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1. INTRODUCTION 

 The average weight of light vehicles sold in the United States has fluctuated 

substantially over the past 35 years. From 1975 to 1980, average weight dropped almost 

1,000 pounds (from 4,060 pounds to 3,228 pounds), likely in response to rising gasoline 

prices and the passage of the Corporate Average Fuel Efficiency (CAFE) standard. As 

gasoline prices fell in the late-1980s, however, average vehicle weight began to rise, and by 

2005 it had attained 1975 levels (US Environmental Protection Agency, 2009). A rich body 

of research examines the effects of CAFE and gasoline prices on consumers’ vehicle choices 

(Portney, Parry, Gruenspecht and Harrington, 2003; Austin and Dinan, 2005; Bento, 

Goulder, Jacobsen and von Haefen, 2009; Li, Timmins, and Von Haefen, 2009; Klier and 

Linn, 2012; Busse, Knittel and Zettelmeyer, 2013). 

 One area of intense research interest is how the choices consumers make in response 

to gasoline prices and fuel economy standards affect traffic fatalities. Traffic accidents are 

the leading cause of death for persons under the age of 40, and they are a major source of 

life-years lost.1 Intuitively, heavier cars are safer than lighter cars, and previous research has 

argued that a heavier vehicle fleet is a safer vehicle fleet (Crandall and Graham, 1989). Much 

of the subsequent transportation safety literature has focused on the effects of average 

vehicle weight on safety, reaching varying conclusions. 

 From an economic standpoint, however, an unregulated vehicle fleet must be 

inefficiently heavy. A heavier vehicle is safer for its own occupants but more hazardous for 

the occupants of other vehicles. The safety benefits of vehicle weight are therefore internal, 

while the safety costs of vehicle weight are external. Consumers’ vehicle choices thus have 

the important features of an “arms race.” To date no comprehensive attempt has been made 

to quantify the external safety costs of vehicle weight. This figure is essential for determining 

the socially optimal weight of the vehicle fleet, and it cannot be inferred from the net effects 

on traffic safety of average vehicle weight or fuel economy regulations. 

 We quantify the external costs of vehicle weight using a census of police-reported 

crashes across 8 heterogeneous states. Unlike data sets employed in the existing 

                                                
1 Lung cancer, a disease that is generally the result of smoking, kills approximately four times as many 
Americans each year as traffic accidents. However, the average lung cancer decedent is 71 years old while the 
average traffic accident decedent is only 39 years old. The number of life-years lost to traffic accidents is thus 
similar in magnitude to the number of life-years lost to lung cancer.  
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transportation literature or Jacobsen (2013), our data include both fatal and nonfatal 

accidents. Using unique vehicle identifiers (VINs), we determine the curb weight of each 

vehicle in an accident, thus minimizing concerns about attenuation bias due to measurement 

error. The rich set of vehicle, person, and accident observables in the data set allow us to 

minimize concerns about omitted variables bias. Using these data, we estimate the external 

effects of vehicle weight on fatalities and serious injuries conditional on a collision occurring. 

Two key results emerge from our estimates. First, we show that vehicle weight is a 

critical determinant of fatalities in other vehicles in the event of a multivehicle collision; our 

preferred estimate implies that a 1,000 pound increase in striking vehicle weight raises the 

probability of a fatality in the struck vehicle by 47%. When we translate this higher 

probability of a fatality into external costs (relative to a small baseline vehicle), the total 

external costs of vehicle weight from fatalities alone are estimated at $136 billion per year. 

Second, by separately controlling for vehicle weight and whether the striking vehicle is a light 

truck (i.e., a pickup truck, sport utility vehicle, or minivan), we show that light trucks 

significantly raise the probability of a fatality in the struck car – in addition to the effect of 

their already higher vehicle weight. 

Our unique data set allows us to condition on a collision occurring and thus ensures 

that our results cannot be generated by differences in collision rates between drivers of 

lighter and heavier vehicles. Nevertheless, driver selection could bias our results if drivers of 

heavy vehicles have a tendency towards severe accidents. We rule out this possibility through 

falsification tests and two alternative sources of identification. First, we show that our 

estimates persist even when controlling for specific vehicle type via make and model fixed 

effects. Second, we estimate the effect of striking vehicle weight using variation in the 

number of occupants in the striking vehicle and find estimates that are close to our main 

estimates. Finally, we show that vehicle weight does not predict fatalities when two vehicles 

of equal weight collide. This suggests that drivers of heavy vehicles are not predisposed 

towards severe accidents. All three tests suggest that we successfully identify the causal effect 

of vehicle weight on the probability of fatalities in two-car collisions. 

One way to internalize the identified externality is through a weight varying mileage 

tax. However, such a tax could be logistically difficult to implement. We apply our estimates 

to consider whether a simple gasoline tax could be an alternative to internalize most of the 

external costs and conclude that it could. Our calculations suggest that the level of the 
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optimal gasoline tax is much higher than previously estimated (e.g. Parry and Small, 2005) 

and that the external traffic fatality costs of vehicle weight eclipse the sum of all other 

vehicle-related externalities (Portney, Parry, Gruenspecht and Harrington, 2003). Total 

accident-related external costs exceed central estimates of the annual social cost of US 

carbon emissions (US EIA, 2009; Greenstone, Kopits and Wolverton, 2011). We estimate 

that a weight or gasoline tax would not substantially increase total traffic fatalities. 

 The paper is organized as follows. Section 2 conducts a literature review. Section 3 

presents the analytic and empirical framework. Section 4 details the data, and Section 5 

presents the main results. Section 6 presents two alternative sources of identification and 

falsification tests to confirm that selection bias does not drive our results. Section 7 links the 

results to energy policy implications, focusing on the gasoline tax, and estimates the potential 

effects of such a tax on total fatalities. Section 8 concludes. 

 
2. LITERATURE REVIEW 

A large traffic safety literature examines the relationship between average vehicle 

weight and traffic fatality rates. Most of this literature estimates aggregate time series 

correlations (Robertson, 1991; Khazzoom, 1994; Noland, 2004; Ahmad and Greene, 2005). 

Two exceptions are Kahane (2003) and Van Auken and Zellner (2005), which use micro data 

on fatal accidents only.2 These studies come to varying conclusions regarding the sign of the 

relationship between average vehicle weight and overall fatality rates, but all conclude that 

the magnitude of this relationship is relatively modest. 

 In recent years economists have studied the “arms race” nature of vehicle choice. 

This work focuses on the internal and external risks posed by the largest vehicles – pickup 

trucks and sport utility vehicles (SUVs) – relative to the typical passenger car. White (2004), 

Gayer (2004), Anderson (2008), and Li (2012) all conclude that light trucks (pickups and 

SUVs) impose significant risks relative to passenger cars. 

 This study builds upon the existing literature by considering the fundamental role 

that vehicle weight plays in determining external risk. We recognize that any vehicle that is 

heavier than the smallest feasible vehicle poses some external risk to other roadway users. 

                                                
2 They supplement the fatal accident data with data on police-reported accidents from several states to estimate 
the rate at which different types of vehicles enter into collisions. However, unlike this study, they do not use 
police-reported accident micro data to estimate their econometric specifications. 
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We quantify that risk and find total external safety costs of vehicle weight that are at least 

11.6 times larger than Li’s estimates and 7.4 times larger than Anderson’s estimates.3 Our 

comprehensive results span the entire range of the vehicle fleet and allow us to consider the 

broader implications of vehicle weight for energy policy. We also develop a theoretical 

model that captures the central role that weight disparity plays in determining traffic 

fatalities. The model, in combination with the empirical results, establishes several results 

with significant policy implications. First, we show that the fatality externality does not result 

from a failure to coordinate on a single vehicle weight. Second, we show that “downsizing” 

the vehicle fleet does not significantly increase traffic fatalities unless it dramatically increases 

fleet heterogeneity. Finally, we show that decreasing the weight of lighter vehicles can be 

welfare enhancing even if traffic fatalities increase. Our estimates of the function relating 

weight disparity and traffic fatalities also illuminate the mechanisms underlying existing 

findings in the traffic safety literature. 

Concurrent work by Jacobsen (2013) is particularly relevant to this paper. Jacobsen 

uses data on fatal accidents to explore the traffic safety implications of different fuel 

economy regulatory schemes across 10 broad vehicle classes. While both Jacobsen and this 

paper explore issues related to energy policy and traffic fatalities, the two papers address 

different questions. We estimate a parameter, the external cost of vehicle weight, which is 

crucial for determining the appropriate level of vehicle or gasoline taxation. Jacobsen 

estimates the net effect of changes to an existing policy, CAFE, on net traffic fatalities. 

Loosely speaking, Jacobsen concludes that scheduled changes to CAFE may not increase 

traffic fatalities, while we demonstrate that increased energy taxes or stricter CAFE standards 

may internalize an important externality. Empirically, the two papers use different data and 

identification strategies. Jacobsen uses fatal accident data and adjusts for differences in driver 

collision rates by controlling for fatality rates in single-vehicle accidents. We use data on all 

police reported accidents, which automatically adjusts for differences in driver collision rates. 

 

                                                
3 Li (2012) and Anderson (2008) calculate lifetime accident externalities of $2,444 and $3,850 respectively for 
each light truck sold. In the steady state, annual truck sales must average 5.8 million to maintain the current 
fleet of 108 million light trucks (California Air Resources Board, 2004; US Department of Transportation, 
2011). The annual safety externality for light trucks is thus between $14.2 billion (Li) and $22.3 billion 
(Anderson). We find an annual safety externality of $135.8 billion from vehicle weight alone, and an additional 
$28.7 billion from light truck bodies. 
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3. ANALYTIC AND EMPIRICAL FRAMEWORK 

The wider impacts of consumers’ vehicle choices represent a classic example of an 

externality. Purchasing a heavier vehicle enhances safety for the individual, but it also 

increases the risk to other drivers in the case of an accident. The net benefit of vehicle 

weight on traffic fatalities is thus smaller than the private benefit of vehicle weight on traffic 

fatalities, and consumers are incentivized to purchase heavier vehicles than is socially 

optimal. The following stylized model outlines how the socially optimal vehicle weight 

differs from the privately chosen weight. 

Consider a population of N consumers. Consumer i spends income yi on xi units of 

the composite good x, which is normalized to have price 1, and on a vehicle weighing wi 

pounds, which costs p dollars per pound. The price per pound, p, is positive because heavier 

vehicles cost more to build and fuel. For simplicity we assume an additive utility function: 

Ui (xi,w1,...,wN ) = xi +E j≠i[ f (wi −wj )]+ gi (wi )                        (1) 

Consumer i gets utility from the composite good x, the safety benefits of driving a 

heavier vehicle than other consumers, captured by the function f, and the larger capacity of a 

heavier vehicle, captured by the function gi. One way to view f is as –α ⋅h(wi −wj ) , where α 

is positive and h(wi −wj )  is the probability that driver i dies if a collision occurs between 

vehicles i and j. In this formulation, increases in the overall fatality rate due to factors other 

than the relative weight distribution (e.g., an increase in the number of drunk drivers) will 

increase α and thus increase f’s impact in the utility function. The function gi also captures 

private benefits from other features related to weight, including engine size and even safety 

features like reinforced bars. We assume that ′f , ′g > 0 , ′′f ≤ 0 , and ′′g < 0 . We allow 

heterogeneity in vehicle preferences by indexing g by i. For tractability we assume that safety 

is a function of relative weight; i.e., extra weight does not independently make vehicle i safer 

except insofar as it increases its weight relative to other vehicles. We relax this assumption in 

our regressions, but there are two reasons to believe it holds empirically. First, adding vehicle 

i’s weight to a regression of fatalities on the difference in vehicle weights does not increase 

the regression’s explanatory power (see Section 5). Second, vehicle weight is uncorrelated 

with performance in controlled crash tests (see Section 6.3). We assume consumer i takes the 
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weight of other vehicles as given and that the safety benefits and costs do not vary with the 

size of the vehicle fleet.4 We substitute the consumer’s budget constraint yi = xi + pwi  into 

the utility function and take the derivative with respect to wi.. The first order condition 

(FOC) is: 

!gi (wi
*)+E j≠i[ !f (wi

* −wj
*)]= p     (2) 

Consumer i chooses a vehicle weighing wi* pounds, where at wi* the expected 

marginal safety benefits, E j≠i[ "f (wi
* −wj

*)] , plus the marginal benefits of larger capacity, 

!gi (wi
*) , equal p.5 The marginal safety benefits of vehicle weight are averaged over the entire 

fleet of vehicles that the consumer may collide with. The consumer’s choice may thus 

depend on the distribution of vehicle weight in the existing fleet. 

The social planner maximizes the sum of the individual indirect utility functions: 

max
w1,..,wN

yi − pwi +E j≠i[ f (wi −wj )]+ g i (wi )#$ %&
i=1

N

∑                                    (3) 

For simplicity we assume the social planner has a sufficiently long time horizon to 

view every vehicle as eligible for replacement.6 Taking the derivative with respect to wi for 

each consumer and solving all of the first order conditions gives an optimal weight of wi** 

for consumer i, which is the weight at which the sum of the marginal benefits from larger 

capacity and the net safety benefits (marginal private safety benefits minus the marginal 

safety costs to other vehicles) equals p, or: 

!gi (wi
**)+E j≠i[ !f (wi

** −wj
**)− !f (wj

** −wi
**)]= p          (4) 

Since ′f > 0  and g is strictly concave, the social planner chooses weight wi** < wi*; 

′gi (wi
**)  must be greater than ′gi (wi

*)  to satisfy both equations (2) and (4). Complicating the 

comparison between the two FOCs is the fact that wj** < wj*, but since f is concave this, if 

anything, attenuates ′f (wi
** −wj

**)  relative to !f (wi
* −wj

*) . The social planner chooses a 

                                                
4 In practical terms this implies that the average probability that consumer i experiences a collision does not 
increase with the size of the vehicle fleet. The effect of congestion on accident rates is the focus of Edlin and 
Karaca-Mandic (2006), and it is a different externality than the one we estimate in this paper. 
5 For simplicity this stylized model ignores heterogeneity in safety preferences among consumers. We could 
account for this heterogeneity by indexing f(.) by i. However, in practice we find that heterogeneity in the value 
of a statistical life (which implies heterogeneity in f) has minimal effect on the distribution of corrective taxes. 
6 One potential benefit we ignore is the possibility that the social planner may factor in domestic automaker 
profits, which in the US have historically been increasing in light truck share. 
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lower weight than consumer i’s choice of weight in the private market equilibrium for two 

reasons. First, the planner accounts for the negative effect that vehicle i’s weight has on 

other vehicles’ safety, captured by − ′f (wj
** −wi

**) . Second, if f is strictly concave, the 

marginal safety benefit of vehicle i’s weight, !f (wi
** −wj

**) , decreases as the weight of other 

vehicles in the fleet, wj**, decreases. This is the “arms race” dynamic at work. 

