of the fossil fuel markets, with
two strategic blocs and two fuels (Strand 2011), and with one fuel and a non-strategic bloc
as here (Strand 2013). Both papers find (as do we) that the strategic fuel importer prefers
a tax policy over a quota policy. Montero (2011) considers cases where quotas or taxes (or
combinations) interact with incentives for R&D to reduce pollution costs. He shows that under
some conditions, pollution quotas combined with subsidies to adopting the clean technology
tends to dominate taxes. This scenario can justify quotas over taxes. Earlier papers focus on
using an import tax to capture a seller’s resource rent, (Bergstrom 1982; Brander and Djajic
1983; Karp 1984; Karp and Newbery 1991). Climate policy may also be a means of capturing
resource rents (Wirl and Dockner 1995; Wirl 1995; Amundsen and Schöb 1999; Liski and
Tahvonen 2004; Rubio 2005; Kalkuhl and Edenhofer 2010; Njopmouo 2010). Wirl (2012),
the paper closest to ours, studies a dynamic model with only two (strategic) blocs and no third
(passive) bloc. This simpler model can be solved analytically. In this setting also, tax policies
are dominant for both importer and exporter. Dong and Whalley (2009)’s computable general
equilibrium model suggests that a 20 % ad valorem carbon tax could increase real income in
the U.S., E.U. and China by 0.4–0.8 %, while reducing OPEC real income by 5 %. Jørgensen
et al. (2010) and Long (2010) survey applications of the type of dynamic game that we, and
many of the other cited papers, use.

2 The Dynamic Game

There are three agents in the game, representing three regions: the strategic importer bloc (I ),
the strategic exporter bloc (E), and the nonstrategic rest of the world (R). The importer and
exporter blocs, I and E , exercise market power, using either a trade tax or a quota. We take as
given the combination of policy instruments and calculate the equilibria under the four policy
combinations. By comparing payoffs, we determine the equilibrium policy choice. Region
R is a price taker and can be either a net importer or exporter of fossil fuels, depending on
the world price.

In period t , the strategic importer (I ) incurs damages resulting from the stock of GHGs,
xt . In order to emphasize the situation where agent I is more concerned than agent E about
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GHG accumulations, we suppose that only I and R suffer stock-related damages. These
stocks are the only source of dynamics. In particular, we assume that extraction costs are
independent of cumulative extraction, and we ignore the fact that resource stocks are finite.
These assumptions produce a model with a single state variable, xt . In view of our functional
assumptions and reliance on numerical methods, we could extend the model to include a
second state variable, cumulative extraction, and thereby take into account the non-renewable
resource aspect of the problem. However, in the one-state variable model we can present all
important results graphically; those graphs would be less useful in a two-state model, and
the results would be harder to interpret. Given the complexity of results in even the one state
variable model, it is worth beginning there, despite the fact that such a model does not capture
the real-world property that fossil resources are exhaustible.

The trajectory of the stock of GHGs is endogenous to the model. Our solution concept is
a Markov perfect equilibrium. In any period t , the current stock is predetermined, a function
of past stocks and emissions. Both strategic players condition their period-t policy (level) on
the period t stock level, the only “directly payoff relevant” state variable in this model. The
equilibrium level of I ’s policy in period t is a function of xt , which makes the importer’s
problem dynamic. The GHG stock does not directly affect the exporter’s payoff, because by
assumption E does not incur climate-related costs. However, I ’s equilibrium policy (level)
is conditioned on the stock, and I ’s policies directly enter E’s payoff. Therefore, E also has
a dynamic problem, and its equilibrium policy level also depends on the stock of GHGs.
Because E and I solve mutually related dynamic problems, they play a dynamic game.

The rest of the world, R, responds passively, taking the world price as given. R’s presence
in the model is essential for two reasons. First, we want to know how the strategic interaction
of large buyers and sellers affects nonstrategic agents, in particular, developing countries.
Second, the presence of R’s net demand means that when either I or E use a quota, the other
strategic agent does not face a perfectly inelastic demand or supply function. In the absence
of R, there is 0 trade in the equilibrium when both strategic agents use a quota; if only one
strategic agent uses a quota, the other strategic agent can capture all of the gains from trade
by using a price policy, absent R. Matters are more complex in the more realistic situation
where R is present in the market.

2.1 Flow Payoffs

We assume that supply and demand curves are linear, the stock-related damage function
quadratic, and that E and R’s average production costs increase in the rate of output (but are
independent of the stock). The imported good is an input, not a final good, so the demand
functions are derived demand. The surplus corresponding to these demand functions is an
approximation of the value of the input in production, not an approximation of the dollar
value of utility. The world fuel price, defined as the price that E receives and R pays is p.
Consumers in I pay the price P . P − p equals the (possibly implicit) unit tax or quota rent
in I . We first state the single period payoffs of the three agents, and then use these to define
the dynamic game.

Country I has no domestic production; its demand for imports equals A − B P . The
tariff revenue or the quota rents equal (P − p) (A − B P). The climate-related damages,
conditional on x , is d

2 x2 where d is a constant. The stock x is an amalgam of all climate-
related variables, e.g. carbon stocks and temperature changes, and thus does not have a simple
physical interpretation. Merely for purpose of exposition, we refer to it as the pollution stock.
I ’s single period payoff equals consumer surplus plus tariff revenue (or quota rents) minus
environmental damages:
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I ’s flow payoff:
∫ A

B

P
(A − Bz) dz + (P − p) (A − B P)− d

2
x2

= 1

2

(A − B P)2

B
+ (P − p) (A − B P)− d

2
x2. (1)

At price p, R’s domestic demand is a − b0 p and its domestic supply is b1 p, so its net
imports equal a − bp, with b0 + b1 ≡ b. R ’s gains from trade minus its climate related
damages κ

2 x2 equal its flow payoff:

R’s flow payoff:
∫ a

b

p
(a − bz) dz − κ

2
x2 = 1

2

(a − bp)2

b
− κ

2
x2. (2)

This payoff is not relevant to the solution to the game, because R is passive. However, the
solution to the game determines the equilibrium trajectories of p and x . That information,
together with R’s single period payoff, enables us to calculate the present value of the stream
of R ’s payoff, and thereby enables us to see how different policies affect R’s welfare. The
parameters κ and d are the slopes of the marginal climate damage for R and for I ; larger
values of these parameters imply larger climate damage.

