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Abstract

If a monopoly supplies a perishable good, such as tickets to a performance, and is
unable to price discriminate within a period, the monopoly may benefit from the potential
entry of resellers. If the monopoly attempts to intertemporally price discriminate, the

equilibrium in the game among buyers is indeterminate when the resellers are not allowed
to enter, and the monopoly’s problem is not well defined. An arbitrarily small amount of
heterogeneity of information among the buyers leads to a unique equilibrium. We show

how the potential entry of resellers alters this equilibrium.
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“The moment a performance begins, that seat is dead. ... It’s like fruit. Its perishable.”

(Jeffrey Seller, producer of Rent. New York Times, July 20, 2003.)

∗We thank two anonymous referees and a Co-editor for their suggestions, without implicating them in any
remaining errors.



1 Introduction

A perishable-good monopoly that can charge different prices in different periods but cannot
price discriminate within a period may benefit from the existence of a resale market. We
illustrate the effects of resellers on the intertemporal pricing strategy of a monopoly that sells
perishable tickets that have no value after the event. For specificity, we discuss tickets for a
concert or other performance, which are resold by ticket agencies, brokers, “scalpers” (United
States), or “touts” (Great Britain).

We study two versions of a two-period model. Consumers have common knowledge about
the value of a ticket in one version, and they lack common knowledge in the other. We model
the situation without common knowledge by using a “global game” as in Carlsson and Van
Damme (1993) and Morris and Shin (1998). Buyers play a pure coordination game when resale
agencies (hereafter “scalpers”) cannot enter; in the global games setting (i.e., when common
knowledge is removed) the equilibrium is unique. When scalpers can enter, buyers’ actions are
no longer global strategic complements, but in the absence of common knowledge the equilib-
rium is unique within a particular class of strategies. We examine the equilibrium effect of the
potential entry of scalpers.

The historical and the contemporary relation between scalpers and monopoly ticket providers
is mixed; in some circumstances the monopoly explicitly cooperates with the scalpers, and in
other cases it attempts to eliminate or undermine them. For example, monopolies have success-
fully lobbied for anti-scalping laws in many jurisdictions (Williams 1994). Thus, there must
be circumstances where scalpers either benefit or harm the monopoly. The assumptions of our
model imply that scalpers do not harm and possibly benefit the monopoly. Relevant examples
include ticket agencies and brokers who explicitly receive cooperation from monopoly ticket
providers. For many Broadway (and other) shows, ticket agencies sell a substantial portion of
the tickets (Leonhardt 2003).

In our model, some consumers have a relatively high willingness to pay (“high types”),
while others have a lower willingness (“low types”). The monopoly cannot distinguish between
the two types of consumer except by observing their behavior over time. Consequently, the
monopoly cannot price discriminate if it sells all its tickets in a single period, but it can charge
different prices in different periods. By incurring a transaction cost, scalpers can distinguish
between consumers at a moment in time and hence can price discriminate within a period. The
potential entry of scalpers changes the monopoly’s pricing problem and the equilibrium of the
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game.
In a one-period model, the monopoly uses (efficient) scalpers as its agents. It sells all of the

tickets to them at a price between the high and low willingness to pay. Scalpers resell as many
tickets as possible to high types at a relatively high price, and unload the remaining tickets to
low types at a lower price, as in Rosen and Rosenfield (1997) and DeSerpa (1994). That is, the
monopoly requires that the scalpers buy a “bundle” of tickets; some they can sell at a high price
and others they have to dump.

Most previous analyses of scalpers or ticket sales use one-period models; many of these
take the price set by the monopoly as given and they ignore how scalpers affect the mar-
ket.1 Theil (1993) assumes that the monopoly under-prices tickets (for exogenous reasons)
and then examines whether scalpers raise or lower surplus in a one-period model. Swofford
(1999) considers price discrimination and explains why different views toward risk, different
cost functions, or different abilities to price discriminate may make scalping profitable. Happel
and Jennings (1995) discuss anti-scalping laws without using a formal model. In an empirical
study, Williams (1994) finds that scalpers increase the average National Football League ticket
price by nearly $2, a result that is consistent with scalping benefiting the monopoly.

Courty (2003a) and Courty (2003b) use two-period models in which the monopoly price
discriminates over time. Courty’s model and ours differ in many respects; a major difference,
largely responsible for our differing conclusions, concerns the assumption about when agents
know their willingness to pay. In our model, high and low types have the same amount of
information about their willingness to pay, and the value of the ticket does not depend on when
it is purchased. Courty assumes that consumers with high (potential) willingness to pay do
not know whether they actually want to buy a ticket until the final period; consumers with
low willingness to pay would buy a ticket only in the first period (because they are not able to
make last-minute arrangements, e.g. for the baby-sitter). In Courty’s setting – but not in ours
– scalpers might harm the monopoly. The differing assumptions and results in Courty’s and
in our models are consistent with the observation that in some circumstances monopoly ticket
sellers cooperate with scalpers and elsewhere they resist them.

Peck (1996) observes in passing that the presence of scalpers may determine whether an
1Some papers on ticket sales discuss price discrimination by the monopoly (but generally do not mention

scalpers), e.g., Barro and Romer (1987), Baumol and Baumol (1997), Bertonazzi, Maloney, and McCormick
(1993), DeSerpa (1994), Gale and Holmes (1993), DeGraba and Hohammed (1999), Huntington (1993) and Lott
and Roberts (1991).
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efficient market exists. Van Cayseele (1991) shows that a monopoly with the ability to commit
may engage in intertemporal price discrimination in a market with rationing. As in our model,
prices are higher in the first period and then fall. Our model differs from his in that we assume
that the monopoly cannot price discriminate but that the scalpers can.

The next section analyzes the role of scalpers in a model of common knowledge about
payoffs, taking as given the monopoly’s first period price. The following section shows how
the equilibrium changes when agents have incomplete knowledge of payoffs. We then show
how scalpers affect the monopoly’s decision in the first period.

2 The model with common knowledge

The first subsection describes the model and introduces the notation. The next subsection
considers the second-period equilibrium with and without scalpers, taking as given first-period
sales. The following subsection studies the first period equilibrium. When scalpers are ex-
cluded from the market, high-types play a coordination game in the first period for a range of
first period prices. The ability of scalpers to enter changes the first-period equilibrium by in-
troducing a form of congestion. We then compare the monopoly’s first-period pricing decision
with and without scalpers.

2.1 Model description

Each potential customer wants to buy one ticket. There are a continuum of buyers, with no
“atoms”; that is, all buyers are infinitesimally small relative to the total market. We denote H
as the measure of high-type buyers who are willing to pay up to ph for a ticket and L as the
measure of low-type buyers whose willingness to pay is pl. The difference in willingness to
pay between the two types of customers is D ≡ ph − pl > 0. The monopoly has measure T

tickets available and faces excess demand of E ≡ H +L− T > 0. All agents are risk neutral.
The second (and last) period occurs shortly before the performance is about to begin; after

that time the tickets are worthless. We consider two extreme cases: there are no scalpers or an
unlimited number of scalpers with free entry. We study the set of subgame perfect equilibria
in which the monopoly chooses each period’s price at the beginning of that period; consumers
decide whether to buy in a given period; and scalpers (when they are present) decide whether
to participate.
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The monopoly cannot distinguish between high and low types or between regular customers
and scalpers. If the monopoly sets a price p ≤ pl there is excess demand for tickets; rationing
means that each agent has an equal probability of getting a ticket. The monopoly can charge
different prices in different periods, as in Dudey (1996) and Rosen and Rosenfield (1997). In
each period, consumers take the current price and the actions of all other agents as given. In
the first period, consumers have rational point expectations about the second-period price.

Scalpers price discriminate and extract all potential surplus from buyers, but they incur a
transaction cost. A scalper that sells a ticket for price p receives revenue net of transactions
costs of φp, where φ < 1. That is, the scalper’s transaction cost per ticket is (1− φ)p. Due to
free entry, risk-neutral scalpers earn zero expected profit.