In two special cases the social planner’s FOC reduces to ′gi (wi
**) ≈ p , and she 

chooses weight based only on cargo and passenger capacity benefits. One case is if f is 

approximately linear over the support of wi
** −wj

** . Another case is if gi does not vary across 

consumers, so that wi
** = wj

**  for all consumers. In either case the marginal internal safety 

benefit and external safety cost of weight are identical for all consumers, and adding weight 

for safety becomes a zero-sum game. Beyond establishing the externality, the model yields 

five results with significant policy implications: 

RESULT 1: The externality is not caused by consumers failing to coordinate on the 

same weight. Suppose there is no heterogeneity in gi, so that all consumers purchase vehicles 

of identical weight w* in the private market equilibrium. In this equilibrium consumers 

choose w* such that ′g (w*)+ ′f (0) = p . However, the socially optimal weight is w** such 

that ′g (w**) = p . Thus w* remains higher than the optimal weight w** since !f (0)> 0 ; 

identical weights alone are not sufficient to guarantee a socially optimal outcome. 

RESULT 2: Coordinated reductions in fleet weight need not increase total fatalities. If 

all consumers reduce weight by some constant wc, then E j≠i[ f (wi −wj )]  remains unchanged 

for everyone. This result hinges on the assumption that, at the margin, extra weight does not 

independently increase safety (this appears to hold empirically). However, heterogeneous 

reductions in fleet weight may affect total fatalities. 

RESULT 3: Fleet heterogeneity can affect total fatalities if f is strictly concave. 

Suppose consumers move from a world of equal weight vehicles to one in which they 

choose heavy vehicles weighing wh or light vehicles weighing wl, with wh > wl. In any collision 

between two vehicles of different weights, the heavy vehicle’s safety gain over colliding with 

an equal weight vehicle, f (wh −wl )− f (0) , is offset by the light vehicle’s safety loss over 

colliding with an equal weight vehicle, f (0)− f (wl −wh ) . If f is strictly concave, then 
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f (0)− f (wl −wh ) > f (wh −wl )− f (0) , and the safety loss to the light vehicle exceeds the 

safety gain to the heavy vehicle. Fleet heterogeneity can thus increase total fatalities. 

RESULT 4: Even if f is strictly concave, reducing the weight of light vehicles can be 

welfare enhancing. Consider a consumer with low demand for cargo capacity that privately 

chooses a vehicle of weight wi
* < w . If the social planner forces consumer i to further reduce 

wi, the net change in social welfare is p− "gi (wi
*)+E j≠i[ "f (wj

* −wi
*)− "f (wi

* −wj
*)] . Since 

p− "gi (wi
*)−E j≠i[ "f (wi

* −wj
*)]= 0  by equation (2), the net change in social welfare is positive. 

Due to the externality, reducing the weight of a light vehicle can increase social welfare even 

if total fatalities rise. 

RESULT 5: Whether the externality is a function of the fleet’s weight distribution 

depends on the concavity of f. The marginal externality of consumer i’s vehicle weight is 

E j≠i[− #f (wj −wi )] . If f is approximately linear over the support of the weight distribution, 

then the marginal externality reduces to β, where f (u) ≈ βu . If f is strictly concave, then 

E j≠i[− #f (wj −wi )]  may change as the distribution of fleet weight changes. This implies that 

the marginal externality under the current fleet weight distribution may differ from the 

marginal externality under the optimal fleet weight distribution. 

Empirically, we estimate the effects of vehicle weight on fatalities in two-vehicle 

collisions. Our regressions estimate h(wi −wj ) = −α ⋅ f (wj −wi ) . We switch the order of wi 

and wj because we focus on the external costs of weight, and we reverse the sign on f because 

our outcome – a fatality – represents negative utility. Concavity in f thus corresponds to 

convexity in our regression function h. In our main specification we relax the assumption 

that safety is only a function of relative weight and allow a more general functional form of 

h0 (wi )− h1(wj ) . However, we cannot reject the hypothesis that only relative weight matters. 

To test for convexity in h (concavity in f) we also estimate h(wi −wj )  flexibly over the 

support of weight differences (see Section 5.2). We apply our estimates to calculate the total 

external safety costs accruing from the weight of the current vehicle fleet and to forecast the 

effects on total fatalities of coordinated and uncoordinated reductions in fleet weight. 

 Note that the primary costs of this externality do not accrue in the form of traffic 

fatalities, which on net may change little with a reduction in fleet weight (Results 2 and 3). 

Rather they accrue in the form of purchases of larger vehicles that are more expensive to 



 
 
 

9 

operate. In this sense it is similar to an arms race, which may not increase the probability of 

conflict even as both countries spend more on new weapons. In the notation of our model, 

the welfare loss arises from choosing a weight w that does not maximize gi (w)− pw . 

 In principle, liability rules and insurance regulations could internalize many of the 

external costs due to vehicle weight. If drivers of heavy vehicles know that they will be held 

liable for deaths in other vehicles, then they should take these risks into account when 

purchasing their own vehicles. If insurance companies understand that heavier vehicles pose 

more danger to other roadway users, then they should charge higher liability premiums to 

drivers of heavy vehicles. In practice, however, liability rules and insurance regulations fail to 

internalize the fatality risks generated by heavy vehicles. 

 Tort liability rules are inadequate to internalize fatality risks for two reasons. First, 

liability only applies in cases in which a driver behaves negligently (White, 2004). This 

implies that the driver of any given vehicle may not be liable in the event of a multivehicle 

accident. Second, even if found liable, few drivers possess assets that are sufficient to cover 

the cost of a fatality. The value of a statistical life (VSL) used by the United States 

Department of Transportation in cost-benefit analyses is $5.8 million (2008 dollars), but only 

7% of families in the United States had a net worth exceeding $1 million in 2001 

(Kennickell, 2003). 

 Though few drivers can cover the cost of a fatality, liability insurance regulations 

could force most drivers to pay the expected liability costs of operating their vehicles. Again, 

however, the mandated levels of liability insurance are inadequate to cover the costs of a 

fatality. Two states (Florida and New Hampshire) do not require drivers to carry any liability 

coverage at all for injuries, and 44 states require drivers to carry $25,000 or less in liability 

coverage for each person injured (Insurance Information Institute, 2010). Many drivers 

remain uninsured despite the regulations, and few drivers have policies that exceed several 

hundred thousand dollars of coverage. 

 While liability rules and insurance regulations cannot internalize the majority of 

fatality costs, they may internalize a significant fraction of incapacitating injury costs. 

Estimates of the value of an incapacitating injury are far lower than the value of a statistical 

life, and it is plausible that insurance policies carried by many drivers could cover the costs 



 
 
 

10 

of an incapacitating injury.7 For this reason, our policy analysis focuses on external fatality 

costs (i.e., costs from fatalities that occur outside of the driver’s own vehicle) and ignores 

external incapacitating injury costs. Accounting for injury costs increases the magnitude of 

our results, though we cannot accurately estimate what fraction of injury costs are already 

internalized. We calculate an upper bound on external injury costs in Section 7. 

 To measure the effect of vehicle weight on external fatalities under ideal conditions, 

we would randomly assign vehicles of differing weights to drivers and observe external 

fatality rates by vehicle type. Such an experiment is infeasible in practice, and even an 

analogous study using observational data is impractical due to substantial measurement error 

in vehicle stocks and model-level vehicle miles traveled in most states. Instead, we focus on 

the risk of a fatality conditional on a collision occurring. A key assumption when we 

interpret our estimates in a policy context is that vehicle weight has no causal effect on the 

probability of a collision. We discuss this assumption below and conclude that, if it is 

violated, then the effect of vehicle weight on the probability of a collision is likely positive. 

Our estimates thus represent a lower bound on the effect of weight on external fatalities. In 

Section 7 we explore how much our estimates might increase if we relax the assumption. 

 Consider the expected external fatalities for a vehicle of type i during time interval t. 

For simplicity, assume that t is short enough that the probability of multiple collisions during 

t is effectively zero. 

 E[fatalitiesit ]= E[E[fatalitiesit | collisionit ]]= E[fatalitiesit | collisionit =1]⋅P(collisionit =1)    (5) 

Equation (5) must hold via the law of iterated expectations. If weight has no causal 

effect on the probability of a collision, then the total effect of weight on external fatalities is 

proportional to the effect of weight on external fatalities conditional on a collision occurring. 

Weight may affect the probability of a collision in two ways, however. First, from an 

engineering perspective, heavier vehicles are less maneuverable and have longer braking 

distances.8 Even if driver behavior is unchanged, heavier vehicles may therefore get into 

                                                
7 The National Safety Council (2010) estimates the comprehensive cost of an incapacitating injury at $214,000 
(2008 dollars). In comparison, the council estimates the comprehensive cost of a fatality at $4.2 million. 
8 We confirm this relationship using braking and maneuverability data from Consumer Reports. Analyzing data 
from 58 Consumer Reports-tested vehicles of varying weights, we find that an extra 1,000 pounds of curb weight 
is associated with 4.5% worse performance in an emergency handling test (t = 8.9), 2.2% worse performance in 
a dry braking distance test (t = 3.8), and 3.8% worse performance in a wet braking distance test (t = 5.0). 
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more accidents. Second, heavier vehicles may also affect driver behavior. On the margin, 

drivers may respond to the internal safety benefits of heavy vehicles by increasing their 

optimal collision rate (Peltzman, 1975). Both the physical characteristics of heavier vehicles 

and the potential driver response to heavier vehicles could therefore generate a positive effect 

of vehicle weight on collision rates.9 

 Empirical evidence also suggests that, if anything, heavier vehicles have higher 

collision rates than lighter vehicles. Evans (1984) examines the relationship between accident 

rates and vehicle weight using accident data and vehicle registration data from North 

Carolina, New York, and Michigan. He finds that, after conditioning on driver age, 4,000 

pound vehicles have accident rates that are 39% higher than 2,000 pound vehicles. More 

recently, White (2004) and Anderson (2008) estimate that light trucks are 13% to 45% more 

likely to experience multivehicle collisions than passenger cars. Of course, some of the 

observed differences in crash rates may be due to driver selection; careless drivers may 

choose heavier vehicles. Nevertheless, both theory and empirical evidence suggest that 

weight may directly increase the probability of experiencing a collision. We thus interpret our 

estimates – which are conditional on a collision occurring – as lower bounds on the causal 

effect of weight on external fatalities.10 

 
4. DATA 

 The data set consists of the population of police-reported accidents for eight states: 

Florida, Kansas, Kentucky, Maryland, Missouri, Ohio, Washington and Wyoming. These 

data come from the State Data System, maintained by the National Highway Traffic Safety 

Administration (NHTSA). We obtained permission from each state’s police force to use the 

data. The SDS data include information on injuries and fatalities, geographic location, 

                                                
9 To the best of our knowledge, the only factor that might reduce the probability of a collision for heavier 
vehicles is visibility. Larger vehicles provide their drivers with a better view of the road ahead, which may 
decrease the probability of an accident. However, they also make it more difficult for drivers behind them to 
see ahead, which may increase the probability of an accident. The net impact of these two effects is unclear, but 
the resulting dynamic is again an example of an arms race; the visibility benefits are internal while the visibility 
costs are external. Visibility would thus be another reason to tax larger vehicles more than smaller vehicles. 
10 Note that the concern here is whether weight has a causal effect on collision probabilities. This concern arises 
because we consider the policy implications of inducing some drivers to switch to lighter vehicles via a tax. This 
exogenous manipulation of vehicle choice will affect collision probabilities only if vehicle weight has a causal 
effect on collision probabilities. Weight may also be correlated with the type of driver, which could generate 
selection bias in our regressions. We consider this issue separately in Section 6. 
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weather conditions, use of safety equipment, and driver and occupant characteristics. We 

selected these eight states out of the 32 states currently participating in the SDS as they 

report the vehicle identification number (VIN) for the majority of vehicles in the data set. 

We purchased data tables from DataOne Software to match the first 9 digits of the VIN to 

curb weight data for each vehicle (a vehicle’s curb weight is its weight with standard 

equipment and a full tank of fuel, but not loaded with any passengers or cargo). We 

therefore observe curb vehicle weight for approximately 64% of the vehicles in our data set 

(we confirm in Section 5 that the missing weight data do not appear to bias our estimates). 

For analytic purposes, we decompose the data set into three sub-samples, two-vehicle 

crashes, three-vehicle crashes, and single-vehicle crashes. The two-vehicle crash data set is 

the focus of most of our analyses. It contains 4.8 million vehicles in collisions in which both 

vehicles have complete curb weight data.11 

 One important feature of the SDS data is that accidents only appear in the data set if 

the police take an accident report. According to NHTSA documentation, various estimates 

suggest that only half of all motor vehicle accidents are police reported. While many of the 

unreported accidents are single vehicle accidents, some no doubt involve two vehicles as 

well. This sampling frame could affect our estimates if vehicle weight affects the probability 

of a police report, all other factors held constant. Serious multivehicle accidents are always 

reported to the police regardless of vehicle weight, but vehicle weight could affect the 

probability that a minor accident is reported to the police. Unlike the probability of a 

collision, there is no a priori reason to believe that vehicle weight must have a positive effect 

on the probability of a police report. On the one hand, collisions involving heavier vehicles 

cause more property damage, all other factors held constant, because more kinetic energy 

must be dissipated through deformation of materials. On the other hand, some heavier 

vehicles, such as pickup trucks, are more likely to be involved in rugged work. These trucks 

may have accumulated more dents, reducing the likelihood that the owners will report 

property damage from a minor accident. 

 If vehicle weight positively affects the reporting probability of minor accidents, then 

our estimates will represent a lower bound on the effect of weight on external fatalities. If 
                                                
11 The data set contains the population of police reported accidents for Florida (1989-2005), Kansas (2001-
2005), Kentucky (1998-2005), Maryland (1989-1999), Missouri (1989-2005), Ohio (1991-2005), Washington 
(2002-2005), and Wyoming (1998-2005). 
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vehicle weight negatively affects the reporting probability of minor accidents, however, then 

our estimates of the effect of weight on external fatalities could be upwardly biased. To test 

whether the “ruggedness” hypothesis affects our results, we estimate our regressions while 

limiting the sample to collisions that do not involve any light trucks. This sample restriction 

does not reduce the coefficient estimates.12 We also conduct a series of robustness tests in 

Section 6 that imply that the sampling frame does not bias our results. 

 Table 1 presents summary statistics from our two-vehicle collision data set. This data 

set contains all collisions involving two light vehicles built after 1980. We define a light 

vehicle as any car, pickup truck, SUV, or minivan that weighs between 1,500 and 6,000 

pounds. We exclude collisions involving heavy trucks. The first two columns report statistics 

for the entire two-vehicle collision data set. The mean vehicle weight in this data set is 3,076 

pounds, and approximately 24.5% of vehicles are light trucks (pickups, SUVs, or minivans). 

The average model year is 1992, and the average number of occupants per vehicle is 1.41. 