The exporter, E , has no domestic consumption and faces no stock-dependent costs. If the
fuel export price is p and the (possibly implicit) export tax in region E is τ, E’s producers
receive the price p−τ . These producers’ marginal cost function, equal to E’s supply function,
is g + f (p − τ), where g and f are constants. The exporter’s single period payoff equals
its domestic profits plus the tax revenue or quota rents

E’s flow payoff:
∫ p−τ

− g
f

( f s + g) ds+τ (g + f (p − τ)) = 1

2

2gp f + g2 + f 2 p2 − f 2τ 2

f
.

(3)
Each agent has the same constant discount factor, β. Welfare for each agent equals the

discounted stream of their single period payoffs.

2.2 Single Period Equilibrium

We can express single period payoffs as functions of the state variable, x , and the control
variables. The identity of the control variables depends on the policy scenario. A strategic
player can either use a quota, Q for I and q for E , or they can use a unit tax, T for I or τ for
E . One agent might use a quota and the other a tax, resulting in four scenarios.

If the agents both uses quotas (Q and q), the equilibrium conditions in E and in the world
at large are

g + f (p − τ) = q and q − Q − (a − bp) = 0

�⇒ p = −q + Q + a

b
, P = A − Q

B
, and

τ = g + f p − q

f
= (− f − b) q + f Q + gb + f a

b f
. (4)

If they both use taxes (T and τ ) equilibrium requires

g + f (p − τ)− (A − B (p + T )+ a − bp) = 0

�⇒ p = f τ + a + A − BT − g

B + f + b
and
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P = f τ + a + A − BT − g

B + f + b
+ T = ( f + b) T + f τ + a + A − g

B + f + b
. (5)

If I uses the tax T and E uses the quota q , equilibrium requires

g + f (p − τ) = q and q − (A − B (p + T )+ a − bp) = 0

�⇒ p = a + A − q − BT

B + b
and

P = bT + a + A − q

B + b
and τ = g (B + b)+ f (A + a)− ( f + B + b) q − B f T

(B + b) f
.

(6)

If I uses the quota Q and E uses the tax τ , equilibrium requires

g + f (p − τ)− (Q + a − bp) = 0 �⇒ p = Q + a − g + f τ

f + b
and P = A − Q

B
(7)

The first two equations on the second lines of each of (4)–(7) give the equilibrium values
of p and P as linear functions of the control variables (a combination of Q, q, T and τ )
for the four scenarios. If E chooses the tax, τ , as in the scenarios that correspond to Eqs.
(5) and (7), the optimality condition for E’s problem determines τ . If E chooses a quota, q ,
the equilibrium condition q = g + f (p − τ), together with the requirement that aggregate
demand equal aggregate supply, leads to an implicit tax, τ . This implicit tax is a linear
function of the control variables, as shown by the third equation in the second lines of (4)
and ( 6). The payoffs, presented in Sect. 2.1, are quadratic functions of the prices, controls
and stock, T, τ , and x , and thus are quadratic functions of the control variables and x in each
of the four scenarios. Given its rival’s level of trade policy, a country is indifferent whether
it supports its own trade restriction using a quota or a tax. However, the level of its rival’s
equilibrium trade restriction depends on both the level and form (a tax or quota) of its own
policy instrument.

2.3 Dynamics

In a period, the current level of GHG stocks is predetermined, at level x . Region R’s domestic
supply is b1 p and E supplies q , so total emissions are b1 p +q . We use a discrete time model
and simplify notation by dropping time subscripts; x is the stock in the “current” period and
x ′ the stock in the “next” period. The constant decay rate is δ so next period stock is

x ′ = δx + q + b1 p. (8)

We use the same procedure as above to write the right side of this equation in terms of the
control variables. For example, if both countries use quotas, we replace p with −q+Q+a

b .

2.4 Calibration

This game is too complicated to easily produce analytic results, but too simple to provide an
accurate empirical description of fossil fuel markets. We solve the model numerically and
select parameter values to provide an economically meaningful context, so that the results are
informative about world markets. We assume that, if I uses no trade restrictions, I imports
the fraction � < 1 of E’s exports, and R imports the remainder: for any price, I ’s elasticity
of demand equals R’s elasticity of net demand. We define � = b0

b , the slope of R’s demand
relative to the slope of its import demand. By varying �, we can change R’s fraction of world
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Table 1 Benchmark parameter values

Variable A = 8� B = � a = 8 (1 −�) b0 = � (1 −�) b1 = (1 − �) (1 −�)

Value 5.6 0.7 2.4 0.05 0.25

b = b1 + b2
= 1 −�

g � � = 0.1667 f d δ β κ = 0.0000991

0.3 0 0.7 0.25 −3.0+4.0�−1.0+� 1 2.31331 × 10−4 .99 .95 d(1−�)
�

Table 2 Economic interpretation of demand and supply parameters; all formulae evaluated at competitive
equilibrium

I’s demand elasticity
= R’s net demand
elasticity

E’s supply
elasticity

E’s production
share

I’s consumption
share

8−g
8 f +g f 8−g

8 f +g
−8 f −g

−8 f −8+8�−�g+8�−�g−8��+��g �

1 1 0.8 0.7

production in a competitive equilibrium. By choice of units, we set I ’s demand intercept
A = 8, and E’s supply slope f = 1. We assume that E’s production equals 0 at p = 0 ,
implying g = 0. This assumption and the linearity of E’s supply implies that E’s elasticity
of supply everywhere equals 1. Our second calibration assumption is that I ’s elasticity of
demand, evaluated at free trade, also equals 1. With these two calibration assumptions (and
g = 0) and the normalizations A = 8 and f = 1, the choice of � and � determine the
remaining supply and demand parameters.

For our baseline, we set� = 0.7, so (absent import restrictions) I accounts for 70 % of E’s
exports, and � = 0.1667, so that in a competitive equilibrium E accounts for 80% of world
supply. Table 1 summarizes our parameter choices and the relation between� and � and the
supply and demand parameters. Table 2 shows the formulae relating model parameters to the
elasticities and �,�.

To assess the sensitivity of our results to parameters, we also considered the alternative
� = 0.3. The choice� = 0.3 corresponds, roughly, to the situation where I represents Annex
B countries under the Kyoto Protocol;� = 0.7 corresponds to a more aggressive policy sce-
nario, where I includes the US and China; including all BRIC countries in I increases� above
0.8. The cumulative supply is about 10 % higher with� = 0.3 compared to� = 0.7, because
with the lower �, I has less market power and restricts its fuel demand less. But results are
qualitatively unchanged. The results for this alternative calibration are available upon request.

