Numerical Examples Used in Class for Nonrenewable Resources

Optimal Solutions vs. Monopoly

Suppose demand $=\partial B / \partial x=10-x$,
Extraction cost $=0$
$r=1$, interest rate of 100%
We know that x_{0} and x_{1} are constrained to be smaller than 10 since, at $x=0$,
$\frac{\partial B}{\partial x}(x=10)=0$.
The Optimal Solution as Function of S_{0} if the Constraints Are Binding

$$
\begin{aligned}
& \frac{\partial B}{\partial x}\left(x_{0}\right)=\frac{1}{1+r} \frac{\partial B}{\partial x}\left(x_{1}\right)=\lambda \\
& 10-x_{0}=\frac{1}{2}\left[10-\left(S_{0}-x_{0}\right)\right]
\end{aligned}
$$

which implies $x_{0}=\frac{10+S_{0}}{3} x_{1}=S_{0}-x_{0}$

$$
\text { If } \begin{aligned}
& S_{0}=6, x_{0}=\frac{16}{3}, x_{1}=\frac{2}{3} \\
& S_{0}=8, x_{0}=6, x_{1}=2 \\
& S_{0}=10, x_{0}=6 \frac{2}{3}, x_{1}=3 \frac{1}{3} \\
& S_{0}=12, x_{0}=7 \frac{1}{3}, x_{1}=4 \frac{2}{3}
\end{aligned}
$$

Monopoly Solutions

Note that x cannot exceed 5 since

$$
M R(x)=10-2 x
$$

At $x=5$, marginal revenue $=0$; therefore, production will not exceed 5 .
The optimality conditions of monopoly are

$$
\lambda_{0}^{M}=\operatorname{MR}\left(x_{0}\right)=\frac{1}{1+r} \operatorname{MR}\left(x_{1}\right)=\frac{1}{1+r} \operatorname{MR}\left(S_{0}-x_{0}\right)
$$

when the resource constraints are binding

$$
\begin{gathered}
10-2 x_{0}=\frac{1}{2}\left(10-2\left(S_{0}-x_{0}\right)\right) \\
x_{0}^{M}=\frac{5+S_{0}}{3} .
\end{gathered}
$$

For $S_{0}=6$,

$$
x_{0}^{M}=\frac{11}{3}, x_{1}^{M}=\frac{7}{3}
$$

when $S_{0}=8$,

$$
x_{0}^{M}=\frac{13}{3}, x_{1}^{M}=\frac{11}{3} .
$$

In both cases, consumption in period 0 is lower under monopolistic solutions than under optimal solutions.

For $S_{0}=10$,

$$
x_{0}^{M}=x_{1}^{M}=5
$$

For $S_{0}=12$,

$$
x_{0}^{M}=x_{1}^{M}=5 .
$$

For cases with $S_{0}>10$, the monopoly solutions does not change. However, optimal solutions will utilize all the resources for $S_{0} \leq 20$.

