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Abstract
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with climate change. The difficulty of analyzing models with non-constant discounting
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to numerically obtain a Markov Perfect Equilibrium for an optimal control problem with
non-constant discounting. The software is available online. We illustrate the approach by
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1 Introduction

Recent research on models with non-constant discount rates explores the causes of non-constant
discounting, examines how agents with non-constant discount rates behave, and attempts to de-
termine empirically whether discount rates change with the planning horizon. Non-constant
discounting (hereafter “NCD”) increases the complexity of dynamic models, making their anal-
ysis more difficult. Numerical methods have proven useful in many areas of economics, both
to solve old problems and to suggest new ones. Numerical methods can be similarly useful
in NCD models. Here we introduce and illustrate a numerical package that solves a fairly
general NCD model. Our model is stationary; in particular, it has an infinite horizon. This
kind of model has an “incomplete transversality condition”, a feature that also occurs in some
differential games, but not in standard optimal control problems. Our numerical approach must
confront this feature. We illustrate our methods by examining the extent to which a decision
rule induced by NCD is observationally equivalent to a decision rule associated with a constant
discount rate. We also calculate the loss in steady state welfare resulting from the inability to
make binding commitments.

The rest of this Introduction explains why NCD may be an important feature in economic
problems, and we explain what we mean by the “solution” to such a model. We review the
reason for the incomplete transversality condition, and discuss how this feature complicates the
analysis of NCD problems. We then explain the importance of the question of observational
equivalence between models with constant versus non-constant discounting. In the process, we
discuss some of the relevant literature; Groom, Hepburn, Koundouri, and Pearce (2005) provide
a recent review of much of this literature.

The resurgence of interest in NCD in recent years is due largely to its application in be-
havioral economics, where it has been used to explain anomalies such as apparent reversals in
an individual’s preferences (Rabin 1998). This context involves a relatively short, or at least
finite, period of time, such as the life of an individual. However, NCD is also important for
the study of long-lived environmental problems, such as greenhouse gasses (GHGs), where it
is reasonable to use an infinite horizon.

Our interest in NCD arises from these kinds of natural resource/environmental problems.
Constant discounting at a non-negligible rate makes the possibility of extremely large damages
in the far distant future irrelevant to current actions. Constant discounting at a negligible rate
causes current generations to save too much for (possibly richer) future generations (or, for
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example, to spend too much on GHG abatement). NCD, with a discount rate that approaches a
very low level, provides a balance that takes into account legitimate reasons for impatience in
the near to middle term, while still giving non-negligible weight to welfare in the distant future
((Chichilnsky 1996), (Li and Lofgren 2000), (Heal 2001)).

There are several reasons why NCD might be reasonable. Introspection provides a jus-
tification for NCD in the context of long-lived environmental/natural resource problems We
are able to make a distinction between our children and our grandchildren. Ignoring for the
moment possible differences in wealth, we might have a pure rate of time preference that favors
the former over the latter. It is less likely that we would distinguish between the welfare of the
10’th and the 11’th future generation, suggesting that our pure rate of time preference falls over
long time spans. The longest financial instruments mature within 30 or 40 years, so we cannot
rely on markets to reflect a declining discount rate over long spans of time.

A second justification for NCD is that there exists a “correct” constant discount rate, but
the decision-maker has only a probability distribution for this parameter. If the decision-maker
maximizes the expected value of a payoff, using the subjective distribution of the discount rate,
the resulting maximization problem involves a discount rate that falls over time. ((Azar 1999),
(Dybvig, Ingersoll, and Ross 1996), (Weitzman 2001)). Equivalently, if the decision-maker
maximizes a convex combination of the payoffs of two or more agents with constant discount
rates, the discount rate to the resulting problem falls over time (Gollier and Zeckhauser 2005).
A fourth justification for NCD involves uncertain growth and risk aversion (Gollier 2002a),
(Gollier 2002b).

Some decision problems, such as those that involve a large sunk cost, can be modelled as
consisting of a single choice. Once a nuclear power plant is built, it is unlikely to be de-
commissioned before its lifetime has expired. The undiscounted future costs of disposing of
spent fuel may be of the same order of magnitude as the current construction costs, so the
discount rate(s) are critical in determining the cost-benefit ratio of the construction project.
However, once the trajectory of discount rates is chosen, the computation of the cost-benefit
ratio is standard.

Other problems require a sequence of decisions, leading to a sequence of costs and re-
wards. Efforts to control climate change involve abatement costs and possible benefits (from
reduced climate-related damages) over many periods. NCD qualitatively changes these kinds
of dynamic problems (rather than simply complicating a computation), because of the time
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consistency issue. With NCD, our willingness to transfers income (or costs, or utility) between
two future time periods depends on how far distant those periods are from the current period.
That distance decreases with time, so our willingness to make the transfer changes with calen-
dar time: the choice that is optimal from the standpoint of the current time is not optimal at a
future point in time.

In using a dynamic model to make policy recommendations, we could simply wish away
the time-consistency problem, by assuming that the decision-maker today can commit to a fu-
ture sequence of policy rules (or actions). However, it is not reasonable to think that today’s
decision-maker can make binding decisions for generations more than a century in the future.
The decision-maker can, however, influence the environment that future generations inherit,
thereby affecting the decisions that they choose to make. By adopting a Markov Perfect Equi-
librium (MPE) as the solution concept we strike this balance: the policy-maker in each period
chooses the action or decision rule for that period, understanding the effect their decision has
on future policy-makers.

In a finite horizon model, we would compute the MPE using backward recursion. When
each step of this recursion has a unique solution (as is the case in a broad class of problems),
the MPE is unique. Matters are more complicated when the horizon is infinite, since this
dynamic problem has an “incomplete transversality condition”. In (stationary deterministic)
dynamic models with constant discounting, the “transversality condition at infinity” in many
cases implies that the system asymptotically approaches a steady state. We are able to find
candidates for this steady state by finding the steady state of the system consisting of the Euler
Equation and the equation of motion for the state variable. For example, in the case of a
model with one state variable, this system, when evaluated at a steady state, comprises two
algebraic equations that jointly determine a (candidate) steady state and the value of the control
variable(s) at the steady state.

The MPE to the model with NCD satisfies a generalized Euler Equation. The two-equation
algebraic system that is obtained by finding the steady state of the (generalized) Euler Equation
and the equation of motion contains three unknowns: the steady state value of the state variable,
the control variable, and the derivative of the equilibrium policy rule with respect to the state.
The system is under-determined. Together with the requirement of local stability, it can be
used only to find an interval of candidate steady states.

