
B Online Appendix for "Regulation with anticipated learn-

ing..."

This Supplementary Appendix, referred to as "Appendix B" in "Regulation with anticipated
learning about environmental damages", consists of three sections. The first section shows
that the subjective distribution for the unknown damage parameter G∗ collapses to the true
parameter value as t → ∞. The second part describes the calibration outlined in section 5.1
and lists the computer packages that we used to solve the numerical problem. The third section
shows that including an explicit inequality constraint on emissions would have no effect on our
quantitative results.

B.1 Convergence of the distribution

The difference at the beginning of period t between the subjective expectation of g∗ and its
true value, gt − g∗, depends on the realization of the sequence of random variables, Ωt ≡
{ω0, ω1, ...ωt−1}. Some straightforward but tedious calculations confirm that the expectation
and variance at time 0 (with respect to the random sequence Ωt) of this difference is

EΩt (gt − g∗) =
(g0 − g∗)σ2ω
σ2ω + tσ2g,0

→ 0 as t→∞

V arΩt (gt − g∗) =
σ4g,0¡

σ2ω + tσ2g,0
¢2 tσ2ω → 0 as t→∞.

The mean and the variance of the random variable gt − g∗ asymptotically approach 0. The
mean decreases monotonically. The variance might initially increase (if σ2g,0 < σ2ω) but has a
single turning point and thereafter monotonically decreases. From equation (20), σ2g,t → 0 as
t→∞. These facts and equation (17) imply that the subjective distribution of G converges to
the true parameter value G∗.

B.2 Model calibration and numerical methods

We set the length of a period equal to 10 years, using a ten-year discount factor of β = 0.7408.
This discount factor implies an annual discount rate of 3%, a value used in previous studies
(Kelly and Kolstad 1999) (Kolstad 1996b) (Nordhaus 1994b). Both costs and damages are
measured in billions of 1998 US dollars.
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CO2 emissions and stock. The CO2 atmospheric stock St is measured in billions of tons of
carbon equivalent (GtC). The pre-industrial atmospheric stock is about 590GtC as estimated by
Neftel, Friedli, Moor, and Lötscher and H. Oeschger and U. Siegenthaler and B. Stauffer (1999)
and used in Kelly and Kolstad (1999) and Pizer (1999). We take this level to be the steady state
stock given a low level of economic activity. Let et be total anthropogenic CO2 emissions in
period t. Approximately 64% of these emissions contribute directly to the atmospheric stock
(Kolstad 1996b), (Nordhaus 1994b). Remaining emissions are absorbed by oceanic uptake,
other terrestrial sinks, and the carbon cycle (Intergovernmental Panel on Climate Change 1996).
The linear approximation of the evolution of atmospheric stocks is

St+1 − 590 = ∆ (St − 590) + 0.64et.

We take xt ≡ 0.64et, the anthropogenic fluxes of CO2 into the atmosphere, as the control
variable and rewrite the above equation as

St+1 = ∆St + (1−∆) 590 + xt. (37)

The estimate of the stock persistence is ∆ = 0.9204 (an annual decay rate of 0.0083 and a
half-life of 83 years) (Kelly and Kolstad 1999) (Kolstad 1996b) (Nordhaus 1994b).

Equation (37), unlike equation (5), includes the constant, α ≡ (1−∆) 590. In order to
apply the formulae in Lemma 1 we define st ≡ St − α

1−∆ and replace equation (37) with
st = ∆st−1 + xt. We then need to write damages as a function of s rather than S. Expected
damages equal G

2
(s− s̄)2, with s̄ ≡ S̄ − α

1−∆ = 0.
Environmental damage. Perhaps the most controversial issue concerns the relation between

carbon stocks and environmental damages. Calibration of the damage function requires three
parameters, S (the stock at which damages are 0), g∗, and σ2ω. In addition, we need two state
variables, the initial mean and variance g1 and σ2g,1. We set S equal to the pre-industrial level
of stocks. The choice of the other four variables is less obvious.