The probability of a fatality in each vehicle is 0.19% (i.e., 0.0019), and the probability of a 

serious injury in each vehicle is 2.7%. Alcohol is involved in 8.3% of collisions. 

 The last two columns of Table 1 report summary statistics for the estimation sample 

with complete covariates. This sample is smaller than the overall two-vehicle collision 

sample because we drop collisions in which any of the covariates from our preferred 

specification are missing. This restriction reduces the sample from 4.8 million observations 

to 2.8 million. Nevertheless, the two samples appear similar along most observable measures. 

 
5. SPECIFICATION AND RESULTS 

 Consider a collision involving two vehicles, Vehicle 1 and Vehicle 2. Suppose that we 

label Vehicle 1 as the “striking vehicle” and Vehicle 2 as the “struck vehicle.” These labels 

are for expositional purposes only – they do not signify which vehicle may be at fault in the 

collision.13 The external effects of vehicle weight are given by the effect of striking vehicle 

weight on the probability of fatalities in the struck vehicle. The internal effects of vehicle 

weight are given by the effect of struck vehicle weight on the probability of fatalities in the 

                                                
12 In the sample that excludes all collisions involving light trucks, the estimated effects are of similar magnitude 
to the analogous estimates from the main sample, reported in Table 2. This implies that the “ruggedness” 
hypothesis is not upwardly biasing our main results (see online Appendix Table A1). 
13 The labels are symmetric in that each vehicle enters our data set twice, once as the striking vehicle and once 
as the struck vehicle. 
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struck vehicle. The former is the quantity of policy interest, but we report results for the 

latter as well to calculate the effect of changes in fleet weight on fatalities. 

 We estimate the conditional expectation of a fatality in the struck vehicle as a 

function of striking vehicle weight, struck vehicle weight, and a rich set of covariates. We 

estimate the conditional expectation function (CEF) using either a linear probability model 

(LPM) or a probit. For robustness, we report estimates for both models. 

 We specify the linear probability model as follows: 

E struck veh fatalityi | striking veh weighti ,  struck veh weighti ,  X1i ,  X2i ,  Wi[ ]                      (6) 

 = β1striking veh weight i + β2struck veh weight i + X1iδ1 + X2iδ2 +Wiδ3  

 
 In equation (6), β1 is the coefficient of interest, X1i represents a set of characteristics 

pertaining to the striking vehicle in collision i, X2i represents a set of characteristics 

pertaining to the struck vehicle in collision i, and Wi represents a set of collision-specific 

characteristics. The probit model modifies equation (6) to include the link function Φ, the 

normal CDF. The marginal effect of striking vehicle weight then varies with striking vehicle 

weight. For comparability with the LPM results, for each probit regression we report the 

average marginal effect across all observations included in that regression.14 

 
5.1  EFFECTS OF VEHICLE WEIGHT ON FATALITIES AND SERIOUS INJURIES 

 Table 2 presents results from estimating the LPM and probit on the two-vehicle 

collision data set. The sample includes all accidents for which there is complete vehicle 

weight data for both vehicles; analyses restricted to states with low rates of missing weight 

data suggest that this constraint does not bias our results.15 Each vehicle appears in the two-

vehicle collision data set twice, once as the struck vehicle and once as the striking vehicle. 
                                                
14 Some of our probit regressions include fixed effects, raising the possibility of inconsistency due to the 
incidental parameters problem. However, in most cases we have many observations for each fixed effect, and 
as shown in Fernandez-Val (2009), the incidental parameters problem generates a trivial degree of bias in the 
probit model when estimating marginal effects (which are our quantities of interest). 
15 Weight data are missing for vehicles for which we do not have VINs. The percentage of vehicles with 
missing weight data ranges from 17.4% (Ohio) to 54.5% (Maryland). When estimating our main statistical 
models on the four states with the lowest rates of missing weight data (Kentucky, Ohio, Washington, and 
Wyoming), we find that an additional 1,000 pounds of striking vehicle weight increases the probability of a 
fatality in the struck vehicle by 46% to 51%. When estimating the same models on the four states with highest 
rates of missing weight data (Florida, Kansas, Maryland, and Missouri), we find that an additional 1,000 pounds 
of striking vehicle weight increases the probability of a fatality in the struck vehicle by 44%. The rate of missing 
weight data thus appears to have little impact on our estimates (see online Appendix Table A2). 
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We therefore cluster the standard errors at the collision level to account for correlation 

between observations pertaining to the same collision. Alternatively clustering at the vehicle 

model level for the both the striking and struck vehicles does not affect our conclusions. 

 The first and second columns in Table 2 include the following covariates: vehicle 

curb weight, light truck indicators, and year fixed effects. A striking vehicle and struck 

vehicle version of each of the first two variables is included. The first column implies that a 

1,000 pound increase in weight in the striking vehicle is associated with a statistically 

significant 0.09 percentage point increase in the probability of a fatality in the struck vehicle 

(t = 22.0). This coefficient represents a 46% increase over the average probability of a fatality 

in a struck vehicle in this sample (0.19%). In comparison, a 1,000 pound increase in weight 

in the struck vehicle is associated with a smaller 0.05 percentage point decrease in the 

probability of a fatality in the struck vehicle (t = –11.8). Striking light trucks increase the 

probability of a fatality in the struck vehicle by 0.12 percentage points (62% of the sample 

mean), even after controlling for striking vehicle weight (t = 19.5). The results from the 

probit model in column (2) display z-statistics that are similar to the t-statistics in column (1), 

and the average marginal effect generated by the probit model is of similar magnitude to the 

LPM coefficient (0.08 percentage points versus 0.09 percentage points). 

 Subsequent columns in Table 2 add additional covariates to the regressions. Columns 

(3) and (4) add controls for rain, darkness, day of week (weekday versus weekend), interstate 

highway, a quadratic in model year for each vehicle, and year, hour, and county fixed effects. 

The estimated effect of striking vehicle weight changes little in both the LPM and probit 

models. Columns (5) and (6) add controls for any seat belt usage, a quadratic in driver age, 

indicators for drivers under 21 or over 60, and indicators for male drivers or young male 

drivers. A striking vehicle and struck vehicle version of each of these variables is included. 

The inclusion of these driver characteristics has minimal impact on the primary coefficient 

of interest (striking vehicle weight). They do, however, increase the magnitude of the struck 

vehicle weight coefficient to –0.10 percentage points (t = –20.2). It is now identical in 

magnitude to the striking vehicle weight coefficient. 

 Column (7) of Table 2 adds city fixed effects and is our preferred specification. City 

fixed effects should absorb any geographic heterogeneity in fatality rates that could be 

correlated with average vehicle weight. This issue would arise if, for example, heavy vehicles 

clustered in rural areas and these areas had deadlier accidents due to a prevalence of 
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undivided highways or a sparseness of hospitals. At this point there are too many regressors 

to reliably estimate a probit model, and for many cities the city fixed effect perfectly predicts 

the fatality indicator, forcing the city to be dropped. We thus estimate only linear probability 

models in columns (7) through (10). The addition of city fixed effects has little impact on the 

coefficient on striking vehicle weight, changing it from 0.10 percentage points to 0.11 

percentage points (t = 18.3). This coefficient represents a 47% increase over the average 

probability of a fatality in a struck vehicle in this sample.16 

Comparing the striking vehicle weight coefficient (β1) and struck vehicle weight 

coefficient (β2) in columns (5) or (7) suggests that they may be of opposite sign but equal 

magnitude. Indeed, we cannot reject the hypothesis that β2 = –β1 in either column (5) or 

column (7). Column (8) estimates the same specification as column (7) but restricts β2 to 

equal –β1. This specification corresponds to our theoretical model; it imposes the 

assumption that weight only matters in a relative sense. Imposing this restriction has little 

impact on the estimates; a 1,000 pound increase in striking vehicle weight now increases the 

probability of a fatality in the struck vehicle by 0.10 percentage points (t = 26.0). 

Column (9) estimates the same specification as column (7) but limits the sample to 

observations for which we have data on the number of occupants per vehicle and the seat 

belt usage of each occupant (two controls we add in the next column). This restriction 

shrinks the sample in half and reduces the coefficient on striking vehicle weight to 0.07 

percentage points (t = 10.8). However, the ratio of the coefficient to the average fatality rate 

in the sample remains stable (49%). The change in the coefficient simply reflects the fact that 

the restricted sample contains states with a lower threshold for reporting accidents, and thus 

a lower fatality rate per reported accident. Column (10) adds controls for the number of 

occupants per vehicle and seat belt usage rate of these occupants. The coefficient on striking 

vehicle weight is unchanged from column (9).17 

                                                
16 An alternative question is whether the effect of weight in rural areas differs from its effect in urban areas. 
When we separate the Florida sample (which has a rural/urban indicator) into rural and urban areas, we do not 
find a statistically significant difference in the proportionate effect of weight across the two areas. 
17 We experimented with flexibly controlling for manufacturer’s suggested retail price (MSRP) as a proxy for 
driver wealth. This does not affect our coefficient estimates. In the Florida sample we also experimented with 
adding controls for drivers’ insurance status, alcohol involvement, and negligent driving. These controls do not 
affect our coefficient estimates. 
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 The results in Table 2 suggest that selection bias has little impact on the striking 

vehicle weight coefficient but may affect the struck vehicle weight coefficient. In particular, 

the addition of driver characteristics in columns (5) and (6) notably impacts the struck 

vehicle weight coefficient but has little impact on the striking vehicle weight coefficient. 

When adding covariates one at a time, we find that almost all of the change in the struck 

vehicle weight coefficient between columns (4) and (6) can be attributed to the addition of 

the controls for driver age. The patterns suggest that older drivers drive heavier vehicles and 

that older drivers are more susceptible to dying in crashes. Since there is little correlation 

between the age of the struck vehicle’s driver and the weight of the striking vehicle, 

however, the addition of driver age controls has no impact on the striking vehicle weight 

coefficient.18 Stated simply, heavy vehicles do not “seek out” elderly drivers to crash into.19 

 The results in Table 2 also suggest that the external risk posed by light trucks is not 

due solely to their heavy weight. The coefficient on the indicator for whether the striking 

vehicle is a light truck is positive and statistically significant in every column. In our 

preferred specification, column (7), the coefficient implies that being struck by a light truck 

increases the probability of a fatality by 0.09 percentage points (t = 10.3), even after 

conditioning on striking vehicle weight. This represents a 40% increase over the average 

fatality rate in the sample. In comparison, if we do not control for vehicle weight, then the 

light truck coefficient doubles to 0.18 percentage points (i.e., 0.0018). This effect is roughly 

similar in magnitude to the external effects of light trucks in two-vehicle collisions that 

White (2004) and Anderson (2008) estimate. The additional risk posed by light trucks may be 

due to the stiffness of their frames or their height incompatibility with other vehicles 

(Hakim, 2003). However, the robustness tests that we perform in Section 6 for the vehicle 

weight coefficient do not apply to the light truck coefficient. Thus we cannot rule out the 

possibility that some of the light truck coefficient may represent driver selection effects; i.e., 

consumers that purchase light trucks may drive in an aggressive manner that generates 

particularly severe collisions. For this reason we do not incorporate the light truck coefficient 

                                                
18 A related question is whether dangerous driver characteristics modify the striking vehicle weight effect. We 
tested whether the effect of striking vehicle weight differs when the striking vehicle is driven by a young male 
or someone over the age of 60. We did not find statistically significant differences. 
19 A related concern is that fatalities may consist disproportionately of elderly drivers with below-average VSLs. 
However, in a subsample with the most detailed data, accounting for age-specific VSLs changes our estimates 
by only 5.5%. Data limitations prevent us from incorporating age-specific VSLs into our main regressions. 
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when calculating the total externality across all vehicles in Section 7. If we were to 

incorporate the light truck coefficient, the total externality would be even larger. In the 

context of CAFE standards, however, we do consider the potential risks that light trucks 

pose. 

While 90% of multivehicle collisions involve two vehicles, 9% involve three vehicles, 

and 1% involve four or more vehicles (a three or four vehicle collision is one in which three 

or four vehicles are damaged in the same collision, though each vehicle need not have 

collided with every other vehicle in the collision). Adding 1,000 pounds to a vehicle in a 

three-vehicle collision should increase the risk of a fatality in the other two vehicles by less 

than 47% each (our preferred estimate from the two-vehicle collision data set). This 

attenuation occurs because the extra mass of the first vehicle is, in expectation, now 

distributed across two other vehicles rather than one other vehicle. We estimate the 

relationship between vehicle weight and fatalities in three-vehicle collisions in Table 3. For 

expositional purposes, assume that Vehicle 1 is the struck vehicle and that Vehicles 2 and 3 

are the striking vehicles. In Table 3, the striking vehicle weight coefficient represents the 

average effect of a 1,000 pound increase in the weight of either Vehicle 2 or 3 (but not both) 

on the probability of a fatality in Vehicle 1. The striking vehicle weight coefficient is positive 

and statistically significant in all specifications, and the magnitude of the coefficient ranges 

from 28% to 42% of the average probability of a fatality. Our preferred estimate, column (7), 

implies that a 1,000 pound increase in one vehicle raises the probability of a fatality in either 

of the other two vehicles by 35%. 

 Table 4 presents results from estimating versions of the LPM and probit in which 

the dependent variable is the presence of serious injuries in the struck vehicle. The 

regressions are analogous to those in Table 2, but the dependent variable has changed from 

any fatalities to any serious injuries. The striking vehicle weight coefficients (or marginal 

effects, for the probit regressions) in Table 4 are approximately 6 times larger than the 

corresponding coefficients in Table 2. This difference arises because the probability of a 

serious injury in this sample is roughly 15 times higher than the probability of a fatality. In 

the preferred specification, column (7), a 1,000 pound increase in striking vehicle weight 

raises the probability of serious injuries in the struck vehicle by 0.7 percentage points (t = 
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32.7). This figure represents 20% of the average probability of a serious injury in this 

sample.20 Drawing on our discussion of liability insurance above, it is not clear what 

proportion of serious injuries that represent external costs is internalized through existing 

insurance contracts. We therefore focus on fatalities for the remainder of the paper, which is 

a conservative approach. 

 
5.2  NONLINEAR EFFECTS OF VEHICLE WEIGHT 

 The linear specifications in Table 2 may obscure significant nonlinearity in the 

relationship between vehicle weight and fatalities. As our model in Section 3 establishes, 

nonlinearity in the relationship between weight and fatalities can have important 

implications. First, the marginal externality may vary with a vehicle’s weight. Second, if 

weight has nonlinear effects, then the marginal externality may change if the fleet’s weight 

distribution changes. Finally, the effect of the fleet’s weight distribution on total fatalities 

depends on nonlinearity in the relationship between weight and fatalities. We focus on the 

first implication in this section and discuss the latter two implications in Section 7. 