This indeterminacy increases the importance of the numerical tool that we provide. Only in
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very special cases can we analytically solve dynamic optimization problems, even when these
use constant discounting. However, we can often learn something about the solution to those
problems by local analysis of the steady state; this analysis involves algebraic equations, and
does not require the solution to the control problem. In some differential games, the incomplete
transversality condition (resulting in the inability to identify a unique steady state) precludes this
kind of local analysis ((Tsutsui and Mino 1990), (Dockner, Steffen, Long, and Sorger 2000)).
However, in these single state variable differential games, as with optimal control problems with
constant discounting, we can use phase plane analysis to study the problem. For optimal control
problems with NCD (as in the differential game), the incomplete transversality precludes the
simple identification and subsequent local analysis of the steady state. Moreover, the presence
of a “side condition” to the MPE under NCD precludes the use of phase plane analysis (unlike in
a differential game model) ((Karp 2006)). Thus, numerical tools are arguably more essential for
studying optimal control problems with non-constant discounting, relative to their importance
in studying constant discounting problems or symmetric differential games.

We illustrate our numerical package by studying welfare under NCD, and examining the
observational (non-)equivalence between problems with NCD and constant discounting. In
some cases, e.g. when the payoff function is logarithmic in the control variable and the equation
of motion is linear, the affine MPE decision rule for the NCD problem is identical to the optimal
decision rule for some constant discount rate (Barro 1999). Observational equivalence means
that the qualitative properties of the problem with NCD can be studied by examining the simpler
control problem with constant discounting. The equivalence also means that it may not be
possible to empirically detect NCD. (The estimation of even a constant discount rate is a
challenging empirical problem.1) In another example, with quadratic payoff and linear equation
of motion, there is a linear MPE, and of course the solution to the control problem with constant
discounting is linear. In this case, there is not observational equivalence when the NCD is
“quasi-hyperbolic” (i.e. the sequence of discount factors is βδ, βδ2, βδ3...) (Karp 2005). Even
when observational equivalence does not hold exactly, it may hold approximately. Simulations
offer a means of assessing the the extent to the solution to a control problem under constant
discounting approximates a MPE to a problem under non-constant discounting.

1There is a burgeoning literature on estimating the parameters of dynamic optimization problems ((Rust 1994),
(Aguirregabiria and Mira 2002)). Early papers in this tradition (e.g. (Hansen and Sargent 1980)) discussed the
difficulty of estimating the discount factor in dynamic models. Most subsequent papers estimate other parameters
of the optimization problem, conditional on an assumed discount rate.
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The next section describes the optimization problem and the algorithm, and discusses the
role of the incomplete transversality condition. Section 3 explains how we tested the program.
It then considers a familiar optimal control problem, modified to include NCD. There we
discuss welfare under NCD, and the degree of observational equivalence between NCD and
constant discounting.

2 Numerical Methods

In this section, we develop a method to numerically solve a non-stochastic discrete time dy-
namic programming problem with NCD. We derive a quasi dynamic programming equation
(QDPE) for the control problem. The modifier “quasi” reminds the reader that in order to
obtain a MPE to the control problem under NCD, we need to solve that problem as a dy-
namic game amongst a sequence of decision-makers. Then we describe the numerical al-
gorithm used to solve the QDPE. The software to implement this algorithm is available at
http://www.mysmu.edu/faculty/tfujii/ncd/ncd.html. We then explain the problem of the incom-
plete transversality condition.

2.1 The optimization problem

It is instructive to consider first a standard autonomous optimal control problem in a discrete
time continuous state setting. Suppose that a decision maker wants to maximize a certain
objective function over time by choosing a control variable xt ∈ Ω ⊂ R in each period of
time t. The payoff she gets in each period is given by the reward function f(xt, St), where St is
the state variable for time t and St ∈ S =

£
S, S

¤
is the state space. The state variable follows

the equation of motion St+1 = g(xt, St); g is the transition function. Both the reward function
and transition function are bounded within the domain of interest.

The decision maker maximizes the following function by choosing {xt}∞t=0.

∞X
t=0

θtf(xt, St) s.t. St = g(xt, St), S0 = S,

where θt is the discount factor for period t. In the standard setting, the discount rate is a
constant, so that we can write θt = δt for 0 < δ < 1. Defining the maximum value of the above
summation as V (S), we write the dynamic programming equation under constant discounting:
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V (S) ≡ max
{xt}∞t=0

" ∞X
t=0

δtf(xt, St) s.t. St = g(xt, St), S0 = S

#
= max

x0
[f(x0, S) + V (g(x0, S))] . (1)

Now we relax the assumption that the discount rate is constant. Let the one-period discount
factor for time t be σt so that θt =

Qt
τ=1 στ . We also define θ0 ≡ 1. We assume that the one-

period discount factor becomes a positive constant after a finite time T . That is, σt = δ < 1

for ∀t ≥ T so that θt = θT δ
t−T for ∀t ≥ T . (By choosing T large, this model approximates

a model in which the discount rate approaches a constant only asymptotically.) The standard
problems corresponds to the case where T = 0. With quasi-hyperbolic discounting T = 1 and
σ1 = βδ where 0 < β < 1; the current generation discounts the next generation utility by the
factor of βδ, but each successive generation is discounted at a constant factor δ.

Under NCD, the decision-maker’s decision is not time-consistent in general. The value of
control variable xt for t > 0 which is optimal for the decision-maker at time 0 does not in
general equal the value of the control variable that she would want to choose at a later time.
This inconsistency stems from the non-constant discounting. For example, in the current period
(t = 0), the decision-maker compares the calendar time t+1 and t+2 using σt+1, but she uses
σt to make the same comparison in the next period (at t = 1).

We can obtain a MPE by solving this problem as a game amongst a succession of gen-
erations of policymakers. Each generation cares about future generations but not about past
generations. No generation can directly choose actions taken in the future, but each generation
can influence future actions by changing the value of the state variable that it leaves to future
generations. This situation can be viewed as a sequential game. We consider a symmetric Nash
equilibrium, in which each generation chooses a control rule that is the best response to future
generations’ control rules. Generations are symmetric insofar as each takes the current state
variable as given and each is followed by an infinite sequence of future generations. Since
the functions f (·) and g (·) are time-independent, we look for a stationary equilibrium control
rule. In the equilibrium, the problem of time-inconsistency is resolved because each generation
understands how its action affects future actions, via changes in the state variable. We obtain
the necessary equilibrium conditions to this problem using a straightforward generalization of
the methods in Harris and Laibson (2001), who considered the case where T = 1.
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2.1.1 The algorithm

We search for a differentiable control rule χ : S → Ω. The control rule is an equilibrium
control rule if no decision-maker in the infinite sequence of decision-makers wants to deviate
from it. The equilibrium control rule satisfies the following relationship for ∀S.

