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Abstract

Light trucks have doubled their share of the vehicle fleet from 1980 to 2004. This paper examines the effects of this increase
on traffic safety, combining estimates from a state-level panel data set with an accident-level micro-data set. The results suggest
that a one-percentage point increase in light truck share raises annual traffic fatalities by 0.34%, or 143 deaths per year. Of this
increase, approximately one-fifth accrue to the light trucks’ own occupants, and the remaining four-fifths accrue to the occupants of
other vehicles and pedestrians. Using standard value of life figures, the implied Pigovian tax is approximately 3850 dollars per light
truck sold. Overall, light trucks pose a significant hazard to other users of the highway system but on average provide no additional
protection to their own occupants.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Over the course of two decades light truck sales have increased from 16.4% of light vehicles sales in 1980 to 50.0% of
light vehicles sales in 2005 (Davis and Diegel, 2007). This sales growth has induced a corresponding shift in vehicle fleet
composition that continues today. The commercial success of these vehicles is due in part to the fact that many consumers
associate them with occupant safety because of their high mass and rugged image (Bradsher, 2002). Indeed, previous
research has suggested that a heavier vehicle fleet is a safer vehicle fleet (Crandall and Graham, 1989). Nevertheless, the
net effect of light trucks on traffic fatalities – the leading cause of death for persons under the age of 40 – is ambiguous.

It is well established in the highway safety literature that additional vehicle mass can improve own-occupant
outcomes in the event of an accident, all other things being equal (Evans and Frick, 1993, 1994). However the safety
benefits of additional mass in multi-vehicle collisions come at the cost of greater external risk to the occupants of
other vehicles. The net effect of additional vehicle mass on traffic fatalities can therefore be minimal (Evans, 2001).1

E-mail address: mlanderson@berkeley.edu.
1 This fact explains how the 2600 pound Honda Civic can achieve a 5-star government crash rating while the 6800 pound GMC Yukon only

achieves a 4-star rating (National Highway Traffic Safety Administration, 2006). Since the government test simulates a head-on collision with a
vehicle of similar make and model, these experimental results suggest that a vehicle fleet composed entirely of Civics could be safer than a vehicle
fleet composed entirely of Yukons. This is possible because the loss in own-occupant protection in the lighter Civics is offset by a corresponding
decrease in the risk that the vehicles impose upon other drivers.

0167-6296/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.jhealeco.2008.02.001
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Furthermore, light trucks possess several unique features that may make them more dangerous both to their own
occupants and to others. Relatively poor braking and maneuverability make them difficult to handle, and a high center
of gravity increases the risk of rollover. Stiff frames and high ground clearance make them more likely to ride up
over car bumpers and penetrate passenger compartments. Because of these distinct characteristics, and because the
increased popularity of light trucks has coincided with a deceleration in traffic fatality reductions, the question of how
light trucks impact traffic safety has attracted significant attention (Hakim, 2003a).

To measure the effects of light trucks on traffic fatalities, I first estimate the net effect of vehicle fleet com-
position on traffic fatalities using a unique state-level panel data set spanning 24 years. I then use a random
sample of police-reported accidents to estimate the effects of light trucks on their own occupants and on other
roadway users when an accident occurs. The risks that light trucks impose upon their own users I define as ‘inter-
nal’ risks; the risks that light trucks impose upon other vehicles and pedestrians I define as ‘external’ risks.2

This distinction is important for policy – rational consumers will account for increased internal risk when mak-
ing their purchasing decisions, but they will not account for increased external risk unless corrective taxes are in
place.3 I combine the results from the state-level and accident-level estimation strategies to determine an impor-
tant unknown parameter: the relative crash rate of light trucks as compared to cars. Using this parameter, I
estimate the total internal and external effects of shifting the vehicle fleet composition from cars towards light
trucks.

Previous analyses using accident-level micro-data have shown that, in the event of an accident, light trucks pose
a greater hazard to other vehicles than do cars (Joksch, 1998; Toy and Hammitt, 2003; White, 2004). In particular,
White (2004) uses a random sample of all police-reported accidents to demonstrate that when an accident occurs, light
trucks impose significant externalities on other cars, trucks, and pedestrians. However, a vehicle can be hazardous
for two distinct reasons: it can inflict more damage when a crash occurs, and it can be more likely to have a crash.
Accident-level data alone cannot identify the relative crash rate of light trucks as compared to cars.4White (2004)
therefore reports a wide range of possible internal, external, and total effects using different plausible values of the
relative crash rate parameter.

An alternative approach is to use county- or state-level data to estimate the effect of vehicle fleet composition
on total traffic fatalities. Coate and VanderHoff (2001) use 4 years of state-level data to measure the effect of light
trucks on traffic fatalities; they cannot control for unobserved state effects and find inconsistent results across different
specifications. However, with state-level data alone it is impossible to disaggregate the net fatality effect into its internal
and external components. Gayer (2004) addresses this issue by combining micro-level data on fatal accidents with
cross-sectional state-level data. Several creative identifying assumptions allow him to calculate the total internal and
external fatality effects of light trucks, but his estimated effects exceed the largest effects reported in White (2004) by
a factor of 10 or more.

This paper confronts the contradictions in the previous literature by combining updated micro-level estimates
from police-reported accident data with new state-level estimates that control for unobserved state heterogeneity.5

It also provides much more precise estimates of the total, external, and internal fatality effects of light trucks
than has previously been possible. The paper is organized as follows. Section 2 describes the data. Section 3
presents an empirical model and results for the net effect of vehicle fleet composition on traffic fatalities using
state-level panel data. Section 4 presents an empirical model and results for the internal and external effects of
light trucks on fatalities. Section 5 concludes. The results suggest that a one-percentage point increase in the
light truck share of the vehicle fleet increases annual traffic fatalities by approximately 143.6 Of this increase,
approximately 79% are external fatalities, and the remaining 21% are internal fatalities. These estimates appear
robust to a variety of concerns, including reverse causality, unobserved state trends, and driver selection by vehicle
type.

2 Note that, because collisions involving two light trucks are not uncommon, some of the external risks are borne by the occupants of other light
trucks.

3 In practice, it is unclear whether consumers accurately estimate the internal safety benefits and risks of light trucks.
4 Previous research, such as Evans (1985), has suggested that larger vehicles are more likely to crash.
5 None of the previous papers in this literature were able to control for unobserved state heterogeneity because their panels were too short.
6 This figure lies near the upper end of the estimates in White (2004) but is far below the estimates in Gayer (2004).
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Table 1
Vehicle characteristics

Vehicle type, year Weight (lbs) Length
(ft)

Height/width
(ratio)

Ground clearance
(in.)

Braking distance
(ft)

Emergency
handling (mph)

HP/weight
(HP/100 lbs)

Top 10 cars, 2000 2829 15.3 0.81 5.5 141 Good 4.6
Top 10 trucks, 2000 4523 17.1 0.93 7.4 146 Fair 3.7
Top 10 cars, 2005 3031 15.6 0.82 5.5 141 50.4 4.9
Top 10 trucks, 2005 4484 17.1 0.93 7.7 147 46.9 4.6

Notes: All car–truck differences are statistically significant except HP/weight ratio in 2005 and braking distance in 2000 and 2005. Data come
from Consumer Reports, Ward’s Automotive, Edmunds, and The New York Times. Consumer Reports changed its rating system for the emergency
handling maneuver between 2000 and 2005 from a discrete index (poor, fair, good, very good, excellent) to a continuous index (mph).