We choose the unit of time equal to a year and set the discount factor β = 0.95, for an
annual discount rate of about 5.3%. The persistence parameter δ = 0.99 implies a half-life of
the pollution stock of approximately 90 years. Despite the lack of a physical interpretation of
the stock x (see above), it is important that there be an economic and physical interpretation
of the parameter d , in order to give context to the model results. We obtain the parameter d as
a function of previously chosen parameters and the level of a threshold stock above which it is
optimal for I to cease consumption of fossil fuels. We can choose the value of this threshold,
and thereby choose the value of d , by answering the following question: How many years of
consumption at the competitive level would it take to reach the threshold stock? Our choice
of d is consistent with the answer “105 years” , implying a threshold value of x = 900,
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with an initial value x0 = 0. “Appendix 1” explains this calibration procedure, which we
intend only as a means of providing context for a numerical value that would otherwise be
hard to interpret. Our results imply that for this value of d the environmental objectives are
low relative to the terms of trade objectives; in that respect, our calibration represents low to
moderate levels of damages.

We set R’s damage parameter κ = d(1−�)
�

. With this choice, the ratio of I and R’s damage,
for any stock, equals the ratio of their import demand absent trade restrictions: I and R have
the same relative benefit of consumption to cost of stock-related damage; they merely differ
in size. As a second sensitivity experiment, we hold fixed other parameter values and double
the value of κ , to represent a situation where R has much higher damages than I , taking into
account their size difference.

2.5 The Equililbrium

There are non-linear equilibria in this model. However, the linear equilibrium is an obvious
choice to study, because it is the limit of the sequence of equilibria in the finite horizon game,
as the time horizon goes to infinity. It is also the only equilibrium (when it exists) that is
defined for all state space.

In our setting, I ’s imports and E’s exports are required to be non-negative. If inequality
constraints bind, the linear equilibrium does not exist. We therefore solve the model ignoring
these constraints (“Appendix 2”), and we confirm that for our calibration and sensitivity
studies the state variable x never approaches the critical level (x = 900) at which an inequality
constraint binds (Sect. 3.2).

Even without binding inequality constraints, a linear equilibrium may fail to exist for
sufficiently large �; there may be no real roots to the equilibrium conditions presented in
“Appendix 2”. We thank Franz Wirl [private communication] for bringing this possibility to
our attention. For our baseline calibration and sensitivity studies, a unique linear equilibrium
always exists.

3 Results

We study four scenarios, in which I chooses a sequence of either taxes or quantities, repre-
sented by T or Q, and E chooses a sequence of either taxes or quantities, τ or q . In each
case, a player’s equilibrium control rule is a linear function of x , equal to ρ + σ x for I and
λ + μx for E . For example, if I chooses T and E chooses q , we have T = ρ + σ x and
q = λ + μx . The values of the four endogenous parameters, ρ, σ, λ, μ are different in the
different scenarios. R does not use a policy, so it has no control rule. The equilibrium payoff
of each of the agents—the present discounted value of that agent’s future payoff stream—is
a quadratic function of the current stock. The payoff for I is V (x) = χ +ψx + ω

2 x2, for E is

W (x) = ε+ νx + φ
2 x2, and for R is Y (X) = ς + ηx + γ

2 x2. “Appendix 2” explains how we
obtain the value of these parameters in the four scenarios. Table 3 lists the parameter names.

We use the model parameters from Sect. 2.4. We first discuss the parameter values for
the endogenous value functions and control rules for the case where both strategic agents
use quotas. We then compare the equilibrium stock trajectories, payoffs and prices in the
four scenarios. We use information on the payoffs to determine the equilibrium to the game
in which agents choose their policy instrument (a tax or quota). Our qualitative results are
robust to changes in d .
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Table 3 Definition of endogenous parameters

Parameter Importer Exporter Row

Coefficient of x2 ω φ γ

Coefficient of x ψ ν η

Constant in value function χ ε ζ

Coefficient of x in constant rule σ μ −
Constant in control rule ρ λ −

Table 4 Equilibrium values of endogenous parameters when E and I both use quotas

Parameter Importer Exporter Row

Coefficient of x2 in value function ω = −3.3 × 10−3 φ = 3.2156 × 10−6 γ = 2.3663 × 10−6

Coefficient of x in value function ψ = −0.1435 ν = −2.75 × 10−2 η = 9.5 × 10−3

Constant in value Function χ = 14.4634 ε = 120.9244 ζ = 19.6012

Coefficient of x in control rule σ = −3.9290 × 10−4 μ = −1.7066 × 10−4 −
Constant in Control Rule ρ = 0.5049 λ = 1.2624 −

With one exception, we compare results across different policy scenarios by comparing
them to the corresponding result in the scenario where both strategic agents uses quotas,
which we call the “reference scenario”. The graphs labeled ImpTExpT, ImpQExpT, and
ImpTExpQ refer, respectively, to the graph of an outcome when both agents use tax policies,
when I chooses a quota and E chooses a tax policy, and when I chooses a tax and E chooses
a quota. In all cases but one, the outcome (e.g. a payoff, price, or quantity) is relative to the
corresponding outcome in the reference scenario.

The exception is for I ’s payoff, V (x), where the reference scenario trajectory passes
through zero. For each of the four scenarios, these payoffs are initially positive, because the
initial value of the stock is x = 0. However, as x increases, the payoffs become negative.
The switch in sign occurs at a different time in each of the scenarios. Normalizing I ’s payoff
in scenario ImpTExpT, for example, by dividing by the payoff when both agents use quotas
(ImpQExpQ) would involve dividing by 0. To avoid this problem, we show the payoffs for
I in the four scenarios as levels, rather than ratios.

3.1 Equilibrium Parameters When Both Agents Use Quotas

Table 4 shows the equilibrium values of the endogenous parameters under our baseline
calibration, when both E and I use quotas. For all x , the importer’s payoff decreases with x ,
so ω < 0 and ψ < 0. I ’s equilibrium imports decrease as the stock rises, so σ < 0.

Over relevant state space, E’s value function also decreases in the stock: ν < 0 and |ν| are
large relative to φ. However, φ > 0, so E’s value function is convex in x . The stock has no
direct effect on E , but as x increases, E faces decreasing demand from I (because σ < 0). I
eventually becomes a negligible part of the market, so further decreases in its demand have
a negligible effect on E’s payoff; hence, the convexity of E’s payoff in x . As I ’s demand
falls with the increase in x, E’s exports also fall: μ < 0. The fact that E suffers no direct
loss in utility due to higher pollution stock means that its payoff is much less sensitive to x ,
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Fig. 1 a Stock trajectory of the quota setting game and under the first-best social planner. b Stock trajectories
relative to the quota setting game for other scenarios considered

compared to I ’s payoff (Compare the magnitudes ofω andφ and ofψ and ν.). I ’s equilibrium
quota is about twice as sensitive to the stock, compared to E’s equilibrium quota: σ

μ
≈ 2.

