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Abstract 

 

 We present a new, information-theoretic approach for estimating a system of many 

demand equations where the unobserved reservation or choke prices vary across consumers. We 

illustrate this method by estimating a nonlinear, almost ideal demand system (AIDS) for four 

types of meat using cross-sectional data from Mexico, where most households did not buy at 

least one type of meat during the survey week. The system of demand curves vary across 

demographic groups.  
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Estimating a Demand System with Choke Prices 

 

 

 

 If a consumer’s reservation or choke price for a good—the intercept of that person’s 

demand curve with the price axis—is below the observed price, the consumer does not purchase 

the product. To estimate a system of demand curves efficiently requires that we also estimate 

individual consumers’ choke prices. We present a practical method of estimating a system of 

demand equations where individuals’ choke prices vary. We apply our method to estimate a 

system of meat demand curves for Mexican consumers. 

 Over the years, economists have tried many approaches to deal with the “zero” problem, 

that some consumers do not buy any units of a good. Many early studies included observations 

with zero consumption and ignored the distributional implications, which results in biased 

estimates. Other early studies threw out such observations, deleting important information and 

biasing their results both because of sample selection and because some of these consumers will 

start buying as the price falls. A still common approach is to aggregate the data over time or over 

goods to eliminate zero observations. Doing so causes aggregation bias, generally precludes one 

from imposing theoretical restrictions, and force one to make implausible assumptions. 

 Since the 1990s, researchers have developed several methods to estimate demand systems 

using individual data with zeroes. These approaches fall into three general categories: two-step 

censored models, Kuhn-Tucker models, and generalized maximum entropy (GME) models.1 

  A number of studies use a two-step censored model to account for zero expenditure, such 

as Heien and Wessells (1990) and Shonkwiler and Yen (1999). Consumers decide whether to 

                                                 
1 One other approach is to use count data models (Haab and McConnell, 1996). 
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purchase the good or not in the first stage, and how much to buy in the second stage using 

Amemiya- or Heckman-like estimators. The two benefits of this approach are that it can include 

various random disturbances such as errors in maximization and measurement errors and it can 

estimate demand systems with many goods. However, the estimation procedure ignores utility 

theory and the role of choke prices. Usually, the estimation uses imputed prices based on 

demographic information for zero observations instead of using choke prices and results in 

inconsistent estimates (Arndt 1999).  

 In the utility maximization or Kuhn-Tucker framework, two approaches are used. In the 

primal approach, the research specifies the form of the random utility function and then derives 

the Kunh-Tucker conditions to obtain the demand equations (Wales and Woodland 1983). In the 

dual approach, the researcher specifies the functional form of the random indirect utility function 

and obtains the demand equation from the Kuhn-Tucker conditions (Lee and Pitt 1986).  

 In these models, corner solutions (zero consumption) vary across the population, whose 

preferences are randomly distributed, and the choke prices are unobserved. The advantage of this 

approach is that it is consistent with utility theory. However, deriving and imposing demand 

theory regularity conditions is difficult for many functional forms and may require conflicting or 

overly restrictive conditions (Van Soest, et al., 1993).  

 The biggest problem with this approach has been computational difficulties because one 

faces multiple integrals and has to evaluate cumulative joint distribution functions. As a result, 

these methods may only be practical for systems with a small number of goods (Phaneuf 2000, 

Kim et al. 2002). Recent use of Bayesian, generalized method of moments, Gibbs sampling, 

jackknife techniques, and other techniques have made this approach more computationally 

feasible (e.g., Perali and Chavas 2000; Kao et al. 2001; Kim et al. 2002; Dong et al. (2004); 
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Millimet and Tchernis 2008; Li et al. 2014; Mehta 2014).2 However, many of these approaches 

introduce new complications, such as linearity assumptions. These approaches require one to use 

a specific demand system.  

 A third approach (Arndt 1999, Golan et al. 2001) uses generalized maximum entropy 

(GME) to estimate a Kuhn-Tucker model. The GME has five advantages over traditional 

maximum likelihood methods.  

 First, unlike most of the maximum-likelihood Kuhn-Tucker models that work with only 

one objective function, this approach easily works with any demand system merely by writing 

the demand system. Second, imposing any equality or inequality constraint, including regularity 

conditions, is much easier than with classical maximum likelihood or Bayesian techniques.  

 Third, because maximizing the GME objective does not involve numerical integration, 

one can use a standard nonlinear optimization package to estimate relatively large demand 

systems. As a result, the GME approach practically handles a larger number of censored equa-

tions than most maximum likelihood approaches. 

