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Collinearity in Linear Structural Models of Market Power 
 
 
 Absstract 
 
The well-known structural model used to estimate market power suffers from a severe 
collinearity problem if the marginal cost and demand equations are linear.  
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 Collinearity in Structural Models of Market Power 
 
 
 
 
 A structural model due to Just and Chern (1980) has been widely used to estimate market 

power based on market-level data.1 Bresnahan (1982) used a simple linear structural model to 

illustrate the method and to demonstrate that identification problems can arise. The linear model 

has been estimated by many competent econometricians.2 Unfortunately, this linear model is 

fundamentally flawed due to a previously unrecognized multicollinearity problem. 

  We discovered this problem when we tried to estimate a simulated linear model. The 

simulations demonstrated that a loglinear model could be reliably estimated; however, a linear 

model produced completely unreliable estimates due to severe multicollinearity problems (see 

Hyde and Perloff, 1995 or Perloff et al., 2007). 

 In this paper, we demonstrate that an econometrician trying to estimate the linear model 

faces three very unattractive possibilities. First, if the true model is not linear, the estimates are 

biased (simulations in Hyde and Perloff, 1995, illustrate that equation misspecification biases in 

the estimates of market power may be severe). Second, if the true model is linear and the 

equations hold exactly, the variables are perfectly collinear so that the model cannot be 

estimated. Third, if the true linear model equations hold with errors, one can estimate the 

                                                 

1 Hundreds of studies have used this New Empirical Industrial Organization (NEIO) approach. 
For a partial list, see Bresnahan (1989) or Perloff et al. (2007). There are a number of alternative 
approaches that are widely used as well including a variant on the original NEIO approach using 
mixed logit to estimate demand equations, nonparametric approaches, dynamic models, and 
others. See Perloff et al. (2007) for a description of these alternatives.  
 
2 In these papers, a linear model is estimated, though other models may be estimated as well: 
Buschena and Perloff (1991), Jans and Rosenbaum (1996), Deodhar and Sheldon (1997), Kim 
and Knittel (2006), Roy et al. (2006), and Mérel (2008). 
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equations, but the estimated coefficients are likely to be highly unstable and unreliable due to 

nearly perfect collinearity. 

Structural Model of Market Power 

 In most studies based on industry-level data, the econometrician starts by assuming that 

the market consists of identical firms (or makes other similar assumptions), so that the  

“average” market power of these firms can be estimated. Typically, in this approach, the “true” 

model reflects the behavior of a single firm that may not be profit-maximizing. 

  Problems arise when both the marginal cost and demand curves are linear. Following 

Bresnahan (1982), suppose that the marginal cost curve is 

 cMC =  + w + r +  Q + ,η α β γ ε  (1) 

where w is the wage, r is the rental rate on capital, Q is market output, and εc is an error term.3 

Also following Bresnahan, the demand curve is 

 [ ]0 1 2 3 dp     + Z Q   Y  + ,= − +φ φ φ φ ε   (2) 

where p is the price, Z is an exogenous variable (such as the price of a substitute, a proxy for 

taste changes, or income) that rotates the demand curve, Y is an additive exogenous variable 

(such as income), and εd is an error term. The slope of the demand curve is p′= dp/dQ = 

. [ ]1 2  + Z− φ φ

                                                                                                                                                             

 
3 This function form was introduced by Bresnahan (1982) for expositional purposes, but has been 
widely used by others, even though this specification implies that the cost function is not 
homogeneous if γ is nonzero. 
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  Following Just and Chern (1980), Bresnahan (1982), and Lau (1982), we use a parameter 

λ to nest various market structures.4 Specifically, we define an “effective” marginal revenue 

function as  

[ ]1 2 ( )MR p  p Q p   + Z′λ = + λ = − λ φ φ Q. 

If λ = 0, marginal revenue equals price and the market is competitive; if λ = 1, marginal revenue 

equals the marginal revenue of a monopoly; if λ lies between 0 and 1, the degree of market 

power lies between that of monopoly and competition. For example, with n identical Cournot 

firms, λ = 1/n. 

