ARE 213 Syllabus
Applied Econometrics

Department of Agricultural and Resource Economics
University of California, Berkeley
Fall 2013

Lectures: Tuesday/Thursday 11:00-12:30, 103 Moffitt
Section: Wednesday, 9:00-10:00 am, 103 Moffitt

Course Website: http://bspace.berkeley.edu/

Instructor: Michael Anderson
Contact: 642-7628, mlanderson@berkeley.edu, http://are.berkeley.edu/~mlanderson
Office Hours: Tuesday 12:30–1:30 pm and Thursday 1:00–2:00 pm, 323 Giannini

GSI: Manuel Barron
Contact: manuel.barron@berkeley.edu
Office Hours: Tuesday 5:30–6:30 pm and Wednesday 5:30–6:30 pm

Course Description

The goal of this course is for students to learn a set of statistical tools and research designs that are useful in conducting high-quality empirical research on topics in applied microeconomics and related fields. Since most applied economic research examines questions with direct policy implications, this course will focus on methods for estimating causal effects. This course differs from many other econometrics courses in that it is oriented towards applied practitioners rather than future econometricians. It therefore emphasizes research design (relative to statistical technique) and applications (relative to theoretical proofs), though it covers some of each.

Prerequisites

Students should be familiar with basic probability and statistics, matrix algebra, and the classical linear regression model at the level of ARE 212 (in Economics the equivalent level of preparation would be some strange combination of ECON 140, 141, 240A, and 240B).

Assignments and Grading

I will assign 5 to 6 problem sets during the course of the semester. You may work cooperatively on the problem sets in groups of up to 3. There will also be a final examination. Grades will be based on performance on problem sets (50%), final exam (42%), class participation (5%), and section participation (3%). Late problem sets will incur a penalty of -10% per day late. The last problem set must be submitted on-time; it will not be accepted if late.
Information regarding the schedule and location of the final exam will be available at http://schedule.berkeley.edu. Please do not ask me when or where the final is. I assume no responsibility for erroneous information if you ask me when/where the final is; any information I give you on this matter can only be less accurate than what is on http://schedule.berkeley.edu.

Statistical Software

You may use any software that you wish, but solutions for problem sets will be handed out in Stata. Demonstrations during lectures will also be conducted in Stata. In the long run, if you are doing applied microeconometrics, you will almost surely end up using Stata, at least to organize and import data, if not for the actual estimation. However, in some problem sets it will be recommended that you use Stata’s more primitive commands, or the Mata language, rather than the “canned” commands.

Textbooks and Notes

The course is not based on any one text, but Guido Imbens’ formal econometrics notes (both from a previous iteration of ARE 213 and from a NBER econometrics course) will form a core reference. The course will also make reference to the three textbooks listed below. At a minimum, I recommend purchasing the *Mostly Harmless Econometrics* text. It is mostly harmless.

Course Outline

I. Introduction

A. Ordinary Least Squares and Agnostic Regression

 CT Chapters 4.1 - 4.5.

 JW Chapter 2.

 AP Chapter 3.1.

B. Introduction to Causality and Research Design

* CT Chapter 2.

* AP Chapters 1 - 2.

* WNE Lecture 1, Section 2.

C. Cautionary Notes

II. Selection on Observables Designs

A. Regression Adjustment and Nonparametric Regression

* CT Chapters 4.1 - 4.5.

* AP Chapter 3.2.
WNE Lecture 1, Section 3.1.

JW Chapters 4, 18.3.1.

CT Chapter 9.

B. The Propensity Score and Dimensionality Reduction

CT Chapter 25.4.

AP Chapter 3.3.

WNE Lecture 1, Sections 3.2 - 3.4 and 5 - 7.

JW Chapter 18.3.2.

III. Selection on Unobservables Designs

A. Linear Panel Data Models

1. Fixed Effects Models and Differences-in-Differences

2. Case Studies with Synthetic Controls

CT Chapter 25.5.

B. Instrumental Variables Models

1. The IV Estimator

CT Chapter 4.8.

AP Chapter 4.1 - 4.3.

JW Chapter 5.

2. Heterogeneous Treatment Effects

CT Chapter 25.7.

AP Chapter 4.4 - 4.5.

WNE Lecture 5.

JW Chapter 18.4.

3. 2SLS and Weak Instruments

CT Chapter 4.9.

AP Chapter 4.6.

WNE Lecture 13.

C. Regression Discontinuity Designs

CT Chapter 25.6.

AP Chapter 6.

WNE Lecture 3.

IV. The Problem of Statistical Inference

A. Panel Data and Clustering

CT Chapter 24.5.

AP Chapter 8.2.

B. Randomization Inference

C. Resampling

CT Chapter 11.

D. Multiplicity Adjustment

V. Introduction to Advanced Topics

A. Maximum Likelihood Estimation

CT Chapters 5.1 - 5.3, 5.6, 5.7.
B. Duration Models

CT Chapter 17.

JW Chapter 20.

C. GMM

CT Chapters 5.4, 6.1 - 6.5.

WNE Lecture 15.

JW Chapter 14.

D. Limited Dependent Variables Models and Selection Models

CT Chapters 14.1 - 14.5.

JW Chapter 15.

CT Chapter 16.

JW Chapter 16.

E. Discrete Choice

CT Chapter 15.

WNE Lecture 11.

JW Chapter 15.9.