 Fourth, GME performs well with both ill-posed problems (such as small data sets, under-

determined problems, and high levels of collinearity) and well-posed problems. Fifth, because 

the GME estimator does not require assumptions about the error structure and because it uses all 

the data, it is more robust and efficient than are maximum likelihood estimators. According to 

Arndt (1999), based on a root mean square error criterion, a Monte Carlo simulation shows that the 

GME approach performs better than the Lee and Pitt (1986) approach (which in turn performs much 

better than a two-step procedure). Similarly, Golan et al. (1997) find that the GME estimator has 

                                                 
2 For example, Li et al. (2014) derive closed-form equations and avoid solving high-dimensional 

integration by using changes of variables, conditioning steps, and numerical approximations of 

integrals and normal density functions. 
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lower empirical mean square error than does the maximum likelihood tobit estimator in small 

samples regardless of whether errors are normal or not. 

 A weakness of many of these earlier studies, including the GME studies, is that they 

estimate models with non-negativity constraints without explicitly estimating choke prices, 

which reduces their efficiency. In this paper, we extend the Kuhn-Tucker/GME approach in 

Golan et al. (2001) to estimate choke prices of each household explicitly as well as the demand 

system coefficients. Not only is it relative easy to use this approach to impose nonnegativity 

constraints, but this approach can employ any utility function, rather than being limited to a 

single specification. 

We apply our technique to estimate a four-equation AIDS Mexican meat demand system 

using the same data as Golan et al. (2001), for comparison purposes. In our empirical 

application, we concentrate on comparing the elasticities of demand for the choke-price and no-

choke-price models. We find that the choke-price model estimates of the Hicksian and 

Marshallian own-price elasticities are much closer to zero elasticity than those from the no-

choke-price model. 

I. AIDS Random Utility Model with Zeroes 

Although we can use any utility function, for specificity, we assume that we have an 

incomplete, nonlinear almost ideal demand system (AIDS, Deaton and Muellbauer 1980) 

random utility model (RUM). Generally, the indirect utility function is 

 
1 ln

2
( , , , ) ln ( ) ln ln ln ,v m E e           

 
g p

p d b d a Ad p p B p    (1) 

where E is the consumer’s total expenditure on meat; p is the price vector; d is a vector of 

demographic variables;   is a parameter; a, b, and g are vectors of parameters; A is a matrix of 

parameters; and B is a symmetric matrix of parameters. 
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 Given this indirect utility function, the interior solutions for the demand equations in 

share form are 

 
1

2
ln ln ( ) ln ln ln ( ln ) ,E               

 
s a Ad B p b d a Ad p p B p I g p    (2) 

where each element of s, si = piqi/E, i = 1,…, n, is the budget share of the ith good. Let   be a 

vector of ones. The RUM errors enter Equation (2) linearly and ( ln ) 0,  I g p   due to the 

adding up constraints and homogeneity. Because 1s , it follows that 1,a  , A 0  ,B 0  

and 0.g  The covariance matrix, Σ E( ),   therefore is singular, Σ , 0  and 

Σ ( ln )Σ( ln )   I g p I pg  also satisfies Σ ( ln )Σ( ln ) .     0I g p I pg    

 We do not know the underlying primitive structure of  , so we focus on the 

“conditional” RUM errors by using ( ln )  I g p   in Equation (2) and working directly with 

the joint distribution of   in the simpler AIDS model specification, 

 
1

2
ln ln ( ) ln ln ln .E             

 
s a Ad B p g b d a Ad p p B p    (3) 

To model the conditional choke prices for goods not consumed by an individual in a 

given period, we reorder the goods as necessary and divide the goods into those the consumer 

buys and those that the consumer does not buy. That is, we partition s into two sub-vectors, 

(1) (1)0s  and (2) (2), 0s  so that (1) (2)[ ] .   s s s  We also partition all other terms consistently, so 

that, 

 

(1)

(1) (1) (1) (1) (1,1) (1,2)
(2)

(1) (1) (1,1) (1,2) (1)1

(1) (1)2
(2) (2) (2,1) (2,2) (2)

ln

ln

ln ln ln
ln ( ) ,

ln ln ln
E 

 
      

 

         
               

        
 

0
p

s a A d B B
p

p p B B p
g b d a Ad

p p B B p


  (4) 

and 
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(1)

(2) (2) (2) (2) (2,1) (2,2)
(2)

(1) (1) (1,1) (1,2) (1)1

(2) (2)2
(2) (2) (2,1) (2,2) (2)

ln

ln

ln ln ln
ln ( ) ,

ln ln ln
E 

 
       

 

         
               

        
 

0
p

s a A d B B
p

p p B B p
g b d a Ad

p p B B p


  (5) 

where Equation (5) defines the conditional choke prices for (2)p  as the implicit solution to the 

system of quadratic equations, 

 




1

(2) (2) (2,2) (2) (2) (2) (2,1) (1) (2) (2) (2,1) (1)

1 1

(2) (1) (1) (1) (1) (1,1) (1) (2) (2,2) (2) (2)2 2

ln ln ( ln ) ln

ln ( ) ln ln ln ln ln .E 


        

           
 

p p B g a A d B p a A d B p

g b d a A d p p B p p B p





  (6) 

In our application, we have four goods. Because a consumer either buys or does not buy 

each of the four goods, we have 
42 16  possible regimes or combinations of positive and zero 

purchases of the various goods. However, because each individual has a positive total 

expenditure, we do not observe the regime in which no goods are consumed, so that the number 

of different estimating systems is 15.  