χ(S) = argmax
x0

∞X
t=0

θtf(xt, St) s.t. S0 = S, St+1 = g(xt, St), xt = χ(St) for ∀t ≥ 1.

(2)
EQ (2) states that χ(S) is the current decision-maker’s best response, under the belief that
future decision-makers will use the rule χ(S). This equation embodies the Nash equilibrium
assumption.

To emphasize the dependence of the value function on the (possibly non-unique) equilib-
rium control rule, χ, we write the value function as Wχ (S). Using the constraint St+1 =
g(χ(St), St), we have the following relationship:

Wχ(S) ≡
∞X
t=0

θtf(χ(St), St) s.t. S0 = S (3)

= f(χ(S), S) +
TX
t=1

θtf(χ(St), St) +
∞X

t=T+1

δθt−1f(χ(St), St)

= f(χ(S), S) +
TX
t=1

(θt − δθt−1)f(χ(St), St) + δ
∞X
t=0

θtf(χ(St+1), St+1)

= f(χ(S), S) +
TX
t=1

(θt − δθt−1)f(χ(St), St) + δWχ(S1)

Hence, we obtain the QDPE as follows:

Wχ(S) = max
x

f(x, S) +
TX
t=1

(θt − δθt−1)f(χ(St), St) + δWχ(S1)

s.t. S1 = g(x, S), St+1 = g(χ(St), St) for t ≥ 1 (4)

This equation is similar to EQ (1) except that EQ (4) has an extra term, the summation on the
right side. One way to solve EQ (1) is to use the collocation method and function iteration. To
see how our method works, it is helpful to review the standard setting with constant discounting.
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We start by guessing the value function V (S). We denote the initial guess by V (0)(S). Consider
a particular value of S0. Solving the maximization problem in EQ (1) yields the maximizing
value of the control variable x∗0 at S0. We can use this to “update” the value function. That is,
we let V (1)(S0) ← f(x∗0, S0) + V (0)(g(x∗0, S0)). In principle, if we do this for each possible
value of S0, we would have V (1)(S). Hence, we would be able to use V (1)(S) on the right hand
side of EQ (1) to again update the value function. We repeat this process until V (r)(S) and
V (r+1)(S) are close enough, where r denotes the round of iteration.

In practice, we cannot evaluate the value function at every possible value of S0. Instead,
we apply the collocation method, in which a set of K prescribed points s1, · · · , sK called
the collocation nodes is used to evaluate V (r)(si) for 1 ≤ i ≤ K in a fixed domain [S, S]
((Judd 1998), (Miranda and Fackler 2002)). The values of V (r) outside the collocation nodes
are approximated by a linear combination of N ≤ K known basis functions φn(S), so that
the approximant has the form of V̂ (r)(S) ≡

PN
n=1 cnφn(S), where the basis functions must be

linearly independent at the collocation nodes. The N coefficients c1, c2, . . . , cN are determined
by minimizing the residual at the collocation nodes. In the program, the minimization is done
by the ordinary least square method. When N = K, the approximant V̂ (r) takes the same value
as V (r) at the collocation nodes.

The collocation nodes could be evenly spaced over this domain, but it is known that cer-
tain approximants work better with Chebyshev nodes, which place more nodes closer to the
boundaries of the domain. Depending on the nature of the function to approximate, we can use
different types of approximants. In the following section we use Chebyshev nodes and cubic
splines. Cubic splines tend to perform well when approximating a function that has a portion
that may not be smooth, and when the order of the approximant is high. The program allows
the user to select Chebyshev polynomials as an alternative. The numerical results that we
report below are very similar to those obtained using Chebyshev polynomials.

The collocation method and function iteration described above do not directly apply to EQ
(4), because of the extra (middle) term. We need two approximants in our algorithm, one for
χ(·) and the other for W (·). Our approach starts by guessing the control rule at the collocation
nodes. Let sk be the k-th collocation node with sk < sk+1 for all k < K. The initial guess of
the control rule consists of x(0)1 , · · · , x(0)K . Given a choice of basis functions for the control rule,
we can then find the approximant χ̂(0) that exactly or approximately satisfy χ̂(0)(sk) = x

(0)
k .

Because we do not know W , we also need to guess this function. However, W (0) must be
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consistent with χ̂(0). To obtain W (0) we replace the infinite sum in the first line of EQ (3) by a
finite sum from 0 to time Tw, where Tw is a large number (i.e., much greater than T ). Letting
st be the value of the state variable at time t when the initial state is sk and the control rule χ̂(0)

is used, our guess of the value function at the collocation nodes is

W (0)(sk)←
TwX
t=0

θtf(χ̂
(0)(st), st) s.t. s0 = sk, st+1 = g(χ̂(0)(st), st).

Given the choice of basis functions for the value function, we then choose the coefficients of
the approximant to (exactly or approximately) satisfy Ŵ (0)(sk) = W (0)(sk) for all k. Having
the initial guess χ̂(0) and Ŵ (0), we start the iteration. We begin each iteration with χ̂(r) and
Ŵ (r) and update these functions during the iteration. We can evaluate the control rule at each
of the approximation nodes by maximizing the right hand side of the QDPE EQ (4), so that

χ(r+1)(sk) ← argmax
x

f(x, sk) +
TX
t=1

(θt − δθt−1)f(χ̂
(r)(skt ), s

k
t ) + δW (r)(sk1)

s.t. sk1 = g(x, sk), skt+1 = g(χ̂(skt ), s
k
t ) for t ≥ 1

We choose new coefficients of the approximant of the control rule to obtain the approximant
χ̂(r+1). Likewise, we can get Ŵ (r+1) by evaluating the value function at the collocation nodes
with the following equation, and finding the coefficients for its approximant:

W (r+1)(sk) ← max
x

f(x, sk) +
TX
t=1

(θt − δθt−1)f(χ̂
(r)(skt ), s

k
t ) + δW (r)(sk1)

s.t. sk1 = g(x, sk), skt+1 = g(χ̂(skt ), s
k
t ) for t ≥ 1

The iteration continues until χ(r+1) and χ(r) are close enough, and W (r+1) and W (r) are also
close enough. Our convergence criterion is

max
sk

©
χ(r+1) − χ(r),W (r+1) −W (r)

ª
≤ tol

where tol is a small positive value, the tolerance level. Our Matlab implementation of the
algorithm uses the CompEcon toolbox that accompanies Miranda and Fackler (2002). Fujii
(2006) contains a detailed discussion of our program.
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2.2 The steady state

We are often interested in the characteristics of the steady state S∗. We can numerically find the
steady state by solving for S in g(χ̂(S), S) = S, where χ̂ is the converged approximant of the
control rule. The value of the control variable at the steady state is simply x∗ = χ̂(S∗). Here,
in order to find the steady state we first need to approximate the solution to the entire problem.