We show that in equilibrium, there are no first-period sales to scalpers or low types. In
the first period, an endogenously determined fraction α of high types choose not to buy (i.e., to
“wait”). The high types’ payoff from buying in the first period equals the difference between
their valuation and the price, ph− p1. The expected payoff from waiting equals the probability
of getting a ticket in the second period, times the difference between ph and the price they will
have to pay. High types who wait to buy must compete with low types and possibly scalpers in
the second period. The equilibrium value of α depends on the first-period price and on whether
scalpers are allowed to enter in the second period. If 0 < α < 1 in equilibrium, then all high
types must be indifferent between buying or waiting in the first period.

It is worth emphasizing that we consider a restricted, but reasonable set of mechanisms.
The monopoly’s only decision variables are the prices in the two periods. A richer policy
menu might enable the monopoly to achieve higher profits.

2.2 The second-period equilibrium

The second-period equilibrium depends on whether scalpers are allowed to enter. When
scalpers are allowed to enter, S scalpers – an endogenous measure – try to buy tickets, and
s scalpers – an endogenous measure – actually obtain a ticket. All buyers pay the price p2

in the second period. The equilibrium number of low types that try to buy a ticket from the
monopoly is L∗. Individuals who are indifferent between buying and not buying break the tie
by trying to buy a ticket. Thus, L∗ = L if p2 ≤ pl, and L∗ = 0 if p2 > pl.

Given L∗ and s, the probability that a high type is able to buy a ticket from the monopoly in
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the second period is

θ =
T − (1− α)H − s

αH + L∗
. (1)

The numerator of θ is the number of remaining tickets after (1 − α)H were sold in the first
period and scalpers obtain s tickets. The denominator is the total number of low types and high
types trying to obtain a ticket from the monopoly. We adopt

Assumption 1 plT > phH (i.e., the monopoly would earn more by selling all tickets at the low
price rather than selling only to high-types)

We have (see the Appendix for all proofs)

Lemma 1 If scalpers are allowed to enter and Assumption 1 holds, then the optimal second-
period price is p∗2 = max

©
ps (α) , pl

ª
where

ps(α) ≡ φ
(T −H) pl + αphH

T − (1− α)H
. (2)

If ps (α) > pl, scalpers obtain all the tickets remaining after (1− α)H were bought in the first
period: s = T − (1− α)H.

By setting α = 1 (i.e., all sales occur in the second period) we obtain the special case of a
one-period model in which the monopoly uses scalpers as its agents because of their ability to
price discriminate.

The function ps(α) in Equation (2) is increasing in α. We define α̂ as that value of α that
satisfies ps(α) = pl:

α̂ ≡ (1− φ)
¡
T
H
− 1¢ pl

(φph − pl)
> 0. (3)

A necessary and sufficient condition for α̂ < 1 is that φ > T/ (T +DH). This inequality states
that scalpers capture a large amount of the surplus – their transactions costs are low. If α = α̂,
the monopoly is indifferent between selling all the tickets to scalpers or to ordinary buyers. We
assume that in the case of this tie, ordinary customers obtain all the tickets; the monopoly does
not sell to scalpers if α ≤ α̂.
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2.3 The first-period equilibrium

To determine the effect that scalpers have on the equilibrium, we first consider the equilibrium
where scalpers are not permitted in the market and then the one in which they may enter. When
scalpers are not able to enter, we show the high-type buyers play a coordination game in the
first period for a range of prices. The game has two equilibria: Either no high types or all
high types buy in the first period. We define the “limit price,” p̄, as the supremum of prices
at which there exists an equilibrium where all high types buy in the first period. We define
the “choke price,” p̃, as the infimum of prices at which there exists an equilibrium where no
high types buy in the first period. We show that the limit price in this setting is higher than
the choke price. The buyers’ behavior is indeterminate for any first-period price that satisfies
p̃ < p1 < p̄. Consequently, the monopoly is not able to solve its profit maximization problem
because it cannot calculate expected quantity demanded over some range of prices.

We then consider the first-period equilibrium in the game where scalpers are allowed to
enter the market. With no loss in generality, we assume that scalpers do not enter in the first
period. If the monopoly were to set the first-period price low enough to induce the scalpers to
enter, they would buy all of the tickets. The monopoly can achieve the same level of profit by
selling all tickets to scalpers in the second period rather than in the first period. That is, it can
set the first-period price so high that no one buys in the first period, and then sell all the tickets
to scalpers in the second period. Selling all of the tickets to scalpers in the first period and
selling all of the tickets to them in the second period are equivalent. However, the monopoly
may do better by setting a first-period price that is high enough to discourage scalpers from
entering, but low enough to induce some high types to buy in the first period. The same kind of
argument shows that selling to low-types in the first period is a dominated strategy; therefore,
p1 > pl.

The possibility that scalpers enter creates a credible threat that high types will receive 0
surplus if they do not buy in the first period. For prices below the limit price, this threat
eliminates the equilibrium where no high types buy in the first period. Thus, the potential for
scalpers to enter – whether or not they actually appear in equilibrium – removes the first-period
indeterminacy for prices p̃ < p1 < p̄. However, for some range of prices there exists no
equilibrium with scalpers. The introduction of scalpers removes one source of indeterminacy
but creates another.
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Figure 1: The market without scalpers. (a) Benefit of waiting. (b) Demand

2.3.1 The market without scalpers

We start by examining the market without scalpers. High-type buyers decide whether to buy
in the first period or wait until the second period with the hope of obtaining a cheaper ticket.
We define the high-type buyer’s expected benefit of waiting (not buying in period 1) when
scalpers are excluded as B0(α). Hereafter the superscript “0” means that we assume that
scalpers are prohibited from entering the market. We also simplify our notation by adopting
the normalizations T = pl = 1, so ph = D + 1.

The expected benefit of waiting equals the consumer surplus, D, obtained from buying at
the lower price times the probability, θ, that the high-type buyer will be able to obtain a ticket
at this price in the second period. Because the equilibrium values in the second period are p∗2 =
pl = 1 and L∗ = L, the probability is θ = [1 − (1 − α)H]/[αH + L]. Thus, the expected
benefit to a high type from waiting is the increasing, concave function

B0(α) = D
1− (1− α)H

αH + L
. (4)

Figure 1a graphs B0(α). If the monopoly sets the low choke price p̃, and if all high types
wait to buy (α = 1), then the surplus from buying in this period equals the expected benefit of
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waiting: ph − p̃ = B0(1). If the monopoly charges the limit price, p̄, and if all high types buy
in this period (α = 0), then ph − p̄ = B0(0). Using these definitions and our normalizations,
we have

p̄ ≡ 1 + DE

L
> p̃ ≡ 1 + DE

E + 1
(5)

Any point on the B0(α) curve for 0 ≤ α ≤ 1 is an unstable Nash equilibrium.2

Using Figure 1a, we can derive the first-period demand correspondence in the absence of
scalpers, Figure 1b. At prices p̃ < p1 < p̄, there are two stable equilibrium demands in the
first period, Q = H (where α = 0) and Q = 0 (where α = 1) represented by the heavy vertical
lines, and an unstable equilibrium set of demands represented by a dashed curve. (Because
the set of unstable equilibrium demands is rising, this “demand curve” is upward sloping.) As
more agents buy in the first period, the chance of getting a ticket at the low price in the second
period diminishes, making it more attractive to buy early. An additional purchase in the first
period lowers both demand and supply by one unit in the second period. The net effect is to
lower the probability of being able to buy a ticket in the second period.

Thus, an increase in the measure of agents taking an action (buying or not buying), increases
the benefit to other agents of taking the same action. Due to this externality, buyers play a
coordination game. At any first-period price that satisfies p̃ < p1 < p̄, the high types’ expected
payoff is greater in the equilibrium where no one buys (α = 1). In the equilibrium where all
high types buy, their payoff is ph− p1, whereas their expected payoff is B0(1) > ph− p1 in the
equilibrium where no one buys.