 The optimality or equilibrium condition is that the industry sets its effective marginal 

revenue equal to its marginal cost, MR(λ) = MC, so p = MC + λ[ ]1 2 + Zφ φ Q, or 

 ( )1 2 .cp w r   + Z Q⎡ ⎤= η+ α +β + λ + γ + εφ φ⎣ ⎦  (3) 

The econometrician simultaneously estimates Equations 2 and 3 to obtain an estimate of λ, the 

measure of market power. Bresnahan (1982) and Lau (1982) show that λ is identified in the 

linear model only if 2 0≠φ (the ZQ interaction term matters) or γ = 0 (marginal cost does not vary 

with output, so that there are constant returns to scale). 

Perfect Collinearity 

 Even if the linear model is correctly specified and identified, it has a fundamental 

problem of multicollinearity. As we show in the appendix, the six regressors in Equation 3, the 

                                                 

4 Some researchers view λ as a conjectural variation, while others describe it as the outcome of 
an unknown game, where λ is a summary measure of the gap between p and MC. Bresnahan 
(1989) and Corts (1999) discuss these alternative interpretations. 
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constant, w, r, Y, ZQ, and Q, are perfectly collinear if the equations hold exactly (εd = εc = 0). To 

make this intuition clear, we consider the special case where Y, w, and r are irrelevant ( 3φ  = α = 

β = 0) and marginal cost does not vary with output (γ = 0). We can solve for the equilibrium 

value of Q by substituting for p from Equation 2 into Equation 3: 

 0

1 2 

.
(1 )( )

Q 
Z

φ − η
=

+ λ +φ φ
 

We now show that the right-hand-side variables in the optimality equation, Q and ZQ, are 

perfectly collinear by demonstrating that the weighted sum of these two variables is a constant. 

Let the weight on Q be λ 1φ  and the weight on ZQ be λ 2φ , then 

 

[ ]

[ ]

[ ]

1 2 1 2 

0
1 2 

1 2 

0

(1 )( )

,
1

Q ZQ Z Q

Z
Z

λ + λ = λ +φ φ φ φ

φ − η
= λ +φ φ

+ λ +φ φ
λ

= − ηφ
+ λ

 

where the last term is a constant. 

 Thus, when the demand and optimality equations hold exactly, the optimality equation 

suffers from perfect multicollinearity. This perfect multicollinearity creates a problem (Greene, 

2012) that is more fundamental than the one Bresnahan (1982) and Lau (1982) discuss where 

only λ cannot be identified. Here, due to perfect linear dependency, none of the coefficients can 

be estimated. 
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Nearly Perfect Collinearity 

 If the demand and optimality equations do not hold exactly (εd ≠ 0 and εc ≠ 0), one can 

mechanically estimate this system of equations, but the right-hand-side variables are nearly 

perfectly collinear, which creates the usual problems: 

 1. Coefficients may have large standard errors (low precision) even though they are 

jointly highly significant. 

 2. Coefficients may have the “wrong” sign or an implausible magnitude. 

 3. Estimates may be very sensitive to addition or deletion of a few observations or the 

deletion of an apparently insignificant variable. 

 We illustrate these multicollienarity problem using simulations. Tables 1 and 2 

summarize a 1,000 replications of experiments with 50 observations each. We set α = β = γ = δ1 

= δ2 = η = 1,  = 0, δ0 = 10, and λ = 0.5. Both εd ≠ 0 and εc are distributed N(0, σ), where σ = 

σd = σc.

3φ

5 

 If we were to set σ = σd = σc ≤ 0.00001, the model cannot mechanically be estimated 

because of virtually perfect collinearity. With a slightly larger amount of noise, we can 

mechanically estimate the model. In the tables, we report simulations for σ equal to 0.001, 0.5, 1, 

and 2. 

 

5 The exogenous variables are constructed as random variable where w ~ N(3, 1), r ~ N(0, 1), Z ~ 
N(10, 1). Two additional instruments are created by adding an additional random variable drawn 
from N(0, 1) to w and to r. 
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 We estimated the model using two-stage least square (2SLS), three-stage least squares 

(3SLS), and nonlinear three-stage least squares (NL3SLS). Except where otherwise noted, the 

tables report the 2SLS estimates. Both 3SLS and NL3SLS produce similar results. 