In control problems with constant discounting, analysis of the steady state is much simpler.
There, we merely evaluate the Euler equation and the equation of motion at a steady state.
These are two algebraic equation, so their analysis, using numerical or qualitative methods, is
straightforward. We are not able to apply this approach to the model with NCD because of the
“incomplete transversality condition” to this problem.

The transversality condition, for the class of control problems that we are interested in, re-
quires that the state variable asymptotically approach a steady state. This requirement explains
why it makes sense to examine the steady state of the Euler equation and the equation of mo-
tion. With NCD, we show in Appendix A that the Euler equation evaluated at a steady state is
a T -th order polynomial in χ0∗:

f∗x + g∗x(f
∗
xχ

0∗ + f∗s )
TX
t=1

(θt − δθt−1)(g
∗
xχ

0∗ + g∗s)
t−1 + δ (f∗s g

∗
x − f∗xg

∗
s) = 0. (5)

In EQ (5) the subscripts x and s denote the partial derivatives, and ∗ denotes the value at the
steady state. For example, f∗x is ∂f(x,s)

∂x
evaluated at (x, s) = (χ(S∗), S∗).

EQ (5), together with the steady state condition of the equation of motion, S∗ = g(x∗, S∗),
comprise two equations in three unknowns, x∗, S∗, and χ0∗. In contrast, with constant dis-
counting (T = 0), the summation in EQ (5) vanishes, eliminating the unknown value χ0∗. With
constant discounting we have the standard Euler equation evaluated at the steady state,

f∗x + δ (f∗s g
∗
x − f∗xg

∗
s) = 0. (6)

EQ (6) and the steady state condition S∗ = g(x∗, S∗) comprise two equations in two unknowns,
which can be solved to identify steady state candidates with constant discounting.

With NCD, the necessary condition for asymptotic stability,

| g∗xχ0∗ + g∗s |< 1, (7)

can be used to restrict the range of candidate steady states. However, the two algebraic equa-
tions and the inequality identify a continuum of candidates, rather than a unique candidate or
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isolated (i.e., “locally unique”) candidates.
The economic explanation for the lack of (even “local”) uniqueness of the steady state is

essentially the same as in the differential game literature. In the steady state, the current
decision-maker needs to consider how a change in her decision, and the resulting change in
the state in subsequent periods, would change subsequent decisions, and the effect that these
changes would have on her payoff. (The subsequent decisions do not maximize the payoff of
the current decision-maker, so the envelope theorem cannot be invoked, as is done in control
problems with constant discounting.) Each decision-maker’s optimal choice depends on how
that choice will alter the decisions of her successors. This dependence holds at every point,
including at the steady state. Thus, the value of the steady state, S∗, depends on χ0 (S∗), as EQ
(5) shows.

We can obtain an analogous equation for the higher-order derivatives of the control rule
evaluated at the steady state. EQ (12) in Appendix B gives the second derivative of the control
rule at the steady state, χ00∗. We use this value to check the performance of the approximant,
but it does not assist us in identifying a finite set of candidate steady states. In principle, we
can also use these higher order derivatives to construct a Taylor approximation of the control
rule that drives the state to a particular steady state.

The approximated control rule may appear much smoother than the function actually is.
For example, consider a function h(z) = z + � sin( z

�2
) where � is a small positive number;

ĥ(z) = z approximates f(z) well because |h(z) − z| never exceeds �. However, ĥ0(z) does
not approximate h0(z) well, because |h0(z) − ĥ0(z)| = 1

�
| cos(z)| can be very large. The

QDPE does not explicitly involve the derivatives of the control rule. However, we can use the
Euler equation and its derivatives, evaluated at the steady state, to improve or to validate the
approximant, as discussed in the following section.

3 Illustration of the software

This section illustrates potential uses of the software. We first explain how we tested the
program, and discuss the fact that it always returns a unique solution (in our experiments). We
then apply the software to a canonical renewable resource problem. We use this problem as
a basis for discussing the observational (non-)equivalence between the model with NCD and
constant discounting.
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3.1 Testing the program

We tested the program using a linear-quadratic model with quasi-hyperbolic discounting. This
specification is convenient, because it admits a closed form solution for the linear equilibrium,
given in terms of a solution to a cubic equation (Karp 2005). We can compare the solution
returned by the program with this closed form solution in order to test the algorithm and the
code. To check the robustness of the results, we used the Chebyshev polynomials in addition to
the cubic splines.

Use of the linear-quadratic model also provides insight into the question of multiple equi-
libria. The incomplete transversality condition means that there exists an interval of candidate
steady states. We can identify this interval using the requirement of asymptotic stability, EQ
(7). For general functional forms, it is a simple matter to determine this interval numerically.
For the linear-quadratic problem we can determine the interval analytically. The steady state
to the linear equilibrium is a point in this interval.

In general there is an interval of values of the state that satisfy the necessary conditions for
optimality at a steady state, and that are asymptotically stable. As noted in Section (2.2), it is
possible to use the derivatives of the Euler Equation, evaluated at a steady state, to obtain higher
order derivatives of the control rule at the steady state.2 Those derivatives can be used to obtain
a Taylor approximation of the control rule that drives the state to a particular steady state. This
procedure would tell us nothing about the domain over which that particular control is defined.
We therefore attempted to identify these equilibria directly.

To that end, we wrote the program so that the user has the option of specifying the steady
state. The user is able to pick a point Su in the interval of candidates and require that this point
be a steady state to the control problem. By imposing the steady state condition g(χ(Su), Su) =

Su, we ensure that Su is the steady state. In addition, the user has an option to impose the steady
state Euler condition Eq (5) that specifies the (Markov perfect) equilibrium condition for the
first derivative of the control rule. Further, the user can check whether the (Markov perfect)
equilibrium condition for the second derivative of the control rule is approximately satisfied
using EQ (12).