As noted in the text, we describe our calibration in terms of the parameter φ, defined as
the expected percentage reduction of Gross World Product (GWP) due to a doubling of stocks
from their pre-industrial level. Nordhaus (1994a) surveys opinions of damages associated with
an estimated 3◦C warming, a temperature change associated with a doubling of CO2 stocks.
The opinions about φ range from 0 to 21 percent of GWP with mean 3.6 and coefficient of
variation 1.6 (Table 2 in Roughgarden and Schneider (1999)). Thus, for a point estimate of
φ = 3.6, a 95% confidence interval includes damages of approximately 0% to 15% of GWP –
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a substantial variation. In order to make our model consistent with this survey, we assume that
the coefficient of variation of damages is 1.6.

We use the following formulae for expected damages and the coefficient of variation of
damages, which are calculated using the formulae provided in Section 4:

E [D(St, ωt; g)|Ωt] =
1

2
exp(gt +

1

2
σ2g,t)

¡
St − S̄

¢2
=

Gt

2

¡
St − S̄

¢2
, (38)

CV [D(St, ωt; g)|Ωt] =
£
exp(σ2g,t + σ2ω)− 1

¤ 1
2 . (39)

There is a simple relation between φ and the parameters of our model. The 1998 estimate
of GWP is 29,185 billion dollars (International Monetary Fund 1999), for a 10 year estimate of
GWP of 291,850. The estimated damages due to doubling of CO2 stocks during this period is
291,850 φ

100
. Equating this value to the expected damages given by equation (38) gives us one

calibration equation:

291, 850φ 1
100
= 1

2
exp(g1 +

1
2
σ2g,1) (590)

2 =⇒
1. 676 8× 10−2φ = exp(g1 + 1

2
σ2g,1) = G1.

(40)

(We have set the time index t = 1.) For example, if the regulator’s expectation of φ is 1.33, we
have 1. 676 8× 10−2 (1.33) = 2.230 1× 10−2 = G1

We obtain our second calibration equation using the coefficient of variation of damages in
Nordhaus’ survey and equation (39)

CV (Damages) = 1.6 =
£
exp(σ21,t + σ2ω)− 1

¤ 1
2 ⇒ 3.56 = exp(σ2g,1 + σ2ω). (41)

We need one more assumption to identify the model parameters. We assume that the regulator
begins with diffuse priors

¡
σ2g,0 =∞

¢
and has made one observation, so his posterior variance

(using equation (20) is σ2g,1 = σ2ω. Using this equation, we can solve equation (41) to obtain
σ2g,1 = σ2ω = . 634 88.

Using this value we can rewrite equation (40) as g1 = −. 317 44 + ln (1. 676 8× 10−2φ).
Thus, the value of g1 corresponding to the belief that φ = 1.33 and the level of uncertainty
σ2g,1 = . 634 88 is

g1 = −. 317 44 + ln
¡
1. 676 8× 10−2(1.33)

¢
= −4. 120 5.

Abatement cost. In order to use a stationary model, we assume that the expected BAU level
of emissions is equal to the constant x . We choose the constant x̄ so that our model predicts
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a BAU level of CO2 stocks of 1500 GtC in 2100, consistent with the IPCC IS92a scenario
((Intergovernmental Panel on Climate Change 1996), page 23). Given the current atmospheric
CO2 concentration S0 = 781GtC ( (Keeling and Whorf 1999)), using equation (37) the expected
future BAU atmospheric CO2 concentration is

St = ∆tS0 +
1−∆t

1−∆
[(1−∆) 590 + x] .

We choose x = 116.73 GtC so that the model predicts CO2 stocks of 1500 GtC in 2100.
We want to choose the slope of abatement costs, b, so that abatement costs in our model

are similar to those in Nordhaus (1994a). Nordhaus (1994a) sets abatement costs equal to
A = 0.0686u2.887 × 291, 850, where u is the fractional reduction in CO2 emissions, relative
to the BAU level. We draw 1000 realizations of u from a uniform distribution with support
[0, 0.75] (the same support that Nordhaus (1991) used) and calculate A using this formula; we
treat the pairs (u,A) as psuedo-observations for a regression. Each value of u implies a level
of abatement, x− x = ux, with x = 116.73.