2. Data and descriptive statistics

I define light trucks as pickup trucks, sport utility vehicles, and vans with a gross vehicle weight of under
10,000 pounds. Both the Federal Highway Administration (FHWA) and the National Highway Traffic Safety
Administration (NHTSA) apply this definition to identify light trucks in the data sets that this study uses (U.S.
Department of Transportation, 2000).7Table 1 presents information on the average weight, size, and performance
of the top 10 selling cars and top 10 selling light trucks in 2000 and 2005. Popular light trucks are approx-
imately 50% heavier and 10% longer than popular cars, though these differentials narrow over time. Average
height-to-width ratio – an important determinant of stability – is 15% higher for light trucks than for cars (lower
is more stable), and light trucks have inferior braking distance and emergency handling relative to cars. Average
horsepower-to-weight ratio – a good proxy for acceleration – is higher for cars than for light trucks. Overall, the
mass differential suggests that light trucks should be more protective of their own occupants and more damaging
to other vehicles occupants in multi-vehicle crashes. The braking, stability, and handling characteristics, however,
imply that light trucks are more difficult to control than cars, which, ceteris paribus, could lead to more acci-
dents.

I use two distinct data sets to estimate the effects of light trucks on traffic fatalities. The first data set is a state-level
panel data set from the FHWA Highway Statistics Series (U.S. Department of Transportation, 1981–2004). The data
include information on traffic fatalities, vehicle registrations, vehicle miles traveled, and licensed drivers.8 I supplement
this information with demographic, state policy, and weather data from the U.S. Census, the Current Population Survey,
NHTSA, and the National Oceanic and Atmospheric Administration. These data span from 1981 to 2004.

The second data set is a random sample of police-reported accidents. These data come from NHTSA’s General
Estimates System (GES).9 The data include information on injuries and fatalities, vehicle type, geographic location,
weather conditions, use of safety equipment, and driver and occupant characteristics. For analytic purposes, I decompose
this data set into five sub-samples: two-vehicle crashes involving at least one car, two-vehicle crashes involving
at least one light truck, single-vehicle crashes, crashes involving motorcycles, and crashes involving pedestrians or
pedalcyclists. These data span from 1996 to 2004.

Table 2 presents summary statistics for the two data sets. There was a mean of 881 annual fatalities per state during
the sample period, and the light truck share of the vehicle fleet averaged close to 30%.10 Forty-seven continental states
are included in the analysis; Oklahoma is excluded because it is missing data for some years. The accident-level data
set includes data on 454,014 accidents.11 Of these accidents, 5717 involve at least one fatality, and approximately 47%
of them involve at least one light truck.

7 Prior to 1994, FHWA did not include minivans in their light truck category; they changed the definition in 1994 to achieve compatibility with
NHTSA. However, robustness checks reveal that the results are not sensitive to the inclusion or exclusion of vans in the light truck definition.

8 Traffic fatalities include driver, passenger, motorcyclist, pedalcyclist, and pedestrian deaths.
9 This is the same data source used in White (2004), but with additional years. Although the sample is randomly drawn from police-reported

accidents, not all accidents are reported to the police. I discuss the implications of this sampling frame in Section 4.4.
10 These averages are unweighted, so they do not correspond to national averages.
11 Not all of these accidents necessarily make it into one or more of the analytic data sets. For example, a single-vehicle accident involving a heavy

truck would not be present in any of the analytic data sets.
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Table 2
Summary statistics

Variable Mean S.D.

State panel data set
Traffic fatalities 880.8 876.6
Fatalities per 100,000 persons 18.4 6.2
Light truck share 0.296 0.114
Sample period 1981–2004
Number of states 47
Observations 1128

Accident-level data set
Average number of vehicles 1.80 0.66
Percent involving light trucks 0.470 0.499
Fatal accidents 5717
Total accidents 454,014
Sample period 1996–2004

Notes: Panel means are across state-time observations; they do not equal national means across time.

3. State-level results

3.1. Results

The popularization of the sport utility vehicle has resulted in strong growth in light truck sales over the past 15
years. After recovering from the oil price shocks of the early 1980s, light truck sales accounted for 25.3% of new
vehicle sales in 1985. Market share gains continued through 1990, when light truck market share reached 30.2%.
Growth then accelerated, and by 2005 light trucks constituted 50% of new vehicle sales. Table 3 reports market share
by type of light truck from 1980 to 2005. Virtually all the growth in light truck share since 1990 has come from
SUVs. From 1990 to 2005, the combined market share of pickup trucks and vans fell 1.2-percentage points (5%),
while market share of SUVs increased 20.7-percentage points (370%). This rapid growth in market share provides
an opportunity to examine the relationship between traffic fatalities and light truck share across different states over
time.

The total number of traffic fatalities, including pedestrians and pedalcyclists, is specified as a function of the light
truck share of a state’s vehicle fleet and a set of observed and unobserved variables:

E[Fst|LTSst, POPst, Xst, γt, αs] = exp[β LTSst + ln(POPst) + Xstδ + γt + αs] (1)

where Fst represents the number of traffic fatalities in state s during year t, LTSst the percentage of vehicle registrations
that are light trucks, POPst the state population (the scale variable), and γt and αs are the unobserved year and state
effects, respectively. The vector Xst includes per capita beer consumption, indicators for primary and secondary safety
belt laws, share of vehicle miles traveled that are on rural roadways, percent of licensed drivers under 25, percent of
licensed drivers over 70, rural and urban speed limits, the unemployment rate, share of the population with a college
degree, share of the population under 18, measures of rainfall and snowfall, and quadratic time trends for each Census
Division.

Table 3
Market share by vehicle type

Variable 1980 1985 1990 1995 2000 2005

Car share 83.5 74.7 69.9 62.1 55.0 49.9
Pickup truck share 12.7 14.4 14.6 15.0 15.7 15.8
Van share 2.0 5.8 10.0 10.9 10.2 7.9
SUV share 1.7 5.1 5.6 12.0 18.9 26.3

Notes: Columns may not sum to 100 due to rounding. Source: Davis and Diegel (2007).
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Table 4
Effect of light trucks on traffic fatalities

Variable (1) (2) (3) (4) (5) (6)

Light truck share 0.344 (0.109) 0.362 (0.150) 0.461 (0.254) 0.420 (0.373) 0.291 (0.113) 0.297 (0.153)
Population 0.79 (0.12) 0.96 (0.09) 0.69 (0.35) 0.66 (0.18) 0.82 (0.12) 0.94 (0.09)
Controls Full set Base set Full set None Full set Base set
Estimation method Negative binomial

regression
Negative binomial
regression

Negative binomial
regression

Negative binomial
regression

WLS WLS

Sample period 1981–2004 1981–2004 1996–2004 1981–2004 1981–2004 1981–2004
Observations 1128 1128 423 1128 1128 1128

Notes: Parentheses contain standard errors clustered by state. All regressions include state and year effects and are weighted by state population.

Because the dependent variable takes on integer values, I use a negative binomial regression model for estimation
purposes.12 To account for unobserved state and year effects, I include indicators for both states and years in all
regressions.13 The strength of the negative binomial model is that it is unbiased if the conditional mean is correctly
specified. In that sense, it is no less robust than least squares, and it may provide a better approximation of the conditional
expectation function. In theory, the standard errors could still be sensitive to the maximum likelihood assumptions, but
experimentation with bootstrapped standard errors produced estimates of similar size to the analytic standard errors.
Nevertheless, I also present results for linear regressions to verify that the conclusions are not overly sensitive to the
estimation procedure.