R’s payoff is a convex increasing function of the pollution stock (both γ andη are positive);
over the relevant range of stocks, the relation is approximately linear ( γ

η
≈ 0). A higher stock

has offsetting effects on R’s payoff. The higher stock increases R’s damages, lowering its net
payoff. The higher stock also decreases E’s supply and I ’s imports, but the second effect is
approximately twice as large as the first ( σ

μ
≈ 2), so on balance a higher stock increases the

supply absorbed by R, increasing its gains from trade. With our calibration, the higher gains
from trade dominate the higher damages, so on balance higher pollution stocks benefit R.

3.2 Equilibrium Stock Trajectories

Figure 1a shows the pollution stock trajectories as functions of time in the quota-setting
game, and in the first-best scenario where the social planner uses Pigouvian taxes. We defer
discussion of the outcome under the social planner until Sect. 3.3 and here discuss the stock
trajectories under the games corresponding to different combinations of trade policies. After
150 years, the stock reaches only 22 % of the threshold level (x = 900, at which it is
optimal for I to cease imports). Recall that our calibration assumes that under unrestricted
trade the stock reaches this threshold in 105 years. This comparison shows a very significant
reduction (relative to free trade) in cumulative extraction, resulting from the quota-quota
policy combination. The magnitude of that reduction is consistent with either high damages
or a high incentive to exercise market power, or both. Our subsequent results show that our
calibration actually implies rather low damages, and that the stock reduction is due primarily
to agents’ incentives to exercise market power.

Figure 1b shows stock trajectories relative to the reference trajectory, beginning with the
first period. The initial stock equals 0 and the graphs start at time t = 1. In the early periods,
the graphs reflect primarily ratios of initial emissions, whereas later values of the graphs
reflect ratios of cumulative emissions, adjusted for the stock decay. These graphs are quite
flat, implying that relative flows, across policy scenarios, change little over time.

Cumulative stocks are 10–35 % higher in the other policy scenarios, relative to the quota-
setting game. The stocks are highest where both strategic agents use taxes, and are at
intermediate levels where one agent uses a tax and the other uses a quota. For this com-
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Fig. 2 a Importer’s value function as function of the stock. b Exporter’s value function as a function of the
state

parison, it matters little which of the two agents uses a tax. We noted that in a static setting,
equilibrium quotas tend to reduce trade to a much greater extent than equilibrium taxes. When
an agent uses a quota rather than a tax, its trading partner faces a less elastic excess supply or
demand function, and therefore has an incentive to use a more aggressive trade restriction.
Figure 1b shows that this comparison also holds in our dynamic setting.

The steady state when both countries use taxes is x = 329, much lower than the assumed
threshold of x = 900; after 150 years the stock reaches 80 % of its steady state level. The
steady state stocks in the other policy scenarios range from 254 to 280; by year 150 the stocks
in these scenarios also equal about 80 % of their respective steady states.

3.3 Payoffs and Instrument Selection

Figure 2 shows the importer and exporter continuation payoffs (value functions V and W )
as functions of the stock (Recall that the former is in levels, and the latter shows graphs
relative to the ImpQExpQ levels, accounting for the difference in scale of the two fig-
ures.). The principal information from these figures is that the tax is a dominant strategy
for both countries, at every stock level reached in equilibrium. If both countries believe
that they can choose their policy instrument in perpetuity in the initial period, the unique
Nash equilibrium is for both to choose a tax. If they have the opportunity to revisit this
decision at any time in the future (i.e. at any stock level reached in equilibrium), the equi-
librium policy choice does not change. Consider the more complex game in which, at
each period, agents choose both their policy instrument and the level of the instrument.
In the MPE to this game, both countries choose the tax, and the tax equals that of ImpT-
ExpT.

Both countries’ payoffs decrease with the stock. The importer suffers stock-related dam-
ages. As the stock increases, I tightens its trade restriction, reducing the aggregate demand
that E faces, and reducing E ’s flow payoff and its continuation payoff. Because the importer
suffers direct damages, its payoff is more sensitive to the stock, relative to the exporter’s
payoff.

The dots on the vertical axis identify the payoffs in the static game, obtained by setting
the damage parameter to 0. Comparison of the dots corresponding to the static games and the
intercepts corresponding to the dynamic games shows two facts. First, the payoff ranking is
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the same in the static and in the dynamic settings. Second, the payoffs in the dynamic setting
lie only slightly below the corresponding values in the static setting. The differences reflect
the fact that I suffers from damages in the dynamic game (harming I ) and therefore uses
more aggressive trade restrictions (harming E). Our calibration is consistent with relatively
small damages. The static terms of trade considerations are much more important to I ’s
payoff, compared to environmental damages. The largest difference between the static and
dynamic counterparts corresponds to the game in which both agents use taxes. As Fig. 1b
shows, the equilibrium stock is significantly higher in that policy scenario, so the welfare
impact of damages is greatest there.

If the importer is constrained to use a quota, it does not (much) matter to it whether the
exporter uses a tax or a quota (The graphs corresponding to the importer’s payoff under
ImpQExpQ and ImpQExpT are nearly coincident.). In contrast, if the exporter is constrained
to use a quota, it much prefers the importer to use a quota rather than a tax.

Although the payoff ranking (across policy combinations) does not change with the stock
level (i.e. the graphs in Fig. 2 do not cross), the payoff ranking for the importer does change
as a function of time. After about 100 years, the importer’s continuation value is lower under
ImpTExpT than under the other policy scenarios. After a century, the stock is sufficiently
higher when both strategic blocs use taxes, compared to other policy combinations. This
higher stock reduces the importer’s payoff. However, as noted above, if countries were able
to reconsider their policy instrument after 100 years of the ImpTExpT equilibrium, the unique
Nash equilibrium remains for both to continue using taxes.

3.4 R’s Payoffs

Figure 3a shows R’s payoffs over time in the dynamic games, and its corresponding payoffs
in the static games (the dots on the vertical axis). As with I and E, R’s ranking of policy
scenarios is the same in the static and dynamic settings; and for any policy scenario, the payoff
level is similar in the static and dynamic settings. Again, these features reflect the fact that
the static producer and consumer surplus are much more important to R’s payoff, compared
to the dynamic pollution cost. R’s payoff is highest when I uses a tax and E uses a quota.
I ’s use of a tax rather than a quota reduces E’s incentive to restrict its supply, benefitting R,
which in our calibration is an importer. From Fig. 1b, the stock trajectory is highest when
both I and E use taxes, but I consumes much of that additional supply. When I continues
to use a tax and E switches from a tax to a quota, aggregate supply falls, lowering R ’s gains
from trade (and slightly lowering its damages). E’s switch to a quota causes I to face a less
elastic excess supply function, inducing I to increase its tariff, and reduce its consumption.
The net effect is to increase R’s supply, thus increasing its gains from trade, and (because
damages are relatively small) increasing its payoff.