 Figure 1 presents the relationship between striking vehicle weight and struck vehicle 

fatalities for three specifications. The first specification is linear in striking vehicle weight and 

corresponds to column (7) of Table 2. The solid line in Figure 1 plots the predictions from 

this specification; they are linear by construction.21 The second specification relaxes the 

linearity assumption. In this specification, striking vehicle weight and struck vehicle weight 

each appear as 5th order polynomials in the estimating equation, and we include an 

interaction between striking vehicle and struck vehicle weight as well. The dashed line in 

Figure 1 plots the predictions from this specification; they closely track the predictions from 

the linear specification but diverge above 4,000 pounds. However, the confidence intervals 

become large at high weights, and we cannot reject the hypothesis that the two specifications 
                                                
20 It is notable that weight’s effect on serious injuries (20%) is smaller than weight’s effect on fatalities (47%). A 
major finding in the crash-safety literature is that ∆v – the change in velocity – is the most important 
determinant of crash fatalities (Joksch, 1993). This implies that relative weight has a protective effect in multi-
vehicle collisions because the heavier vehicle experiences lower ∆v; if both vehicles are traveling at similar 
speeds, the heavier vehicle continues to travel forward after the initial collision, while the lighter vehicle actually 
reverses direction. ∆v is also an important determinant of injuries. However, ∆v’s effect on injuries is less than 
its effect on fatalities. Elvik, Christensen and Amundsen (2004) conduct a meta-analysis of studies relating 
crash velocities, fatalities, and injuries. They find that, on average, fatalities are proportional to (∆v)4.0 while 
serious injuries are proportional to (∆v)2.4. The result that the fatality effect is larger than the injury effect is thus 
broadly consistent with the crash-safety literature. 
21 In Figures 1 and 2 we set regressors that are not functions of striking vehicle weight to their sample means. 
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yield similar predictions above 4,000 pounds. The third specification models fatalities in the 

struck vehicle as a 5th order polynomial of the difference in vehicle weights: 

struck veh fatalityi = β j (striking weight i − struck weight i )
j

j=1

5

∑ + X1iδ1 + X2iδ2 +Wiδ3 + ε i      (7) 

The dotted line in Figure 1 plots the predictions from this specification; they closely 

track the predictions from the linear specification.22 We find no evidence that struck vehicle 

weight has a protective effect independent of its effect through relative weight; if we include 

struck vehicle weight as a separate regressor in equation (7), it has a coefficient of –0.003 

percentage points (t = –0.4). Overall the results in Figure 1 suggest that the relationship is 

roughly linear over the support of striking vehicle weight, though it appears somewhat 

convex for very light striking vehicles (sub-2,500 pounds).23 

Figure 2 presents the relationship between struck vehicle fatalities and the difference 

in vehicle weights. The solid line plots the predictions from estimating equation (7) over the 

support of the difference in vehicle weights. The marginal effect of striking vehicle weight 

increases from –2,000 pounds to –500 pounds (i.e., when the struck vehicle outweighs the 

striking vehicle by 500 to 2000 pounds) and is roughly constant thereafter. The convexity in 

Figure 2 implies concavity in f, the private safety benefit of relative weight, from our 

theoretical model. The relationship does not flatten at high weight differences (e.g., +2,000 

pounds), implying that adding weight to the heavier vehicle continues to increase the risk in 

the lighter vehicle even in cases of severe mismatch. Nevertheless, the convexity at weight 

differences below  –500 pounds has a modest impact on the marginal externality for lighter 

vehicles (see Figure 1) because, even among sub-2,500 pound striking vehicles, the majority 

of collisions involve a weight difference between –700 and +2,000 pounds. 

 
6. ALTERNATIVE SOURCES OF IDENTIFICATION AND FALSIFICATION TESTS 

                                                
22 At each striking vehicle weight w, we form predictions from equation (7) by computing the average 
difference in vehicle weights for collisions in which the striking vehicle weighs w pounds. We do the same for 
the average square, cube, quartic, and quintic of difference in vehicle weights. 
23 In a previous version of the paper we also estimated more flexible versions of the probit model. A probit in 
which weight enters the normal CDF linearly fits the data poorly, as it is an inherently non-linear model that 
forces the marginal effect of weight to steeply increase in accidents involving heavy striking vehicles. A probit 
in which weight enters the normal CDF as a higher order polynomial approximates the LPM specifications we 
present in this figure. 
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 The results in Section 5 demonstrate a strong relationship between striking vehicle 

weight and struck vehicle fatalities. The robustness of this relationship to the inclusion of a 

rich set of accident and driver characteristics, as well as very fine geographic fixed effects, 

suggests that the striking vehicle weight coefficients represent causal effects of weight on 

fatality risk. However, two potential sources of upward bias seem particularly plausible. First, 

driver selection may bias the coefficient estimates if heavier vehicles attract aggressive drivers 

who get into deadlier accidents. Note, however, that only selection of drivers who get into 

deadlier accidents, rather than drivers who get into more accidents, could bias our 

estimates. 24  Second, the sampling frame might bias the coefficient estimates if minor 

collisions involving heavier vehicles are less likely to be reported to the police, all other 

factors held constant.25 To test whether either of these factors could bias our results, we 

conduct three exercises. First, we estimate the effect of striking vehicle weight on fatalities 

using within-model changes in vehicle weight that occur when models are refreshed. Second, 

we estimate the effect of striking vehicle weight on fatalities using striking vehicle occupants 

as an additional source of variation in weight. Finally, we implement a series of falsification 

tests that we benchmark against engineering safety estimates. 

 
6.1  VEHICLE MODEL FIXED EFFECTS RESULTS 

To establish the robustness of our results, we explore two alternative sources of 

identification. Our first alternative leverages within-model changes in vehicle weight to 

estimate the effect of striking vehicle weight on fatalities. To implement this design, we 

include vehicle model fixed effects for the striking vehicle in our preferred specification. The 

effect of striking vehicle weight on fatalities is thus identified on the basis of changes in 

vehicle weight that occur when a vehicle model is refreshed. This design minimizes the 

                                                
24 Because our estimates are conditional on a collision occurring, only specific types of driver selection can 
generate bias. Selection of “careless” drivers who simply get into more accidents of the same expected severity 
would not bias our results. It would increase the number of times we observe these drivers in the sample, but it 
would not increase the probability that someone dies in a collision conditional on the collision occurring. 
Selection of “aggressive” drivers who get into more severe accidents could bias our results, however. These 
drivers could increase the probability that someone dies in a collision conditional on the collision occurring. 
25 Note that, unlike the struck vehicle weight coefficients, striking vehicle weight coefficients are unlikely to be 
biased by any correlation between vehicle weight and vehicle safety features. It is plausible that heavier vehicles 
may be more or less likely to have safety features such as airbags, side impact protection beams, and unibody 
construction. However, these safety features are much more helpful to the striking vehicle’s own occupants 
than they are to the occupants of other vehicles that the striking vehicle hits. 
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impact of driver selection as long as the composition of customers for a particular vehicle 

model remains relatively stable when the model is refreshed. 

A key concern with including vehicle model fixed effects is that they may absorb 

almost all of the variation in striking vehicle weight, leaving little variation remaining to 

identify the effect of interest. However, summary statistics imply that there is sufficient 

within-model weight variation to identify an effect. For example, the overall standard 

deviation in vehicle weight is 520 pounds, while the within-model standard deviation in 

vehicle weight is 280 pounds.26 We observe within-model deviations in vehicle weight as 

large as 1,025 pounds in the data (this is the 99th percentile of within-model deviations in 

vehicle weight). Substantial variation in vehicle weight thus remains even after including the 

vehicle model fixed effects. 

Table 5 reports estimates from models that include vehicle model fixed effects (as 

well as year fixed effects and all other controls from column (5) of Table 2). Column (1) 

presents results from our preferred specification estimated on the sample for which we have 

complete vehicle model data. The sample size is substantially smaller than our main analytic 

sample because only four states – Kentucky, Maryland, Ohio, and Wyoming – report 

detailed vehicle model data. In this subsample, a 1,000 pound increase in striking vehicle 

weight is associated with a 47% increase in the probability of a fatality in the struck vehicle 

(0.06 percentage points, t = 7.3). This effect is consistent with the estimates from Section 5. 

Column (2) presents results from the same specification with vehicle model fixed effects 

added. A 1,000 pound increase in striking vehicle weight is now associated with a 58% 

increase in the probability of a fatality in the struck vehicle (0.07 percentage points, t = 4.5). 

The correspondence between the two coefficient estimates suggests that driver selection 

does not seriously bias our results, and we cannot reject the hypothesis that both coefficients 

converge to the same value. 

One issue with the vehicle model fixed effects specification is that our sample 

contains vehicles constructed from 1981 to 2006. In an extreme case, the fixed effects 

regression could compare a 1981 Honda Accord to a 2006 Honda Accord. These two model 
                                                
26 These figures represent standard deviations of the portion of vehicle weight that is not explained by the other 
controls in our regressions. They are thus smaller than the raw standard deviation of vehicle weight reported in 
Table 1. It is important to remove the portion of vehicle weight that is explained by the other controls in our 
regressions because this variation is not used to identify the effect of vehicle weight regardless of whether we 
include model fixed effects. 
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years differ in weight by over 1,000 pounds, but it is likely that the owners of 1981 Honda 

Accords are very different from the owners of 2006 Honda Accords. To ensure that we only 

compare vehicles of roughly similar vintage, we interact the vehicle model fixed effects with 

four model-year group fixed effects: 1986-90, 1991-95, 1996-2000, and 2000-06 model years 

(the omitted category is 1981-85). We include the interacted set of fixed effects as controls. 

Column (3) reports results from a specification that controls for the full set of 

interactions between the vehicle model fixed effects and the model-year group fixed effects. 

In this specification a 1,000 pound increase in vehicle weight is associated with a 57% 

increase in the probability of a fatality in the struck vehicle (0.07 percentage points, t = 3.9). 

This estimate is almost identical to the estimate in column (2), and the standard error is only 

13% larger. The drop in statistical power from adding the model-year group interactions is 

modest for two reasons. First, almost 60% of vehicles in our sample are built between 1989 

and 2000. Second, vehicle model identifiers typically change over long periods of time, so a 

single vehicle model fixed effect often does not span two decades. As a result, the average 

difference in model year between two randomly selected vehicles is only 3.8 years after 

controlling for the vehicle model fixed effects. The specification in column (2) thus primarily 

compares vehicles of similar vintage even without including model-year group interactions. 

 
6.2  OCCUPANT WEIGHT RESULTS 

Our second alternate source of identification leverages the number of occupants in 

the striking vehicle as an additional source of variation in striking vehicle weight. The 

number of occupants in the striking vehicle directly affects the striking vehicle’s weight, so 

we estimate the regression: 

 
struck veh fatalityi =α1striking veh occupant weight i
     +α2striking veh curb weight i + X1iγ 1 + X2iγ 2 +Wiγ 3 + ε i

         (8) 

 
In this regression the striking vehicle’s occupant weight equals the number of 

occupants in the striking vehicle multiplied by 164 pounds (the average weight of an 

additional occupant circa 2000).27 The coefficient α1 represents the effect of additional 

                                                
27 We calculate this figure as follows. First, for the subset of accidents for which we have detailed occupant 
characteristics, we tabulate the share of additional occupants that are male adults, female adults, male children, 
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striking vehicle occupant weight on struck vehicle fatalities. It is worth emphasizing that the 

regression controls for the curb weight of each vehicle (i.e., each vehicle’s weight absent any 

passengers or cargo). Identification of α1 thus comes from variation in the number of 

occupants in the striking vehicle after controlling for the curb weight of the striking vehicle. 

This means that the variation used to identify α1 is, by the properties of linear regression, 

orthogonal to the variation in curb weight (i.e., the variation that we use in Section 5). 

Nevertheless, it is not obvious that the number of occupants in the striking vehicle is 

uncorrelated with any other factors that affect fatalities in the struck vehicle. It is possible 

that, even after controlling for vehicle curb weight and other characteristics, drivers who 

carry additional occupants in their vehicles drive more aggressively than drivers who do not 

carry additional occupants. If this were true, then our estimates of α1 would be biased 

upward. We thus do not interpret our estimates of α1 as being more robust than our 

estimates of α2 (which correspond to the estimates reported in Section 5). Instead, we 

recognize that the identifying variation for α1 is orthogonal to the identifying variation for α2 

(a fact guaranteed by the inclusion of curb weight as a control in the regression). If the 

regression produces similar estimates of α1 and α2, this suggests that both coefficients are 

estimating causal effects. If the regression produces very different estimates of α1 and α2, this 

suggests that one (or both) estimates may be biased. This comparison is similar in spirit to 

general overidentification tests that test whether different instruments generate similar 

coefficient estimates. 

The last two columns of Table 5 report coefficients from the sample with occupant 

data. The occupant data sample is approximately half the size of our main analytic sample 

because data on the number of occupants is not available in every state. Column (4) presents 

results from estimating the preferred OLS specification (column (7) of Table 2) on the 

occupant data sample. A 1,000 pound increase in striking vehicle weight is associated with a 

statistically significant 0.064 percentage point increase in the probability of a fatality in the 

struck vehicle (t = 10.7). This coefficient represents a 48% increase over the average 

                                                                                                                                            
and female children. We find that 21.6% of additional occupants are male adults, 39.2% are female adults, 
19.2% are male children, and 20.0% are female children. Using national statistics on body weight by gender and 
age we then compute the average weight of an additional occupant as 0.216*190 lbs + 0.392*163 lbs + 
0.192*110 lbs + 0.200*114 lbs = 149 lbs (Ogden, Fryar, Carroll and Flegal, 2004). Finally, we add 15 lbs per 
occupant to account for clothing, outerwear, and personal belongings (149 lbs + 15 lbs = 164 lbs). 
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probability of a fatality in a struck vehicle, which is consistent with the results in Section 5. 

Column (5) presents results from estimating equation (8). The first reported coefficient is α1, 

the coefficient on occupant weight in the striking vehicle. An additional 1,000 pounds of 

occupant weight in the striking vehicle is associated with a statistically significant 0.062 

percentage point increase in the probability of a fatality in the struck vehicle (t = 2.4). This 

coefficient represents a 46% increase over the average probability of a fatality in the struck 

vehicle. It is almost identical to the striking vehicle curb weight coefficient in column (4). 

The second reported coefficient is α2, the coefficient on striking vehicle curb weight. This 

coefficient is 0.063 percentage points (t = 10.5), which is virtually identical to α1. The 

correspondence between the two coefficients increases our confidence in both sources of 

identifying variation. 

 
6.3  FALSIFICATION TESTS 

 Suppose that heavier vehicles pose no additional risk to other vehicles, and that the 

estimates reported in Section 5 simply reflect the possibility that drivers of heavier vehicles 

are more aggressive (regardless of vehicle weight) or that heavier vehicles are less likely to 

generate police reports. In that case, there should be a strong positive correlation between 

vehicle weight and fatalities or injuries when analyzing two-vehicle collisions between 

vehicles of the same weight. These accidents therefore provide an opportunity to test 

whether driver selection bias or sampling frame bias are generating our results. 