 Equations (4) and (6) are the generic estimating equations for each consumption regime. 

The errors (1)  are censored from below. The errors 

1

(2,2) (2) (2) (2) (2,1) (1) (2)( ln )


   
  
B g a A d B p   are censored from above.  

  This presentation highlights three issues. First, nonlinearity in parameters and interactions 

with choke prices complicate the estimation problem substantially. Second, nonlinearity in prices 

can lead to multiple solutions for the choke prices. Third, a large number of goods, n, results in 

up to 2n regimes, and could require one to have to evaluate probability integrals of up to n 

dimensions were one to use a maximum likelihood technique. 



 7 

II. Estimation and Inference 

 To estimate this system of censored demand equations together with the choke prices, we 

generalize the GME method for estimating a single, censored equation given in Golan et al. 

(1997). We start by providing some intuition as to how the traditional maximum entropy 

approach works. Then, we show how to estimate the AIDS with choke prices using that 

approach.  

A. Maximum Entropy and Generalized Maximum Entropy: A Brief Overview 

 The GME approach (Golan et al., 1996) has its roots in information theory and builds on 

the entropy measure of Shannon (1948) and the classical maximum entropy (ME) principle of 

Jaynes (1957a, 1957b). The maximum entropy procedure is an inversion procedure for inferring 

an unknown probability distribution function from incomplete information.  

In this approach, one maximizes Shannon’s entropy subject to constraints representing 

the available (observed and unobserved) information. These constraints connect the unobserved 

entities of interest, say the unknown probabilities or economic parameters of interest, with the 

observed information, say the sample’s information.  

Heuristically, Shannon’s entropy measures our uncertainty about the occurrence of a 

collection of events. Letting X be a discrete, random variable with possible outcomes xs, s = 1, 2, 

…, N, with probabilities π = (π1, π2, ..., πN)′ such that 1π , where   is a vector transposed of 

1’s, the entropy of the distribution π is  

 ( ) ln ,S   π π π   (7) 

where 0ln 0  0. The function S is zero when πs = 1 for some value of s, and it reaches a 

maximum of ln(N) for the uniform distribution π1 = π2 = … = πN = 1/N. This function is not a 

function of the events xs themselves, but rather it’s a function of their respective probabilities. 
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 To infer the unknown probabilities π that characterize M < N pieces of information, say 

M expected values, or moments of a distribution, Jaynes (1957a, 1957b) proposed maximizing 

the entropy, subject to the available moment information (constraints) and the requirement that 

the probabilities are normalized (add to one). The basic axioms of the maximum entropy (ME) 

method are well-developed (see Shore and Johnson, 1980 and Skilling, 1989).  

The maximum entropy approach uses only the information provided in the constraints. No 

other hidden information is imposed. In that regard, it can be thought of as the most uninformed 

solution out of all solutions that satisfy the available information—the constraints. This most 

uninformed solution can be viewed in the following way. If no constraints are imposed, S() 

reaches its maximum value and the ’s are distributed uniformly. All possible realizations of the 

random variable are equally likely.  

If constraints (information) are imposed, the chosen solution is the one that is “closest” to 

the state where no constraints are imposed. Thus, the maximum entropy procedure finds the 

solution that keeps us as close as possible to a state of complete uncertainty (or to our initial prior 

information). In statistical terms, the solution is the flattest possible likelihood that is consistent 

with the observed expectation values (constraints). For a detailed discussion of maximum entropy 

and information theoretic modeling, motivations, foundations and examples see Golan (2018). 

The traditional ME approach assumes that the information (or sample information) in the 

form of moment conditions holds exactly. In contrast, the generalized maximum entropy (GME) 

method (Golan et al., 1996) uses each observation (or moment) directly and allows these 

conditions to be stochastic restrictions that hold only approximately. 

 The GME uses a flexible, dual-loss objective function: a weighted average of the entropy 

of the systematic part of the model and the entropy from the error terms. The ME is a special 
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case of the GME that places no weight on the entropy of the error terms and where the data are 

represented in terms of exact moments. By varying the weight in the GME objective, we can 

improve either our precision or predictions. Here, we use a balanced approach where we give 

equal weight to both objectives.3 

B. Estimating an AIDS Model Without Choke Prices 

 To estimate the AIDS model without choke prices, we follow the approach in Golan et 

al., 2001. We rewrite the system of AIDS share equations in Equation 3 in non-vector form as 

the individual share equation for a good for a particular household, h, taking account of whether 

a good is purchased or not:  

 
12 4

1 1

ln ln( / ) , for 0,ih i il lh ij jh i h h ih ih

l j

s a d p E P s   
 

        (8) 

 
12 4

1 1

ln ln( / ) , for 0,ih i il lh ij jh i h h ih ih

l j

s a d p E P s   
 

         (9) 

where Ph is the AIDS aggregate, nonlinear price index 

 
4 4 12 4 4

1

2
1 1 1 1 1

ln ln ln ln ln ,h j jh jl lh jh jk jh kh

j j l j k

P p a d p p p  
    

        (10) 

where ihp  equals the actual price if the household purchases meat i and equals the conditional 

choke price, if it is not purchased. 