R’s payoff is higher in the dynamic setting (with damages) compared to the static setting
without damages. In contrast, both I and E have lower payoffs in the dynamic setting. Section
3.1’s discussion of endogenous parameters explains this relation: stock-related damages cause
both I and E to impose tighter trade restrictions, lowering their equilibrium gains from trade;
because I suffers directly from the higher stocks, and E suffers only indirectly (via the induced
tightening of I ’s trade restriction), I ’s response to the higher stock is greater than E’s. Thus,
the net effect of the higher stock is to increase supply available to R, increasing its gains from
trade. That increased gain swamps the direct cost to R, arising from stock-related damages.
In the quota-setting game, we noted that R’s payoff is monotonic in the stock, but this relation
does not hold for all games.
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Fig. 3 a R’s payoff, Y (xt ), in the four policy scenarios. b R’s payoff with twice the damages (2κ)

The non-monotonicity is easiest to see in Fig. 3b, where we double R ’s damages by
doubling κ . Higher damages do not alter the comparison of static and dynamic payoffs; in this
respect, damages remain small relative to the gains from trade, even whenκ doubles. However,
for higher damages R’s payoff is non-monotonic in time. Because the stock is monotonically
increasing over time, we conclude that R’s payoff is non-monotonic in the stock. As above,
a higher stock decreases I ’s demand more than it lowers E’s supply, thereby increasing the
supply available to R and increasing its gains from trade; and the higher stock increases R’s
damages. At low stocks, early in the program, the first effect dominates; at high stocks, later
in the program, the second effect dominates when we double the damage parameter κ . In this
case, the relation between R’s payoff is first increasing and then decreasing over both time
and over stock levels. When the climate damages are sufficiently important for R, relative
to fossil-fuel consumption, R’s payoff in the ImpTExpT game must eventually fall below its
payoff in the ImpQExpT game, simply because the rate of accumulation of the carbon stock
is greater in the former case.

3.5 Price and Policy Trajectories

Figure 4a shows the equilibrium world price, p (the price that R pays and E receives) and
Fig. 4b shows the importer’s domestic price P . As the stock increases and I tightens its trade
restriction, P rises. As the stock increases and I ’s import demand falls, the world price falls.
E is in the strongest position to exercise market power when it uses a tax and I uses a quota;
therefore, this scenario leads to the highest market fuel world price. I is in the strongest
position to exercise market power when it uses a tax and E uses a quota; therefore, this
scenario leads to the lowest world price. The other scenarios, where both agents use taxes or
both use quotas, result in intermediate levels of the world price.

Recall that absent R, the equilibrium when both agents use quotas implies that no fuel
is traded. As discussed in the Introduction, the presence of R moderates this extreme result.
With R, it is too costly for the strategic agents to try to capture all of their rival’s quota rent.
Nevertheless, trade between I and E is lowest in the quota setting game, so that scenario
results in the highest domestic price for I . For similar reasons, trade between I and E is highest
when both agents use tariffs, so that scenario leads to the lowest domestic price for I . The dots
on the vertical axes show the equilibrium prices in the static games, where damage equal 0.
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Fig. 4 a The world price, p, in the four scenarios. b The importer’s domestic price in the four scenarios

Fig. 5 a Exporter’s (explicit or implicit) trade tax. b Importer’s (implicit or explicit) trade tax

Figure 5 graphs the explicit or (in the case where an agent uses a quota) implicit trade tax.
Consistent with our previous discussion, these figures show that an agent has the greatest
incentive to exercise market power, and therefore uses the most restrictive trade policy, when
it uses a tax and its rival uses a quantity restriction. The agent’s trade policy is aggressive
when it uses a quantity restriction and its rival uses a tax. For all policy combinations, the
importer’s trade tax (or quota price) increases over time, i.e. it increases with the pollution
stock. The exporter’s implicit or explicit taxes fall slightly over time. E’s exports fall over
time, with the fall in the price that E receives. As this price falls, a lower export tax supports
reduced levels of exports (In contrast, at a constant world price, the export tax would have
to increase in order to support reduced exports.).

Figure 5 also shows the Pigouvian tax trajectory, for comparison with the equilibrium
trade taxes in the different policy scenarios. The Pigouvian tax supports the first best out-
come. Figure 1 shows that the stock trajectory under the social planner who uses a Pigouvian
tax is higher than the trajectory under any of the four combinations of trade policy. The
strategic countries want to improve their terms of trade and, in the case of I , to control the
emissions-related future damages that they suffer. In pursuit of these objectives, the strategic
countries reduce emissions. Those reductions exceed the reductions achieved by the social
planner who uses a Pigouvian tax imposed on all units of fuel consumption. Under this tax,
consumers in I and R and producers in E and R face the same prices; the difference between
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those prices equals the Pigouvian tax. In the absence of R, where one country (E) has pro-
duction but no consumption, and the other (I ) has consumption but no production, the first
best output path can be supported with any combination of import and export tax that sum to
the Pigouvian tax. The division of this sum between the import and export taxes determines
the amount of tax revenue that each country collects, but has no affect on equilibrium sales,
and therefore has no effect on efficiency.

In the presence of R, the first best outcome cannot be implemented using only trade
policies for I and E (simply because the first best requires that all consumers face the same
price, and all producers face the same price). Therefore, there is no direct way to compare the
Pigouvian tax with the sum of the trade taxes in the different policy scenarios. However, we
note that in all policy scenarios the sum of the equilibrium trade taxes exceeds the Pigouvian
tax at least for the first 50 years (and, except for ImpTExpT, this comparison also holds for
the entire 150 year period that we consider). In order to interpret this comparison, consider
the case of a planner whose objective is to maximize the sum of world welfare, and who is
constrained to use only an export tax for E and an import tax for I (or quota-equivalents to
such taxes). This planner cannot achieve the first best. The trade taxes create a distortion in
the process of achieving the desired reduction in the stock; therefore, in general, the sum of
the optimal export and import tax for this planner is less than the Pigouvian tax. The fact
that the sum of the equilibrium trade taxes exceeds the Pigouvian tax reflects the fact that the
trade taxes are set (primarily) in order to improve a country’s terms of trade, rather than to
correct the environmental distortion (which is the planner’s sole objective). Comparison of
the two graphs in Fig. 1 reinforces this interpretation.