When θ = 0, our quadratic benefit-of-emissions function is equivalent to a quadratic abate-
ment cost function

A =
b

2
(x̄− xt)

2 =
b

2
(ux)2 .

We treat this equation as a regression and we use our psuedo-observations to estimate the pa-
rameter b, the slope of marginal benefits The estimated value is b = 1.9212 (billion $/GtC2).
The corresponding estimate of the intercept is a = bx̄ = 224.26 (billion $/GtC). The R2 for
this regression is 0.9762, implying that the quadratic function and the function in Nordhaus’
formula are very similar, for reductions between 0 and 75% of emissions.

Cost uncertainty. We model cost uncertainty by allowing the actual BAU level of emissions
to equal the constant x plus a mean-zero random variable θ̃t = θt

b
. The actual marginal abate-

ment costs are then b(x+ θ̃t − xt). That is, the intercept but not the slope of marginal costs
are random. We use 13 observations of historical emissions, at ten-year intervals, to estimate
a detrended model of emissions, leading to an estimate of σ2θ. This parameter is needed to
evaluate the magnitude (but not the sign) of the difference in value functions under taxes and
quotas. (The difference in value functions is proportional to σ2θ). This parameter does not
effect the relation between anticipated learning and abatement.

In our model, the cost uncertainty is linearly related to the BAU level of emissions. We
used data on actual emissions, et, to estimate the variance and autocorrelation of the cost shock.
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Using maximum likelihood and data from Marland, Boden, Andres, Brenkert, and Johnston
(1999) (total global carbon emissions over every 10 years during the period 1867-1996) we
estimated the following model:

et = e0 + κt+ εt, εt = ρεt−1 + νt, νt ∼ iid N
¡
0, σ2ν

¢
.

(Since we have only 13 observations, we view this procedure as merely a means of calibration.)
The estimates are ρ = 0.96 and σν = 4.55 GtC. We convert the emission uncertainty σν into
cost uncertainty σθ by multiplying it by 0.64 (because xt ≡ 0.64et), and then by the slope of
marginal abatement cost b = 1.9212 (because θt ≡ bθ̃t). The result is σθ = 4.55 × 0.64 ×
1.9212 = 5.5945$/(ton of carbon).

Numerical methods. We approximate ρ∞ and μ∞ as functions of
¡
g, σ2g

¢
by solving the

fixed point problems in equations (27) and (28) recursively using the collocation method, de-
scribed in Miranda and Fackler (2002). We apply a third-order (cubic) piecewise polynomial
spline to grids on the

¡
g, σ2g

¢
plane with 10x10 collocation nodes. The approximation is twice

continuously differentiable. We obtain the approximation using the following procedures from
the toolbox that accompanies Miranda and Fackler (2002): FUNDEFN, FUNNODE, FUN-
FITXY, and FUNEVAL. Applying the collocation method using equation (36), we approximate
the value function of payoff differences under taxes and quotas

B.3 The inequality constraint

Here we show that the probability that it would ever be optimal to set x ≤ 0 is negligible, for
all reasonable values of the damage parameter. Thus, there is essentially no loss in generality
in ignoring the constraint x ≥ 0, even if we believe that this constraint is reasonable. (For
example, we may think that the possibility of sequestration of carbon could never be great
enough to offset carbon emissions.)