 Table 1 shows several summary statistics. Because we used 2SLS, the R2 for the demand 

and optimality equations may lie between -∞ and 1. When relatively little error is added to the 

equations (σ = 0.001), the R2 for these two equations is virtually one in every experiment. As the 

error grows, the mean R2 measure falls, and is negative when σ is at least one for the optimality 

equation and two for the demand equation. 

 Although the demand equation, Equation 2, can be accurately estimated, the optimality 

equation, Equation 3, suffers from extreme multicollinearity (even with a large error). When σ = 

0.001, the average condition number (the square root of the ratio of the largest to the smallest 

characteristic root of the regressors) is at least 1,433 in our examples and as high as 6.4 × 107 

(same order of magnitude as with the infamous Longley data).6 Belsley et al. (1980) suggest that 

condition numbers above 20 indicate potential problems. Similarly, in an auxiliary regression 

where we regress one of the right-hand-side variables, ZQ, on the others (w, r, and Q), the 

average R2 is at least 0.91 (and virtually 1.0 when σ = 0.001). 

 Table 2 shows the coefficient estimates. With 2SLS, the multicollinearity in the 

optimality equation does not affect the demand equation, so we are able to estimate it very well 

(at least when σ ≤ 1). For example, the true value of the coefficient on Q in the demand equation, 

 

6 We are reporting the condition number using the actual right-hand-side variables, w, r, ZQ, and 
Z. If we replace the latter two with the instrumental estimates, the condition number rises by at 
least several orders of magnitude. 
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1φ , is 1. As Table 2 shows, the average estimated value for 1φ  is 1.0 (with a standard deviation 

of 0.004) when σ = 0.001, 0.99 (1.98) when σ = 0.5, and 0.97 (3.96) when σ = 1. The other two 

demand coefficients are estimated equally well. 

 In contrast, we cannot accurately estimate the optimality equation coefficients due to the 

extreme collinearity. The true value of α, the coefficient on w in the optimality equation, is 1. 

The average estimated value ranges from 0.46 to 0.49 with standard deviations that range 

between 0.88 and 1.04. The true value of the scale parameter, γ, is 1, but the average of the 

estimates range from 5.85 to 5.73 with large standard deviations (between 7.89 and 8.66). In the 

optimality Equation 3, the estimated standard deviations remain relatively unchanged as the size 

of the error terms fall (whereas the estimated standard deviations shrink in the demand equation 

as the error terms fall). 

 Typically, we are most interested in the market power coefficient, λ, which equals 0.5 in 

our experiments. With the 2SLS estimates, we obtain two estimates of λ.7 As a practical matter, 

both provide nearly identical estimates in our experiments.8 As the table shows, the average 

estimate of λ using 2SLS is usually negative and has a very large standard deviation. When σ > 

0.001, the average of the 3SLS estimates is either negative or much above 1.0 (outside the 

plausible range). Even when σ = 0.001 and the average, 0.46, is close to the true value, the 

standard deviation is gigantic (8.98). 

                                                 

7 First, we can divide the estimate of the coefficient on the Q term, λ 1φ , in the optimality 
Equation 3 by the estimate of  in the demand Equation 2. Second, we can divide the estimate 
of the coefficient on the ZQ term in Equation 3, λ

1φ

2φ , by the estimate of 2φ  from Equation 2. 
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Conclusions 

 Studies of market power based on market-level data are commonly used. Many of these 

studies have employed a linear specification that avoids the problem described by Bresnahan 

(1982) and Lau (1982) that precludes identifying the market power parameter. However, we 

demonstrate that estimates based on the linear model inherently suffer from a severe 

multicollinearity problem that makes estimates of all the parameters in the optimality equation, 

including the market power parameter, unreliable. 

 

8 Imposing the restriction that the two estimates are equal in our NL3SLS model does not 
improve our estimates meaningfully. 
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Appendix 

  We demonstrate that the w, r, ZQ, and Q terms in Equation 3 are perfectly collinear εd = 

εc = 0. We show this result by demonstrating that there exist nonzero coefficients χ1, χ2, χ3, χ4, 

and χ5 such that 

  (A1) 1 2 3 4 0.5QZ  Q w r Y+ + + + + =χ χ χ χ χ

To show that Equation A1 holds, we first solve for the equilibrium output, Q, as a function of the 

exogenous variables and parameters: 

 0 3 

1 2 ( 1)( )
Y w  Q  .