4 Conclusion

This paper extends previous literature on dynamic games between a large bloc of fuel
exporters and a large bloc of fuel importers by including a nonstrategic third bloc of countries,
R, representing the group of developing countries with no climate policy nor strategic trade
policy. The presence of this nonstrategic bloc means that even if a strategic country uses a
trade quota, the excess supply or demand function facing its trading partner is not perfectly
inelastic. We find, under our preferred calibration assumptions, that a tax policy by both the
strategic importer and exporter constitutes the Markov (or subgame) perfect equilibrium to
this game, at any value of the state variable. This result echoes results from related models,
especially the static three-bloc model in Strand (2013), and the dynamic two-bloc model
(without the fringe) in Wirl (2012).

The strategic importer and exporter both use trade policies to improve their terms of trade.
The strategic importer also uses trade policy to control the future stock-related damages, but
does not internalize the damages facing R. The fact that the stock changes over time renders
the importer’s problem dynamic. Although the exporter has no intrinsic concern about the
stock, its equilibrium trade policy depends on the importer’s policy and therefore is also stock
dependent. For our calibration, the terms of trade objectives dominate the environmental
objective in explaining policy levels. OPEC countries appear to be concerned that a unified
climate policy among OECD countries might provide both “green cover” and a coordinating
device that would enable the OECD countries to exercise greater market power in the fuel
markets. Our results indicate that OECD countries might indeed have an incentive to behave
strategically in this way; although our model has little to say about whether unified climate
policy would actually induce such behavior. In our calibration, the strategic countries’ terms
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of trade objectives and concern for country-specific damages, lead to smaller equilibrium
pollution stocks than under the social planner who can use a Pigouvian tax.

The nonstrategic agent, R, also suffers stock-related damages. This set of countries, a
net fossil fuel importer, is a free rider, benefiting from the importer’s trade restriction; that
restriction lowers the equilibrium price of fossil fuels and also reduces the equilibrium stock
trajectory, lowering damages to R. R’s equilibrium payoff is higher in the dynamic setting,
where it incurs stock related damages, compared to the static setting where it incurs no
damages. The explanation is that stock-related damages cause the strategic importer to use
more aggressive trade restrictions, benefiting R. The reduced competition for fossil fuel
imports more than offsets the stock-related damages. The social planner’s optimal solution
is to set a Pigouvian tax applied to all fossil fuel consumption, including by the fringe. In our
model, in contrast, the fringe faces lower fossil fuel prices than the strategic importer.

Our calibration assumes that, under free trade, the strategic importer accounts for 70 %
of fossil fuel imports. This scenario corresponds to a situation where most large countries
cooperate on trade and environmental policy; those two policies are indistinguishable in our
setting, where the strategic importer consumes but does not produce fossil fuels. We have
also considered an alternative calibration where strategic importers account for only 30 %
of imports under free trade. The qualitative results in the two cases are similar, although the
smaller importer obviously has less market power and therefore uses less aggressive trade
restrictions.

Our analysis has important limitations. First, we ignore the inter-temporal resource con-
straint, so the Hotelling rule plays no role. This simplification makes it possible to present
our results graphically; with two stocks, the results would be much harder to interpret.
Secondly (like other dynamic game models in this field), we use a partial equilibrium
setting, and therefore omit general equilibrium considerations, such as those associated
with trade balance. Our partial equilibrium model considers only prices, taxes, and quan-
tities in a single market. A general equilibrium model, in contrast, would include income
and factor price effects, making the demand and supply functions (not merely their lev-
els) endogenous. However Karp (1988)’s static version of our dynamic game considers
both partial and general equilibrium formulations, with no important differences in con-
clusions.

Finally, the paper does not explain why quotas are the main climate policy instrument
currently in use. We think that the explanation likely turns on political and not economic
considerations. Quotas may be a politically easier way to transfer rents to firms, making
the climate policy less costly to them and making them less resistant to the policies. Quota
schemes are also less transparent and easier to manipulate, making it easier to favor politically
powerful interests. Goulder and Schein (2013) and Strand (2013) have deeper and broader
discussions of arguments for tax versus quota climate policy solutions.

Appendix 1: The Calibration of d

Suppose that I believes that if it were to drop out of the market (e.g. use a prohibitive
tariff or set its import quota to 0), E would subsequently behave as a monopolist with
respect to R’s import demand function. In that case (assuming f = 1, g = 0), E would set
q = a

2+b , implying that p = a+ab
b2+2b

. The single period emissions in this case is the constant

y ≡ a
2+b + b1

a+ab
b2+2b

and the equation of motion is xt+1 = δxt + y. If I ceases consumption
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when the stock reaches z, the stock n periods later, denoted xτ , equals

xn = δnz + y
n−1∑
n=0

δn = δnz + y
δn − 1

δ − 1
.

The present discounted value of the stream of marginal damages, when the stock reaches z,
is then

d
∞∑

t=0

β t xt = d
∞∑

t=0

(βδ)t
(

z + y

δ − 1

)
− dy

δ − 1

∞∑
t=0

β t

= d
(1 − β) z + βy

(β − 1) (δβ − 1)
.

The marginal value to I of consuming the first unit is the difference between its choke price
and the monopoly price, A

B − a+ab
b2+2b

. If it is optimal for I to cease consumption, under the
belief that subsequent emissions would be y in each period, then the marginal benefit of
an additional unit of production equals the present discounted value of the stream of future
marginal damages,

A

B
− a + ab

b2 + 2b
= d

(1 − β) z + βy

(β − 1) (δβ − 1)
. (9)

This expression gives d as an implicit function of z, the threshold stock above which it is
optimal for I to cease consumption.

Under perfect competition, let annual production equal s. Denote N as the number of
years that it would take the stock to reach z units, starting from a zero stock level, given

annual emissions s: N is the solution to z = s δ
N −1
δ−1 . We can use this equation to eliminate z

from Eq. (9), resulting in an implicit expression for d as a function of the previously defined
parameters and the new parameter, T . Our choice d = 3.3043×10−4 is equivalent to setting
N = 105. In summary, our choice of d is consistent with a circumstance where it would be
optimal for I to stop consuming the carbon intensive good after approximately 105 years of
world consumption at the competitive level, given I ’s belief that subsequent consumption
would be at the monopoly price with respect to R excess demand.2

Appendix 2: The Solution to the Model

We first explain how we re-write the problem in order to unify the four scenarios. This
procedure enables us to solve a single game, and then obtain each of the policy scenarios by
appropriate choice of parameters. We then explain how to solve the unified model.