Efficiency is greater in the equilibrium where all high types buy. In the absence of scalpers,
the only source of inefficiency is that some high types might end up without tickets. Only a

2 For example, consider point x in Figure 1a. This point corresponds to first-period price p1 (where p̃ <

p1 < p̄) and a fraction of high types who wait, α1, with B0(α1) = ph − p1. The proposed equilibrium pair
(p1, ,α1) is unstable: agents who believe that a positive measure of high types will deviate from the proposed
equilibrium would want to follow that deviation. (A “deviation” means that high types do the opposite of what
they are “instructed” to do in equilibrium; they wait when they are supposed to buy, or buy when they are supposed
to wait.) If the measure µ > 0 of high types deviate from the proposed equilibrium by buying rather than waiting,
then α = α1 − µ < α1. With this deviation, all high types prefer to buy in the first period. Similarly, if the
measure µ > 0 of high types deviate from the proposed equilibrium by waiting rather than buying, all high types
strictly prefers to wait. Thus, a small deviation from the proposed equilibrium generates an increasingly large
deviation in the same direction, until a boundary is reached (all wait or all buy). By a similar argument, the
two points (α, p1) = (0, p̄) and (α, p1) = (1, p̃) are unstable; in these cases, we need only consider “one-sided
deviations”.
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fraction θ < 1 of high types obtain tickets when α = 1, but they all obtain tickets when α = 0.
Figure 1b illustrates why we call p̃ the choke price and p̄ the limit price. In Figure 1b, p̃ is

the greatest lower bound of the set of prices at which there is a stable equilibrium demand of 0.
Similarly, p̄ is the least upper bound of prices at which there is a stable equilibrium in which all
high types buy.

We summarize the discussion above as:

Proposition 1 When scalpers are not permitted to enter the market, the equilibrium is indeter-
minate for first-period prices p̃ < p1 < p̄. At those prices there are two possible equilibria,
α = 1 and α = 0. Buyers prefer the first equilibrium but social welfare (efficiency) is greater
in the second. All high types buy in the first period if p1 ≤ p̃ and none buy if p1 ≥ p̄. The
second-period price is pl = 1, regardless of the first-period price.

2.3.2 The market with scalpers

Now we describe the equilibrium set when the monopoly is allowed to sell to scalpers in the
second period. By Lemma 1, the high type’s expected value of waiting is

B(α) =

(
B0(α) for α ≤ α̂

0 for α > α̂

)
, (6)

where α̂ is the critical value of α, above which the monopoly sells only to scalpers.
If α̂ ≥ 1 it never pays the monopoly to sell to scalpers (because α can never be greater than

1), so their ability to enter the market is irrelevant. The only interesting case is when α̂ < 1, as
we hereafter assume. We restate this inequality and Assumption 1 as:

Assumption 2 1
D+1

> H > 1−φ
φD
.

If α > α̂, high types who did not buy in the first period have to deal with scalpers in
the second period, and they capture no surplus. Figure 2a graphs B(α) under Assumption
2, and Figure 2b shows the related demand correspondence. The price p̂ is the solution to
ph − p̂ = B(α̂). Comparison of Figures 1a and 2a shows that when scalpers can enter the
market, the benefit of waiting is no longer an increasing function of the number of other high
types who wait. As α increases from below α̂ to above α̂ the action “wait to buy” changes
from a strategic complement to a substitute.
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Figure 2: The market with scalpers. (a) Benefit of waiting. (b) Demand.

If scalpers can enter the market, then α = 1 is not an equilibrium for prices p1 ≤ p̄. At any
price p1 < p̄, high types strictly prefer to buy in the first period rather than wait, regardless of
whether α = 0 or α = 1. Interior values of α (0 < α < 1) cannot be stable equilibria, for the
same reason as in the model without scalpers. At p1 = p̄, high types prefer to buy in the first
period if α = 1, and they are indifferent as to when they buy if α = 0. However, α = 0 is not
a stable equilibrium at p1 = p̄, because other high types would want to mimic the deviation if a
positive measure of buyers were to deviate by waiting.

We now show that there is no equilibrium where the first-period price satisfies p̄ ≤ p1 < ph.
If p̄ < p1 < ph, then in equilibrium it cannot be the case that α ≤ α̂. When p̄ < p1 < ph

and α ≤ α̂, the payoff of waiting is strictly greater than the payoff of buying in the first period.
High types who were “supposed to buy” would want to deviate by waiting. Similarly, it cannot
be the case that α > α̂ because then the payoff of buying is strictly greater than the payoff of
waiting. Again, if p1 = p̄ there is no stable equilibrium. If p1 = ph, on the other hand, the
only stable equilibrium is α = 1.

If the monopoly sets the first-period price at p̄ − δ (where δ is an arbitrarily small positive
number), it sells to all high types in the first period, and its total revenue from sales in both
periods is (p̄− δ) H + (T −H). If the monopoly sets the first-period price above ph, it sells
all tickets to scalpers in the second period, and obtains the revenue ps(1). Using Equation (2),
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we find that the monopoly prefers to sell to scalpers rather than setting p1 = p̄− δ if and only if

φ >
DH (L+H − 1) + L

L (1 +HD)
. (7)

We summarize these results in the following:

Proposition 2 Under Assumption 2, all high types buy in the first period if p1 < p̄ (the limit
price) and none buy if p1 ≥ ph. The monopoly prefers to sell all tickets through scalpers rather
than selling to high types at the limit price if and only if scalpers are sufficiently efficient; i.e.,
if and only if φ satisfies Equation (7).

2.4 A comparison

The monopoly’s expected demand function is indeterminate over a range of prices with or
without scalpers. However, the source of the problem is different in the two settings. In the
absence of scalpers, there are two equilibrium levels of demand for a range of prices p̃ < p1 < p̄.
At these prices, the relation between the monopoly’s profit and price is a correspondence rather
than a function. Consequently, we cannot determine the monopoly’s optimal first-period price.
With scalpers, the equilibrium, conditional on the price, is unique if it exists. However, for
a range of prices, p̄ ≤ p1 < ph, the equilibrium does not exist. For these prices, monopoly
profits are not defined. Nonetheless, we can show that the ability of scalpers to enter the market
increases monopoly profits, reduces high type consumer welfare, and has ambiguous effects on
efficiency.

Scalpers do not reduce and may increase monopoly profits. If the monopoly charges p̄− δ

and scalpers cannot enter, the supremum monopoly profit is p̄H +(1−H) when all high types
buy. When scalpers can enter, the monopoly is guaranteed approximately the supremum level
of profit, because the threat of scalpers eliminates the equilibrium where all high types wait. If
φ satisfies the inequality (7), the monopoly does even better by selling to scalpers.

Scalpers reduce consumer welfare. We noted in Proposition 1 that consumer welfare with-
out scalpers is greatest in the equilibrium where all high types wait (α = 1). Their surplus
is smallest when the monopoly charges slightly less than p̄ and all high types buy in the first
period. If the inequality (7) is not satisfied, the monopoly can charge (approximately) p̄ and
eliminate the equilibrium α = 1. Consumers get the minimum payoff they would have received
in the absence of scalpers. If the inequality (7) is satisfied, consumers receive zero surplus.
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Numerical experiments show that scalpers have an ambiguous effect on social welfare.
Scalpers can increase social welfare by allocating tickets, and they can decrease social wel-
fare if the transactions cost is high. If scalpers transactions cost is high and the excess demand
for tickets is low (so that the social benefit of allocating tickets is small) scalpers reduce social
welfare. With low transactions costs and large excess demand, they increase social welfare.

3 The model without common knowledge

Here we drop the assumption that high types have common knowledge about the value of a
ticket. The absence of common knowledge removes the indeterminacy and nonexistence of
equilibria described in the previous section. The change also makes the predictions of the
model more plausible. The first subsection describes how information changes over time. The
next two subsections analyze the buyers’ first period problem with and without scalpers, taking
as given the first period price.

In the absence of common knowledge about payoffs, the model without scalpers is a stan-
dard “global game”; Morris and Shin (2003) explain the techniques and the intuition of this sort
of game. Its key features are that agents receive private signals about payoffs, there exist values
of the unknown payoff-relevant parameter for which taking either action is a dominant strategy,
and actions are global strategic complements. The last assumption means that the advantage of
taking a particular action (e.g. buying a ticket in the first period) increases with the measure of
other agents who take the same action. These features (together with some technical assump-
tions) imply that there is a unique equilibrium in which agents take a particular action if and
only if their signal exceeds a certain level – a “threshold equilibrium”.