Columns (1)–(4) of Table 4 present results for the negative binomial models. The regressions are weighted by state
population, and the standard errors are clustered at the state-level to correct for within-state serial correlation (Bertrand
et al., 2004). Column (1) reports results from the preferred specification, which contains a full set of controls. The
coefficient of 0.344 on the light truck share variable is statistically significant and implies that a one-percentage point
increase in light truck share is associated with a 0.34% increase in total traffic fatalities. The scale variable – population
– has a coefficient somewhat below one (0.79), but it is not significantly different than one. Although not reported in the
table, other control variables have coefficients with signs in the expected directions. Beer consumption has a positive
and significant coefficient, while primary belt laws, secondary belt laws, and the unemployment rate have negative and
significant coefficients.14

Column (2) reports results from a specification containing a base set of controls: population, beer consumption,
safety belt laws, unemployment, rural mileage, and weather. The coefficient on light truck share (0.362) remains
positive and statistically significant. Column (3) reports results from the preferred specification when the sample is
limited from 1996 to 2004. This specification is of interest because the accident-level data set covers the years from
1996 to 2004. The coefficient on light truck share (0.461) is marginally significant (z = 1.81) and somewhat higher
than the coefficient in column (1), but the difference is not statistically significant. Column (4) reports results from a
specification that controls only for population, year effects, and state effects. The light truck share coefficient of 0.420
is similar in magnitude to the coefficient in the preferred specification, but the standard error has increased to the point
at which the result is no longer statistically significant.

Columns (5) and (6) in Table 4 present weighted linear regression models that are directly analogous to the negative
binomial models in columns (1) and (2). As in columns (1) and (2), the light truck share coefficients in columns (5)

12 Michener and Tighe (1992) estimate a Poisson regression model of highway fatalities and find evidence of overdispersion. I therefore employ a
negative binomial model; see Hausman et al. (1984) for details. In theory, fatal accidents is a more appropriate dependent variable because a small
percentage of accidents include more than one fatality. However, the Highway Statistics Series stopped publishing the fatal crash series in 1998.
Running the primary specification on pre-1998 data, the coefficient changes by less than 2% when using fatal accidents instead of fatalities as the
dependent variable. For the purposes of this regression, it is therefore safe to use the two measures interchangeably.
13 As noted in Allison and Waterman (2002), the use of dummy variables in negative binomial models does not appear to be affected by the

incidental parameters problem.
14 In the cross-section, one might expect the unemployment rate to be a proxy for economic development, resulting in a positive association with

traffic fatality rates. However, since all regressions contain state fixed effects, the unemployment rate is instead a proxy for local recessions, which
one might expect to be negatively correlated with traffic fatality rates. This relationship is consistent with previous research, including Evans and
Graham (1988), Ruhm (1995), and Ruhm (2000).
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Table 5
Reverse causality

(1) (2) (3) (4) (5)

Dependent variable Truck sales share Truck sales share Log truck sales share Log truck sales share Log fatalities
Light truck share 0.335 (0.099)
Fatality variables specification Levels Logs Logs Levels
Fatalities per capita 0.024 (0.039) −0.003 (0.008) −0.013 (0.026) 0.115 (0.128)
Fatalities per capita (t−1) −0.008 (0.033) −0.004 (0.007) −0.022 (0.018) −0.059 (0.092)
Fatalities per capita (t−2) 0.008 (0.038) −0.001 (0.007) −0.002 (0.019) 0.046 (0.111)
Fatalities per capita (t −3) 0.018 (0.037) −0.001 (0.007) −0.017 (0.020) 0.028 (0.101)
Sum of fatality coefficients 0.042 (0.059) −0.009 (0.013) −0.054 (0.032) 0.130 (0.141)
Joint test p-value 0.907 0.967 0.327 0.713
Sample period 1984–2001 1984–2001 1984–2001 1984–2001 1984–2001
Observations 846 846 846 846 846

Notes: Parentheses contain standard errors clustered by state. All regressions include a full set of controls, state and year effects, and are weighted
by state population.

and (6) are positive and significant, although they have decreased in magnitude by 15–18%.15 Nevertheless, the linear
regressions generate estimates that are similar to the negative binomial regressions.

A causal interpretation of the estimate from the preferred specification, 0.344, implies that the 21.8-percentage point
increase in light truck share from 1981 to 2004 has increased traffic fatalities by approximately 2900 deaths in 2004.
However, there are several reasons to doubt that the coefficient reported in column (1) represents an estimate of the
causal effect of light trucks on traffic fatalities. In particular, issues including reverse causality, measurement error in
the light truck series, changes in vehicle miles traveled, and unobserved changes in traffic fatality rates may affect the
coefficient estimate.

3.2. Potential issues in causal interpretation

3.2.1. Reverse causality
Many consumers equate light trucks with superior occupant protection. It is therefore possible that light truck sales

are partially driven by the fatality rate itself; consumers may switch to vehicles that they perceive to be safer when the
accident rate rises. I explore this possibility with a Granger causality test that examines the relationship between traffic
fatalities and new vehicle sales.

Using sales data, I check whether light truck sales respond to changes in the state traffic fatality rate. Columns
(1)–(4) of Table 5 present the results from regressions of the light truck share of vehicle sales on contemporaneous and
lagged values of traffic fatalities per capita, as well as a full set of controls.16 Column (1) specifies both the truck share
variable and the fatality variables in levels. Column (2) changes the fatality variables to logs. Column (3) specifies both
the truck share variable and the fatality variables in logs. Column (4) changes the fatality variables to levels. Column
(5) estimates the preferred traffic fatalities specification, Eq. (1), for the same time period as columns (1)–(4).17 If the
positive coefficient on light truck share in the original regressions is due to the endogeneity of light truck sales, then
the regressions in columns (1)–(4) should show an even stronger relationship between light truck sales and fatalities
per capita than the regression in column (5). However, I find the opposite pattern. None of the fatality coefficients
is statistically significant, and the sum of the fatality coefficients is never significantly different than zero.18 A joint
test of the fatality variables fails to reject in all four columns, producing p-values of 0.907, 0.967, 0.327, and 0.713,

15 Technically the coefficient in column (4) is right at the margin of statistical significance, with a t-statistic of 1.94.
16 Note that if causality runs from light truck share to fatalities, then lagged fatality values should not be related to current light truck sales except

through serial correlation.
17 To facilitate comparison, I estimate the coefficient in column (5) using least squares. Columns (1)–(4) have fewer observations than the regressions

in Table 4 for two reasons. First, the lagged fatality values eliminate several years at the beginning of the sample. Second, Ward’s Auto stopped
reporting data on registrations of new vehicles in 2001.
18 The sum of coefficients in column (3) achieves marginal significance, but the sign on the estimate is inconsistent with the hypothesis that reverse

causality is biasing the light truck coefficients upwards.
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Table 6
Measurement error and unobserved state trends

Variable (1) (2) (3) (4) (5) (6) (7)

Light truck share 0.344 (0.109) 0.371 (0.126) 0.496 (0.160) 0.515 (0.152) 0.550 (0.171) 0.297 (0.367) 0.449 (0.171)
Population 0.79 (0.12) 0.49 (0.14) 1.33 (0.29) 1.62 (0.31) 1.34 (0.22) 0.52 (0.16) 1.44 (0.15)
VMT 0.35 (0.09)
New vehicle share 0.253 (0.165)
State time trends No No Yes Yes Yes No No
Sample period 1981–2004 1981–2004 1981–2004 1981–2001 1981–2001 1981–1989 1990–2004
Observations 1128 1128 1128 987 987 423 705

Notes: Dependent variable in all regressions is traffic fatalities. Parentheses contain standard errors clustered by state. All regressions include a full
set of controls (minus Census Region time trends in Columns (3)–(6)), state and year effects, and are weighted by state population.

respectively. In comparison, the light truck share coefficient in column (4) has a p-value of 0.002. It is therefore unlikely
that the positive coefficient on light truck share is due to the endogeneity of light truck sales.