Z
r + − η− α −βφ φ

=
λ + + + γφ φ

 (A2) 

  Substituting Q from Equation A2 into Equation A1 and rearranging terms, we obtain 

 1 2 3 4 5 6 7 8 0,Z YZ wZ rZ Y w r  + + + + + + + =ζ ζ ζ ζ ζ ζ ζ ζ  (A3) 

where ζ1 = , ζ2 = 0 2( 1)φ − η+ λ + φ χ5 3 2( 1) 4φ + λ + φ χ , ζ3 = 2 2( 1)−α + λ + φ χ , ζ4 = , 

ζ5 = , ζ6 = 

2 3( 1)−β + λ + φ χ

[ ]3 1 4( 1)λ + φ + γ χφ + [ ]1 ( 1)+ λ + φ + γ1−αχ χ2 , ζ7 = [ ]1 31 ( 1)−βχ + λ + φ + γ χ , ζ8 = 

. If we set ζii = 0 for i = 1,..., 7, we have a seven-equation system in 

five unknowns, with the unique solution: 

[ ]0 1η χ [ ]1 5( 1)+ λ + φ + γ χφ −

 [ ] [ ]1 1( 1) / ( 1)χ = λ + φ + γ λ + φ2 ,  

 [ ]2 2/ ( 1) ,χ = α λ + φ  

 [ ]3 2/ ( 1) ,χ = β λ + φ  

 [ ]4 3 2/ ( 1) ,χ = −φ λ + φ  

 [ ] [ ]5 0 2/ ( 1) .χ = φ − η λ + φ  
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Thus, there exist χ1, χ2, χ3, χ4, and χ5 such that Equation 4 holds, so the linear model is perfectly 

collinear and cannot be estimated. 
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 Table 1 
 Linear Model Simulation Summary Statistics 
 

 σ = 0.001 σ = 0.5 σ = 1 σ = 2 

Model    

 R2 Demand Equation 1.00 
(0.3E-6)

0.76 
(0.07)

0.32 
(0.22) 

-0.15 
(0.52)

 R2 Optimality Equation 1.00 
(0.1E-4)

0.51 
(2.67)

-0.41 
(8.13) 

-1.85 
(19.85)

Multicollinearity Checks    

 R2 Auxiliary Equation* 1.00 
(0.3E-6)

0.91 
(0.03)

0.91 
(0.03) 

0.96 
(0.01)

 Condition number 6.4E7 
(1.8E7)

1,433.2 
(483.2)

1,614.9 
(575.13) 

2,643.2 
(1,027.1)

 
 
Note: Standard deviations in parentheses. 
 
* R2 of the auxiliary regression of ZQ on w, r, and Q.  
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 Table 2 
 Linear Model Simulation Estimates 
 

Average Estimated Coefficient (Standard Deviation)  
 

 
True 

Coefficient 
σ = 0.001 σ = 0.5 σ = 1 σ = 2 

2SLS   
Demand   
  0φ 10 10.00 

(0.001)
9.96 

(0.33)
9.86 

(0.65) 
9.46 

(1.20)
1φ  1 1.00 

(0.004)
0.99 

(1.98)
0.97 

(3.96) 
0.88 

(7.80)
2φ  1 1.00 

(0.004)
0.99 

(0.21)
0.97 

(0.42) 
0.87 

(0.82)
Optimality   
 α 1 0.46 

(0.88)
0.46 

(0.91)
0.47 

(0.93) 
0.49 

(1.04)
 γ 1 5.85 

(7.89)
5.85 

(8.15)
5.78 

(8.21) 
5.73 

(8.66)
 λ 0.5 -0.31 

(1.31)
-0.29 

(1.34)
0.09 

(11.48) 
-1.53 

(30.41)
3SLS   
 λ  0.5 0.46 

(8.98)
-0.61 

(24.34)
27.28 

(844.28) 
1.22 

(25.57)
 

The demand curve is p = . 0 1 2 dQ ZQ− − + εφ φ φ

The optimality condition is p = η + αw + βr + [λ( 1φ  + 2φ Z) + γ]Q + εc. 


	Structural Model of Market Power
	Perfect Collinearity
	Nearly Perfect Collinearity
	Conclusions
	Appendix
	References