2 As noted above, this explanation is intended to provide context for an otherwise hard-to-interpret numerical
value, not to represent a plausible outcome. In particular, the calibration described here implies z = 900.
However, world equilibrium production under the monopoly price, when I has exited the market, would be
too little to sustain the stock at that level.
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The Unified Model

In all four scenarios, corresponding to the different policy mixes, we can write the single
period payoffs of E and I and their “perceived” equations of motion (defined below) as

I ’s payoff: f I Q2 + gI Qx + hI Q + rI x + sI − dI

2
x2

Equation of motion: x ′ = kI x + m I Q + nI . (10)

E’s payoff: fE q2 + gE qx + hE q + rE x + sE − dE

2
x2

Equation of motion: x ′ = kE x + m E q + nE . (11)

We intentionally abuse notation here in order to obtain a unified (for all four policy scenarios)
expression of the game, so that we can use a single program to obtain the equilibrium in all
four cases. We now explain the relation between Eqs. (10) and (11).

Consider first the case where both I and E choose quantities, Q and q . In a linear MPE
both agents believe that their rival uses a linear control rule. Suppressing time subscripts, I
believes that E sets q = λ+μx and E believes that I sets Q = ρ+σ x , where the endogenous
parameters λ,μ, ρ, σ are to be determined. The beliefs are confirmed in equilibrium. That
is, given I ’s belief about E’s policy, I ’s optimal policy is Q = ρ+ σ x , and given E’s belief
about I ’s policy, E’s optimal policy is q = λ+ μx .

Using the price under quotas, and I ’s belief, I expects the equilibrium price to be

p = Q + a − q

b
= Q + a − (λ+ μx)

b
.

Using this expression and P = A−Q
B in I ’s flow payoff, Eq. (1), we write that payoff as a

quadratic function in q and x , as in the first line of Eq. (10). Equating coefficients of terms of
the same power (e.g., equating the coefficient of x2 in both equations), we obtain the formulae
for f I , gI , hI , rI , sI . Similarly, given its beliefs, I ’s “perceived” equation of motion (i.e., its
belief about the equation of motion) is

x ′ = δx + (λ+ μx)+ b1
Q + a − (λ+ μx)

b

=
(
δ + μ− b1

μ

b

)
x + b1

b
Q + λ+ b1

a − λ

b
,

which has the same form as the second line in Eq. (10). Again, equating coefficients of terms
of the same power, we obtain the formulae for kI ,m I , nI . We obtain the formulae for the
coefficients in Eq. (11) using the same procedure.

We use the same method to obtain formulae for the coefficients of the other three control
problems.

Solution to the Unified Model

We now work with the control problems defined by Eqs. (10) and (11). Each agent’s equi-
librium control rule, q = λ+ μx for E and Q = ρ + σ x for I , appears in the other agent’s
control problem. Consider E’s control problem. Its dynamic programming equation (DPE) is

123

Author's personal copy



L. Karp et al.

W (x) = max
q

[
fE q2 + gE qx + hE q + rE x + sE

−dE

2
x2 + βW (kE x + m E q + nE )

]
, (12)

where the second line uses the second line in Eq. (11) to write W (x ′) as a function of the
current x and the current choice q . Because of our choice of a linear equilibrium, E solves
a linear quadratic control problem, for which it is well known that the unique solution is a
quadratic value function. We write this function as W (x) = ε + νx + φ

2 x2, where the para-
meters ε, ν, φ are to be determined. Using this function to eliminate W

(
x ′) on the right side

of Eq. (12), we express the right side as a linear quadratic function of q, x and the unknown
coefficients. We maximize this expression with respect to q to obtain the coefficients of E’s
control rule Q = λ+ μx :

λ = −hE + βνm E + 2βφm E nE

(2 fE + βφm2
E )

μ = − gE + βφm E kE

(2 fE + βφm2
E )
. (13)

The maximized value of the right side of the DPE (12) is a quadratic function in x , as is
the left side. The DPE holds identically in x if and only if the coefficients of terms of order
of x are equal. We define

�E = (
2 fE + 2gEβm E kE + dEβm2

E − 2β fE k2
E

)2 − 4βm2
E (gE + 2dE fE ) (14)

and equate coefficients of terms of order of x on the two sides of the maximized DPE to
obtain the following formula for the unknown parameters.3

φ = 1

2βm2
E

(− (
2 fE + 2gEβm E kE + dEβm2

E − 2β fE k2
E

) −�E
)

ν = −hEβφm E kE + gEβφm E nE − 2βφ fE nE kE + gE hE − rE (2 fE + βφm2
E )

2 fE + βφm2
E − 2β fE kE + gEβm E

ε = 1

2

−2βφ fE n2
E + h2

E + 2hEβνm E + 2hEβφm E nE + β2ν2m2
E − 4βνnE − 2sE (2 fE + βφm2

E )

(2 fE + βφm2
E )(β −1)

(15)

The importer I solves a similar control problem, where its single period payoff is the
first line of Eq. (10) and its perceived equation of motion is the second line of that equation.
Denoting I ’s value function as V (x), we write its DPE as

3 The equations for φ and for ω are quadratics. For both of these equations we take the smaller root, leading to
the first line of Eq. (15). The smaller root satisfies the transversality condition. In addition, when we repeat this
procedure for the importer, the smaller root is the only negative root. The coefficient of x2 in the importer’s
value function must be negative, as discussed in the text.

We confirmed that the choice of the smaller root for both quadratics is correct by solving these equations
for the other three combinations of roots. For two of these combinations, there was no equilibrium candidate
because there was no solution to the two equations given by the two roots. For the third combination, there
was a solution to these two equations, but it resulted in negative stocks, and thus violates the requirement that
stocks be non-negative.
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V (x) = max
Q

[
f I Q2 + gI Qx + hI Q + rI x + sI

−dI

2
x2 + βV (kI x + m I Q + nI )

]
(16)

Equation (16) has the same form as the exporter’s DPE (12), except that the subscript I
replaces the subscript E on parameter coefficients, the function V replaces W , and the control
Q replaces q . Denote the quadratic value function as V (x) = χ + ψx + ω

2 x2. Substituting
this function into the DPE (16) we repeat the procedure above to obtain expressions for the
endogenous parameters χ,ψ,ω, σ, ρ. These formulae are identical to those in Eqs. (13) and
(15), except that the subscript I replaces the subscript E , and the parameters χ,ψ,ω, σ, ρ
replace the parameters ε, ν, φ, λ, μ; we also define a function�I using an equation analogous
to (14).