Because entropy is defined over a proper probability distribution, we must transform all 

of the parameters in Equation (8) – (10) into probability distributions. We can then express the 

entropy measure for each one of these terms. For example, to transform αj, for all j, we start by 

                                                 
3 The results in our empirical application are not sensitive to the weight. For example, raising the 

weight from 0.5 to 0.9 on the systematic measure causes the estimated coefficients and the 

correlation between actual and estimated values to changes by less than 1%. 
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choosing a set of discrete points in its support space, 
1 2( , , , )j j j

Mz z z
  

  of dimension 2M   that 

are at uniform intervals, symmetric around zero, and span an interval [–c, c]. The dimension M 

can differ for each parameter or error term, but we use M = 3 in our application. Thus, 

1 2( , , , ) ( , 0, )j j j

Mz z z c c
  

   . Our results change negligibly if we increase M. 

Corresponding to these discrete points in the support space is a vector of unknown 

weights 
1 2 3( , , )j j jx x x
  

  such that 
1 2 3 1j j jx x x
  
   . That is, αj is the expected value 

3

1

j j

m m jm
z x
 




 1 3
j jcx cx

 
   . We use the same approach for the other coefficients.  

  Similarly, we treat the errors εih as unknown entities and define a transformation matrix V 

that converts the possible outcomes for εih to the interval [0, 1]. This transformation is done by 

defining a vector of M = 3 discrete points (v1, v2, v3)′, distributed evenly and uniformly about 

zero, and a corresponding vector of proper (i.e., positive) unknown weights (wti1, wti2, wti3)′ such 

that 
3

1 m imh ihm
v w 


 . We make no assumption about the distribution of the error terms ih ’s, or 

the probabilities w. 

 Let ( , ) ,  ,  , a     x x x x x x
  

, where x


 is a vector of all the weights for all the αi 

terms, and so forth. Similarly, w is a vector of the all error term weights, wijh. Our GME 

estimator is 

 
,

max ( , ) ln lnS    x x x
q w

w  w w   (11) 

subject to the budget-share, the nonlinear price index Equation (10), the GME adding-up 

conditions that the weights for each parameter or error term sum to one and the consumer-theory 

adding-up, homogeneity, and symmetry conditions (and any other regularity conditions one 

wishes to impose). 
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Forming the Lagrangian and solving for the first-order conditions yields the optimal 

solution x̂  and ŵ , from which we derive the point estimates for the AIDS coefficients. 

 That this GME estimator is consistent follows immediately by extending the proof in 

Golan et al. (1997) that a censored GME estimator for a single equation is consistent (see the 

Appendix to Golan et al. 2001).  

C. Estimating the AIDS Model with Choke Prices 

 We use an iterative procedure to estimate the AIDS model with choke prices.  

First, we estimate the AIDS model imposing the nonnegativity constraints but ignoring 

the choke prices, as described in the previous section. This estimate provides the starting values 

for the model with choke prices.4  

Second, given these starting value, we use our GME method to estimate the choke prices 

for goods with zero shares.  

 Third, we replace the actual prices with the estimated choke prices for those goods with 

zero shares and re-estimate the original AIDS model.  

Fourth, we repeat the second and third steps until the model converged (no changes with 

a tolerance of 0.0001). Our Mexican four-meat AIDS model converged in six iterations. 

 Fifth, we estimate the standard errors using a stratified pairs bootstrap with 1,000 

replications. Each replication uses a representative subsample of 500 households with 

replacement. To select a representative sample, we draw from each of the 15 consumption 

groups (determined by which of the four meats a household purchased in the sample week) in 

                                                 
4 As a sensitivity check, we started with different initial values and re-estimated the model. We 

did not find that the initial starting values play an important role. 
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proportion to the group’s share of the total sample. Then, we re-estimate the model for each 

subsample using as starting values the parameter estimates from the entire sample. 

In the second step of the iterative process in which we estimate the choke price, an 

analytic solution could produce multiple, or negative, roots for the possible choke prices, because 

the choke price equations are nonlinear, as we discussed earlier. Thus, we need a method to 

choose a single choke price for each one a household’s good that has a zero share. Following on 

the same logic that directed Jaynes (1957a, 1957b) to use the entropy as the criterion function for 

selecting a single solution out of the many solutions that are consistent with the constraints (the 

information we have), we use a GME approach.  

Without the AIDS model’s constraints, the GME method would estimate choke prices 

uniformly distributed within the support. However, given the constraints, the estimated choke 

prices are conditional on the other prices, income and the other demographic variables, and their 

own error terms. 