 It is possible, however, that heavier vehicles are safer than lighter vehicles. In that 

case, a positive driver selection effect might be mitigated by a negative weight effect. Put 

simply, even if drivers of heavier vehicles drive aggressively, our falsification test might 

generate a small coefficient because the heavier vehicles are fundamentally safer. We 

therefore benchmark the results of our falsification tests against the results of NHTSA crash 

tests. NHTSA crash tests entail colliding a vehicle with a concrete barrier; they are meant to 

simulate the results of a collision with a stationary object or a head-on collision with another 

vehicle of similar weight.28 The primary outcome in the NHTSA crash test is the Head Injury 

                                                
28 Many real world collisions involve side or rear impacts. In the Florida SDS data, we find that rear impacts are 
the safest, with a fatality rate that is 30% of the average, frontal impacts are the next safest, with a fatality rate 
that is 77% of the average, and side impacts are the most dangerous, with a fatality rate that is 363% of the 
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Criterion (HIC). This variable is derived from an accelerometer mounted on the crash test 

dummy’s head and measures the forces that the head is exposed to. A higher HIC value 

corresponds to a higher probability of severe or fatal head injury. 

 Table 6 presents results from regressions of HIC scores on vehicle weight using the 

NHTSA crash test data. All regressions include as controls a light truck indicator, a quadratic 

in vehicle model year, and a quadratic in collision speed. The estimation sample in the first 

two columns contains all NHTSA vehicle-to-barrier frontal crash tests conducted from 1980 

to 2009 (the mean year is 1997). Column (1) reports regression results when the dependent 

variable is HIC. The results indicate that an additional 1,000 pounds of vehicle weight is 

associated with a statistically insignificant 3% increase in HIC (17.7 points). Column (2) 

reports regression results when the dependent variable is an indicator for whether HIC 

exceeds 700. This threshold is of interest because it represents the point at which there is a 

significant (5%) chance of severe brain injury (Mertz, Prasad and Irwin, 1997). The results 

indicate that an additional 1,000 pounds of vehicle weight is associated with a statistically 

insignificant 8.7% increase in the probability that HIC exceeds 700 (2.4 percentage points). 

The composition of vehicles that NHTSA tests, however, is not identical to the composition 

of vehicles on the roadways. To account for this, we estimate regressions in which each test 

result is weighted by the sales share of the tested vehicle (Ward’s Reports Incorporated, 

1994). Columns (3) and (4) report results from these regressions. The sample size falls 

because we do not have sales share data for every tested vehicle, but the results are 

qualitatively unchanged. An additional 1,000 pounds of vehicle weight is associated with 

small, statistically insignificant increases in HIC or the probability that HIC exceeds 700. 

Overall, there is a weak positive relationship between vehicle weight and HIC values. The 

point estimates suggest that an additional 1,000 pounds of vehicle weight could raise the 

fatality rate by 3% to 9%, but none of the coefficients are statistically significant. We thus 

expect a weak relationship between vehicle weight and fatalities in collisions between two 

equal weight vehicles if our research design is sound. 

Table 7 presents results from regressions in which the estimation sample consists of 

collisions involving two vehicles of similar weight – the difference in vehicle weight cannot 

                                                                                                                                            
average. However, in all collisions types the effect of adding 1,000 pounds of striking vehicle weight ranges 
from 37% to 45% of the average fatality rate for that collision type. 
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exceed 200 pounds. In each regression, an indicator for fatalities in the struck vehicle is 

regressed on the average weight of the two vehicles and the set of controls from our 

preferred specification. Column (1) indicates that an increase of 1,000 pounds in average 

vehicle weight predicts a statistically insignificant 2% decrease in the probability of a fatality 

(0.00 percentage points). Column (2) restricts the sample to head-on collisions between two 

vehicles of the same weight, the type of collision simulated by NHTSA. In this sample, an 

increase of 1,000 pounds in average vehicle weight predicts a statistically insignificant 19% 

decrease in the probability of a fatality (0.11 percentage points).29 Columns (3) and (4) 

replicate columns (1) and (2) but restrict the sample so that the difference in vehicle weight 

cannot exceed 100 pounds. The estimates remain small or negative and statistically 

insignificant, but are less precisely estimated. 

 Overall, the estimates in Table 7 indicate that there is a weak relationship between 

vehicle weight and fatalities in collisions between two vehicles of equal weight, and we 

cannot reject the hypothesis that this relationship is zero. This finding is consistent with 

NHTSA crash test results (Table 6) and inconsistent with the hypothesis that driver selection 

bias or sampling frame bias is generating the results in Section 5. The most precise estimate 

in Table 7 – column (1) – suggests that increasing average vehicle weight by 1,000 pounds 

decreases the fatality rate by 2%. This figure is not statistically different from the coefficients 

implied by the NHTSA crash test data. In contrast, if the relationship between striking 

vehicle weight and struck vehicle fatalities were generated by driver selection bias or 

sampling frame bias, then we would expect a large positive coefficient on average vehicle 

weight when two vehicles of equal weight collide. The preferred estimate from Section 5 

indicates that a 1,000 pound increase in striking vehicle weight raises the probability of a 

fatality in the struck vehicle by 47%. If this coefficient represented driver selection bias, and 

if two aggressive drivers were twice as dangerous as one aggressive driver, then we might 

expect a 1,000 pound increase in both vehicles weights to raise the probability of a fatality by 

94% (2*47 = 94). However, no coefficient in Table 7 is above 2%, and we can reject any 

effect above 12% in either column (1) or (2) at the 5% significance level. 

                                                
29 The average probability of a fatality is much higher in column (2) than in column (1) because head-on 
collisions are more dangerous than the average collision. 
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 As an additional set of falsification tests, we examine the relationship between 

vehicle weight and fatalities in collisions involving a single vehicle. If drivers of heavier 

vehicles are more aggressive, then we expect a strong positive relationship between vehicle 

weight and fatalities in these collisions. Table 8 presents results for single-vehicle collisions. 

In these collisions, we regress a fatality indicator on vehicle weight and other controls. The 

results in column (1) pertain to all single-vehicle collisions; a 1,000 pound increase in vehicle 

weight is associated with a 3% increase in the probability of a fatality (0.04 percentage 

points). 30  Column (2) pertains to single-vehicle frontal collisions, the type of collision 

simulated by NHTSA. A 1,000 pound increase in vehicle weight is associated with a 2% 

increase in the probability of a fatality (0.03 percentage points). Columns (3) and (4) present 

results that are analogous to columns (1) and (2) but are estimated using a probit 

specification instead of a linear probability model.31 In both columns, a 1,000 pound increase 

in vehicle weight is associated with an increase of less than 1% in the probability of a fatality. 

In all columns, the percentage effects fall close to the range implied by the NHTSA crash 

test data, further suggesting no substantial bias due to driver selection. 

 
7. POLICY IMPLICATIONS 

 The econometric evidence demonstrates that the impact of heavier striking vehicles 

on fatalities in struck vehicles is statistically significant and robust to the inclusion of an 

extensive set of vehicle, driver and accident covariates, estimation methods and identification 

strategies. Our estimates also scale to the national level.32 

 
7.1  EXTERNAL COSTS AND CORRECTIVE TAXES 

                                                
30 The raw magnitude of the coefficients is much larger in Table 8 than in Table 7 because the fatality rate in 
single-vehicle collisions is approximately 7 times higher than the fatality rate in two-vehicle collisions. This 
occurs because observed single-vehicle collisions tend to be more severe; drivers have no incentive to report 
minor single-vehicle collisions to their insurers or the police. 
31 The sample size increases in column (3) relative to column (1) because (3) includes county fixed effects while 
(1) includes city fixed effects (which are missing for some observations). The probit estimator does not reliably 
converge with city fixed effects due to the large number of incidental parameters. However, the inclusion of 
city versus county fixed effects has little impact on the linear probability model estimates. 
32 In a previous working paper, we estimated the same models using data from the NHTSA General Estimates 
System (GES). The GES is a random subsample of police reported accidents in all states. It thus has fewer 
observations, but greater geographic coverage, than our merged state data sets. If we estimate our preferred 
specification using GES data, we find that 1,000 pounds of additional vehicle weight increases the probability 
of a fatality by 40% in the other vehicle. This estimate is statistically significant (t = 4.8) and similar in 
magnitude to our preferred estimate of 47% from the state data sets. We cannot reject the hypothesis that both 
estimates converge to the same value. 
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We now explore whether the estimated causal effect of vehicle weight on fatalities is 

economically significant. Consistent with the model from Section 3, we calculate the traffic 

fatality-related external cost of adding curb weight to a vehicle weighing wi pounds and 

aggregate this external cost across all vehicles on the road. In any given collision this cost is 

proportional to ′h (wi −wj ) = −α ⋅ ′f (wj −wi ) . This quantity varies depending on wj, the 

weight of the vehicle that i collides with. At each striking vehicle weight wi, the slope of the 

dotted line in Figure 1 represents the average value of ′h (wi −wj ) . This average, !h (wi ) , is 

computed across all accidents involving vehicles of weight wi. The dotted line in Figure 1 

plots h (wi ) . Figure 1 indicates that h (wi )  is linear over most striking vehicle weights, but it 

diverges somewhat for vehicles weighing less than 2,400 pounds. Therefore !h (wi )  for 

vehicles below 2,400 pounds is less than !h (wi )  for vehicles weighing over 2,400 pounds. In 

our calculations we use a piecewise linear function for h (wi ) , with a slope change at 2,400 

pounds. This piecewise linear function fits the dotted line in Figure 1 very well, generating an 

R2 of 0.997. Note that using a linear h (wi )or the dashed line would result in a modestly 

higher external cost estimate (11% higher). In order to aggregate these external costs across 

vehicles, we need to make an assumption about what share of the vehicle fleet weighs less 

than 2,400 pounds. However, this share is very low in recent years (only 2.5% of 2005 model 

year vehicles in our data weigh below 2,400 pounds). 

To calculate the total external cost of curb weight for a vehicle weighing wi pounds, 

we compare its external cost, h (wi ) , to the external cost of the lightest available vehicle, 

h (wcf ) . This calculation requires an assumption about wcf, the weight of the smallest 

“counterfactual” vehicle that is available on the market. One could argue that any curb 

weight over zero pounds increases the probability of a fatality and that the appropriate value 

of wcf is zero. However, a “zero pound” vehicle lies far outside the support of our data. We 

thus consider two more reasonable counterfactual vehicles below, and we assume that the 

only fatality-related externalities imposed by our smaller counterfactual vehicle (a car 

weighing 1,850 pounds) involve pedestrians and motorcyclists. We experiment with a “zero 

pound” counterfactual in Table 9. 

The average individual in our baseline scenario chooses a vehicle weighing the same 

as the average 2005 model year vehicle in our data (3,616 pounds). We calculate the 



 
 
 

30 

individual external costs relative to two counterfactual vehicles that the individual could have 

bought – a slightly lighter vehicle and the lightest possible vehicle. The slightly lighter 

counterfactual vehicle is a proxy for the average 1989 model year vehicle in our data, which 

weighs 2,953 pounds. The lightest possible counterfactual vehicle is the smallest drivable car 

in mass production in 2005, which weighs 1,850 pounds. 

 The external cost of an individual buying vehicle model i weighing wi pounds over a 

lighter counterfactual vehicle weighing wcf pounds is given by: 

External Cost i = [h (wi )− h (wcf )]⋅P(accident) ⋅VSL          (9) 

We employ the estimate of the causal effect of curb weight on the probability of a 

fatality in an accident as shown by the dotted line in Figure 1 (more precisely, a piecewise 

linear function approximating that line). For weights above 2,400 pounds we apply the 

estimated 0.109 percentage points of risk for each additional 1,000 lbs in striking weight. For 

weights below 2,400 pounds we apply 0.058 percentage points. Both values are the averages 

of !h (wi )  over the respective curb weight ranges. We set wi to 3,616 pounds in all 

simulations, as discussed above. As the fatality externality is not a simple linear function of 

vehicle weight, we need to determine the share of vehicles in each range. We employ the 

shares observed in our accident data, which is 2.5% for 2005 model year vehicles and 15% 

for the 1989 model year vehicles. We calculate the probability of a vehicle being involved in 

a police-reported multivehicle collision at 3.65% per year (NHTSA, 2007),33 and we apply 

the DOT value of a statistical life of $5.8 million.34 

Critical in interpreting the expression in equation (9) as an external cost is the 

assumption that consumers recognize and value the safety-related internal benefits of weight, 

f (wi −wj ) . If not, then they will not invest additional resources in buying heavier cars 

(except to gain the non-safety-related benefits), and no distortion of preferences will occur. 

However, we are confident that consumers do recognize and value these internal benefits. 

An abundance of VSL studies in the auto safety context demonstrate that consumers value 

                                                
33 We estimate the probability of being involved in an accident by dividing the total number of vehicles 
involved in reported multivehicle collisions by the total number of registered vehicles in 2005 (US DOT BTS, 
2010 Table 1-11). 
34 This value is consistent with an extensive body of research on consumer valuation of auto safety. For 
example, de Blaeij et al. (2003) review a large number of studies analyzing willingness to pay for automotive 
safety. These include seven studies conducted in the United States post-1980. Across these seven studies the 
median (mean) VSL is $5.5 million ($8.8 million) in 2008 dollars. 
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automotive safety (De Blaeij, Florax, Rietveld and Verhoef, 2003). Furthermore, a large-scale 

survey in Hellinga, McCartt and Haire (2007) reveals that 84% of parents believe a midsize 

to large vehicle is safer than a small one, with 93% of these specifically citing the larger size 

as the feature that enhances safety.35 

In the first counterfactual scenario our simulated individual chooses an average 

vehicle weighing 3,616 lbs (wi) instead of one weighing 2,953 lbs (wcf). The total external costs 

aggregate to $33.9 billion per year. One can think of this estimate as the external costs arising 

from the fleet weight gain since 1989. 

 Our second counterfactual scenario assumes the individual purchases an average 

vehicle weighing 3,616 lb (wi) instead of one weighing 1,850 lbs (wcf), which represents the 

lightest automobile in mass production that can transport two adult passengers. This is the 

approximate weight of Toyota’s iQ, Mercedes Benz’s Smart Car, or the first generation 

Honda Insight. The intuition behind calculating the total external cost using this baseline 

vehicle is that individuals privately choose the size of the externality by choosing a heavier 

vehicle than required to provide baseline transportation services. This calculation recognizes 

that a driver of a Smart Car poses minimal risk to other roadway users (except bicyclists or 

motorcyclists). The total external costs from this scenario sum to $78.8 billion per year. 