3.2.2. Measurement error and changes in vehicle miles traveled
Measurement error is present in the light truck registration series, which is based on data reported by state authorities.

Because not all states register vehicles on the same time frame, the Federal Highway Administration adjusts the series
to make them comparable across states. These adjustments are imperfect, introducing a degree of error into the series.
In general this measurement error should attenuate the coefficient on the light truck variable, biasing it towards zero.19

The direction of the bias therefore implies that, if anything, the estimated coefficient on the light truck share variable
is too conservative.

Of greater concern is the possibility that vehicle miles traveled within a state may be positively correlated with a state’s
light truck share. To explore this possibility, I include the log of total vehicle miles traveled as a scale variable in addition
to population. The results from this specification are presented in column (2) of Table 6. The coefficient on light truck
share is close to the original preferred specification, displayed in column (1). It increases slightly in magnitude, from
0.344 to 0.371, and it remains positive and statistically significant (z = 2.94).20 Furthermore, a regression of log vehicle
miles traveled on light truck share and a full set of controls produces a negative coefficient of −0.063 with a t-statistic
of −0.51. I therefore find no evidence of a positive relationship between vehicle miles traveled and light truck share.

3.2.3. Unobserved changes in determinants of traffic fatality rates
All models include state effects to control for unobserved differences across states that are constant over time.

Nevertheless, unobserved factors that affect traffic fatalities and change over time may be correlated with light truck
share growth. Specifically, traffic fatalities depend upon three factors: roadway conditions, vehicle technology, and
driver characteristics.21 Any unobserved factor that affects the coefficient on light truck share should therefore operate
through one of these three channels.

It is possible that states which had greater levels of growth in their light truck share experienced less favorable
demographic changes or road improvements than states with lower levels of growth in their light truck share. To check
for this possibility, I perform several tests. First, I include a set of state time trends in the regression. The results from
this regression are presented in column (3) of Table 6. Comparing column (1) of Table 6, which has no state time
trends, with column (3), which includes state linear time trends, reveals that the light truck share coefficient increases
by 44% and remains statistically significant. This suggests that geographic trends that are correlated with light truck
purchases are not upwardly biasing the coefficient on light truck share.

19 The bias could be exacerbated by the inclusion of state effects, depending on the degree of serial correlation within the measurement error.
20 A potential issue is that the vehicle miles traveled series is primarily based off of state gasoline sales. Although the government makes

adjustments for vehicle fleet composition, these adjustments may be inaccurate if their fuel economy estimates are inaccurate. As long as the
government overestimates the fuel economy of light trucks and cars by an equal proportion, however, there will be no effect on the light truck share
coefficient. Using Consumer Reports mileage tests, I compare government mileage figures to actual mileage figures for sedans, SUVs, and pickup
trucks. I find that government figures overstate sedan mileage by 10.4% and SUV and pickup truck mileage by 11.7%. This differential is too small
to cause any meaningful bias in the light truck share coefficient.
21 Medical technology could also play a role, but for purposes of this analysis it can be subsumed under driver characteristics.



Author's personal copy

980 M. Anderson / Journal of Health Economics 27 (2008) 973–989

Nevertheless, the technology of a state’s vehicle fleet could plausibly be correlated with light truck share in a
manner that would not be accounted for by time trends. In particular, because the growth in light truck share is a recent
phenomenon, states which have a higher rate of turnover in their vehicle fleets will have more light trucks. All other
things being equal, these states will also have a younger, and potentially safer, vehicle fleet. Therefore, it is possible
that vehicle fleet average age could be biasing the light truck share coefficient, though the bias should be downward.

Table 6 presents evidence showing that the level of technology in a state’s vehicle fleet is not downwardly biasing the
coefficient on light truck share. Column (4) reports a regression of traffic fatalities on light truck share and a full set of
controls and state and time effects.22 Column (5) presents the same regression, but also includes as a control the ratio of
vehicle sales over the past 5 years divided by total registered vehicles. The light truck share coefficient is 7% higher in
column (5), suggesting that there is no downward bias from excluding the level of technology in a state’s vehicle fleet.

A final specification test takes advantage of the fact that most of the growth in light truck share came after 1989, with
the ‘invention’ of sport utility vehicles. Although the timing of this invention may be endogenous, it applied equally
across all states. Furthermore, there is no reason to believe that changes in underlying state demographic characteristics
were substantially more pronounced during the 1990s than during the 1980s.23 For example, the interstate mobility
rate – an important measure of how quickly state populations are changing – rose only slightly between the 1981–1989
period and the 1990–2004 period, from 3.0 to 3.2% (US Census Bureau, 2006). However, the rate of growth in light
truck share was 4.5 times higher post-1990 than in the 1980s. From 1981 to 1989, light truck share grew by an average
of 0.29-percentage points per year, but from 1990 to 2004 light truck share grew by an average of 1.30-percentage
points per year. The popularization of sport utility vehicles in 1990, with the release of the Ford Explorer, could
therefore be conceptualized as a natural experiment which inflated the magnitude of changes in the light truck fleet.24

If demographic trends are correlated with changes in light truck share, and these trends do not become sharply more
pronounced in the 1990s relative to the 1980s, then the light truck share coefficient post-1989 should be substantially
lower in magnitude than the light truck share coefficient pre-1990.

Columns (6) and (7) of Table 6 present regressions that test whether the light truck share coefficient falls after 1989.
In column (6), the sample is restricted to the period from 1981 to 1989. In column (7), the sample is restricted to the
period from 1990 to 2004. The 1981–1989 light truck share coefficient is estimated at 0.297 while the 1990–2004 light
truck share coefficient is estimated at 0.449, suggesting that unobserved state trends are not driving the light truck
share coefficient.25

The results from state-level panel data suggest that a 10-percentage point increase in light truck share raises traffic
fatalities by approximately 3.4%, or 1430 deaths per year. This reduced-form estimate, however, gives no insight about
the specific mechanisms generating the additional fatalities. Fatalities may increase because light trucks crash more
often than cars (the extensive margin), or because light trucks are more dangerous than cars in multi-vehicle collisions,
or because light trucks are more dangerous to their own occupants in single-vehicle collisions (the intensive margins).
The state-level results combine all of these potential effects (and others). The next section examines accident-level
data in order to discriminate between these possibilities and determine how much of the additional risk is borne by the
occupants of the new light trucks and how much is borne by the occupants of other vehicles and pedestrians.