The model with scalpers does not satisfy the global complementarity assumption; in this
model we have a unique threshold equilibrium, but we cannot rule out the existence of other
kinds of equilibria. Two recent papers, Goldstein and Pauzner (2003) and Karp, Lee, and
Mason (2003), also relax the global complementarity assumption in a global games setting.
Goldstein and Pauzner (2003) show that in a model of bank runs there is a unique equilibrium
– a threshold equilibrium; Karp, Lee, and Mason (2003) show that when strategic substitutabil-
ity of actions is sufficiently strong there exists no equilibrium that is monotonic in the signal,
thus excluding threshold equilibria. These two papers and our model with scalpers thus pro-
vide three examples of the effect of relaxing the assumption of global complementarity in a
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global games setting. An appendix, available on request, compares these models and explains
why they reach different conclusions concerning the existence and uniqueness of threshold
strategies. This explanation is based on a comparison of the graphs of the payoff of taking a
particular action, as a function of the number of other agents who take this action. In none
of the models is this graph monotonic (i.e., global complementarity does not hold). A single
crossing property holds in Goldstein and Pauzner (2003) but not in the other two models.

3.1 The flow of information

Buyers do not know the true value of the ticket in the first period; each buyer has a private
assessment of the value. For example, buyers assess the quality of the performance based on
knowledge of the identity of the participants (the director, performers, team members). Buyers
do not know the exact assessment that others have made, but they know something about the
distribution of those assessments. In the second period, an important piece of information
becomes common knowledge. For example, potential customers read critics’ reviews, find out
which actors are in the cast, or learn the identities of playoff teams. When this information
becomes available, all buyers know the value of the ticket; they all know that all other buyers
know the value, and they know that others know that others know, ad infinitum.

Formally, the true quality of the performance is given by a parameter γ. The true value of a
ticket for type i is γpi, i = h, l. Before sales in the first period, and before observing a private
signal, high-type buyers have non-informative priors (i.e. a diffuse prior) on γ. Therefore,
before observing their private signal, these buyers think that the value of γ might be either so
high (or so low) that it is a dominant strategy for them to buy (or to wait) in the first period,
regardless of the actions of other buyers. These ranges of very high or very low signals are
called dominance regions.

Each high-type buyer receives a signal η about the quality of the performance (and hence
the value of the ticket); η is drawn from a uniform distribution:

η ∼ U [γ − �, γ + �],

where � is a measure of the amount of uncertainty or heterogeneity of information. The distri-
bution of η is common knowledge, but the value of the individual’s signal is private information,
and γ is unknown to all buyers. Whether the individual decides to buy or to wait and attempt
to obtain a cheaper ticket in the second period depends on the first-period price, the individual’s
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private signal, and this person’s beliefs about what other agents will do. Buyers do not regard
p1 as a signal about quality.

At the beginning of the second period, the true value of γ is revealed, and the fraction of
high types who waited, α, is also public information. Thus, the analysis of the second period
is the same as in the complete information game, except that γpi replaces pi, i = h, l. The
outcome in the second period depends on α and on whether scalpers can enter.

3.2 The buyers’ problem without scalpers

If scalpers cannot enter in the second period, buyers know that the second-period price will be
γpl = γ. In period 1, high-type buyers receive a signal, observe the first-period price, and
decide whether to buy.

Let π(η) be a decision rule; π(η) is the probability that a high type who receives the signal
η decides to wait (i.e., not buy in the first period). This class of decision rules includes mixed
strategies, but we show that the unique equilibrium decision rule is a pure strategy. If the
equilibrium decision rule is π(η), the fraction of high types who do not buy when the value of
the unknown parameter is γ is3

α = α (γ;π) =
1

2�

Z γ+�

γ−�
π(η)dη. (8)

If the value of the unknown parameter is γ, then the fraction α(γ;π) of high types wait,
and the payoff in the second period is γB0(a(γ;π)) ≥ 0. The posterior distribution of γ,
conditional on the signal η, is uniform over [η − �, η + �]. Given a signal η and given that the
buyer expects other high types to use the equilibrium strategy π, the expected value of waiting
is

V 0(η;π) =
1

2�

Z η+�

η−�
γB0(a(γ;π))dγ. (9)

The expected value of buying in the first period is ηph − p1 The advantage of waiting is the
difference in the expected benefit of waiting and the expected value of buying the first period:

A0(η, p1;π) = V 0(η;π)− ¡ηph − p1
¢
. (10)

3This expression is valid for values of γ more than � distance from the boundaries of the support of the prior
for γ. Although this qualification applies to the subsequent integrals in the text, we do not repeat it. However, we
are careful about these limits of integration in the proofs.
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The function π(η) represents a general strategy. We now consider a particular type of
strategy – a threshold strategy – that we denote Ik(η). This threshold strategy is a step function:

Ik(η) =

(
1 if η < k

0 if η ≥ k

)
. (11)

The parameter k is the threshold signal. If π(η) = Ik(η), then high types buy if and only if
they receive a signal greater than or equal to k, and the fraction of high types who wait is (using
Equation (8))

α (γ; Ik) =


1 if γ + � < k

k−γ+�
2�

if γ − � ≤ k ≤ γ + �

0 if k < γ − �

 . (12)

We use a variation of a proof in Morris and Shin (1998) to show that the unique equilibrium
decision rule π(η) is a step function Ik(η), and that the threshold k is unique. We characterize
the equilibrium value of k as a function of an arbitrary first-period price, p1, the amount of
uncertainty, �, and the other parameters of the model. We state the result in terms of functions ρ0

and '0, which depend only on exogenous parameters. The Appendix defines these functions.

Proposition 3 If scalpers are unable to enter in the second period and Assumption 1 holds,
there is a unique equilibrium to the game with uncertainty. In this equilibrium, high types buy
in the first period if and only if they receive a sufficiently high signal. That is, π∗(η) = Ik. The
critical signal k0∗is given by the formula

k0∗ = −'
0�+ p1
ρ0

; ρ0 < −1, '0 < 0. (13)

This threshold is an increasing function of the first-period price and a decreasing function of
the uncertainty parameter, �.

3.3 The buyers’ problem with scalpers

We now turn to the equilibrium where scalpers are allowed to enter in the second period. In the
second period, when the quality, γ, and the measure of high types who do not yet have tickets,
αH, are common knowledge, the equilibrium is the same as in Section 2. The monopoly
wants to sell to scalpers if and only if α > α̂, defined in Equation (3). Our assumption that
types’ willingness to pay is γph and γpl implies that α̂ is independent of γ (see equation (3)).
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For an arbitrary strategy π (η), Equation (8) gives the fraction of high types who wait. If
a high type receives a signal η and other high types use the strategy π, the expected value of
waiting is

V (η;π) =
1

2�

Z η+�

η−�
γB(a(γ;π))dγ. (14)

Equation (6) defines the function B (·). The expected advantage of waiting is

A(η, p1;π) = V (η;π)− ¡ηph − p1
¢
. (15)

Because B(α) ≤ B0(α) and the inequality is strict for α > α̂, it follows that A(η, p1;π) ≤
A0(η, p1;π) and that the inequality holds strictly for some values of η. High types wait in the
first period if and only if the value of waiting is positive. Therefore, for a given strategy π
and a given price p1, the potential entry of scalpers in the second period may increase first-
period sales. Thus, it is reasonable to expect that the ability of scalpers to enter causes the
first-period demand function to shift out. However, the potential presence of scalpers changes
the equilibrium decision rule π∗, so the comparison is not straightforward.

If π = Ik then α is given by Equation (12). In this case, using Equation (3) we have

α ≤ α̂⇐⇒ γ ≥ k + �(1− 2α̂) ≡ γ̂. (16)

When agents use the strategy Ik, high types who do not buy in the first period obtain positive
surplus in the second period (scalpers do not enter) if and only if the true quality exceeds a
threshold level γ̂. If γ is less than this threshold, many agents wait because they receive low
signals in the first period. Consequently, a large number of high types want to buy in the second
period. Therefore, the monopoly sells to scalpers so as to capture the potential surplus of the
remaining high types (less transaction costs).