Both the steady state condition and the steady state Euler condition can be expressed as a
2It is in theory possible to obtain higher derivatives of the control rule for the entire state space by solving

higher order derivatives of the Euler Equation. However, numerical solutions are difficult to obtain because the
expression generally involves the value of the state variable for the future periods.
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linear constraint on the coefficients cχ1 , c
χ
2 , · · · , cχN for the approximant of the control rule χ.

That is, from the steady state condition, we can find such a value of the control rule xu that
satisfies g(xu, Su) = Su. Thus, the coefficients must satisfy xu =

PN
n=1 c

χ
nφn(S

u). Likewise,
the steady state Euler Equation (EQ (5)) gives the value of χ0 at Su. Hence, the coefficients must
satisfy the following linear constraint: χ0(Su) =

PN
n=1 c

χ
nφ

0
n(S

u). When the user-specified
conditions are imposed, the coefficients are found by the constrained least squares method.3

The user also has the option of not specifying the steady state. When this option is used, the
program approximates the equilibrium control rule without special consideration to the steady
state. We then find the steady state using the approximant, i.e. by solving g(χ̂(S), S) = S. We
can then use the steady state condition and the steady state Euler condition (EQ (5) to validate
the approximant.

That is, under both options (with and without a user-specified steady state) we use the steady
state condition and Euler Equation, EQ (5). However, we use these two equations in different
ways. These conditions can be imposed with the user-specified steady state option, and they
are merely a validation tool when the program chooses the steady state. EQ (12) is always used
as a validation tool.

We know that for the linear-quadratic problem with quasi-hyperbolic discounting, the linear
equilibrium is defined over the entire real line (Karp 2005), but we have no information about
the domains of other equilibria.4 Therefore, if the user imposes a steady state other than the
value corresponding to the linear equilibrium, it is necessary to experiment with the state space.
It might be the case that a particular non-linear equilibrium is defined over only a small interval
in the neighborhood of the steady state corresponding to that equilibrium. Consequently, in
order to try to identify non-linear equilibria, it is necessary to experiment with different (e.g.
small) definitions of state space.

To reiterate, the purpose in writing the program with the option of a user-specified steady
state was to see if the algorithm returns a unique solution, or whether it can return many solu-
tions, each of which corresponds to a particular steady state. When the user does not specify

3It is also possible to impose EQ (12), but we dropped this option for two reasons. First, the higher order
derivatives directly derived from the approximants are in general not very reliable. Second, as there are more
linear constraints, it becomes more difficult to obtain reliable numerical results using constrained least squares.

4In the linear-quadratic symmetric differential game with one state variable, the linear equilibrium is defined
over the entire real line, but each non-linear equilibrium is defined over only a subset of the real line (Tsutsui and
Mino 1990).
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the steady state, the program always returns the linear equilibrium, independently of the starting
values that we use in the algorithm, and of the choice of the basis function. If the user speci-
fies the steady state to the linear equilibrium, the program (not surprisingly) returns the linear
equilibrium. If the user specifies a steady state within the candidate set (i.e., the points that are
asymptotically stable), but not equal to the steady state corresponding to the linear equilibrium,
there are two possibilities. If the user does not impose the steady state Euler condition (EQ
(5), the program converges to a highly non-linear control rule. However, if the user specifies
the steady state and also imposes the steady state Euler condition (as is appropriate, since this
conditions must hold in a MPE), the program fails to converge.

In summary, if the user specifies the steady state, the algorithm does not converge unless
the user happens to get the “right” steady state, or unless the user neglects the steady state Euler
conditions. The algorithm converges when a steady state is not imposed upon it. That is,
for these experiments, we find that our algorithm identifies a unique equilibrium. This finding
has no implications for the existence of multiple equilibria; it merely reports that our algorithm
returns a unique equilibrium. Perhaps this outcome should not be surprising. First, the linear
equilibrium is the only equilibrium function within the class of finite polynomials in S that is
defined over the entire real line.5 Second, recent years have seen the development of algorithms
to obtain MPE in dynamic games (e.g. Pakes and McGuire (1994)) which are designed to be
used to estimate parameters in Industrial Organization models. When authors of these and
related papers mention uniqueness, they note that although there may be multiple equilibria to
the games they study, they report that for their experiments their algorithm obtains a unique
equilibrium. We know of no theory that explains why these kinds of algorithms return unique
equilibria.

We repeated searches for multiple equilibria (employing the user-specified steady state op-
tion) using other functional forms, for which we are not able to identify any closed form equi-
librium. We did not find multiple equilibria. Thus, our algorithm has not proved useful for
exploring the multiplicity of equilibria. However, the fact that it returns a unique equilibrium
(in our experiments), and the fact that this equilibrium is the “natural” one (i.e. the linear
equilibrium of the linear-quadratic problem) makes the algorithm well suited for policy experi-
ments. The results discussed below allow the program to identify the steady state. (We do not
employ the user-specified steady state option.)

5The proof of this assertion, available on request, uses the Euler equation evaluated at the steady state, EQ (4).
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3.2 The renewable resource problem

This section considers a problem of renewable resource management taken from Miranda and
Fackler (2002) [page 250]. We use a problem whose solution (under constant discounting) is
readily available, in order to emphasize the role of NCD. A social planner manages a renewable
resource, a stock of fish. The social planner determines the harvest, x, at the beginning of the
period, and the fish stock grows according to the Schaefer growth function. The transition
function is

g(x, S) = α(S − x)(1− S − x

κ
),

where α is the intrinsic growth rate of the resource stock and κ is the carrying capacity. The
planner faces the inverse demand function x−γ , and the unit cost of harvest is a constant c. The
planner’s reward function is

f(x, S) =
x1−γ

1− γ
− cx.

The parameter values are: α = 4.0, κ = 8.0, γ = 0.5, c = 0.2 and δ = 0.9. Since costs are
stock-independent in this example, the optimal steady state under constant discounting depends
only on the discount factor and on the parameters of the growth equation, α and κ.

The maximum sustainable yield in this model is xMSY = (α−1)2κ
4α

= 4.5, and the cor-
responding stock level is SMSY = (α2−1)κ

4α
= 7.5. With constant discounting, the optimal

steady-state stock level S∗ and the corresponding harvest x∗ (when positive) are

S∗ =
κ(α2 − δ−2)

4α
= 7.3827 (8)

x∗ = S∗ − κ(α− δ−1)

2α
= 4.4938. (9)

When the discount factor is sufficiently small (δ ≤ α−1 = 0.25) the decision maker harvests
until the population is driven to extinction.