4. The internal and external distribution of fatalities

4.1. Aggregate-level estimates

Section 3 presents state-level panel data results that quantify the effect of light trucks on total traffic fatalities but
do not reveal how many of these fatalities accrue to new light truck occupants and how many accrue to other users
of the roadway system. One way to estimate this breakdown is to compare the overall fatality rates of light trucks

22 This regression is identical to column (3) in Table 6 except that it is run on a shorter sample.
23 Recall that all models include state and year fixed effects. Therefore, only omitted factors that change differentially across states can affect the

light truck share coefficient estimate.
24 The numbers in Table 3 support this assertion. However, it is important to note that Table 3 numbers represent sales share (a flow), not the share

of vehicles on the road (a stock).
25 Although the standard error of the pre-1990 coefficient is large, a 95% confidence interval would have an upper bound of 1.01, which is much

less than 4.5 times the post-1990 coefficient.
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and cars. For example, column (3) in Table 4 indicates that between 1996 and 2004, a one-percentage point increase
in light truck share raised fatalities by approximately 0.34%. During the same period, the occupant fatality rate for
recent light trucks was 6.8% higher than for recent cars (Insurance Institute for Highway Safety, 2007; Ward’s Reports
Incorporated, 1980–2005).26 If light trucks posed no additional risk to other roadway users, and if the marginal driver
switching from a car to a light truck increased her fatality rate by 6.8%, then a 1-percentage point increase in light truck
share would raise total traffic fatalities by 0.068%. This increase in fatalities would accrue exclusively to the occupants
of new light trucks, so this figure represents an estimate of the internal fatality risk of light trucks. The remainder of the
0.344% total increase in traffic fatalities – 0.276% – represents an estimate of the external fatality risk, or the risk to
other roadway users. Therefore, aggregate fatality rates suggest that internal fatalities account for approximately 20%
of the total fatality increase and external fatalities account for the remaining 80%.

However, using aggregate statistics to estimate the breakdown of internal and external fatalities may generate
misleading estimates if the average light truck or car driver is not representative of the marginal light truck or car driver.
In particular, Bradsher (2002) notes that the sport utility vehicle buyers tend to come from the safest group of drivers
on the road: middle-aged, affluent men and women. If the marginal consumer, who is indifferent between a car and
a light truck, is a safer driver than the average car buyer, then her fatality rate in a car will be lower than the average
fatality rate of car drivers. In that case, using aggregate fatality rates to calculate the internal versus external fatality
breakdown will underestimate the number of internal fatalities and overestimate the number of external fatalities. To
address this problem, I examine accident-level micro-data from the GES data set.

4.2. Empirical framework

A vehicle can be more dangerous because it crashes more often or because, when it crashes, it causes more damage
(either to other vehicles or to its own occupants). The former mechanism I refer to as the participation margin, and the
latter mechanism I refer to as the intensity margin. The fatality process therefore operates through both participation
in accidents and the intensity of accidents. For a vehicle of type k, the probability of participation is that vehicle’s
collision rate, pc.

k .27 For a vehicle of type k, the average intensity of an accident is the probability of a fatality in the
event of an accident, pf..

k . The contribution of a vehicle to the total number of traffic fatalities therefore equals the sum
of the vehicle’s participation rates in various types of accidents times its fatality rates in those types of accidents. A
vehicle of type k increases expected internal fatalities by

E[IFk] = pcs
k · pfsi

k + pcl
k · pfli

k + pch
k · pfhi

k (2)

where IFk are internal fatalities, pcs
k the vehicle’s collision involvement rate in single-vehicle collisions, pfsi

k the vehicle’s
internal fatality rate in the event of a single-vehicle collision, and p.l.

k and p.h.
k are the same quantities for multi-vehicle

collisions involving light vehicles (i.e., cars and light trucks) and multi-vehicle collisions involving heavy trucks,
respectively. The subscript ‘c’ refers to collision risk, ‘f’ refers to fatality risk, ‘i’ refer to internal, ‘l’ refers to light
vehicles, and ‘h’ refers to heavy trucks. In this analysis, k takes on two values, cars or light trucks.

A vehicle of type k increases expected external fatalities by

E[EFk] = pcl
k · pfle

k + pcm
k · pfme

k + p
cp
k · p

fpe
k (3)

where EFk are external fatalities, pcl
k the vehicle’s collision involvement rate in multi-vehicle collisions, pfle

k the external
fatality rate in other vehicles in the event of a multi-vehicle collision, and p.m.

k and p
.p.
k are the same quantities for light

vehicle collisions involving motorcycles and pedestrians, respectively.28 Note that to compare cars and light trucks,
we must calculate both Eqs. (2) and (3) separately for k = ‘cars’ and k = ‘light trucks’. We can then compare IFcars to
IFlight trucks and EFcars to EFlight trucks.29

26 The Insurance Institute for Highway Safety defines recent vehicles as being 1–3 years old during the year in which fatality rates are measured.
27 I define pc.

k
as the number of annual collisions involving a vehicle of type k divided by the total number of registered vehicles of type k.

28 Eq. (3) does not contain a term for heavy trucks because heavy trucks almost never experience fatalities when colliding with light vehicles. Also,
as in White (2004), when estimating the parameters for multi-vehicle collisions in Eq. (3) I omit multi-vehicle collisions involving more than two
vehicles. These types of collisions account for less than 15% of total collisions.
29 The estimates from Section 3 only gave us the differential between TFcars and TFlight trucks, where TFk = IFk + EFk .
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Table 7
Predicted probabilities of fatality in struck vehicle

Logit results Fatality probability Sample

Two-vehicle crashes w/cars 190,791
Striking vehicle is light truck 0.486 (0.135) 0.00178
Striking vehicle is car 0.00110

Two-vehicle crashes w/light trucks 117,549
Striking vehicle is light truck 0.684 (0.221) 0.00137
Striking vehicle is car 0.00070

Single-vehicle crashes 118,069
Vehicle is light truck 0.191 (0.073) 0.00891
Vehicle is car 0.00741

Crashes w/motorcycles 3,191
Striking vehicle is light truck 0.728 (0.189) 0.07245
Striking vehicle is car 0.03773

Crashes w/pedestrians or pedalcyclists 15,990
Striking vehicle is light truck 0.663 (0.105) 0.04342
Striking vehicle is car 0.02451

Notes: For single-vehicle crashes, the ‘struck vehicle’ is the single vehicle involved in the crash. For pedestrian or pedalcyclist crashes, the ‘struck
vehicle’ is the pedestrian or pedalcyclist. Parentheses contain standard errors. All regressions include controls and are weighted by sampling weights.

To estimate fatality rates in the event of an accident – the pf..
k terms in Eqs. (2) and (3)– I apply a methodology

implemented in White (2004) to the accident-level micro-data. I examine the five types of accidents contained in Eqs.
(2) and (3) separately: two-vehicle collisions involving at least one car, two-vehicle collisions involving at least one light
truck, single-vehicle collisions, two-vehicle collisions involving a motorcycle, and collisions involving a pedestrian
or pedalcyclist.30 For each accident type, I estimate a logit regression that specifies the probability of fatalities as a
function of vehicle, driver, and accident characteristics.

For two-vehicle collisions, I define one vehicle as the vehicle being struck. If the accident involves two vehicle
types, then the struck vehicle is by default the vehicle type of that data set (e.g., for two-vehicle collisions involving at
least one car, the struck vehicle is always a car). If the accident involves two vehicles of the same type (i.e., two cars
or two light trucks), then one of the vehicles is randomly assigned to be the struck vehicle. The remaining vehicle I
designate as the striking vehicle. The dependent variable is the presence of a fatality in struck vehicle, and the variable
of interest is a dummy variable that takes a value of one if striking vehicle is a light truck. For single-vehicle collisions,
the dependent variable is the presence of a fatality in the single vehicle, and the variable of interest is a dummy
variable indicating whether the vehicle involved in the accident is a light truck. For collisions involving pedestrians,
the dependent variable codes whether a pedestrian died, and the variable of interest is a dummy variable indicating
whether the striking vehicle is a light truck.