To obtain the GME estimates for the choke-price model, we maximize the entropy of the 

noise and the choke prices subject to normalization and Equations 8–10, which capture the AIDS 

structure conditional on individual purchases and characteristics. The inferred choke prices are 

the most uniformed positive prices that satisfy all the required conditions. This approach is 

necessary to prevent solutions (the roots of the equations) that are negative, a mathematical 

possibility due to the nonlinearities. 

D. Supports 

We set our support wide enough to include all the possible outcomes. The natural support 

vector for the error terms is (–1, 0, 1), because the dependent variables are shares, si, which lie 

between 0 and 1.  
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A variety of AIDS empirical studies (see the survey in Golan et al., 2001) estimated 

coefficients on the ln price terms, γij, that lie within the interval (–0.2, 0.2). Their estimated 

coefficients on the ln real expenditure, βi, and the intercept, αti, lie within the interval of (–1, 1). 

We chose support vectors that are 100 times wider than these intervals: (–20, 20) for γij. The 

support is ( 100, 100)  for βi and αti (and hence for ρik). Making a moderately large change in 

these support vectors, while keeping the center of the support unchanged, has negligible effects 

on the estimated coefficients and elasticities. 

The support of the choke prices includes possible values from zero through the observed 

price, because the choke price cannot exceed the observed price. Let qc′ be the vector of the 

GME weights for the choke prices for the four goods and u be the vector of weights for the error 

terms associated with the choke prices. The supports are [−1, 0, 1] for u

jv  and [ln 1.1, ½ (ln 1.1 + 

ln pti), ln pti] for 
p

timv . As a result, the choke prices is between zero and the observed price for a 

given good and location. 

III. Data 

 So that we can compare our results to the earlier Golan et al. (2001) study, we use the 

same World Bank data set. It is based on a cross-sectional Mexican household survey conducted 

in the fourth quarter of 1992 by the National Institute of Statistics, Geography and Informatics 

(INEGI), an agency of the Ministry of Budgeting and Programming in Mexico. INEGI used a 

stratified and multi-stage sampling method to produce a representative sample for the entire 

population and for urban and rural households. The data cover 31 states and a Federal District. 
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  The database has detailed information about consumption during a one-week survey 

period and demographic characteristics by household. The database has 581,027 observations of 

purchasing events by about 10,500 households for at least 205 foods.5  

 We look at four meat product aggregates: beef, pork, chicken, and processed meat. We 

restrict our sample to those households that bought at least one of these four categories of meat. 

Of the 7,591 households that bought some meat during the sample week, 32% did not buy beef; 

70%, pork; 34%, chicken; and 57%, processed meat.6 

  The corresponding prices are also aggregates. For example, the price of beef is an 

expenditure weighted average of beefsteak, pulp, bone, fillet, special cuts, and ribs and other. 

The prices of various meats vary geographically.7 

   Because the data set reports prices only if purchases are made, for the “actual” price of a 

good that a household did not purchase we need a proxy. We assume that the household faces the 

average price level in its geographic location: a rural or urban area in a particular state or Federal 

District. 

 Table 1 shows that the means and standard deviations for the 7,591 households. (Golan et 

al. 2001 used only a subset of the data: 1,000 observations.) Table 1 also provides summary 

statistics for the consumption shares of the four meats, the corresponding prices, expenditures on 

                                                 
5 The quantity measures reported below also include own-produced and consumed goods as well 

as purchased goods. 
6 Golan et al. (2001) also included fish. We dropped that category because only 13% of 

consumers purchased fish (and few did in the interior of the country) out of the 7,897 households 

that bought some meat. Eliminating fish does not greatly affect the non-choke price estimates of 

the elasticities of the other meats. 
7 We conducted pairwise tests of the hypothesis that the prices are drawn from the same normal 

distribution across the 129 locations (urban and rural areas within states). Based on t-tests, we 

rejected the hypothesis at the 5% level that the average prices are homogeneous in 54% of the 

comparisons. 
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meats, and the 12 demographic variables (including ln expenditure) that we use in our GME 

nonlinear AIDS Model. 

IV. Empirical Results 

 We estimated the non-choke-price and the choke-price models using the nonlinear-

optimization program GAMS (Generalized Algebraic Modeling System) and Python. Table 2 

shows our estimates of the AIDS model without choke prices. Table 3 presents the estimates for 

the model with choke prices.8  

A. Tests 

  We tested for homogeneity in the first stage AIDS model, which is the model without the 

choke prices. We do that because for homogeneity requires testing each equation separately (see 

Deaton and Mulbaeur, 1980). We estimated each equation with and without the homogeneity 

restrictions and then calculated the entropy-ratio statistic, which has a limiting χ2 distribution. 

These tests fail to reject the homogeneity hypothesis at the 5% (or even 1%) significance level 

for all four goods. The differences in the objective values with homogeneity imposed is 

negligible. Thus, using the entropy-ratio test, we fail to reject the homogeneity hypothesis at the 

5% (or 1%) significance level. These test result are similar to those of Golan et al. (2001).  