To solve the optimization problem/dynamic game, we use cubic splines and Chebyshev
nodes with N = K = 20, and implemented the program in Matlab. We let S = 2 and S̄ = 9.
The program stops when |χ(r+1) − χ(r)| < 10−5 and |W (r+1) −W (r)| < 10−5 are satisfied at
all the collocation nodes. Convergence was deemed achieved at that point. Figure 1 shows
the “benchmark control rule” for the benchmark case when the decision-maker has a constant
discount factor of δ = 0.9.
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Figure 1: The control rule under constant discounting

We illustrate the effect of NCD on the steady state values S∗ and x∗ using two one-parameter
sequences of single-period discount factors. The first sequence, S1(τ), sets T = τ and σt = δ2

for ∀t ≤ τ . The second sequence, S2(τ), sets T = 1 and σ1 = δτ+1. For example, for τ = 3,
S1(3) =

©
1, δ2, δ4, δ6, δ7, δ8, ...

ª
and S2(3) =

©
1, δ4, δ5, δ6, δ7, δ8, ...

ª
. The sequences S1(τ)

and S2 (τ) are identical for t ≥ τ , and the long run discount factor is always δ. For τ = 1 the
two (identical) sequences are a special case of quasi-hyperbolic discounting, with β = δ. The
two sequences thus provide a parsimonious extension of quasi-hyperbolic discounting. Under
both sequences, a larger value of τ implies more impatience.

For each discounting scheme, we solved the model for τ = 1, 2, 3, 4 and 5. In each case,
we obtained convergence. We also checked the values of χ0 and χ00 at the steady state. The
left-hand-side of EQ (5) and EQ (12) were on the order of 10−6 and 10−1, respectively. Thus,
when the program is free to determine the steady state, the Euler equation is almost exactly
satisfied at the steady state, and the derivative of the Euler equation is reasonably close to its
theoretical value.

Table 1 shows the steady state values for various discounting schemes. The first column
shows the discounting scheme. The second column shows the steady-state stock level; the third
column shows the steady-state control variable; and the fourth column shows the one-period
steady-state reward f(S∗, x∗). The fifth column χ0∗ shows the derivative of the control rule at
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the steady state. This value is used to confirm that the Euler equation holds at the steady state.
It is also useful for determining the effect of the state, on the control rule, in the neighborhood
of the steady state. The sixth column gives the constant discount factor, denoted δ∗ for which
the steady state under constant discounting equals the steady state under the discounting scheme
Sj(τ), j = 1, 2. The seventh column provides the derivative of the control rule, at the steady
state, under a constant discount factor δ∗.

Constant and non-constant discounting are observationally equivalent in the steady state. If
an econometrician knew (or estimated) the values of α and κ and observed the steady state value
S∗, it would be possible to use EQ (8) to calculate δ∗, a constant discount rate that supports S∗

as a steady state. We refer to δ∗ as the “observationally equivalent” discount rate, with the
understanding that “observational equivalence” holds at the steady state, but perhaps nowhere
else. Comparison of columns 5 and 7 show that in the neighborhood of the steady state, it
would be difficult to distinguish between constant and non-constant discounting, since the first
derivatives of the respective control rules are nearly the same.

The steady state reward is useful in studying the welfare effects of the inability to make
commitments under NCD. Recall that in our model, the discount factor becomes constant
after T periods, so in every case the long run one-period discount factor is δ. If the decision-
maker at time 0 was able to commit to future policies, she would solve a non-stationary control
problem with a changing discount rate. The long run effect of non-constant discounting during
the first T periods would be 0, so the steady state in this non-stationary control problem (with
commitment) equals the steady state in the control problem under the constant discount factor δ.
In the MPE the decision-maker is not able to commit to future policies, but she still discounts
far-distant payoffs using a factor δ. Therefore, the steady state welfare effect of the inability
to make commitments is equal to 1

1−δ times the difference in the steady state payoff flow under
commitment and under the MPE.

The largest difference between constant discounting and NCD occur for S2(5). For the
experiments reported in Table 1, the steady state stocks under NCD differ from the steady state
under constant discounting by (approximately) 10% or less (1− 6.60

7.39
= 0.106 9) and the steady

state payoff flows differ by less than 2% (1− 3.28
3.34

= 0.018). For these experiments, the steady
state stock effect of being unable to make binding commitments is moderate, and the steady
state welfare effect is small. However, column 6 of Table 1 shows that the observationally
equivalent discount factor, δ∗, is quite sensitive to NCD; there is a 33% difference between the

17



1 2 3 4 5 6 7

Discounting S∗ x∗ f(x∗, S∗) χ0(S∗) δ∗ χ̃0(S∗)

Constant 7.3827 4.4938 3.3410 0.8487 0.9000 0.8487

S1(1), S2(1) 7.2641 4.4773 3.3365 0.8411 0.8243 0.8406
S1(2) 7.2423 4.4733 3.3354 0.8395 0.8124 0.8393
S1(3) 7.2386 4.4726 3.3352 0.8392 0.8104 0.8391

S1(4) 7.2380 4.4725 3.3352 0.8391 0.8101 0.8391
S1(5) 7.2380 4.4725 3.3352 0.8391 0.8100 0.8391
S2(2) 7.1282 4.4487 3.3286 0.8344 0.7573 0.8331

S2(3) 6.9738 4.4064 3.3170 0.8281 0.6980 0.8262
S2(4) 6.7997 4.3491 3.3011 0.8225 0.6454 0.8196
S2(5) 6.6049 4.2753 3.2803 0.8176 0.5987 0.8173

Table 1: Steady state values for various sequences of discount factors

largest and smallest values.
To appreciate the importance of these differing magnitudes, consider the situation in which

we observe the steady state behavior of two decision-makers facing the problem in our example.
The first has a constant discount factor and the second uses NCD with S2(5). Suppose that
we incorrectly assume that they both have constant discount factors. If we knew all of the
parameters of the control problem except for the discount factor, we could use the steady state
behavior to infer the constant discount factor. For the first decision-maker (who actually does
have constant discounting), we would correctly infer the discount factor 0.9 and would conclude
that the steady state value of the fishery is 3.341

1−0.9 = 33. 41. Under the incorrect assumption that
the second decision-maker also has a constant discount factor, we would infer that the steady
state value of the fishery to her is 3.2803

1−0.5987 = 8. 174 2. These two values differ by a factor of
33.41
8.17

= 4. 09

Since the flow payoffs are nearly the same in the two settings, almost all of the difference
in the present discounted values is due to the difference in implicit discount factors (1−0.5987

1−0.9 =

4. 01). Consequently, if we used the estimated discount factors to estimate the shadow value of
the stock at the steady state, the two would also differ by a factor of approximately 4. Here, by
incorrectly imputing a constant discount factor to a decision-maker who has NCD, we seriously
underestimate the shadow value of the resource. This underestimation occurs even though the
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observed (steady state) behavior of the agent is close to that of a different agent who does have a
constant discount rate. The stock’s shadow value (or some other function related to the solution
to the optimization problem) can be important in policy analysis. For example, it can be used
to assess the efficiency of an investment that protects the fishery. Our example here shows that
incorrectly attributing constant discounting to a decision-maker can lead to substantial mistakes.