All regressions are weighted so that the sample is representative of the population of accidents. Controls include
the number of occupants inside the struck vehicle, vehicle model year, a dummy variable for heavy trucks, and dummy
variables for medium cities, large cities, safety belt use (or helmet use, for motorcycles), rain, snow, fog, darkness,
weekdays, negligent driving, drivers under the age of 21, drivers over the age of 60, interstate highways, divided
highways, male drivers, young male drivers, and years.

4.3. Accident-level results

The first column of Table 7 reports the logit regression coefficient on the dummy variable indicating whether the
striking vehicle is a light truck. In single-vehicle collisions, the striking vehicle and the struck vehicle are one and
the same. In pedestrian or pedalcyclist collisions, the ‘struck vehicle’ is the pedestrian or pedalcyclist. The second
column reports the probability of a fatality in the struck vehicle conditional on the vehicle type of the striking vehicle
(light truck or car). When the striking vehicle is a light truck, the probability is calculated as the weighted average

30 These five types of accidents account for approximately 85% of the accidents in the data set.
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of the predicted logit regression probabilities taken across all accidents in which the striking vehicle is a light truck.
When the striking vehicle is a car, this probability is equal to the weighted average of the predicted logit regression
probabilities taken across the same set of observations, but the light truck indicator for the striking vehicle is set to
zero. The probability comparison therefore fixes the covariates at the values associated with light truck drivers.31 The
third column reports the sample size for each data set.

The first set of rows in Table 7 presents results for two-vehicle collisions involving cars. The results indicate that
light trucks pose a significant hazard to cars in the event of a collision. The light truck coefficient is positive and highly
significant (z = 3.59). The probability of a fatality in the struck vehicle increases by 62% if the striking vehicle is a
light truck rather than a car, from approximately 0.0011 to 0.0018. The magnitude of this effect is consistent with the
results of previous accident-level studies, including Toy and Hammitt (2003), Gayer (2004), and White (2004).

The second set of rows in Table 7 presents results for two-vehicle collisions involving light trucks. These results
indicate that light trucks also pose a significant hazard to other light trucks in the event of a collision. The light truck
coefficient is positive and significant (z = 3.09). The probability of a fatality in the struck vehicle increases by 97% if
the striking vehicle is a light truck rather than a car, from approximately 0.0007 to 0.0014. In fact, the probability of
fatalities in a collision involving two light trucks is estimated to be 24% higher than in a collision involving two cars.
Nevertheless, a comparison of the fatality probabilities in these rows with the fatality probabilities in the first set of
rows reveals that, for their own occupants, light trucks are safer than cars in the event of a multi-vehicle collision. In
multi-vehicle collisions, light trucks therefore reduce internal fatalities at the expense of additional external fatalities.

The third set of rows in Table 7 reports results for single-vehicle collisions. The light truck coefficient is again
positive and significant (z = 2.62). The probability of a fatality in a single-vehicle collision increases by 20%, from
approximately 0.0074 to 0.0089, when the vehicle is a light truck rather than a car. This fatality rate differential matches
the injury rate differential from controlled crash tests quite closely, increasing our confidence in the results.32 Some of
the increased lethality may be due to increased rollover risk in light trucks; a logit regression with a rollover event as
the dependent variable returns a light truck coefficient of 0.72 (z = 40.53).

The fourth and fifth sets of rows in Table 7 report results for two-vehicle collisions involving motorcyclists and
single-vehicle collisions involving pedestrians or pedalcyclists. Light trucks increase the risk of fatalities in motorcycle
collisions by 92%, from approximately 0.0377 to 0.0725 (z = 3.85 in the logit regression). They increase the probability
of fatalities in pedestrian or pedalcyclist collisions by 77%, from approximately 0.0245 to 0.0434 (z = 6.33 in the logit
regression).

Overall, light trucks pose a significant hazard to other vehicles in the event of a collision. Depending on the type of
accident, the risk of fatality to others (or to themselves, in single-vehicle collisions) increases by 20–97%. However,
these estimates may not be interpretable as causal effects in the traditional sense (e.g., Rubin, 1974).

4.4. Interpretation

Expected fatalities for a given vehicle type are a function of both participation in accidents and the intensity of
accidents. The probability of participation is the collision rate, or the pc.

k terms in Eqs. (2) and (3). The intensity of
accidents is the probability of a fatality in the event of a collision, or the pf..

k terms in Eqs. (2) and (3). The fatality
rates presented in the subsection above are estimates of intensity and are therefore conditional upon the event of an
accident. However, Angrist (2001) notes that when the probability of participation is a function of intensity, estimates
of intensity conditional on participation do not have a causal interpretation.

In this case, the primary issue is that light trucks may positively affect collision rates. If so, the conditional-on-
collision difference in fatality rates between cars and trucks need not equal the difference in fatality rates between cars
and trucks in a series of controlled crash tests. This discrepancy occurs because the set of accidents in which trucks
are participating is different than the set of accidents in which cars are participating. Measuring the causal effect of
crash intensity on fatalities requires us to observe cars participating in all the accidents in which trucks participate.

31 Alternatively, I could fix the covariates at the values associated with car drivers. However, because the state-level results are primarily identified
off of car drivers who have become light truck drivers, it seems preferable to examine what would happen if those light truck drivers switched back
to cars.
32 See Section 4.4 for further discussion.
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Table 8
Annual per light vehicle collision rates

Collision type Annual rate

Two light vehicles 0.03393
Single-light vehicle 0.00781
Light vehicle and heavy truck 0.00141
Light vehicle and motorcycle 0.00015
Light vehicle and pedestrian or pedalcyclist 0.00056

Notes: Rates are over 1996–2004 period.

Nevertheless, because the goal is to measure the distribution of external and internal fatalities rather than the causal
effect of intensity on fatalities, the accident-level estimates are still useful. Eqs. (2) and (3) must hold because they are
identities, even if the pf..

k terms do not have a causal interpretation.
Since we are tabulating internal and external fatalities, it is irrelevant whether the increased fatality risk from light

trucks arises because they are more dangerous in the same collision or because their characteristics cause them to enter
into more dangerous collisions. Still of concern, however, is the possibility that driver characteristics of light trucks
and cars are different and that these differences may affect fatality rates in the event of a collision.33

This concern is mitigated by two facts. First, controlling for a wide range of covariates, as is done in Table 7, does
not strongly affect the results. This implies that differences in observable driver characteristics are not responsible for
the fatality rate differential between cars and light trucks. Second, the fatality estimates for single-vehicle collisions
match the results of controlled crash tests (the analog of a randomized controlled trial) remarkably closely. Using
government crash test data for all vehicles tested between 1993 and 2004, I compute the average frontal crash test
rating for cars and for light trucks.34 The average frontal crash test rating for cars during this period implies a 0.155
probability of serious injury, while the average frontal crash test rating for light trucks implies a 0.184 probability of
serious injury. These figures indicate that the probability of serious injury in a single-vehicle frontal collision is 18%
higher for light trucks than for cars.35 In comparison, the figures presented in the third set of rows in Table 7 imply that
the probability of a fatality in a single-vehicle collision is 20% higher for light trucks than for cars. The experimental
crash test results therefore match the regression estimates very closely, indicating that driver selection is unlikely to be
biasing the regressions.