Proposition 3 showed that when scalpers are prohibited from entering the market, the unique
equilibrium strategy is a threshold strategy. The threshold strategy has two reasonable charac-
teristics. First, it is monotonic in the signal: [π (η) − π (η0)]/[η − η0] has the same sign for
all η 6= η0. For example, if agents are willing to buy when they receive a particular signal,
they will also buy when they receive a higher signal. Second, the candidate is a symmetric
pure strategy: Agents who receive the same signal behave in the same way and they do not
randomize. The only other monotonic symmetric pure strategy reverses the inequalities, so
that π (η) = 0 for η ≤ k and π (η) = 1 for η > k. However, a simple calculation confirms
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that this alternative cannot be an equilibrium. Thus, Ik is the only candidate within the class of
monotonic symmetric pure strategies.

We have the following description of the equilibrium when scalpers are allowed to enter.
This description uses ' and ρ, functions of exogenous parameters defined in the Appendix.

Proposition 4 Suppose that scalpers are able to enter in the second period, Assumption 2
holds, and we restrict the equilibrium to be a member of the class of monotonic symmetric pure
strategies. That is, we assume that high types use threshold strategies. Under these assump-
tions, there exists a unique equilibrium threshold, k∗ (conditional on p1). In this equilibrium,
high types buy in the first period if and only if they receive a signal η ≥ k∗. The equilibrium
threshold k∗ is linear in p1 and �.

k∗ = −'�+ p1
ρ

; ρ < −1. (17)

When scalpers are allowed to enter the market, B(α) is nonmonotonic. This non-monotonicity
means that the proof used for Proposition 3 does not carry over to the case where scalpers are
permitted. We cannot rule out the possibility that mixed strategies exist, and therefore we
cannot show that the equilibrium is unique in this case.4 In contrast, when scalpers are prohib-
ited the equilibrium is unique (Proposition 3). When scalpers are permitted, we have a weaker
result: uniqueness within the class of threshold strategies.

3.4 The demand function

When the payoffs are not common knowledge (� > 0), the first-period demand function is piece-
wise linear. For prices above the choke price, α = 1, so demand is 0. For prices below the limit
price, α = 0, so demand is H.5 For intermediate prices, demand equals [1− α(γ; Ik)]H. The
function α (γ; Ik), given by Equation (12), is linear in k. The equilibrium value of k, given by

4The claim contained in Step b.i of the proof of Proposition 3 does not follow if the payoff function B(α) is
nonmonotonic. Thus, although the ability of scalpers to enter in the second period leads to a unique equilibrium
under common knowledge about payoffs, it may lead to nonuniqueness of equilibria without common knowledge.

5In this context, the choke price is higher than the limit price, as is always true for a standard demand function
– i.e. one with a negative slope. Note that this order is reversed when there is complete information, as in Section
2. (See the discussion of Figure 1b.) Our use of “choke price” and “limit price” is consistent, however. In all
versions of the model, there exists an equilibrium where all high types buy if the price is less than the limit price,
and there exists an equilibrium where no high types buy if the price exceeds the choke price.
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either Equation (13) or (17) depending on whether scalpers can enter, is linear in p1. Therefore,
the inverse demand is linear in p1 at intermediate prices. Solving for p1 in the equations α = 0
and α = 1 gives the limit price pL0 and the choke price pC0 when scalpers are not allowed to
enter:

pL0 =
¡
ρ0 −'0

¢
�− γρ0; pC0 = − ¡'0 + ρ0

¢
�− γρ0. (18)

(We obtain the limit and choke price when scalpers are allowed to enter by replacing ρ0 and '0

by ρ and '.) As � → 0, pL0 → pC0. That is, as the amount of uncertainty becomes small,
the first-period demand curve becomes flatter at prices above the limit price. In the limit as
�→ 0, demand is perfectly elastic at the limit price, which is −γρ0 when scalpers cannot enter
the market and −γρ when scalpers are allowed to enter.

We can compare these results to those in the model where high types have common knowl-
edge. Equation (5) gives the values of the limit and choke prices (p̄ and p̃) under certainty
when scalpers are prohibited from entering the market. For any price below p̄, there is an equi-
librium in which all high types buy in the first period. For any price below p̃, this equilibrium
is unique. Thus, p̄H + (1−H) is the monopoly’s supremum of the set of equilibrium payoffs
under certainty, when scalpers are prohibited. By charging p̃, the monopoly is guaranteed the
reservation level of profit p̃H + (1−H).

In order to compare the outcomes with and without common knowledge, we set γ = 1. We
have

Proposition 5 Suppose that scalpers cannot enter the market and that the monopoly knows
the true quality (γ). (i) Given a small amount of buyer uncertainty (� ≈ 0), the profit of
a monopoly that charges the limit price is higher than its reservation level under common
knowledge (−ρ0 > p̃), but lower than the supremum under common knowledge (−ρ0 < p̄). (ii)
Greater uncertainty (larger �) lowers the limit price, (ρ0 −'0 < 0).

Simulations suggest that the first part of Proposition 5 also holds when scalpers can enter, but
we have not been able to show this result analytically.

We also compare the limit prices in the models with and without scalpers:

Proposition 6 For a small level of uncertainty (� ≈ 0), the limit price when scalpers are al-
lowed to enter is higher than the limit price when scalpers are prohibited from entering:−ρ >

−ρ0.
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Under common knowledge, scalpers have no effect on the limit price, but they remove the
indeterminacy of the equilibrium (Proposition 2). The potential for scalpers eliminates the
possibility that sales will be low in the first period, but has no effect on the maximum equi-
librium level of profits unless scalpers actually enter in equilibrium. With an arbitrarily small
amount of uncertainty, the demand functions with or without scalpers are well defined, so there
is a unique equilibrium for a given price; the monopoly that knows γ faces no uncertainty about
the equilibrium. However, scalpers increase the limit price, thereby increasing profits under
limit pricing, at least for small levels of uncertainty (Proposition 6).

4 The monopoly’s problem with buyer uncertainty

For any first-period price, the buyers’ lack of common knowledge about the value of the ticket
induces a unique equilibrium if there are no scalpers, and a unique equilibrium within a re-
stricted class if there are scalpers. We continue to assume that buyers do not treat p1 as a signal
of quality.6 Proposition 7, below, shows that the monopoly’s optimal first period price is a
piece-wise linear function of γ. A monopoly that knows the value of γ can use the optimal
price; a monopoly who merely has beliefs about γ can use its subjective distribution to calculate
the optimal first period price. We first study the monopoly’s problem without scalpers, and then
with scalpers.

When scalpers are not permitted to enter, an increase in the number of high types who
do not buy in the first period increases the probability that high type will obtain a ticket in
the next period – regardless of whether there is uncertainty about payoffs. In this sense, the
“supply effect” of high types decisions always dominates the “demand effect”, in the absence
of scalpers. When scalpers are permitted to enter, the monopoly’s first period price determines
whether they actually enter in the second period. If they do not enter, high types’ probability
of obtaining a ticket in the second period is again an increasing function of the number of high

6In an alternative model, buyers think that the first period price contains information about quality (over and
above the information contained in the private signal), and the monopoly understands this belief. With this
alternative, the monopoly has an additional incentive in choosing the first period price, a desire to manipulate
information. This alternative is much more complicated than our model, and it would very likely lead to a
multiplicity of equilibria. In general, the requirement that the buyers have consistent beliefs about the monopoly’s
information is not strong enough to result in a unique equilibrium. Angeletos and Pavan (2003) study this kind of
a model.
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types who wait in the first period. If scalpers do enter, then high types obtain a ticket (from
scalpers) with probability 1, but they receive no surplus. With scalpers, and uncertainty about
payoffs, the effect of “waiting” therefore depends on the monopoly’s first period price. We
show how this price is related to the parameters of the model.

4.1 The monopoly’s problem without scalpers

Monopoly revenue is

R0 = (1− α)Hp1 + γ [1− (1− α)H] = (1− α)H(p1 − γ) + γ (19)

where α is given by (12) and k is given by (13). We need only consider first-period prices
between the limit and the choke price, i.e. prices that satisfy pL0 ≤ p1 ≤ pC0. Since all high
types buy at p1 < pL0, revenue increases over that range of prices. For p1 > pC0 first-period
demand is 0, so revenue is constant over that range.