As τ increases, the future is discounted more heavily, causing the social planner to harvest
more in the current period, leading to a lower steady-state stock. S2 discounts the near future
more heavily than S1. Consequently, the steady-state stock is lower for S2 (τ) than for S1 (τ).
With S1, the impact (on the steady state) of increasing τ diminishes quickly, because the change
(resulting from higher τ ) occurs ever further in the distant future. In contrast, with S2 an
increase in τ causes a significant decrease in the short run discount factor; in this case, the
impact of increasing τ does not diminish quickly.

Figure 2 compares the control rules for various discounting schemes, relative to the bench-
mark. The horizontal axis is the stock level and the vertical axis is the difference between the
control rule for each discounting scheme and the benchmark control rule. The figure shows
that the largest difference in behavior, under different discounting schemes, occurs far from the
steady state. This result is reasonable, because the long run discount rate is the same under
all schemes, but the short run discount rate is much higher under NCD (in our examples). In
addition, an increase in τ has a small effect under S1, but a substantial effect under S2.

Constant and non-constant discounting are observationally equivalent in the steady state.
(Even in that case, we noted above that welfare and policy implications can be very different
under constant and non-constant discounting.) Outside the steady state, observational equiv-
alence holds in special cases, but it is unlikely to hold generally. For example, in the linear-
quadratic model, the linear control rule under NCD requires two parameters, the slope and the
intercept. In general, it is not possible to choose a constant discount rate that leads to a control
rule with the same values of the slope and intercept.

For any empirical problem, model parameters are estimated with noise. It may therefore be
more interesting to know whether the control rule under NCD is close enough to a control rule
under constant discounting, that the difference between the two cannot be distinguished from
estimation error. Our software provides a means of assessing this possibility.

To illustrate how we might perform this assessment, for each of nine NCD trajectories in
Table 1 we solved the control problem using the constant “observationally equivalent discount
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Figure 2: Control rule for the various discounting schemes. Vertical axis measures the
difference from the benchmark control rule (with a constant discount factor of δ = 0.9
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Figure 3: Relative difference in the control rule between non-constant discounting and the
“observationally equivalent” discount rate.
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rate” (given in column 6 of the table). We took the difference between the value of the control
rule under this observationally equivalent discount rate and the original problem under NCD,
and divided it by the value of the control rule under NCD in order to make the measure unit-free.

Figure 3 shows the graphs of these ratios (the “bias”) as a function of the state variable. By
construction, the value of the ratio equals 0 at the respective steady state. The figure shows that
the graphs are asymmetric; the bias is larger below than above the steady state. In addition,
the bias is increasing in τ for S2, but decreasing in τ for S1. The explanation for this reversal
is that under S1 a larger value of τ makes the discounting scheme more similar to constant
discounting (with a discount factor of δ2). In contrast, under S2 a larger value of τ makes the
discounting scheme less similar to constant discounting. The control rule under S1(5) and the
constant discount factor δ = 0.81 are “nearly” observationally equivalent, although they are not
identical. Even where the bias is greatest (for S2(5)) the largest difference in values between
the control rules (under constant discounting and NCD) is less than 4% of the value under NCD.
For our example, it appears that it would be extremely difficult to detect NCD. Even though
NCD and constant discounting are not observationally equivalent (except at a single point, such
as the steady state), the difference between the two could easily be mistaken for estimation
error.

4 Summary and Discussion

Models with non-constant discount rates are potentially useful in studying environmental and
resource problems where current actions have long-lived effects. These models make it pos-
sible to include non-negligible discount rates for the near and middle term, while allowing the
long run discount rate to become small. With this flexibility, we can incorporate “reasonable”
rates of short and medium run time preference, while recognizing that our time preference in
the very distant future is likely to be small. Despite the importance of this model, it has sel-
dom been applied to environmental and resource problems, owing largely to the difficulty of
analyzing subgame perfect equilibria.

We developed and programmed a method to find a Markov Perfect equilibrium when the
decision-maker has non-constant discounting. The procedure uses the standard collocation
method and function iteration, but requires that we iterate with both the value function and con-
trol rule. An important objective of this paper is to describe and publicize this software. We
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think that its availability will promote further applied research that uses non-constant discount-
ing.

We used two parsimonious extensions of quasi-hyperbolic discounting, but the program
can applied using any finite sequence of non-constant discount rates, followed by an infinite
sequence of constant discounting. In our model, the discount rate approaches a constant in
finite time; by allowing that time (a parameter in the model) to be large, we approximate the
model in which the discount rate approaches a constant only asymptotically.

Previous theoretical results show that there is a continuum of candidate steady states that
are asymptotically stable and that satisfy the equilibrium conditions at the steady state. Experi-
ments with different functional forms show that our program returns a unique equilibrium. For
the linear-quadratic case, this equilibrium is linear in the state. It is defined over the entire real
line, and is the equilibrium to the limiting problem, obtained by taking the limit of the finite
horizon problem (letting the horizon approach infinity).

We illustrated the methods by comparing equilibria under constant and non-constant dis-
counting using a familiar renewable resource problem. Since the long run discount rate in
our model is constant, the steady state of a decision-maker (with NCD) who is able to make
binding commitments equals the steady state of planner with the constant discount rate equal
to the long-run rate. Using this fact, we can find the steady state flow payoff of the regulator
(with NCD) who is able to make commitments, by solving a pair of algebraic equations. We
find the steady state payoff of the regulator (with NCD) who cannot make commitments using
our program. Comparing these two values provides a measure of the steady state cost of the
inability to make binding commitments (since the discount rates are the same in the two cases).
In our experiments this loss was very small.