To compute collision rates, I examine the five types of collisions involving light duty vehicles (i.e., cars and light
trucks) in the data set: single-light vehicle, two-light vehicles, light vehicle–heavy truck, light vehicle–motorcycle,
and light vehicle–pedestrian. Table 8 reports the annual collision rate for each type of collision; this rate is calculated
by dividing the total number of collisions of each type (taken from the GES data set used in Section 4.3) by the total
number of registered light vehicles.36 Two-light vehicle collisions are the most common, occurring at an annual rate of
0.034 per vehicle, and light vehicle–motorcycle collisions are the least common, occurring at an annual rate of 0.00015
per vehicle.

I first calculate the internal fatality effects of replacing 2.1 million light trucks with cars (1% of the vehicle fleet)
assuming that the collision rate of these vehicles remains unchanged. This is equivalent to changing the pf..

k terms in
Eq. (2) while leaving the pc.

k terms unchanged.37 There are three types of collisions involving internal fatalities: single-
light vehicle, two-light vehicles, and light vehicle–heavy truck. Consider the internal fatality risk from single-vehicle

33 This is the same concern as noted at the end of Section 4.1.
34 For each year, I calculate a weighted average of crash test ratings for cars and for light trucks; the weights are a given model’s share of light

vehicle sales in that year. I then form a weighted average of these yearly averages, using as the annual weight each model year’s crash frequency in
the data set containing single-vehicle collisions. Vehicles built during the 1990s have higher weights than vehicles built in early 2000s because the
former vehicles have had more crashes during the sample’s timeframe than the latter vehicles. Crash test data exists for approximately 75–90% of
the vehicles sold, depending on the model year.
35 These numbers are calculated using driver’s side crash test results. Using passenger’s side crash test results instead indicates that the probability

of serious injury in a single-vehicle frontal collision is 19% higher for light trucks than for cars.
36 The total number of two-light vehicle collisions has been multiplied by two since each collision involves two light vehicles. Rates are calculated

using vehicle registration data over the sample period from 1996 to 2004.
37 Note that in this scenario the difference in pf..

k
terms would have a causal interpretation, because light trucks do not affect crash rates.
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Table 9
Changes in internal and external fatalities from replacing 2.1 million light trucks with cars

(1) (2)

Ratio of light truck collision rate to car collision rate 1.00 1.13
Internal effects

Single-vehicle collisions −28 −48
Two-vehicle collisions 33 21
Light vehicle–heavy truck collisions −1 −4
Total internal deaths 4 −31

External effects
Two-vehicle collisions −57 −71
Collisions with motorcycles −11 −14
Collisions with pedestrians/pedalcyclists −22 −27
Total external deaths −91 −112

Net effect −87 −143

Notes: Numbers may not sum exactly due to rounding.

accidents. The change in fatal crashes from switching 2.1 million light trucks to cars is the single-vehicle collision
rate times the difference in fatality risk between cars and light trucks in single-vehicle collisions times 2.1 million
(0.00781 × (0.0074 − 0.0089) × 2.1 million). The collision rate (0.00781) comes from Table 8, while the fatality risks
(0.0074 and 0.0089) come from Table 7. The resulting number is multiplied by 1.15, as each fatal collision results in
approximately 1.15 fatalities (White, 2004). The product, reported at the top of the first column in Table 9, implies that
the switch would decrease single-vehicle collision fatalities by 28 per year if the collision rate remains unchanged. The
two-light vehicle and light vehicle–heavy truck internal fatality changes are computed in a similar manner.38 The fifth
row in Table 9 totals the internal effects. The replacement of 2.1 million light trucks with cars is expected to increase
internal fatalities by 4 deaths per year if the collision rate remains unchanged.

I then calculate the external fatality effects of replacing 2.1 million light trucks with cars (1% of the vehicle
fleet) assuming that the collision rate of these vehicles remains unchanged. This is equivalent to changing the pf..

k

terms in Eq. (3) while leaving the pc.
k terms unchanged. There are three types of collisions that result in external

fatalities: two-light vehicles, light vehicle–motorcycle, and light vehicle–pedestrian. Consider the external fatality
risk from light vehicle–pedestrian accidents. The change in fatal crashes from switching 2.1 million light trucks to
cars is the light vehicle–pedestrian collision rate times the difference in fatality risk between cars and light trucks in
light vehicle–pedestrian collisions times 2.1 million (0.00056 × (0.0245 − 0.0434) × 2.1 million). The collision rate
(0.00056) comes from Table 8, while the fatality risks (0.0245 and 0.0434) come from Table 7. The result, reported in the
third row of the first column in Table 9, implies that the switch would decrease pedestrian fatalities by 22 per year if the
collision rate remains unchanged. The two-light vehicle and light vehicle–motorcycle external fatality changes are com-
puted in a similar manner.39 The second-to-last row in Table 9 totals the external effects. The replacement of 2.1 million
light trucks with cars is expected to decrease external fatal crashes by 91 per year if the collision rate remains unchanged.

The sum of the internal and external effects, reported in the last row of Table 9, is 4–91 = −87, indicating that
reducing the light truck share by one-percentage point will reduce annual traffic fatalities by 87. However, estimates
from the preferred state-level specification over the same sample period imply that a 1% reduction in light truck share
should reduce annual traffic fatalities by 0.34%, or approximately 143. The discrepancy between these two estimates
– 87 and 143 – implies that the collision rate of drivers who switch from light trucks to cars does not remain constant.
Not only are light trucks more dangerous in collisions, but they must be more likely to enter into a collision.

38 For the two-light vehicle collisions, the fatality risk in a car conditional on a collision is computed as a weighted average of the fatality risk
when a car is hit by a light truck and the risk when a car is hit by a car. The weights are 0.37 and 0.63, respectively, reflecting the average light truck
share during the sample period. The analogous number for light trucks is calculated in a similar manner. For collisions involving heavy trucks, the
fatality risk is computed using a logit regression run on a sample of two-vehicle collisions that involve one light vehicle and one heavy truck. The
probability of a fatality is estimated at 0.0082 for a car and 0.0083 for a light truck.
39 For the two-light vehicle collisions, the fatality risk for a car conditional on a collision is computed as a weighted average between the fatality

risk when a car is hit by a car and the risk when a light truck is hit by a car. The weights are 0.63 and 0.37, respectively, reflecting the average light
truck share during the sample period. The final number is multiplied by 1.15.
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What collision rate differential between cars and light trucks can explain the discrepancy between the accident-level
results and the state-level results? The second column in Table 9 reports the internal and external effects of replacing
2.1 million light trucks with cars under the assumption that the light truck crash rate is 13% higher than the car crash
rate.40 This is equivalent to assuming that each of the pc.

k terms in Eqs. (2) and (3) is 13% higher for light trucks
than for cars. This figure of 13% is implied by the data if we assume that the collision rate differential between light
trucks and cars is constant across collision types; it is the unique crash rate differential that equalizes the state-level
and accident-level estimates of total traffic fatalities.41

The estimates in the second column of Table 9 suggest that reducing the light truck share of the vehicle fleet by
one-percentage point reduces internal fatalities by 31 deaths per year and reduces external fatalities by 112 deaths
per year.42 Therefore, external fatalities account for approximately 79% of the total change in traffic fatalities, and
internal fatalities account for the remaining 21%. These estimates are similar to the breakdown based on aggre-
gate fatality rates presented at the beginning of the section. Furthermore, the ratio of internal to external deaths is
not very sensitive to variations in the relative pedestrian collision rate between cars and light trucks. For example,
if cars and light trucks have the same pedestrian collision rate (rather than trucks having a collision rate that is
13% higher), then external fatalities account for 77% of the change in traffic fatalities. If light trucks have a pedes-
trian collision rate that is 25% higher than cars, then external fatalities account for 81% of the change in traffic
fatalities.