Both scenarios ignore the external fatality risks that vehicles pose to pedestrians and 

motorcyclists. In 2005, there were 2,659 motorcycle crash fatalities involving light vehicles 

and 5,864 non-motorist fatalities involving light vehicles (NHTSA, 2010). This is equivalent 

to an external “baseline” fatality cost of $49.4 billion. Our interpretation of this as a 

“baseline” cost that applies across all vehicles assumes that the fatality risk to pedestrians and 

motorcyclists is independent of weight and that it can be eliminated by not driving. This 

appears to be true empirically.36 The total external cost of “excess” vehicle weight (relative to 

                                                
35 Even among the 16% of parents that believe a smaller vehicle is safer, 88% cited the easier handling of the 
smaller vehicle as the reason it is safer, suggesting that they too understand that small size itself is not helpful in 
surviving a crash except insofar as it allows one to avoid the crash to begin with. 
36 Not all states reliably report pedestrian data, but we have a sample of 23,280 crashes involving pedestrians 
and 6,831 crashes involving motorcyclists. Regressing a pedestrian fatality indicator on vehicle weight (plus 
control variables, including a light truck indicator), we find that an additional 1,000 pounds of vehicle weight is 
associated with a statistically insignificant 6.5% increase in the probability of a fatality (t = 0.9). Regressing a 
motorcyclist fatality indicator on vehicle weight (plus control variables, including a light truck indicator), we 
find that an additional 1,000 pounds of vehicle weight is associated with a statistically insignificant 0.03% 
decrease in the probability of a fatality (t = –0.0). 
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the 1,850 lb. counterfactual vehicle) and baseline fatality risk from collisions involving 

pedestrians and motorcyclists is $128.2 billion ($78.8 + $49.4 = $128.2). 

The above calculations also ignore the impact of higher striking vehicle weight in 

multivehicle collisions with more than two vehicles. Almost all of these accidents involve 

three vehicles. We repeat the simulation above but add the external costs in three-vehicle 

collisions. We assume that striking vehicle weight has half the causal effect (per vehicle 

struck) in three-vehicle accidents as compared to its effect in two-vehicle collisions. This 

assumption is conservative in comparison to our three-vehicle collision estimates in Table 3. 

These calculations raise external costs in the “weight gain since 1989” scenario to $37.2 

billion and external costs in the “lightest possible vehicle” scenario to $86.4 billion. Total 

external costs rise from $128.2 to $135.8 billion.37 Notably, this figure exceeds central 

estimates of the social cost of US carbon emissions, which total $123.7 billion per year.38 

 The calculations above reveal the fatality-related externality for an average driver. 

However, collision rates vary across drivers, and a dangerous driver generates a larger 

externality than a safe driver, vehicle weight held constant. In the context of our model a 

dangerous driver has a higher value of α in the expression h(wi −wj ) = −α ⋅ f (wj −wi ) . 

From a policy perspective, it would be attractive to rescale existing liability insurance rates by 

vehicle weight, as existing insurance rates already account for driver heterogeneity and 

provide discounts to low-mileage drivers. Liability insurance would then be an increasing 

function of a driver’s record, miles driven, and the weight of the vehicle that he chooses to 

buy, and the three factors could interact with each other. If this approach is not feasible, we 

discuss below two simpler ways to distribute the fatality-related external costs across 

vehicles. These mechanisms are less precise at distributing external costs in contexts with 

substantial driver heterogeneity in accident rates, as they do not allow for an interaction 

between a driver’s record and his vehicle’s weight. Note however that allowing for driver 

heterogeneity in the VSL has little impact on any of the policy instruments.39 

                                                
37 A spreadsheet detailing these calculations is available from the authors. 
38 In 2008 the US generated 5.89 billion metric tons of CO2 (US EIA, 2009). Using a central estimate of the 
social cost of CO2 at $21 per metric ton, the annual social cost of US carbon emissions is $123.7 billion 
(Greenstone et al., 2011). 
39 For example, even in an extreme case in which drivers sort into vehicles such that a driver’s VSL is 
proportional to her vehicle’s weight, the appropriate value of a weight-based tax or a gas tax changes only 11%. 
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On the one hand, one could incorporate the fatality-related external costs as a per 

mile charge, in the spirit of “pay as you drive” (PAYD) insurance proposals. In contrast to 

existing proposals for PAYD insurance (e.g. Parry, 2005; Bordoff and Noel, 2008), our 

results demonstrate that the per mile charge should vary sharply by weight – a heavier car 

generates greater expected external costs per mile than a lighter car. An appropriately set per 

mile charge should be similar in effect to a weight-based excise tax on automobiles; the 

primary difference is whether the tax is collected at the time of sale or over the life of the 

vehicle.40 However, to assess a charge that varies per pound and per mile, one needs accurate 

information on vehicle miles travelled (VMT) for each vehicle, which given today’s 

monitoring technology creates significant but not insurmountable technical challenges. 

A practical alternative is to distribute the total external costs by raising the gasoline 

tax assessed per gallon. Taxing gasoline is appealing because it is simple and because gasoline 

usage is positively related to both miles driven and vehicle weight. The United States 

consumed 140 billion gallons of gasoline in 2005 (US EIA, 2010). If we distribute the total 

external costs calculated above across 140 billion gallons of gasoline, this translates into 26 

cents per gallon in the “weight gain since 1989” scenario ($37.2 billion/140 billion gallons = 

26 cents/gallon). The total externality due to vehicle fatalities when the baseline vehicle is 

1,850 pounds translates into a tax of 61 cents per gallon ($86.4 billion/140 billion gallons = 

61 cents/gallon). Including pedestrian and motorcycle fatalities translates into a tax of $0.97 

per gallon ($135.8 billion/140 billion gallons = 97 cents/gallon). 

 While the per gallon tax does not differ by the weight of the vehicle, it results in a 

higher per mile charge for heavier vehicles as these have worse fuel economy. Figure 3 plots 

a Lowess smoother of miles per gallon (mpg) against vehicle weight, estimated for model 

year 2005 cars using data from Knittel (2011).41 There is a strong negative and slightly 

nonlinear relationship between the two variables. A linear regression indicates that an 

additional 1,000 pounds in vehicle weight decreases fuel economy by 4.5 mpg. A gas tax thus 

results in heavier vehicles indirectly paying a higher per mile tax because they get fewer mpg. 

In this sense, the gas tax approximates a weight varying mileage charge. 

                                                
40 One difference between the two taxes is that under the excise tax owners would have an incentive to drive 
their vehicles a few more miles before retiring them, as this would amortize the tax over a larger mileage base. 
41 For this comparison we require vehicle weight and EPA fuel economy ratings. The latter are not in our VIN 
decoder database, but Chris Knittel graciously shared his model level data on weight and fuel economy ratings.  
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 A natural question is how close the gasoline tax comes to achieving the desired 

weight varying mileage charge. We perform a back of the envelope calculation using a large 

set of vehicles for which we have vehicle weight and fuel efficiency ratings (Knittel, 2011). 

We examine 8,201 model-year combinations built from 1997 to 2006, which includes most 

cars and light trucks sold in the United States during this period.42  

The per mile weight based charge for a given vehicle is equal to ci
e , which is the per 

mile weight based external cost for vehicle type i and given by  

ci
e =
[h (wi )− h (wcf )]⋅P(accident) ⋅VSL

VMTi
+
cped−mot
e

VMTtotal
       (10) 

where the numerator of the first term is the external cost given in equation (9). Now wi is the 

curb weight for each 2005 model year vehicle in Knittel’s database, wcf is the baseline 

vehicle’s weight (in our case 1,850 lbs), VSL is the value of a statistical life, and P(accident) is 

the probability of being involved in a multivehicle collision. VMTi are set at 11,000 miles per 

year for each model. Note that VMT may fall after the tax is implemented.43 In fact, this is 

desirable, as reducing VMT is one way to reduce the total externality. As long as prices are 

set correctly, consumers should be free to choose whichever vehicles and driving patterns 

they wish. The parameter cped−mot
e  is the total number of fatalities in collisions between 

vehicles and pedestrians, bicyclists and motorcycles, multiplied by the VSL; it sums to $49.4 

billion per year, or 1.65 cents per VMT.44 We calculate ci
e  for each model in our database 

using the piecewise linear function discussed above. The average value of ci
e  across all 

models is 4.8 cents per mile. 

                                                
42 For the analysis we remove boutique vehicles, which have zero market share (e.g. Ferrari, Bentley, etc.), flex 
fuel vehicles, which have inflated mpg ratings for accounting reasons, and a few miscoded observations. 
43 VMT may fall less than expected if smaller vehicles require drivers to take more trips. Descriptively, 
however, we find a positive relationship between VMT and weight in the National Household Travel Survey. 
44 As noted in footnote 36, there is no evidence that heavy cars pose greater risks to pedestrians and 
motorcyclists than light cars. The only vehicle characteristic we are aware of that influences pedestrian and 
motorcyclist fatality risk is whether a vehicle is a light truck. Anderson (2008) finds that a pedestrian’s or 
motorcyclist’s fatality risk when struck by a car is approximately 40% lower than his risk when struck by a light 

truck. In theory one could charge a lower value of cped−mot
e

to cars and a higher value to light trucks. In practice, 
however, this modification makes little difference when comparing a gasoline tax to the weight varying mileage 
charge. Without this modification, the average absolute difference between the weight-based tax and the gas tax 
is 0.88 cents per mile. With this modification, the average absolute difference between the weight-based tax and 
the gas tax becomes 1.00 cents per mile. 
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Denote the alternative instrument, the per gallon gas tax, as ce , which we calculate at 

$0.97 above. We translate this per gallon tax into a per mile tax for vehicle i as follows: 

ci
g = ce

mpgi  
         (11) 

where ci
g  is the gasoline tax per mile for vehicle i, ce  is the $0.97 per gallon external cost 

and mpgi is miles per gallon for vehicle i. Here we use the standard 45/55 weighting of the 

EPA city and highway fuel economy ratings.45 The gas tax per mile therefore only varies 

across models through differences in fuel economy. 

 Figure 4 presents a scatterplot of the gas tax versus the weight tax for all models 

from 1997–2006 in the cleaned Knittel (2011) data. The difference between the two taxes is 

small for most models, but it can be significant at the extremes, ranging between –3.7 cents 

to 4.7 cents per mile. A one-cent difference per mile equates to $110 on an annual basis. For 

63% of the models in our data, the absolute value of the difference between the two taxes is 

less than one cent per mile, and for 96% of the models the absolute value of the difference is 

less than 2 cents per mile. The average difference between the two taxes is 0.88 cents per 

mile, which represents 18.3% of the average value of the per mile weight tax. In either case, 

the revenues could be redistributed to make the taxes revenue neutral. 

Recall that our estimates of accident-related externalities are conservative along 

several dimensions. First, we assumed that the effect of weight on serious injuries is 

internalized by liability insurance. Second, we assumed that weight has no causal effect on 

the probability of a collision. Third, we ignored the external risk that light truck frames 

appear to pose independent of weight. Finally, we assumed that the lightest production 

vehicle (1,850 pounds) poses no risk to other vehicles. Table 9 presents estimates of the total 

external costs after including these factors. Accounting for potential injury costs increases 

                                                
45 Pre-2008 EPA fuel economy ratings are widely recognized to overstate the actual mileage achieved by the 
average driver (Edmunds, 2006). This affects our subsequent analysis because the $0.97 gas tax was derived 
from actual fuel economy rather than the EPA’s forecast fuel economy. We thus rescale the EPA ratings so 
that the average fuel economy in this sample matches the average fuel economy observed nationwide (17.8 
mpg), after adjusting for weight differences between the two samples. The rescaling factor that achieves this 
equivalence is 0.73. Our conclusions in the subsequent analysis are unchanged if we instead leave the EPA 
ratings untouched and recalculate the gas tax using EPA mileage ratings – in both cases the per mile gas tax 
closely tracks the weight based mileage tax. 
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the total externality from $135.8 billion to $175.5 billion.46 Accounting for the possibility that 

weight may have a causal effect on collision rates increases the externality another $60.4 

billion to $235.9 billion. Accounting for the additional risk from light truck frames increases 

the total externality to $264.4 billion. Allowing for a “zero pound” counterfactual vehicle 

increases our estimate of the total externality to $304.4 billion.47 This is equivalent to a $2.17 

per gallon gas tax. 

It is worth noting factors held constant in our policy analysis. Chief among these is 

the accident rate. Even if weight does not affect the accident rate, it may change over time 

based on congestion levels, road design, driver behavior, or other influences. A policymaker 

implementing a weight-based tax would thus do well to recalibrate the tax periodically to 

reflect changes in accident rates or overall fatality rates. 

The imposition of a high gasoline tax or a weight-based mileage tax should ultimately 

change the weight distribution of the vehicle fleet. Our regressions estimate the external 

effects of vehicle weight given the current weight distribution of the vehicle fleet, but these 

effects could change as the fleet downsizes (Result 5). To simulate how this shift might 

affect our regression estimates, we consider three downsizing scenarios. In the first scenario, 

all vehicles reduce their weight by 20%. This results in larger absolute weight reductions for 

heavier vehicles. In the second scenario, vehicles above the average weight reduce their 

weight by 10%, and vehicles below the average weight reduce their weight by 20%. In the 

third scenario, vehicles above the average weight remain unchanged, and vehicles below the 

average weight reduce their weight by 20%. In all three scenarios h (wi ) , the function 

relating striking vehicle weight and struck vehicle fatalities, remains approximately linear and 

very close to its original values. This suggests that the appropriate marginal tax on vehicle 

weight would not change as the vehicle fleet became lighter. It is also possible that in the 

long run the relationship between weight and gasoline usage may break down, particularly if 
                                                
46 Even injuries within a driver’s own vehicle may represent external costs if medical treatment is paid for by 
government or group insurance. Accounting for this potential positive externality (since own vehicle weight is 
protective) would decrease total external costs related to fatalities and injuries by 2.6% (Parry, 2004). Other 
potential injury-related externalities include emergency response costs and traffic jams at accident sites. Our 
calculations imply that accounting for these externalities would change the total externality by less than 1%. 
47 In 62,057 collisions in which the striking vehicle weighed less than 2,000 lbs, there was a fatality in the struck 
vehicle in only 47 cases (0.076% of cases). This is 65% lower than the average fatality rate. If we assume that a 
zero pound car imposes no fatality externality, then an 1,850 pound car would impose a 0.076 percentage point 
fatality externality (relative to a zero pound car). Including this risk in our calculations would increase the total 
fatality-related externality by $39.8 billion. 
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hybrid and electric vehicles become a significant fraction of the vehicle fleet. In that case the 

correlation between a gas tax and a weight-based tax would diminish, and a tax that varies 

directly with weight could become preferable. 

 While many countries encourage fuel efficiency through high gasoline taxes, the 

United States encourages fuel efficiency through CAFE standards. In principle, fuel 

economy standards could achieve the same downsizing of the vehicle fleet as a gasoline tax – 

a properly specified fuel economy standard should act as a de facto tax on heavier vehicles. 