 We tested the symmetry requirement for the entire system for both the first stage and the 

choke price models. The differences in the objective values with symmetry imposed (in both the 

first stage and choke price models) is negligible. Thus, using the entropy-ratio test, we fail to 

reject the symmetry hypothesis at the 5% significance level. These test results are very similar to 

those of Golan et al. (2001).  

                                                 
8 The choke-price mode has a larger entropy value, 32,947.3, than does the no-choke-price 

model, 31,387.5. 
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 We also tested the hypothesis that the errors for each equation are independently and 

identically distributed. Given the estimated residuals, we used Wooldridge’s (1990) robust test 

for heteroscedasticity (his Equations 3.22, 3.23, and 3.24). We cannot reject the hypothesis of 

homoscedastic errors for beef, pork, and processed meat at the 5% significance level. The results 

for chicken were inconclusive. 

B. Predictions 

 The estimated model with choke prices has greater predictive power—the correlation 

between the observed and predicted shares—than the one without choke prices. Table 4 shows 

the correlation for both models. In the model without choke prices, the correlations for each 

share equation range between 0.14 and 0.27, while the correlation for the system is 0.44. In 

contrast, the correlations of the choke-prices model’s shares range between 0.80 and 0.91 and the 

system correlation is 0.89. Of course, part of the superior fit is due to estimating additional 

parameters in the choke-price model. This predictive power is surprisingly high given that the 

estimates use cross-sectional data with measurement errors in the price data.  

C. Choke Price 

 We can illustrate why the non-choke-price and choke-price models differ by showing that 

the “data” sets for the four goods differ substantially. The non-choke-price model uses the 

observed prices; whereas, the choke-price model replaces the observed prices with estimated 

choke prices for goods with zero shares. Figure 1 shows the histograms for the actual prices and 

the estimated choke prices for the four goods. 

 In each choke price histogram, the largest mode occurs at about the half the mode of the 

observed prices. Each of the beef choke-price histograms has three modes (most clearly seen for 
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beef), with the smaller modes to the right of the largest one.9 Consequently, each of the choke-

price histograms is skewed, with slightly more weight to the right of the largest mode.  

D. Elasticities 

 We need to take into account choke prices in determining the Marshallian and Hicksian 

price elasticities. We calculate the average price using the actual price if the quantity is positive 

and the conditional choke price otherwise.  

 The “mean” quantity, 
ihq , for good i = 1,…, 4 and household h = 1,…, H is  

 

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where ihp  equals the actual price if the household purchases meat i and equals the conditional 

choke price, if it is not purchased. If 0ihq  , or 0ihq   and directions of any price changes are 

restricted such that 0ihq   (e.g., 0),ihp   the Marshallian own- and cross-price derivatives 

are: 
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Averaging these directional derivatives, quantities (either ihq  or ihq ), and modified prices, ,ihp  

over all H households in the sample, we obtain the matrix of aggregate ordinary own- and cross-

price elasticities defined by, 

                                                 
9 Changing the dimension of the support space from three to five has virtually no effect on these 

histograms. 
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To obtain the Hicksian derivatives, we must add the (directionally constrained) expenditure 

effects 
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Averaging the Hicksian own- and cross-price derivatives across all H households and 

multiplying these by the above averages of prices and quantities, we obtain the corresponding 

elasticities. 

 Table 5 reports the Hicks-compensated price elasticities for each type of meat and the 

corresponding standard errors. All the elasticities are statistically significantly different from 

zero at the 0.05 level for the choke-price model. All the elasticities are statistically significant for 

the model without choke prices except for the pork price-processed meat, and the processed meat 

price-pork elasticities.  

 In both models, all the own-price elasticities are negative, of course. In the non-choke-

price model, all the cross-price elasticities are positive, so all the meats are substitutes. In the 

choke-price model, the cross-price elasticities are positive except for the pork price-chicken, 

pork price-processed meat, and the processed meat price-pork elasticities. These three negative 

cross-price elasticities are close to zero.  

 Table 6 shows our estimated Marshallian own-price elasticities for the choke-price 

model. Our technique estimates the elasticities for both models very precisely.  

 All the Hicksian (Table 5) and Marshallian (Table 6) own-price elasticities for the choke-

price model are substantially smaller in absolute value than for the non-choke-price model. The 

choke-price Hicksian elasticities are between 26% and 51% as large as the non-choke-price 
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model elasticities in absolute value. The choke-price Marshallian elasticities are between 34% 

and 79% as large as the non-choke-price model elasticities. Thus, we conclude that the failure to 

account for choke prices leads to overestimates of the own-price-responsiveness of demand. 

 Our meat elasticities estimates are similar to those in the literature based on aggregate 

data for roughly the same period (see Golan et al. 2001). The simulated Marshallian price 

elasticities in Dong et al. 2004, which uses a Kuhn-Tucker approach and slightly more recent 

Mexican data, are closer to our choke-price elasticities than to our no-choke-price elasticities.   