A final complication pertains to the sampling frame. Because accidents only enter the data set if they are reported
to the police, less severe accidents are less likely to enter the data set. If light trucks cause accidents to be more
severe, then multi-vehicle or pedestrian accidents involving light trucks will be more likely to enter the data set.
This over-representation would reduce the estimated risk that light trucks pose in a given collision and increase
the estimated collision rate for light trucks. However, the potential scale of this bias is limited. Simulations reveal
that if the true fatality risk differential between cars and light trucks (conditional on an accident occurring) is 20%
higher than estimated, the external fatality share changes only 3-percentage points, from 79 to 82%. Alternatively,
minor single-vehicle collisions involving large pickup trucks may be less likely to be reported because these vehicles
are involved in rugged work and have already accumulated a number of dents. This underreporting would cause
single-vehicle light truck collisions to appear more dangerous than they are. I experiment with reducing the risk of
fatalities in single-vehicle collisions involving light trucks by 10%.43 Under this assumption, the external fatality share
changes only 3-percentage points, from 79 to 82%. Nevertheless, because of the potential sampling frame biases, the
estimate that external fatalities account for 79% of the total change in traffic fatalities should be viewed as a lower
bound.

The results in Table 9 and the estimates at the beginning of the section demonstrate that light trucks are a hazard
not only to other drivers and pedestrians, but to their own occupants as well. The increase in internal fatality risk is
due in part to the higher estimated collision rate for light trucks. A variety of factors may contribute to this increased
collision rate. First, light trucks generally have poor handling and braking in comparison to cars. Furthermore, their
height relative to the roadway causes drivers to perceive themselves to be traveling slower than they are (Rist, 2001).
However, the first column in Table 9 shows that even if light trucks had the same collision rate as cars, their occupants
would enjoy little additional protection on average, perhaps because of the increased rollover risk.

40 The estimates are computed in a similar manner to the first column, but the collision rates are specified such that the light truck collision rate
is 13% higher than the car rate, and a weighted average of the two equals the overall collision rate. Also, the internal and external fatality risks in
collisions involving two-light vehicles are updated to reflect the fact that the chance of being struck by a light truck is now higher.
41 This assumption is likely to hold for collisions that only involve vehicles. For example, Levitt and Porter (2001) find that most driver characteristics,

including drunk driving, increase collision risk in both single-vehicle and two-vehicle accidents by roughly equal proportions. However, the
assumption may not hold for collisions involving pedestrians. I therefore examine how the estimates change if we allow the pedestrian collision rate
differential between light trucks and cars to assume different values.
42 If we take at face value the relatively imprecise point estimate from state-level regressions estimated only on the 1996–2004 sample (0.461—see

Table 4), the external fatality effect increases to 130 deaths per year. Either result suggests that the true effects are near the upper tail of the range
presented in White (2004), which corresponds to 122 external deaths per year.
43 This change would correspond to increasing the large pickup truck single-vehicle collision fatality risk by substantially more than 10%, since the

majority of light trucks are not large pickup trucks. Reducing the light truck single-vehicle collision fatality risk by 20% or more is implausible since
it would imply that light trucks are safer than cars in single-vehicle collisions—controlled laboratory crash tests directly contradict this possibility,
as shown above.
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Fig. 1. Light truck risk by model year.

4.5. Dynamic implications

Several recent trends have the potential to affect this paper’s estimates. First, the composition of the light truck fleet
itself is changing. Manufacturers have developed smaller SUVs and “crossover vehicles,” such as the Honda CR-V
and the Toyota RAV4. They have also implemented some changes that make SUVs more “crash compatible” with cars
(Hakim, 2003b). On the other hand, larger pickups and SUVs have become increasingly popular. From 1995 to 2005,
the percentage of SUVs classified as large grew from 12.7 to 45.4%, and the percentage of pickup trucks classified as
large grew from 56.1 to 89.8% (Davis and Diegel, 2007). To explore the net effect of these changes, Fig. 1 graphs the
coefficients from a logit regression that models the probability of a fatality in a multi-vehicle collision as a function
of whether the striking vehicle was a light truck, as in Table 7. However, instead of a single-light truck indicator,
the regression contains 24 light truck indicators, 1 for each model year from 1981 to 2004.44Fig. 1 plots how these
light truck coefficients evolve from year to year. Although each coefficient is estimated with substantial error, there
appears to be a slight upward trend as the model years progress. This suggests that the composition of light trucks is
not becoming safer to cars over time.

Another important development is the rise in gasoline prices over the past several years. Rising gasoline prices
should reduce demand for light trucks, lowering the total external costs of light trucks. However, the external cost of the
marginal light truck could potentially grow, since a given truck is now increasingly likely to hit a car rather than another
truck. A cross-country regression of light truck share on average gasoline price, using data from the United States,
Great Britain, Germany, France, and Japan, predicts that a 1 dollar increase in gasoline prices lowers light truck share by
10-percentage points (t = −3.7).45 This relationship is likely confounded by differences in geography, urbanization,
and culture, so I interpret the estimate as an upper bound on the causal effect of gasoline prices on light truck share.

Real gasoline prices increased by $1.03 in the United States from 2002 to 2006, potentially reducing light truck
share by up to 10.3-percentage points in the long run (U.S. Department of Energy, 2007). How might this affect the
external risk of the marginal light truck? Some multi-vehicle collisions that previously involved the marginal light
truck hitting another light truck will now involve the marginal light truck hitting a car. The estimates in Table 7 indicate
that the additional fatality risk from being struck by a light truck changes from 0.00137 − 0.00070 = 0.00067 when

44 The regression also contains the covariates described in Section 4.3. For this regression, the struck vehicle is always a car. The dependent variable
is an indicator equal to unity if any occupants in the car died.
45 Light truck share is measured in 2005. Average gasoline price is measured from 1990 to 2005 and converted to 2005 dollars.
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riding in a light truck to 0.00178 − 0.00110 = 0.00068 when riding in a car.46 The external risk of the marginal light
truck should therefore be unaffected. Total external fatalities attributable to light trucks, however, could drop by 20%
if long run light truck share decreases from 50% (the 2005 market share) to 40%.47

5. Conclusion

This paper analyzes the effects of light trucks on traffic fatalities by combining state-level and accident-level data
sets. The results suggest that a one-percentage point increase in the light truck share of the vehicle fleet increases annual
traffic fatalities by approximately 0.34%, or 143 deaths per year. Of these deaths, approximately one-fifth accrue to the
occupants of the new light trucks, while the remaining four-fifths accrue to the occupants of other vehicles, pedestrians,
and pedalcyclists. Light trucks therefore pose a significant cost to other users of the highway system, but do not appear
to provide any additional protection to their own occupants. Using standard value of life estimates of 7 million dollars
per life (Viscusi and Aldy, 2003), a vehicle life-span of 15 years, and a real discount rate of 3%, the implied Pigovian
tax is approximately 3850 dollars per light truck sold. At current sales rates, such a tax would generate over 30 billion
dollars of revenue each year. Although rising gasoline prices may mitigate the increase in light truck share, they are
unlikely to reduce it to pre-2000 levels. Interpreted on a larger scale, the results suggest that the 21-percentage point
increase in light truck share from 1981 to 2004 currently results in as many as 2900 additional traffic fatalities per year.
This estimate may partially explain why, despite advances in safety technology, the annual number of traffic fatalities
in the United States has increased by over 10% from 1992 to 2005, rising from 39,250 to 43,200.
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