The system consisting of (13) and (15) and the definition (14), together with the cor-
responding equations (not shown) for I can be solved recursively. We first solve the four
equations that determine ω, φ, σ, μ. This four dimensional system can be reduced to a two-
dimensional system by noting that for all policy scenarios, gE is a linear function of σ , and
gI is a linear function of μ. The second line of Eq. (13) shows that μ is a linear function of
gE , and hence a linear function of σ . Inspection of the analogous equation for I (not shown),
shows that σ is a linear function of μ. We can solve this two dimensional linear system to
obtain values of σ and μ as functions of ω and φ. Substituting these expressions into the
equations that determine ω and φ (the first line of Eq. (15) for ω and the corresponding
equation—not shown—for φ), we obtain two cubics in ω and φ. We can numerically solve
these two cubics to find the correct values of ω and φ.

Given the values of ω and φ, we can then obtain σ and μ using the the expressions
described in the previous paragraph. With numerical values for ω, φ, σ, μ, we then use the
equations for λ and ν and the corresponding equations (not shown) for ρ and ψ to solve for
these four parameters; this system is linear. We then solve the decoupled equations for τ and
χ (again, the equation for χ is not shown).

We also need an expression for the present discounted value of the stream of R’s payoff.
Equation (2) gives R’s single period payoff. Denote p = μR x + λR and Q = σR x + ρR

as the equilibrium values of p and Q. The parameters of these functions depend on the
particular policy scenario, and their values are obtained from the solution to the different
games. R’s flow payoff depends on p, which in equilibrium is a function of x , and the
evolution of x depends on both p and Q, via Eq. (8). R’s continuation payoff is therefore a
function of x , which we denote Y (x). The value of the stream of R’s payoff equals its flow
payoff plus its discounted continuation payoff. Therefore, Y (x) must satisfy the functional
equation

Y (x) = 1

2

(a − bp)2

b
+ βY (δx + Q + b1 p). (17)

Substituting the quadratic trial solution, Y (x) = γ
2 x2 + ηx + ς , into Eq. (17) and equating

coefficients of terms in order of x provides the equations for the parameters of R’s value
function:

γ = −bμ2
R

βδ2 + 2βδσR + βσ 2
R + 2βδμRb1 + 2βσRμR + βμ2

Rb2
1 − 1

η = −aμR + bμRλR + βδγρR + βγρRσR + βγμRρRb1 + βγσRλRb1 + βγμRλRb2
1

(1 − βδ − βσR − βσ 2
R − βμRb1)
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ζ = −aλR + 1
2 bλR + ηβρR + 1

2βγρ
2
R + ηβλRb1 + βγλRb1ρR + 1

2βγλ
2
Rb2

1

1 − β
.

Appendix 3: Calculation of a Pigouvian Tax

As in the text, the world price, defined as the price that E receives, is p. Consumers in I
pay an additional Pigouvian Tax (ϒ) added to the price: p +ϒ and consumers in R face the
same price.

Country I has no domestic production; its demand for imports equals A − B(p +ϒ). The
climate-related damages, conditional on x , are d

2 x2 where d is a constant. I ’s single period
payoff equals consumer surplus minus environmental damages:

I ’s flow payoff:
∫ A

B

p+ϒ
(A − Bz) dz − d

2
x2 = 1

2

(A − B(p + ϒ))2

B
− d

2
x2. (18)

At price p + ϒ, R’s domestic demand is a − b0(p + ϒ) and its domestic supply is b1 p,
so its net imports equal a − bp − b0ϒ , with b0 + b1 ≡ b. R’s gains from trade minus its
climate related damages κ

2 x2 equal its flow payoff:

R’s flow payoff:
∫ a

b0

p+ϒ
(a − b0z) dz +

∫ p

0
(b1z) dz = 1

2

(a − b0(p + ϒ))2

b0
+ b1 p2

2
− κ

2
x2.

(19)
The exporter, E , has no domestic consumption. These producers’ marginal cost function,

equal to E’s supply function, is f + gp, where f and g are constants. The exporter’s single
period payoff equals its domestic profits

E’s flow payoff:
∫ p

0
( f + gz) dz. (20)

Each agent has the same constant discount factor, β. Welfare for each agent equals the
discounted stream of their single period payoff.

The social planner maximizes the sum of the payoffs plus rents collected through the tax.

social payoff : 1

2

(A − B(p + ϒ))2

B
− d

2
x2 + 1

2

(a − b0(p + ϒ))2

b0
+ b1 p2

2
− κ

2
x2

+ f p + 1

2
gp2 + ϒ( f + gp + b1 p) (21)

We can write the total demand equal to total supply (to get p in terms ofϒ) and the “perceived”
equation of motion (defined below) as

Equating Supply with Demand: f + gp + b1 p = a − b0(p + ϒ)+ A − B(p + ϒ)

which results in p = a − b0ϒ + A − Bϒ − f

g + b1 + b0 + B

Equation of motion: x ′ = δx + f + gp + b1 p

which results in: x ′ = δx + f + g

(
a − b0ϒ + A − Bϒ − f

g + b1 + b0 + B

)

+ b1

(
a − b0ϒ + A − Bϒ − f

g + b1 + b0 + B

)
(22)
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The social planner will choose a tax ϒ which in equilibrium is a linear function of the
state, ϒ = λ+ μx . The social planner solves the following optimization problem

S(x) = max
ϒ

[
1

2

(A − B(p + ϒ))2

B
+ 1

2

(a − b0(p + ϒ))2

b0
+ b1 p2

2
+ f p + 1

2
gp2

+ϒ( f + gp + b1 p)+
(−κ − d

2

)
x2 + βS(δx + f + gp + b1 p)

]
,

s.t. p = a − b0ϒ + A − Bϒ − f

g + b1 + b0 + B
(23)

where the second line uses the equation of motion to write S(x ′) as a function of the current
x and the current choice ϒ . The social planner solves a linear quadratic control problem, for
which it is well known that the unique solution is a quadratic value function. We write this
function as S(x) = ε + νx + φ

2 x2, where the parameters ε, ν, φ are to be determined. Using
this function to eliminate S

(
x ′) on the right side of Eq. (12), we express the right side as a

linear quadratic function ofϒ, x and the unknown coefficients. We maximize this expression
with respect to ϒ to obtain the coefficients of the control rule ϒ = λ+ μx :

The maximized value of the right side of the DPE (12) is a quadratic function in x , as
is the left side. The DPE holds identically in x if and only if the coefficients of terms of
order of x are equal. We equate coefficients of terms of order of x on the two sides of the
maximized DPE to obtain the unknown coefficients. Hence, we obtain ϒ = λ + μx , the
optimal Pigouvian tax as determined by the social planner.
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