For first-period prices strictly between the limit and the choke price, the monopoly revenue
is a concave quadratic function. Define p̆ (γ), a function of γ, as the price that maximizes R0

ignoring the constraints 0 ≤ α ≤ 1:

p̆ (γ) = 0.5 ((1− ρ) γ − (ρ+') �) . (20)

Because revenue is increasing at prices below the limit price and revenue is constant at prices
above the choke price, the monopoly that knows the value of γ sets p1 = pC0 if and only if
p̆ ≥ pC0. Using the definitions of p̆ and pC0, we can rewrite this last inequality as −[' +

ρ]/[1 + ρ] > γ/�. This equality is never satisfied, since ' < 0 and ρ < −1. Therefore, the
monopoly always makes some sales in the first period: It never sets the choke price.

In other words, the monopoly that knows the value of γ sets p1 = pL0 if and only if p̆ ≤ pL0,
and it sets p1 = p̆ if and only if p̆ > pL0. We can determine the optimal first period price
for the monopoly that has subjective beliefs about γ by using the fact that the fully informed
monopoly’s first order condition is piecewise linear in γ.

Using the definitions above, we summarize the summarize the monopoly’s optimal first
period price in the following proposition.

Proposition 7 Define the function

ζ ≡ 1.5ρ
0 − .5'0

.5 (ρ0 + 1)
> 0.
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This function is independent of � and γ, but it depends on all of the other parameters of the
model. The monopoly that knows γ uses the limit price (sells to all high types in the first
period) if the amount of uncertainty is small. It sets the price p̆ (sells to some, but not to all
high types in the first period) if the amount of uncertainty is sufficiently large. The optimal
first-period price is

p∗1 =

(
pL0 if ζ ≤ γ

�

p̆(γ) if γ
�
< ζ

)
, (21)

For the monopoly with subjective beliefs about γ, denoteE as the monopoly’s subjective expec-
tation operator conditional on the belief that γ ≤ �ζ, and denote P as the subjective probability
that γ ≤ �ζ. With these beliefs, the monopoly’s optimal first period price is

p∗∗1 = p̆(Eγ)P + (1− P )pL0. (22)

To illustrate that under reasonable circumstances the fully informed monopoly wants to
choose a price greater than the limit price, which induces some but not but not all high types
buy in the first period, we calculate the equilibrium value of α for the following:

Example 1 Let D = 1 = γ and E = .5 (i.e. the total number of potential buyers is 50 percent
greater than the number of seats). The value D = 1 and Assumption 1 imply that H < .5.
Figure 3 shows the equilibrium value of α for 0.1 < H < 0.5 and 0.1 < � < 0.4.

alpha 

0.2
0.4H0.2

0.4 epsilon

Figure 3: Equilibrium α without scalpers for D = 1 = γ, E = .5

The only possible source of inefficiency in this model (for γ > 0) is that some high types
might end up without tickets. The fraction of high types who do not buy tickets in either the
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first or the second period is α (1− θ), where θ is given by Equation (1) with s = 0 and L∗ = L.
The number of high types who do not obtain tickets is α (1− θ)H, and the expected social loss
for each ticket that goes to a low type rather than to a high type is γD. Therefore, the expected
social loss (the amount of inefficiency) is

Ω ≡ α (1− θ)HDγ = α

µ
1− 1− (1− α)H

E + 1− (1− α)H

¶
HDγ.

The social loss Ω is increasing in α.
For parameter values such that the monopoly limit prices, α = 0, the equilibrium is efficient,

so dΩ/d� = 0. However, a change in � changes the limit price and hence monopoly profit and
the welfare of high types. When the monopoly does not limit price, a change in � changes α,
leading to a change in efficiency:

Proposition 8 (i) For values of � small enough that they satisfy ζ ≤ γ/�, monopoly profit is
decreasing in � and welfare of high types is increasing in �. (ii) For values of � large enough
that they satisfy ζ > γ/�, the level of efficiency (social welfare) is decreasing in �.

4.2 The monopoly’s problem with scalpers

With scalpers, the monopoly’s revenue is7

R (p1) = p1 (1− α)H + γ [1− (1− α)H]max {ps(α), 1} (23)

= p1 (1− α)H + γmax
£
1− (1− α)H, φ

¡
1− ¡1− αph

¢
H
¢¤
.

The first term is the revenue from sales to high types in period 1, and the second term is the
revenue from sales to scalpers or to high and low types in period 2. The second line of the
equality uses the definition of ps in Equation (2). The equilibrium value of α, a function of p1,
is obtained using Equations (12) and (17).

Proposition 7 shows that the monopoly wants to limit price in the absence of scalpers when
� is small, and Proposition 6 shows that scalpers increase the limit price when � is small. With
scalpers, the monopoly is able to limit price, but it is not necessarily optimal to do so. Its profit
under the optimal policy is at least as great as it would be if it were to limit price. Consequently,
we have

7The definition of the equilibrium second-period price under scalpers, Equation (4) , shows that if both ph

and pl are scaled up by γ, then ps is also scaled up by γ. Therefore, we can factor out γ in the expression for
second-period profit.
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Corollary 1 For small �, the ability of scalpers to enter increases monopoly profit and reduces
welfare of high types.

The fully informed monopoly could use four types of strategies in the first period. It could
use the limit price or the choke price, pL or pC , in which case it either sells to all high types or
no high types. We define the entry price pE as the price that results in the number of first-period
sales that leaves the monopoly indifferent between selling to scalpers or directly to final buyers
in the second period. That is, pE is the price that induces α = α̂, as defined in Equation (3).
For pL < p1 < pE, there are some high types remaining in the second period, but too few for
the monopoly to want to use scalpers. For pE < p1 < pC , some high types buy in the first
period, but enough remain for the monopoly to want to use scalpers in the second period.

The complexity of the second-period revenue function makes it difficult to obtain analytic
results. However, the following example illustrates that when � is large it is optimal to sell
to some but not all high types in the first period, and to induce scalpers to enter in the second
period.

Example 2 Let D = L = 1, H = .4, and φ = .9. The high type’s willingness to pay is twice
the low type’s willingness, there are enough low types to exactly fill the venue, enough high types
to fill 40% of the venue, and the scalper captures 90% of the rent from price discrimination.
The monopoly uses the limit price if � < 0.12γ and sets p1 such that pE < p1 < pC if � > 0.12γ.
It is never optimal to use either the choke price or a price between pL and pE . For � = 0.182γ,
the monopoly payoff at the local maximum without scalpers is 1.21γ and the payoff at the local
maximum with scalpers is 1.28γ, a 6% increase in profit, so the monopoly induces scalpers to
enter. The fraction of high types who wait is α = 0.7.

5 Summary and conclusions

The presence of resellers may aid the monopoly provider of a nondurable good in several ways.
In a one-period market with full information, scalpers, touts, bucket shops, or other resellers
may enable a monopoly that cannot price discriminate to earn nearly the price-discrimination
level of profit. Scalpers allow the monopoly to effectively bundle the tickets for both types of
customers.

In a two-period model with common knowledge, the monopoly’s cannot solve its maxi-
mization problem because it does not know a portion of its expected demand function. This
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indeterminacy arises with or without scalpers, but the source of the problem differs. In the
absence of scalpers, there are two possible equilibrium outcomes for prices between the choke
and limit prices. Here, we cannot determine the monopoly’s optimal first-period price. With
scalpers, the equilibrium conditional on the price is unique if it exists. However, the equilib-
rium does not exist for a range of prices where monopoly profit is not defined.

With almost common knowledge of payoffs, there is a unique equilibrium for a given price
when scalpers cannot enter the market. If the amount of uncertainty is small but not zero (and
scalpers cannot enter), the monopoly wants to sell to all customers with a high willingness to
pay in the first period (i.e. to limit price). The resulting level of monopoly profit is greater than
its reservation level under certainty, but less than the highest possible profit under certainty.
Greater uncertainty lowers the monopoly’s limit price and benefits consumers. The ability of
scalpers to enter the market increases the limit price, increasing monopoly profits and reducing
consumer welfare, at least for small levels of uncertainty.

