Numerical Examples Used in Class for Nonrenewable Resources

Optimal Solutions vs. Monopoly

Suppose demand = B / x = 10 - x, Extraction cost = 0 r = 1, interest rate of 100%

We know that x_0 and x_1 are constrained to be smaller than 10 since, at x = 0,

$$\frac{B}{x}(x=10)=0.$$

<u>The Optimal Solution as Function of S_0 if the Constraints Are Binding</u>

$$\frac{B}{x}(x_0) = \frac{1}{1+r} \frac{B}{x}(x_1) =$$

10 - x_0 = $\frac{1}{2} \left[10 - (S_0 - x_0) \right]$

which implies $x_0 = \frac{10 + S_0}{3} x_1 = S_0 - x_0$

If $S_0 = 6, x_0 = \frac{16}{3}, x_1 = \frac{2}{3}$ $S_0 = 8, x_0 = 6, x_1 = 2$ $S_0 = 10, x_0 = 6\frac{2}{3}, x_1 = 3\frac{1}{3}$ $S_0 = 12, x_0 = 7\frac{1}{3}, x_1 = 4\frac{2}{3}$

Monopoly Solutions

Note that *x* cannot exceed 5 since

$$MR(x) = 10 - 2x$$

At x = 5, marginal revenue = 0; therefore, production will not exceed 5.

The optimality conditions of monopoly are

$$\int_{0}^{M} = MR(x_{0}) = \frac{1}{1+r} MR(x_{1}) = \frac{1}{1+r} MR(S_{0} - x_{0})$$

when the resource constraints are binding

$$10 - 2x_0 = \frac{1}{2} (10 - 2(S_0 - x_0))$$
$$x_0^M = \frac{5 + S_0}{3}.$$

For $S_0 = 6$,

$$x_0^M = \frac{11}{3}, \ x_1^M = \frac{7}{3}$$

when $S_0 = 8$,

$$x_0^M = \frac{13}{3}, \ x_1^M = \frac{11}{3}.$$

In both cases, consumption in period 0 is lower under monopolistic solutions than under optimal solutions.

For
$$S_0 = 10$$
,

$$x_0^M = x_1^M = 5$$

For $S_0 = 12$,

$$x_0^M = x_1^M = 5$$
.

For cases with $S_0 > 10$, the monopoly solutions does not change. However, optimal solutions will utilize all the resources for $S_0 = 20$.