A primary difference between the two instruments is that the fuel economy standard “tax” 

would be collected when purchasing the vehicle and would be amortized over the vehicle’s 

lifetime VMT, while the gas tax would be collected in small increments throughout the life 

of the vehicle. This difference could be important if consumers exhibit high discount rates 

or if salience is important (Finkelstein, 2009). Furthermore, the gas tax directly incentivizes a 

reduction in travel, while CAFE standards have an ambiguous effect on total VMT (on the 

one hand they increase the cost of purchasing a vehicle, but on the other hand they reduce 

operating costs). The gas tax is thus more likely than CAFE standards to reduce other VMT-

related externalities (e.g., congestion). Calculating the exact fuel economy standards that 

achieve equivalent weight distribution effects to a $0.97 per gallon gas tax is beyond the 

scope of this paper, as it requires a variety of supply and demand elasticities. Nevertheless, 

we note two important points in the context of CAFE standards. 

First, current CAFE standards are insufficient to internalize the externality presented 

in this paper. Goldberg (1998) estimates that CAFE increases the price of pickup trucks by 

0.6% and reduces the price of subcompacts by 0.5%. This equates to a tax on pickup trucks 

(relative to subcompacts) of approximately $200. The gasoline tax discussed above, however, 

equates to a tax on pickup trucks (relative to subcompacts) of over $4,000 over the life of 

the vehicle. Second, the light truck coefficient in Table 2 suggests that removing the 

historical split in CAFE standards between cars and light trucks would improve welfare. The 

results in Table 2 imply that light truck frames impose significant external risks upon other 

roadway users but provide little or no safety benefit to their own occupants. This suggests 

that light truck purchases should be discouraged, but historical CAFE standards encourage 

light truck production by imposing a much lower mileage standard on trucks than on cars. 

 
7.2  FLEET WEIGHT AND TOTAL FATALITIES 
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Our results demonstrate that a tax on vehicle weight, or a high gasoline tax, could be 

welfare enhancing. In some cases, however, policymakers may focus only on a policy’s effect 

on total traffic fatalities. Considering the net effect of weight on both external and “internal” 

fatalities links our results back to the existing safety literature. 

Our model implies that total traffic fatalities depend on the distribution of vehicle 

weight (Result 3). Estimating h(wi −wj ) = −α ⋅ f (wj −wi )  flexibly over the support of 

weight differences allows us to simulate total traffic fatalities for different vehicle weight 

distributions. Figure 2 presents estimates of h(wi −wj ) . There is an inherent symmetry in 

the distribution of wi – wj because a +X pound weight difference for one vehicle in a 

collision implies a –X pound weight difference for the other vehicle. The total expected 

fatalities in any given collision can thus be calculated by adding h(wi −wj )  and h(wj −wi ) . 

The convexity in Figure 2 indicates that collisions between vehicles of different weights are 

on net deadlier than collisions between vehicles of similar weights; the decreased risk of 

moving from –500 to –1,000 pounds, for example, is smaller than the increased risk of 

moving from +500 to +1,000 pounds. We apply the relationship in Figure 2 to simulate 

changes in total fatalities for three downsizing scenarios. 

In our first scenario, all vehicles reduce their weight by 20% (600 pounds on 

average).48 This results in larger absolute weight reductions for heavier vehicles, reducing the 

variance of the weight distribution. Total traffic fatalities fall by 0.8% (367 fatalities). In our 

second scenario, vehicles above the average weight reduce their weight by 10%, and vehicles 

below the average weight reduce their weight by 20%. This slightly increases the variance of 

the weight distribution, and traffic fatalities increase by 0.3% (134 fatalities). In our third 

scenario, vehicles above the average weight remain unchanged, and vehicles below the 

average weight reduce their weight by 20%. This significantly increases the variance of the 

weight distribution, and traffic fatalities increase by 1.6% (690 fatalities). However, this 

scenario is somewhat extreme and is inconsistent with recent evidence in Busse et al. 

                                                
48 To simulate each scenario, we subtract the specified weight reduction from each vehicle in our collision data 
set. We then tabulate the counterfactual distribution of weight differences (wj – wi), and use this distribution to 
calculate the average value of h(wj −wi )  over the set of counterfactual collisions. 
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(2013).49 In summary, it takes a large and highly uneven downsizing of the vehicle fleet to 

increase total traffic fatalities by 1% or more, and a uniformly proportionate downsizing of 

the fleet slightly decreases traffic fatalities. Higher gasoline prices are thus unlikely to 

significantly increase traffic fatalities. 

Our estimates of h(wi −wj )  illuminate the mechanisms underlying other results in 

the traffic safety literature. The finding that changes in fleet weight have modest impacts on 

fatalities is consistent with the literature discussed in Section 2; our estimates of h(wi −wj )  

and our simulations reveal it occurs because changes in fleet weight do not significantly 

increase fatalities unless they dramatically increase fleet heterogeneity. Our results are also 

consistent with recent work by Jacobsen (2013). Jacobsen finds that a 1 mpg increase in 

current CAFE standards increases traffic fatalities by 149 per year, but that tighter standards 

do not increase fatalities as long as they are “footprint based” or unified across cars and 

trucks. Our results clarify the mechanisms underlying these results. Current CAFE standards 

are detrimental to safety because they encourage light truck ownership, and light trucks are 

unambiguously dangerous. A unified or footprint-based standard, however, removes the 

preference for light trucks and encourages a more uniform lightening of the fleet across 

different size vehicles. As our simulations reveal, a uniform lightening of the fleet need not 

affect fatalities because the distribution of weight differences in crashes remains unchanged. 

 
8. CONCLUSION 

 The US vehicle fleet has become significantly heavier over the past two decades. The 

average car on the road in 2008 was roughly 530 pounds heavier than the average car on the 

road in 1988, representing a 20% increase. This trend and its potential traffic safety 

implications have been widely discussed by policymakers when contemplating more 

stringent fuel economy standards or greenhouse gas emissions standards. However, it is less 

widely recognized that an unregulated vehicle fleet is inefficiently heavy due to the “arms 

race” nature of vehicle choice. In this paper, we estimate the external effects of choosing a 

                                                
49 Busse et al. (2013) estimate the reduced form effect of an increase in gasoline prices on short-run equilibrium 
prices and quantities of cars of different fuel economies. They find that the market share of vehicles in the 
lowest mpg quartile (i.e., the heaviest vehicles) decreases by 27% with a $1 increase in gas prices. In 
comparison, the market shares of the second and third mpg quartiles change by –7% and 0% respectively. 
These results suggest that buyers of heavy vehicles do respond to increases in gasoline prices, making it unlikely 
that a gasoline or weight tax would have no effect on purchases of heavy vehicles. 



 
 
 

40 

heavier vehicle on fatalities in two-vehicle collisions. We present robust evidence that 

increasing striking vehicle weight by 1,000 pounds increases the probability of a fatality in 

the struck vehicle by 40% to 50%. This finding is unchanged across different specifications, 

estimation methods, and different subsets of the sample. We show that there are also 

significant impacts on serious injuries. 

 The external costs of fatalities are currently not internalized in the form of a first- or 

second-best policy. We calculate that a simple gasoline tax that internalizes the fleet weight 

gain since 1989 is $0.26 per gallon. We further calculate that internalizing the total cost of 

external fatalities and injuries due to vehicle weight and operation, including crashes with 

motorcycles and pedestrians, requires a tax of at least $0.97 per gallon, and as much as $2.17 

per gallon. Parry and Small (2005), applying a lower VSL to monetize other external costs 

and not accounting for the vehicle weight externality, calculate an optimal value of $1.01 per 

gallon for the U.S. gas tax (approximately $0.60 above its current level) and $1.34 per gallon 

for the U.K. gas tax (approximately $2 below its current level). Internalizing the vehicle 

weight externality could increase this optimal value by approximately $2, implying that 

European gas taxes may be much closer to optimal levels than the U.S. gas tax. 

 The primary social costs of the vehicle weight “arms race” accrue in the form of 

higher operating costs rather than changes in total fatalities. While our calculation of external 

fatality costs provides the information that a policymaker needs for setting the correct prices, 

a calculation of the potential cost savings is also useful. We find that the 2005 model year 

fleet consumes $92.8 billion more gasoline annually than the lightest possible fleet, which 

exceeds the comparable external fatality cost of $86.4 billion.50 This is consistent with our 

model and empirical estimates, which imply that consumers are willing to pay approximately 

$86 billion for the internal safety benefits of added weight (recall that internal safety benefits 

and external safety costs are approximately equal), plus an additional amount for the other 

private benefits of weight. The $92.8 billion figure should not be interpreted as a welfare 

                                                
50 The savings from reduced gasoline consumption depend upon four parameters: The effect of weight on 
mpg, the number of passenger vehicles in 2005, the gasoline price in 2005, and the number of miles driven per 
vehicle. In Section 7 we find that that a 1,000 pound lighter vehicle achieves 4.53 additional mpg. The US DOT 
(2010) estimates that there were 232 million light duty vehicles registered in 2005. The EIA reports an average 
2005 gasoline price of $2.31 per gallon, and we assume that each vehicle drives 11,000 miles per year. 
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calculation, as we do not know the valuation of the other private benefits or the costs of 

manufacturing heavier cars.51 Nevertheless, it indicates the potential magnitudes at stake. 
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FIGURE 1 

Relationship between striking vehicle weight and struck vehicle fatalities 
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FIGURE 2 

Relationship between difference in vehicle weights and struck vehicle fatalities 
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FIGURE 3 

Fuel economy vs. weight for 2005 model year light vehicles 
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FIGURE 4 

Sunflower scatterplot of gas tax vs. weight tax for cars and trucks 
 

Notes: The graph above displays the joint distribution of the weight tax and gas tax 
per mile for the sample of cars and trucks with model years 1997-2006 from the 
database provided by Knittel (2011). We remove boutique cars, flex fuel vehicles, 
and a few outliers with incorrectly recorded fuel ratings. The sunflower plot 
bunches multiple observations into single flowers, where the number of petals 
indicates the total number of observations represented by the flower. The petals of 
light flowers represent one observation each and the petals of darker flowers 
represent 13 observations each. 
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Mean Sample size Mean Sample size
(Std dev) (Std dev)

Weight 3,076 lbs 4,849,575 3,113 lbs 2,829,768
(685) (694)

Light truck 24.5% 4,849,575 25.8% 2,829,768
(43.0) (43.8)

Model year 1992 4,849,575 1993 2,829,768
(5.6) (5.7)

Accident year 1998 4,849,575 1999 2,829,768
(4.4) (4.3)

Occupants 1.41 2,608,821 1.45 1,476,441
(0.84) (0.87)

Fatality 0.19% 4,849,575 0.23% 2,829,768
(4.36) (4.83)

Serious injury 2.7% 4,849,575 3.4% 2,829,768
(16.1) (18.0)

Alcohol involved 8.3% 2,753,533 10.0% 1,723,694
(27.6) (30.1)

Summary statistics for two-vehicle collision data set

Notes: Both samples are limited to collisions involving two light vehicles built post-1980.
The complete covariates sample is further limited to collisions in which all covariates in our
preferred specification are non-missing.

Complete covariates sampleBase sample

TABLE 1



Dependent variable: presence of  fatalities in struck vehicle

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Weight of  striking vehicle (1000s of  lbs) 0.00088 0.12685 0.00093 0.12797 0.00101 0.13440 0.00110 0.00104 0.00065 0.00064
(0.00004) (0.00531) (0.00005) (0.00616) (0.00005) (0.00685) (0.00006) (0.00004) (0.00006) (0.00006)

Effect of  1000 lb increase in striking vehicle weight 0.00088 0.00077 0.00093 0.00085 0.00101 0.00086 0.00110 0.00104 0.00065 0.00064
    percent increase over sample mean 46% 41% 42% 38% 44% 37% 47% 44% 49% 48%

Weight of  struck vehicle (1000s of  lbs) -0.00047 -0.08196 -0.00053 -0.08548 -0.00101 -0.15988 -0.00097 -0.00104 -0.00060 -0.00065
(0.00004) (0.00644) (0.00004) (0.00727) (0.00005) (0.00815) (0.00005) (0.00004) (0.00006) (0.00006)

Striking vehicle is light truck 0.00117 0.15977 0.00105 0.13016 0.00088 0.10113 0.00093 0.00098 0.00054 0.00054
(0.00006) (0.00861) (0.00008) (0.00958) (0.00009) (0.01075) (0.00009) (0.00008) (0.00010) (0.00010)

Struck vehicle is light truck -0.00014 -0.02541 -0.00036 -0.06192 -0.00001 -0.03605 0.00021 0.00026 -0.00015 -0.00012
(0.00006) (0.00987) (0.00007) (0.01081) (0.00007) (0.01154) (0.00008) (0.00007) (0.00009) (0.00009)

Specification OLS Probit OLS Probit OLS Probit OLS OLS OLS OLS

Weather, time, and county fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

Driver characteristics Yes Yes Yes Yes Yes Yes

City fixed effects Yes Yes Yes Yes

Weight coefficients set to be equal magnitude Yes

Occupants and seat belt usage Yes

Sample size 4,849,575 4,849,575 3,572,439 3,536,684 3,223,746 3,197,882 2,829,768 2,829,768 1,470,596 1,470,596

Effect of  vehicle weight on fatalities

Notes: Each column represents a separate regression. The estimation sample is limited to collisions involving two vehicles. Parentheses contain standard errors clustered at the collision level. Effects
of a 1,000 lb increase in striking vehicle weight are computed as the average effect of a 1,000 lb increase in weight across all observations included in the regression. All regressions include as right-
hand-side variables the weight of each vehicle, indicators for whether each vehicle is a light truck, and year fixed effects. Weather, time, and county fixed effects controls include rain, darkness, day of
week (weekday versus weekend), Interstate highway, a quadratic in model year for each vehicle, and year, hour, and county fixed effects. Driver characteristic controls include quadratics in driver age,
indicators for drivers under 21 or over 60, indicators for male drivers and young male drivers, and indicators for any seat belt usage in the vehicle.