We identified a plausible circumstance (a small degree of heterogeneity of information)
where these laws benefit consumers without reducing efficiency. However, the model is suffi-
ciently complicated that other possibilities also arise. For example, if the amount of uncertainty
is sufficiently large and scalpers are prohibited, the monopoly sells to only a fraction of people
with high willingness to pay in the first period. This outcome is not socially efficient. If
scalpers are permitted to enter and their transactions cost is negligible, they are a near-perfect
agent for price discrimination so the outcome is approximately efficient. In this case, prohibit-
ing scalpers lowers social welfare.

In our model, the ability of scalpers to enter does not benefit consumers. This negative
result is a consequence of our assumption that scalpers capture all of the surplus when dealing
with buyers. If this surplus were shared, the potential entry of scalpers into the second period
market might benefit some consumers with high reservation prices.

The model with almost common knowledge provides richer and more plausible predictions
of monopoly behavior. The model also illustrates the manner in which the equilibrium outcome
changes when the assumption of global strategic substitutes is relaxed in a global games setting.
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6 Appendix:Proofs

Proof. (Lemma 1) In view of Assumption 1, p2 ≥ ph is never optimal, so we need only consider
second-period prices less than ph. At p2 < ph all high types try to obtain tickets from the
monopoly. If the monopoly sets p2 = pl its revenue in the second period is pl [T − (1− α)H]

and L∗ = L.
If p2 > pl, then L∗ = 0. If it is optimal to set p2 > pl then the monopoly must sell some

tickets to scalpers: s > 0. (Otherwise the monopoly revenues are less than phαH, which by
Assumption 1 is less than pl(T − (1− α)H), the level of revenue obtained by setting p2 = pl.)

If p2 > pl and s > 0, it must be the case that s > (1 − θ)αH. If the last inequality did
not hold, second period monopoly revenue is again less than phαH. Therefore, if it is optimal
for the monopoly to set p2 > pl, scalpers have tickets left over after selling to high types. In
other words, scalpers sell (1−θ)αH tickets to the high types who did not buy in the first period
and who were unable to obtain discounted tickets from the monopoly in the second period.
Scalpers sell their remaining tickets to low types.

The zero-profit condition for scalpers is therefore

φ
£
ph(1− θ)αH + pl (s− (1− θ)αH)

¤− p2s = 0. (24)

Substituting Equation (1) and L∗ = 0 into (24) and rearranging, we have

p2 = φph − φD (T −H)

s
(25)

Equation (25) shows that the price that is consistent with 0 profits for scalpers is an increas-
ing function of sales to scalpers, s. When the monopoly sells more tickets to scalpers and fewer
to high types, it increases the likelihood that scalpers will be able to sell to high types. Conse-
quently, scalpers are willing to pay more for a ticket. If the monopoly wants to sell to scalpers,
it would like to sell them all the remaining tickets. That is, if it is optimal to set p2 > pl, then
s = T − (1 − α)H is the optimal level of sales to scalpers. Substituting this value of s into
Equation (25) and rearranging gives equation (2).

We now need to show that the monopoly can achieve s = T − (1 − α)H by setting p2 =

ps (α). When L∗ = 0 and S scalpers and αH high types compete for tickets, the probability
that any individual obtains a ticket is [T − (1− α)H]/[S + αH], so the number of tickets that
scalpers obtain is

s =
T − (1− α)H

S + αH
S.
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When p2 = ps (α), S = ∞ is consistent with 0 profits for scalpers, and S = ∞ implies that
s = T − (1− α)H.

By setting p2 = ps (α) the monopolist is able to insure that scalpers capture all remaining
tickets. Obviously, if the monopoly is able to discriminate by selling directly to scalpers, it can
achieve the same outcome.
Proof. (Proposition 3) We prove the proposition in two parts. In part (a) we show that

there exists a unique equilibrium within the class of step functions and that k∗ is increasing in
the first-period price. In part (b) we follow an argument in Morris and Shin (1998)

Part (a): Within the class of equilibrium candidates of the form of Equation (11), there
exists a unique equilibrium.

Step (i): Substituting Equation (12) in Equation (10), with π = Ik, we learn that A0 > 0

for sufficiently small η and A0 < 0 for sufficiently large η.
Step (ii): Next we establish that

∂A0

∂η
< 0. (26)

To obtain this inequality, we consider the three cases where η < k− �, k− � ≤ η ≤ k+ �, and
k + � < η. For each of these cases, a straightforward calculation (details omitted) establishes
that ∂A0/∂η < 0. Since a buyer waits if and only if A0 > 0, Equation (26) implies that the
optimal decision rule of a high type is to buy if and only if that person receives a sufficiently
high signal, given that the person believes that other high types are buying if and only if they
receive a sufficiently high signal.

Step (iii): Next we show that there is a unique solution to the equation A0(k, p1; Ik) =

V 0(k; Ik) −
¡
kph − p1

¢
= 0. That is, there is a unique value of k such that Ik is the optimal

decision rule for a high type, when all other high types use Ik. Integrating the expression in
Equation (9) we obtain

V 0(k; Ik) = Z0k +'0� (27)

Z0 = D

µ
1− ln (H + L) +

1− L

H
ln (H + L)− lnL

H
(1− L−H)

¶
'0 =

D

H
[2H + (H + 3L− 1) (lnL− ln (L+H))

+
2

H
(1− L)L (ln(L+H)− lnL)−H]. (28)

Because this function is linear in k, A0 is linear in k, and there exists a unique solution to
A0(k, p1; Ik) = 0.
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Step (iv) We use Equation (27) to write

A0(k, p1; Ik) = ρ0k +'0�+ p1, (29)

ρ0 ≡ (1− L−H) [ln (L+H)− ln(L)]
H

D − 1 < −1

Since 1 < L+H (there are more high and low type buyers than there are seats), ρ < 0 so A0 is
strictly decreasing in k. Therefore, k∗, the unique solution to A0(k, p1; Ik∗) = 0 is increasing
in p1.

(Step v) We want to show that '0 < 0. The formula above for '0 implies that d'0/dD =

−Eω/H2, where (using L = E + 1−H)

ω ≡ (2 + 2E −H) (ln(E + 1)− ln(E + 1−H))− 2H.

d'0/dD has the opposite sign as ω and '0 = 0 when D = 0. Therefore, in order to show that
'0 < 0 for D > 0, it is sufficient to show that ω > 0. Using the definition of ω, we see that
ω = 0 for H = 0. Therefore, it is sufficient to show that ω is increasing in H. We have

dω

dH
=

ϕ

−E − 1 +H
ϕ ≡ E ln (E + 1)−E ln (E + 1−H) + ln (E + 1)− ln (E + 1−H)

−H ln (E + 1) +H ln (E + 1−H)−H.

Since −E − 1 +H < 0, it is sufficient to show that ϕ is negative for H > 0. Because ϕ = 0
when evaluated at H = 0, it is sufficient to show that ϕ is decreasing in H. We have

dϕ

dH
= ln (E + 1−H)− ln (E + 1) < 0.

Part (b) Here we summarize the argument in Morris and Shin (Morris and Shin 1998) that
shows that Ik is the unique equilibrium.

Step (i) (This is Lemma 1 in (Morris and Shin 1998).) For any two strategies π (η) and
π0 (η) such that π (η) ≥ π0 (η), we have α (γ;π) ≥ α (γ;π0) from Equation (8). Since B (α) is
an increasing function, we conclude that V (η;π) ≥ V (η;π0).

Step (ii) (This argument is the last part of Lemma 3 in (Morris and Shin 1998).) Given any
equilibrium π (η), define the numbers η̄ and η̃ as

η̄ = sup {η | π (η) > 0}
η̃ = inf {η | π (η) < 0} .
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By these definitions,
η̃ ≤ η̄, (30)

which is Equation 6 in (Morris and Shin 1998). By continuity, when the signal η̃ is received,
the advantage of buying must be at least as high as the advantage of waiting, so A(η̃;π) ≤ 0
(Equation 7 in (Morris and Shin 1998)). Since Iη̃ ≤ π, Step (b.i) implies that A(η̃; IL) ≤
A(η̃;π) ≤ 0. From Step (a.iv) we know that A0(k, p1; Ik) is decreasing in k and that k∗ is the
unique solution to A0(k, p1; Ik) = 0. Thus, η̃ ≥ k∗ (Equation 8 in (Morris and Shin 1998)).
A symmetric argument shows that η̄ ≤ k∗. Thus, η̄ ≤ η̃. Given this inequality and Equation
(30), η̄ = k∗ = η̃. Thus, Ik is the unique equilibrium.
Proof. (Proposition 4) Step (i) (Existence of threshold equilibrium.) By assumption, we

have restricted the set of possible equilibria to be in the set of threshold strategies. We explained
in the text why it cannot be an equilibrium threshold strategy to wait when the signal is high.
Consequently, we need only to show that there exists a threshold strategy in which agents wait
if the signal is low. That is, if a particular high type believes that all other high types are using
strategy Ik, the agent wants to buy if and only if that person receives a sufficiently high signal.