However, the (steady state) “observationally equivalent” discount factor is substantially
smaller than the true long run discount factor. If we used steady state behavior to estimate
the discount factor under the mistaken hypothesis that the planner has constant discounting, we
would significantly underestimate the value of the resource. Other experiments showed that
although observational equivalence does not hold over the entire state space, in our examples it
would in practice be difficult to distinguish non-constant discounting from estimation error.
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A Appendix A: Derivation of Euler Equation

Here, we derive the Euler equation corresponding to EQ (4). First, by differentiating St+1 =

g(χ(St), St) with respect to St, we have

dSt+1
dSt

= gx(χ(St), St)χ
0(St) + gs(χ(St), St)

where the partial derivatives are denoted by subscripts. With a little abuse of notation, we
denote g(t) = g(χ(St), St). We use similar shorthand notation for f and the derivatives. Also,
we denote χ(t) = χ(St). Then, we have

dSt
dS1

=
dSt
dSt−1

· dSt−1
dSt−2

· · · dS2
dS1

=
t−1Y
τ=1

[gx(τ)χ
0(τ) + gs(τ) (t ≥ 2)] ,

and

dS1
dx

= gx(0).

Using the notation above, we can write EQ (4) as:

W (S) = max
x

(
f(x, S) +

TX
t=1

(θt − δθt−1)f(t) + δW (S1)

)
.

The first order condition is,

fx(0) +

"
TX
t=1

(θt − δθt−1)(fx(t)χ
0(t)+fs(t))

dSt
dS1

+ δW 0(S1)

#
gx(0) = 0. (10)

By the envelope theorem,

W 0(S) = fs(0) +

"
TX
t=1

(θt − δθt−1)(fx(t)χ
0(t)+fs(t))

dSt
dS1

+ δW 0(S1)

#
gs(0).

Applying the first order condition, EQ (10), we obtain

W 0(S) = fs(0)−
fx(0)gs(0)

gx(0)
.

Then, advancing one period, we have

W 0(S1) = fs(1)−
fx(1)gs(1)

gx(1)
.
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Substituting this expression into the first order condition EQ (10), we have

fx(0)+

"
TX
t=1

(θt − δθt−1)(fx(t)χ
0(t)+fs(t))

dSt
dS1

+ δ

µ
fs(1)−

fx(1)gs(1)

gx(1)

¶#
gx(0) = 0 (11)

EQ (11) is the Euler Equation for the QDPE EQ (4). In a steady state, we have g(0) =

g(1) = · · · = g∗. Using similar notation for other functions and variables, we have

dSt
dS1

¯̄̄̄
(χ(S∗),S∗)

= (g∗xχ
0∗ + g∗s)

t−1.

Substituting this expression into EQ (11) and arranging the terms, we obtain EQ (5).

B Appendix B: Condition on χ00∗

The Euler Equation evaluated at the steady state EQ (5) provides a condition on χ0∗. We can
also find a condition that χ00∗ has to satisfy. This is helpful to see if the approximant is good at
the higher order.

First notice that the following holds for t ≥ 2.

d2St
dS21

=
d

dS1

t−1Y
τ=1

(gx(τ)χ
0(τ) + gs(τ))

=

"
t−1Y
τ=1

(gx(τ)χ
0(τ) + gs(τ))

#
·
"
t−1X
τ=1

1

gx(τ)χ0(τ) + gs(τ)

d(gx(τ)χ
0(τ) + gs(τ))

dSτ

dSτ
dS1

#

=

"
t−1Y
τ=1

(gx(τ)χ
0(τ) + gs(τ))

#
·
"
t−1X
τ=1

gxx(τ)(χ
0(τ))2 + 2gxs(τ)χ

0(τ) + gx(τ)χ
00(τ) + gss(τ)

gx(τ)χ0(τ) + gs(τ)

dSτ
dS1

#

Because EQ (11) has to hold for all S, we can totally differentiate the equation with respect
to S. Applying the chain rule and product rule multiple times and using EQ (11), we have
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(fxx(0)χ
0(0) + fxs(0)) + gx(0)

dS1
dS0

"
TX
t=1

(θt − δθt−1) ·
n
(fx(t)χ

0(t) + fs(t))
d2St
dS21

+ (fxx(t)(χ
02 + 2fxs(t)χ

0(t) + fx(t)χ
00(t) + fss(t))

µ
dSt
dS1

¶2o
+ δ

n
(fxs(1)χ

0(1) + fss(1)) +
fx(1)gs(1)(gxx(1)χ

0(1) + gxs(1))

(gx(1))2

− (fxx(1)χ
0(1) + fxs(1))gs(1) + fx(1)(gxs(1)χ

0(1) + gss(1))

gx(1)

o#

− fx(0)

gx(0)
(gxx(0)χ

0(0) + gxs(0)) = 0

In a steady state, we have

d2St
dS21

¯̄̄̄
(χ(S∗),S∗)

= (g∗xχ
0∗ + g∗s)

t−2(g∗xx(χ
0∗)2 + 2g∗xsχ

0∗ + g∗xχ
00∗ + g∗ss)

t−1X
τ=1

(g∗xχ
0∗ + g∗s)

τ−1

= (g∗xx(χ
0∗)2 + 2g∗xsχ

0∗ + g∗xχ
00∗ + g∗ss)

(g∗xχ
0∗ + g∗s)

2t−3 − (g∗xχ0∗ + g∗s)
t−2

g∗xχ
0∗ + g∗s − 1

Therefore, χ00 must satisfy the following equation linear in χ00.

(f∗xxχ
0∗ + f∗xs) + g∗x(g

∗
xχ

0∗ + g∗s) ·
"

TX
t=1

(θt − δθt−1)

·
n
(f∗xχ

0∗ + f∗s )(g
∗
xx(χ

0∗)2 + 2g∗xsχ
0∗ + g∗xχ

00∗ + g∗ss)
(g∗xχ

0∗ + g∗s)
2t−3 − (g∗xχ0∗ + g∗s)

t−2

g∗xχ
0∗ + g∗s − 1

+ (f∗xx(χ
0∗)2 + 2f∗xsχ

0∗ + f∗xχ
00∗ + f∗ss)(g

∗
xχ

0∗ + g∗s)
2t−2

o
+ δ

n
(f∗xsχ

0∗ + f∗ss) +
f∗xg

∗
s(g

∗
xxχ

0∗ + g∗xs)

(g∗x)
2

− (f
∗
xxχ

0∗ + f∗xs)g
∗
s + f∗x(g

∗
xsχ

0∗ + g∗ss)

g∗x

o#
− f∗x

g∗x
(g∗xxχ

0∗ + g∗xs) = 0 (12)
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