TABLE 2



Dependent variable: presence of  fatalities in struck vehicle

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Weight of  striking vehicle (1000s of  lbs) 0.00088 0.11785 0.00086 0.10934 0.00081 0.10541 0.00086 0.00065 0.00064
(0.00010) (0.01203) (0.00012) (0.01391) (0.00013) (0.01583) (0.00014) (0.00019) (0.00019)

Effect of  1000 lb increase in striking vehicle weight 0.00088 0.00078 0.00086 0.00083 0.00081 0.00079 0.00086 0.00065 0.00064
    percent increase over sample mean 42% 37% 36% 32% 32% 28% 35% 42% 41%

Weight of  struck vehicle (1000s of  lbs) -0.00062 -0.09830 -0.00078 -0.11463 -0.00127 -0.19317 -0.00109 -0.00079 -0.00084
(0.00011) (0.01865) (0.00014) (0.02104) (0.00016) (0.02415) (0.00017) (0.00023) (0.00024)

Striking vehicle is light truck 0.00064 0.08021 0.00055 0.06840 0.00056 0.06530 0.00061 0.00039 0.00039
(0.00014) (0.01863) (0.00017) (0.02044) (0.00019) (0.02345) (0.00020) (0.00030) (0.00030)

Struck vehicle is light truck -0.00022 -0.03293 -0.00031 -0.05346 0.00031 0.00197 0.00051 -0.00014 -0.00012
(0.00018) (0.02969) (0.00022) (0.03178) (0.00024) (0.03484) (0.00026) (0.00036) (0.00036)

Specification OLS Probit OLS Probit OLS Probit OLS OLS OLS

Weather, time, and county fixed effects Yes Yes Yes Yes Yes Yes Yes

Driver characteristics Yes Yes Yes Yes Yes

City fixed effects Yes Yes Yes

Occupants and seat belt usage Yes

Sample size 518,378 518,378 391,456 356,970 348,543 306,684 317,769 110,541 110,541

Effect of  vehicle weight on fatalities in three-vehicle accidents

Notes: Each column represents a separate regression. The estimation sample is limited to collisions involving three vehicles. Striking vehicle weight coefficients represent the average
effect of increasing the weight of one striking vehicle by 1,000 pounds; they are the average of the coefficients on the first and second striking vehicles. Parentheses contain standard
errors clustered at the collision level. Effects of a 1,000 lb increase in striking vehicle weight are computed as the average effect of a 1,000 lb increase in the weight of one striking
vehicle across all observations included in the regression. All regressions include as right-hand-side variables the weight of each vehicle, indicators for whether each vehicle is a light
truck, and year fixed effects. Weather, time, and county fixed effects controls include rain, darkness, day of week (weekday versus weekend), Interstate highway, a quadratic in model
year for each vehicle, and year, hour, and county fixed effects. Driver characteristic controls include quadratics in driver age, indicators for drivers under 21 or over 60, indicators for
male drivers and young male drivers, and indicators for any seat belt usage in the vehicle.

TABLE 3



Dependent variable: presence of  serious injuries in struck vehicle

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Weight of  striking vehicle (1000s of  lbs) 0.00484 0.07616 0.00573 0.08332 0.00615 0.08494 0.00687 0.00324 0.00316
(0.00014) (0.00207) (0.00017) (0.00242) (0.00019) (0.00260) (0.00021) (0.00020) (0.00020)

Effect of  1000 lb increase in striking vehicle weight 0.00484 0.00470 0.00573 0.00543 0.00615 0.00563 0.00687 0.00324 0.00316
    percent increase over sample mean 18% 18% 19% 18% 19% 17% 20% 20% 20%

Weight of  struck vehicle (1000s of  lbs) -0.00720 -0.12392 -0.00797 -0.12874 -0.00921 -0.14280 -0.00891 -0.00479 -0.00514
(0.00013) (0.00226) (0.00016) (0.00261) (0.00018) (0.00282) (0.00020) (0.00019) (0.00019)

Striking vehicle is light truck 0.00567 0.08524 0.00456 0.06400 0.00412 0.05399 0.00448 0.00215 0.00215
(0.00022) (0.00322) (0.00027) (0.00367) (0.00029) (0.00392) (0.00032) (0.00030) (0.00030)

Struck vehicle is light truck -0.00033 -0.00894 -0.00212 -0.03734 -0.00075 -0.02072 0.00005 -0.00069 -0.00048
(0.00020) (0.00343) (0.00024) (0.00389) (0.00027) (0.00414) (0.00029) (0.00028) (0.00028)

Specification OLS Probit OLS Probit OLS Probit OLS OLS OLS

Weather, time, and county fixed effects Yes Yes Yes Yes Yes Yes Yes

Driver characteristics Yes Yes Yes Yes Yes

City fixed effects Yes Yes Yes

Occupants and seat belt usage Yes

Sample size 4,849,575 4,849,575 3,572,439 3,571,255 3,223,746 3,223,344 2,829,768 1,470,596 1,470,596

Effect of  vehicle weight on serious injuries

Notes: Each column represents a separate regression. The estimation sample is limited to collisions involving two vehicles. Parentheses contain standard errors clustered at the collision
level. Effects of a 1,000 lb increase in striking vehicle weight are computed as the average effect of a 1,000 lb increase in weight across all observations included in the regression. All
regressions include as right-hand-side variables the weight of each vehicle, indicators for whether each vehicle is a light truck, and year fixed effects. Weather, time, and county fixed
effects controls include rain, darkness, day of week (weekday versus weekend), Interstate highway, a quadratic in model year for each vehicle, and year, hour, and county fixed effects.
Driver characteristic controls include quadratics in driver age, indicators for drivers under 21 or over 60, indicators for male drivers and young male drivers, and indicators for any seat
belt usage in the vehicle.

TABLE 4



Dependent variable: presence of  fatalities in struck vehicle

(1) (2) (3) (4) (5)

 Occupant weight in striking vehicle (1000s of  lbs) 0.00062
(0.00026)

Curb weight of  striking vehicle (1000s of  lbs) 0.00058 0.00072 0.00071 0.00064 0.00063
(0.00008) (0.00016) (0.00018) (0.00006) (0.00006)

Percentage effect of  1000 lb increase in striking vehicle weight 47% 58% 57% 48% 46%

Specification OLS OLS w/model FEs OLS w/model by OLS OLS
model-year-group FEs

Sample size 1,011,982 1,011,982 1,011,982 1,475,762 1,475,762

Effect of  vehicle weight on fatalities using alternative sources of  identification

Notes: Each column represents a separate regression. The estimation sample is limited to collisions involving two vehicles. Parentheses contain standard errors clustered at the
collision level. All regressions include the following right-hand-side variables: weight of each vehicle, a quadratic in model year for each vehicle, indicators for whether each
vehicle is a light truck, rain, darkness, day of week (weekday versus weekend), Interstate highway, quadratics in driver age, indicators for drivers under 21 or over 60, indicators
for male drivers and young male drivers, indicators for any seat belt usage in the vehicle, and year, hour, and county fixed effects. OLS regressions with model fixed effects
contain fixed effects for each vehicle model. OLS regressions with model by model-year-group fixed effects contain fixed effects for each vehicle model interacted with
model year indictors for the 1986-90, 1991-95, 1996-2000, and 2001-09 model years. Regressions in columns (4) and (5) contain city fixed effects. Occupant weight in the
striking vehicle is calculated as the number of  occupants in the striking vehicle times 164 lbs per occupant.

TABLE 5



Dependent variable: HIC HIC>700 HIC HIC>700

(1) (2) (3) (4)

Weight of  vehicle 17.7 0.024 38.2 0.018
(16.1) (0.018) (43.5) (0.040)

Percentage effect of 3.0% 8.7% 6.7% 7.2%
  1,000 lb increase

Sales share weighted Yes Yes

Sample size 4,788 4,788 2,847 2,847

Relationship between vehicle weight and NHTSA crash test performance

Notes: Each column represents a separate regression. The estimation sample in the first two columns contains all
NHTSA vehicle-to-barrier frontal crash test results. The estimation sample in the last two columns contains only
crash tests involving vehicles for which we have sales share data. Parentheses contain standard errors clustered
by vehicle make. All regressions include the following right-hand-side variables: weight of tested vehicle, a
quadratic in model year, a light truck indicator, and a quadratic in collision speed. Sales share weighted
regressions are weighted by the tested vehicle's sales share for a given year.

TABLE 6



Dependent variable: presence of  fatalities in struck vehicle

(1) (2) (3) (4)

Average vehicle weight -0.00004 -0.00110 0.00003 -0.00181
  in collision (1000s of  lbs) (0.00017) (0.00108) (0.00023) (0.00137)

Percentage effect of  1000 lb -2% -19% 2% -35%
  increase in average weight

Max weight difference between vehicles 200 lbs 200 lbs 100 lbs 100 lbs

Frontal collisions only Yes Yes

Sample size 539,350 39,242 288,988 20,488

TABLE 7
Effect of  vehicle weight in collisions between two equal weight vehicles

Notes: Each column represents a separate regression. The estimation sample is limited to collisions in which the
difference in weight between the two vehicles is less than 200 lbs (first two columns) or 100 lbs (last two
columns). Parentheses contain standard errors clustered at the collision level. Effects of a 1,000 lb increase in
striking vehicle weight are computed as the average effect of a 1,000 lb increase in weight across all observations
included in the regression. All regressions include the following right-hand-side variables: weight of each vehicle,
a quadratic in model year for each vehicle, indicators for whether each vehicle is a light truck, rain, darkness, day
of week (weekday versus weekend), Interstate highway, quadratics in driver age, indicators for drivers under 21
or over 60, indicators for male drivers and young male drivers, indicators for any seat belt usage in the vehicle,
and year, hour, and city fixed effects.



Dependent variable: presence of  fatalities in struck vehicle

(1) (2) (3) (4)

Weight of  vehicle 0.00044 0.00030 0.00153 0.00434
    (1000s of  lbs) (0.00026) (0.00048) (0.00655) (0.01330)

Effect of  1000 lb increase in vehicle weight 0.00044 0.00030 0.00005 0.00014
    percent increase over sample mean 3% 2% 0% 1%

Collision type 1 vehicle 1 veh, frontal 1 vehicle 1 veh, frontal

Specification OLS OLS Probit Probit

Sample size 774,790 224,696 916,766 223,236

Notes: Each column represents a separate regression. The estimation sample is limited to collisions involving a single vehicle.
Parentheses contain robust standard errors. Effects of a 1,000 lb increase in vehicle weight are computed as the average effect of
a 1,000 lb increase in weight across all observations included in the regression. All regressions include the following right-hand-
side variables: weight of vehicle, a quadratic in model year, indicators for whether a vehicle is a light truck, rain, darkness, day of
week (weekday versus weekend), Interstate highway, quadratic in driver age, indicators for drivers under 21 or over 60, indicators
for male drivers and young male drivers, indicators for any seat belt usage in the vehicle, and year, hour, and either city fixed
effects (OLS) or county fixed effects (probit).

Effect of  vehicle weight on fatalities in single-vehicle collisions
TABLE 8



Total external costs External costs
(billions) per gallon

Fatalities only $135.8 $0.97

Fatalities + injuries $175.5 $1.25

Fatalities + injuries + increased collision rates $235.9 $1.69

Fatalities + injuries + increased collision rates + light trucks $264.6 $1.89

Fatalities + injuries + increased collision rates + light trucks + 0 pound counterfactual $304.4 $2.17
Notes: This table reports total accident-related external costs under a set of assumptions. For injuries, we apply the vehicle weight
coefficient from Table 3 (column 7) and assume that the value of a statistical injury is $214,000 (as reported by the National Safety
Council). We also assume that serious injury costs are not internalized through existing liability insurance. For collision rates, we
assume that, ceteris paribus, an average weight vehicle (3,616 lbs.) is 40% more likely to have an accident than an 1,850 lb. baseline
vehicle. This figure is an approximation of the observed relationships between accident rates and vehicle weight in Evans (1984) and
White (2004). For the effects of light truck frames, we apply the light truck coefficient from Table 2 (column 7) and a light truck
market share of 50% (Anderson 2008). The zero pound counterfactual assumes that even an 1,850 pound vehicle imposes external
costs on other vehicles, at a rate of  0.00076 fatalities per collision (this rate comes from our data).

Accident-related external costs under different assumptions
TABLE 9



Dependent variable: presence of  fatalities in struck vehicle

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Weight of  striking vehicle (1000s of  lbs) 0.00085 0.16826 0.00086 0.15696 0.00096 0.17577 0.00105 0.00041 0.00041
(0.00005) (0.00881) (0.00006) (0.01010) (0.00007) (0.01187) (0.00007) (0.00007) (0.00007)

Effect of  1000 lb increase in striking vehicle weight/ 0.00085 0.00084 0.00086 0.00087 0.00096 0.00094 0.00105 0.00041 0.00041
    percent increase over sample mean 56% 56% 49% 48% 52% 50% 57% 43% 42%

Weight of  struck vehicle (1000s of  lbs) -0.00032 -0.06786 -0.00047 -0.08552 -0.00117 -0.20630 -0.00111 -0.00059 -0.00061
(0.00005) (0.01014) (0.00006) (0.01142) (0.00007) (0.01281) (0.00008) (0.00008) (0.00008)

Specification OLS Probit OLS Probit OLS Probit OLS OLS OLS

Weather, time, and county fixed effects Yes Yes Yes Yes Yes Yes Yes

Driver characteristics Yes Yes Yes Yes Yes

City fixed effects Yes Yes Yes

Occupants and seat belt usage Yes

Sample size 2,801,186 2,801,186 2,012,046 1,962,129 1,815,558 1,771,574 1,578,094 824,544 824,544

Effect of  vehicle weight on fatalities in accidents excluding light trucks

Notes: Each column represents a separate regression. The estimation sample is limited to collisions involving two cars – collisions involving light trucks are excluded. Parentheses
contain standard errors clustered at the collision level. Effects of a 1,000 lb increase in striking vehicle weight are computed as the average effect of a 1,000 lb increase in weight across
all observations included in the regression. All regressions include as right-hand-side variables the weight of each vehicle and year fixed effects. Weather, time, and county fixed effects
controls include rain, darkness, day of week (weekday versus weekend), Interstate highway, a quadratic in model year for each vehicle, and year, hour, and county fixed effects. Driver
characteristic controls include quadratics in driver age, indicators for drivers under 21 or over 60, indicators for male drivers and young male drivers, and indicators for any seat belt
usage in the vehicle.

TABLE A1

ONLINE APPENDIX
"Pounds That Kill: The External Costs of  Vehicle Weight"



Dependent variable: presence of  fatalities in struck vehicle

(1) (2) (3) (4)

Weight of  striking vehicle (1000s of  lbs) 0.00046 0.00115 0.00063 0.00135
(0.00005) (0.00006) (0.00007) (0.00008)

Effect of  1000 lb increase in striking vehicle weight/ 0.00046 0.00115 0.00063 0.00135
    percent increase over sample mean 46% 44% 51% 44%

Percent of  accidents with missing weight data 24% 41% 24% 41%

Weather, time, driver, and city controls  Yes Yes

Sample size 2,144,719 2,704,856 1,103,620 1,726,148

Effect of  vehicle weight on fatalities for states with high and low missing weight data

Notes: Each column represents a separate regression. The estimation sample is limited to collisions involving two vehicles
Columns (1) and (3) are estimated using data from states in which a low proportion of observations are missing weight data
(Ohio, Washington, and Wyoming). Columns (2) and (4) are estimated using data from states in which a high proportion of
observations are missing weight data (Florida, Kansas, Kentucky, Maryland, and Missouri). Parentheses contain standard errors
clustered at the collision level. All regressions include as right-hand-side variables the weight of each vehicle, indicators for
whether each vehicle is a light truck, and year fixed effects. Weather, time, driver, and city controls include rain, darkness, day of
week (weekday versus weekend), Interstate highway, quadratics in driver age, indicators for drivers under 21 or over 60,
indicators for male drivers and young male drivers, indicators for any seat belt usage in the vehicle, and year, hour, and city
fixed effects.

TABLE A2