V. Conclusions 

 A major challenge facing empirical economists is to estimate demand systems with non-

negativity constraints. Our generalized maximum entropy (GME) approach practically and 

efficiently estimates a demand system with many goods and the choke prices.  

 The GME approach has many advantages over traditional maximum likelihood (ML) 

methods for estimating demand systems with non-negativity constraints. Key among these are 

the ability to apply this technique easily to any demand system, to impose any equality or 

inequality constraints (such as regularity conditions) easily, to be able to estimate relatively large 

demand systems, and to perform well with ill-behaved problems (such as small data sets and 

high levels of collinearity).  

 The main innovation in this paper over earlier GME (and most other Kuhn-Tucker) 

approaches is that we explicitly estimate the choke or reservation prices. We extended the model 

in Golan et al. (2001) to estimate the choke prices as well as the AIDS model Kuhn-Tucker 

equations.  

 The choke-price model estimates of the Hicksian and Marshallian own-price elasticities 

are much closer to zero than those from the no-choke-price model. 
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Table 1. Summary Statistics 

 

 Mean S.D. 

Beef share of meat expenditure 0.41 0.35 

Pork share of meat expenditure 0.13 0.24 

Chicken share of meat expenditure 0.32 0.33 

Processed meat share of meat expenditure 0.15 0.25 

Natural log of price of beef 9.55 0.27 

Natural log of price of pork 9.43 0.24 

Natural log of price of chicken 8.95 0.31 

Natural log of price of processed meat 9.48 0.30 

Natural log of expenditure on all meat 15.98 0.88 

Household lives in urban area 0.63 0.48 

Household head is female 0.13 0.33 

Household head is in school 0.02 0.14 

Household head attended   

   Primary 0.52 0.50 

   Secondary 0.18 0.38 

   Preparatory 0.08 0.27 

   College 0.10 0.29 

Share of household members   

   Between 0 and 5 years old 0.14 0.17 

   Between 6 and 15 0.21 0.21 

   Between 16 and 28 0.26 0.25 

   Between 29 and 45 0.21 0.20 

   Between 46 and 60 0.10 0.20 

 

Number of observations = 7,591 



 25 

Table 2. GME Estimates of the AIDS without Choke Prices 

 Beef Pork Chicken Processed Meat 

Intercept –0.011 

(0.884) 

0.073 

(0.187) 

0.572 

(0.000) 

0.366 

(0.000) 

Beef price –0.021 

(0.114) 

0.003 

(0.716) 

–0.005 

(0.594) 

0.023 

(0.004) 

Pork price 0.003 

(0.716) 

0.018 

(0.069)  

–0.020 

(0.008 

–0.001 

(0.850) 

Chicken price –0.005 

(0.594) 

–0.020 

(0.008) 

0.042 

(0.000) 

–0.017 

(0.024) 

Processed meat price 0.023* 

(0.004) 

–0.001 

(0.850 

–0.017 

(0.024) 

–0.005 

(0.559) 

Expenditure 0.092 

(0.000) 

0.023 

(0.000) 

–0.038 

(0.000) 

–0.077 

(0.000) 

Urban 0.060 

(0.000) 

–0.045 

(0.000) 

–0.044 

(0.000) 

0.029 

(0.000) 

Household head is female –0.009 

(0.448) 

–0.016 

(0.069) 

0.004 

(0.748) 

0.021 

(0.016) 

Household head is in school –0.047 

(0.090) 

0.014 

(0.480) 

0.046 

(0.085) 

–0.013 

(0.529) 

Household head attended     

   Primary 0.003 

(0.783) 

–0.037 

(0.000) 

–0.012 

(0.292) 

0.046 

(0.000) 

   Secondary 0.005 

(0.755) 

–0.065 

(0.000) 

–0.036 

(0.014) 

0.096 

(0.000) 

   Preparatory or vocational 0.009 

(0.628) 

–0.083 

(0.000) 

–0.049 

(0.006) 

0.123 

(0.000) 

   College 0.019 

(0.289) 

–0.089 

(0.000) 

–0.069 

(0.000 

0.139 

0.000) 

Share of household members     
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   Between 0 and 5 years –0.117 

(0.000) 

–0.020 

(0.320) 

0.067 

(0.013) 

0.070 

(0.001) 

   Between 6 and 15 –0.105 

(0.000) 

0.025 

(0.143) 

0.030 

(0.191) 

0.049 

(0.006) 

   Between 16 and 28 0.001 

(0.967) 

0.064 

(0.000) 

–0.080 

(0.000) 

0.015 

(0.380) 

   Between 29 and 45 –0.004 

(0.894) 

0.019 

(0.324) 

–0.064 

(0.012) 

0.049 

(0.012) 

   Between 46 and 60 –0.013 

(0.621) 

–0.009 

(0.648) 

0.0004 

(0.989) 

0.021 

(0.268) 

 

Φ = 2.265 (1.027) 
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Table 3. GME Estimates of the AIDS with Choke Prices 