To demonstrate this claim, we study the function A(η, p1; Ik) over three intervals: η < γ̂−�,
η > γ̂ + �, and γ̂ − � ≤ η ≤ γ̂ + �. Although the function B is discontinuous, the function
A involves the integral of B and is therefore continuous. If η < γ̂ − �, then V (η; Ik) = 0 so
A(η, p1; Ik) = −(ηph− p1), which is positive for sufficiently low η and is strictly decreasing in
η. In the second region, where η > γ̂+ �, B(α(γ; Ik) = B0(α(γ; Ik)) for all possible values of
γ. Therefore over this region A(η, p1; Ik) =A0(η, p1; Ik). In the proof of Proposition 3.a.i (see
Equation (26)) we showed that this function is decreasing in η and is negative for sufficiently
large η. Finally, in the third case where γ̂ − � ≤ η ≤ γ̂ + �, we know that

A(η, p1; Ik) =
1

2�

Z η+�

γ̂

B0(α(γ; Ik))dγ −
¡
ηph − p1

¢
,

where the lower limit of integration is γ̂ rather than η − � because B = 0 for γ < γ̂. We
conclude that

∂A

∂η
= B0(α(η + �; Ik))− ph < B0(1)− ph < 0,

where the first inequality follows from the monotonicity of B0 in α, and the monotonicity of α
in γ. The second inequality follows from the definition of B(1). Thus, we have shown that
the optimal response to the strategy Ik is to buy if and only if the signal is sufficiently large.
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Step (ii) (Uniqueness of threshold equilibrium.) Now we show that there is a unique solu-
tion to the equation A(k, p1; Ik) = V (k; Ik)−

¡
kph − p1

¢
= 0. From Equation (16), we know

that
1 > α̂ > 0⇐⇒ k − � < γ̂ < k + �.

Since the first pair of inequalities is true by assumption, we know that k − � < γ̂ < k + �.
Therefore

A(k, p1; Ik) =
1

2�

Z k+�

γ̂

B0(α(γ; Ik))dγ −
¡
kph − p1

¢
. (31)

For the purpose of comparing the results in the case with and without scalpers, we replace
the lower limit of integration with

γ̂ = k + �− 2�β; β ≡ (1− φ)
1−H

H (φD + φ− 1) (32)

and we rewrite the integral in Equation (31) as

1

2�

Z k+�

k+�(1−2β)
B0(α(γ; Ik))dγ = '�+ Zk (33)

where

' =
−D
H2

[H lnL+H2 ln (Hβ + L)− 2L ln (Hβ + L)−H ln (Hβ + L)− 2L2 lnL
−3LH lnL+ 2Hβ −H2 lnL+ 2L2 ln (Hβ + L) + 2L lnL− 3H2β +H2β2

+3HL ln (Hβ + L)− 2HLβ]

Z = D

µ
1

H
(−1 + L+H) lnL+

1

H
(−L−H + 1) ln (Hβ + L) + β

¶
Since γ̂ > k− �, it must be the case that β < 1. Also, if we set β = 1 rather than the value

given in Equation (32), Equation (33) gives the expected benefit of waiting in the absence of
scalpers. We use these facts below.

Substituting Equation (33) into (31) and noting that ph = D+1, we find that the advantage
of waiting is

A(k, p1; Ik) = '�+ ρk + p1 (34)

ρ = Z −D − 1

Because A varies linearly with ρ, there is a unique value of k that solves A(k, p1; Ik) = 0.
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(iii) Finally, we need to show that ρ < −1. We know that ρ is a function of β and that
ρ|β=1 = ρ0 < −1 by Proposition 2. We know that dρ/dβ = D[1 −H +Hβ]/[Hβ + L] > 0

because H < T = 1. Since β < 1, we conclude that ρ < ρ0 < 1.
Proof. (Proposition 5): (i) We first show that −ρ0 > p̃, where p̃ = D + 1−D/[H + L]

(using Equation (5)). We know that

−ρ0 − p̃ =

µ
− (1− L−H)

ln (H + L)− lnL
H

− 1 + 1

H + L

¶
D

= D
L+H − 1

H
ψ;

ψ ≡
µ
ln

H + L

L
− H

H + L

¶
.

Next, we treat ψ as a function of H, and use the facts that ψ(0) = 0 and dψ/dH = H/(H +

L)2 > 0 to conclude that ψ (and thus −ρ0 − p̃) is positive for all H > 0.
We now show that −ρ0 − p̄ < 0, where p̄ = D(L + H − 1)/L + 1 (using Equation (5)).

We note that

−ρ0 − p̄ =
DE

HL
υ

υ ≡ L ln (H + L)− L lnL−H.

Again, we treat υ as a function of H and use the facts that υ(0) = 0 and dυ/dH = −H/(H +

L) < 0 to conclude that υ (and thus −ρ0 − p̄) is negative for all H > 0.
(ii) Finally, we need to show that ρ0 −'0 < 0. Using the formulae for ρ0 and '0 we have

ρ0 −'0 =
τ

H2

τ ≡ 2DE (−H + 1 +E) (ln (E + 1)− ln (E + 1−H))−H2 − 2DEH.

Thus it is sufficient to show τ < 0. At D = 0 it is obvious that τ < 0, so it is sufficient to show
that dτ/dD < 0. We have

dτ

dD
= 2Eς

ς ≡ (1−H +E) (ln (E + 1)− ln (E + 1−H))−H.

Thus, it is sufficient to show that ς < 0. Since ς = 0 when H = 0, it is sufficient to show that
ς is decreasing in H. We have

dς

dH
= ln (E + 1−H)− ln (E + 1) < 0.

30



Proof. (Proposition 6): We already established the inequality ρ < ρ0 in the proof of
Proposition 4.
Proof. (Proposition 7): Equation (21)merely restates the result in the paragraph preceding

the proposition. Thus, we need only confirm that the critical ratio (1.5ρ0−.5'0)/[.5 (ρ0 + 1)] >

0. The denominator is negative because ρ0 < −1 from Proposition 3.a.iv. Since '0 < 0, we
know that 1.5ρ0 − .5'0 < 1.5ρ0 − '0 < ρ0 − '0. In the proof of Proposition 5.ii, we con-
firmed that ρ0 − '0 < 0. Thus, both the numerator and the denominator or the critical ratio
are negative, so the ratio is positive.
Proof. (Proposition 8): (i) Because ρ0 −'0 < 0 and given the definition of the limit price

(Equation (18), the limit price decreases with �. Combining this fact and Proposition 6, we
confirm part (i).

(ii) For small values of � such that [1.5ρ− .5']/[.5 (ρ+ 1)] > γ/�, we know from Proposi-
tion 6 that the monopoly uses the price p̆ = 0.5 [(1− ρ) γ − (ρ+') �]. Substituting this price
into Equation (13) and then substituting the result into Equation (12), we determine that the
equilibrium level of α is

α∗ = −1
4

'�+ γ + γρ− 3�ρ
�ρ

. (35)

Using this equation and previous definitions, we find that

dα∗

d�
=
1

4
γ
1 + ρ

�2ρ
> 0,

where the inequality follows because ρ < −1. Since an increase in � leads to an increase in the
equilibrium number of high types who wait (α∗), efficiency falls.
Proof. (Corollary 1): For small �, the monopoly limit prices in the absence of scalpers

(Proposition 6). With scalpers, it is feasible to limit price, and scalpers increase the limit price
(for small �) by Proposition 5. Therefore , scalpers strictly increase monopoly profits when �

is small.
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