We use figure 5 to explain how we obtain an upper bound on the probability that it is optimal
to set x ≤ 0. The solid curve labelled C(0) shows the boundary in S, g space at which it is
optimal to set x = 0 when there is certainty about the parameter g∗ (i.e., when σ2g = 0). As
noted in the text, the optimal level of emissions (x or z) is a decreasing function of both the
stock, St, and the current point expectation, Gt (equivalently, gt). Consequently, the boundary
C(0) has a negative slope. Under certainty about g∗, it is optimal to set xt > 0 if and only
if (St, gt) lies below the boundary C(0). Our simulations (reported in the text) show that
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uncertainty about g∗ increases the optimal level of emissions. The dashed curve, labelled
C(t) shows the boundary in (S, g) space on which it is optimal to set xt = 0 for a given level
of uncertainty. The precise location of this boundary depends on the level of uncertainty.
However, for our purposes, all that matters is that the boundary C(t) lies above the boundary
C(0).

Suppose that we begin at a point (S0, g0) shown in figure 5, where it is optimal to have
positive emissions if there is no uncertainty about g∗. (The point (S0, g0) lies below C(0).)
Assume that S0 < SBAU

∞ , the BAU steady state. Assume also that the point
¡
SBAU
∞ , g0

¢
(not

shown) lies below the boundary C(0). This assumption is true in our model even for values of
g well outside the range of current opinions; we return to this point below.

Pick an arbitrary future time t ≤ ∞; hold this time fixed for the following experiment. In
our model, it is never optimal to set emissions above the BAU level. Denote S̄t as the level of
the stock at time t if emissions are set at the BAU level from the current time to time t. Because
of the structure of the model, we know that S̄t ≤ SBAU

∞ , with strict inequality for t <∞. Given
the assumptions in the previous paragraph, the point

¡
S̄t, g0

¢
lies below the boundary C(0), as

shown.
When there is uncertainty about g∗, the value of gt changes over time. In view of the

previous comments, a sufficient condition for the optimal level of emissions to be positive at
time t is that gt ≤ ḡ, defined as the value of g on the curve C(0), associated with S = S̄t. (See
figure 5.) Of course, ḡ depends on the initial stock level and the time t (since S̄t depends on
those variables) but it does not depend on the uncertainty parameters. We do not need to use
Monte Carlo methods to calculate ḡ. In order to obtain an upper bound on the probability that
it would be optimal to set x < 0 we merely need to calculate (using Monte Carlo methods) the
probability that gt > ḡ.

We now describe the results of our Monte Carlo simulations, expressed in terms of the
parameter φ rather than g. Recall that φ is defined as the percentage reduction in GWP due to a
doubling of GHG, and φt is the subjective belief about this parameter. φt and Gt are positively
linearly related, and thus φt is a monotonic function of gt.

For the following experiment, we hold fixed the initial value of the stock at the baseline
level, and we vary t. Different values of t imply different levels of S̄t, and thus different values
of ḡ. For each of these values we calculate the corresponding value of φ, which we denote as
φ̄t. (These are the values at which it is optimal to set emissions equal to 0.) Figure 6 shows
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Figure 5: Critical region where emissions are positive
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Figure 6: The graph of critical boundary for baseline parameters.
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Figure 7: Simulation results

the trajectory of φ̄t under our parameterization.
Since the BAU stock asymptotes to a finite level, the graph in Figure 6 is also asymptotic to

a finite level. The important point is that this level is in excess of 61. This value is nearly three
times the most pessimistic guesstimate of φ (equal to 21 in Nordhaus’s 1994a survey).

Of course, it is still possible that φt could exceed φ̄t. To test this possibility, we ran 1000
simulations, each consisting of 50 periods (500 years). In each of these the initial belief is
φ0 = 1.33. For each set of simulations we chose a different value of the true parameter φ∗.
For each set of simulations we stored the largest value of φt in each of the 50 periods. Figure
7 plots these largest values for the three cases φ∗ = 3.6, φ∗ = 21, φ∗ = 42. Even for the
extremely unlikely case where φ∗ = 42, we have no cases where φt ≥ φ̄t.

We are able to find cases where φt ≥ φ̄t and thus the constraint x ≥ 0 might be violated, but
these cases are wildly outside the range of plausibility, given current evidence. For example,
if the true value is φ∗ = 42 and the initial belief is also φ0 = 42 (double the most pessimistic
opinion), there is only a 7% chance that φt ≥ φ̄t
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