 Beef Pork Chicken Processed Meat 

Intercept 0.202 

(0.000) 

0.302 

(0.000) 

0.331 

(0.000) 

0.165 

(0.000) 

Beef price 0.125 

(0.000) 

–0.034 

(0.000) 

–0.056 

(0.000) 

–0.034 

(0.000) 

Pork price –0.034 

(0.000) 

0.084* 

(0.000) 

–0.032 

(0.000) 

–0.018 

(0.000) 

Chicken price –0.056 

(0.000) 

–0.032 

(0.000) 

0.115 

(0.000) 

–0.027 

(0.000) 

Processed meat price –0.034 

(0.000) 

–0.018 

(0.000) 

–0.027 

(0.000) 

0.079 

(0.000) 

Expenditure 0.012 

(0.000) 

–0.016 

(0.000) 

–0.001 

(0.000) 

0.005 

(0.000) 

Urban 0.015 

(0.000) 

0.007 

(0.028) 

–0.020 

(0.000) 

–0.002 

(0.602) 

Household head is female –0.006 

(0.285) 

0.001 

(0.815) 

0.0003 

(0.963) 

0.004 

(0.429) 

Household head is in school –0.023 

(0.052) 

–0.004 

(0.715) 

0.023 

(0.075) 

0.004 

(0.755) 

Household head attended     

   Primary 0.007 

(0.176) 

–0.008 

(0.082) 

–0.011 

(0.061) 

0.012 

(0.036) 

   Secondary 0.009 

(0.165) 

–0.005 

(0.360) 

–0.022 

(0.002) 

0.018 

(0.008) 

   Preparatory 0.016 

(0.044) 

–0.0004 

(0.944) 

–0.033 

(0.000) 

0.018 

(0.035) 

   College 0.022 

(0.004) 

0.007 

(0.305) 

–0.043 

(0.000) 

0.014 

(0.075) 

Share of household members     
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   Between 0 and 5 years –0.008 

(0.522) 

0.005 

(0.606) 

–0.003 

(0.830) 

0.005 

(0.677) 

   Between 6 and 15 –0.002 

(0.815) 

0.018 

(0.052) 

0.004 

(0.698) 

–0.020 

(0.072) 

   Between 16 and 28 0.011 

(0.256) 

0.002 

(0.821) 

–0.020 

(0.060) 

0.007 

(0.491) 

   Between 29 and 45 –0.007 

(0.530) 

0.011 

(0.269) 

–0.015 

(0.233) 

0.011 

(0.346) 

   Between 46 and 60 –0.002 

(0.863) 

–0.001 

(0.958) 

0.001 

(0.914) 

0.001 

(0.922) 

 

Φ = 4.006 (9.463) 
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Table 4. Correlations between Observed and Predicted Shares 

 Without Choke Prices With Choke Prices 

Beef 0.27 0.91 

Pork 0.14 0.86 

Chicken 0.21 0.88 

Processed Meats 0.25 0.80 

Demand System 0.44 0.89 
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Table 5. Estimated Hicks Price Elasticities (Standard Errors) 

 

(a) Without Choke Prices 

 Beef Pork Chicken Processed Meat  

Beef Price –0.551 

(0.044) 

0.158 

(0.024) 

0.266 

(0.028) 

0.127 

(0.023) 

Pork Price 0.506 

(0.105) 

–0.711 

(0.088) 

0.128 

(0.079) 

0.076 

(0.057) 

Chicken Price 0.341 

(0.039) 

0.052 

(0.026) 

–0.531 

(0.037) 

0.138 

(0.024) 

Processed Meat Price 0.346 

(0.101) 

0.068 

(0.060) 

0.291 

(0.081) 

–0.705 

(0.062) 

 

(b) With Choke Prices 

 Beef Pork Chicken Processed Meat  

Beef Price –0.317 

(0.001) 

0.037 

(0.0004) 

0.214 

(0.001) 

0.066 

 (0.0005) 

Pork Price 0.271 

(0.002) 

–0.184 

(0.001) 

–0.086 

(0.004) 

–0.0004 

(0.002) 

Chicken Price 0.232 

(0.001) 

0.028 

(0.0004) 

–0.324 

(0.001) 

0.065 

(0.001) 

Processed Meat Price 0.142 

(0.002) 

–0.002 

(0.001) 

0.178 

(0.004) 

–0.318 

(0.002) 
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Table 6. Estimated Marshallian Own–Price Elasticities (Standard Errors) 

 Beef Pork Chicken Processed Meat 

GME without Choke Prices –1.050 

(0.037) 

–0.862 

(0.080) 

–0.809 

(0.040) 

–0.776 

(0.072) 

GME with Choke Prices –0.736 

(0.001) 

–0.296 

(0.001) 

–0.640 

(0.001) 

–0.472 

(0.001) 
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Figure 1. Histograms of Choke Prices and Actual Prices 

(a) Beef      (b) Pork 

  

(c) Chicken      (d) Processed Meat 

  

 

 


