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1 Introduction

People must cooperate and must value their descendants, to willingly invest in long-

lived public goods such as climate protection. Public good investment games may

have multiple equilibria. In this case, the relative importance of cooperation and

intergenerational altruism, in determining investment, may depend both equilibrium

type and model specifics. I study a model combining overlapping generations and a

differential game, and then specialize to a climate setting. The overlapping genera-

tions setting disentangles patience for one’s own future consumption, from altruism

toward descendants. The differential game captures contemporaneous rivalry.

Two decades of negotiation show how hard it is for policymakers to cooperate on

climate policy. A large game theoretic literature examines contemporaneous cooper-

ation in the provision of public goods in general, and climate protection in particular.

This theory underpins suggestions for designing an effective climate agreement (Aldy

and Stavins, 2007; Guesnerie and Tulkens, 2008). A recent literature emphasizing

the role of discounting in selecting climate policy turns on the proper way to evaluate

future utility (Stern, 2006; Nordhaus, 2007, Weitzman, 2007). The UK and France

have begun to discount long-lived public projects using lower-than-market rates.

To what extent would the widespread use of low discount rates change climate

policy, at current levels of international cooperation? How important is increased

international cooperation, at given levels of intergenerational altruism? How should

modelers account for differences in intra- and inter-generational discount rates in

determining the equilibrium provision of a public good?

The paper makes three types of contributions. The methodological contribution

provides a framework for evaluating the relative importance of intra-generational co-

operation and intergenerational altruism in the provision of a public good. I also

provide a measure of the “most cooperative” steady state that can be sustained, as

a function of intergenerational altruism and intra-generational cooperation. The

policy contribution takes a step in applying this framework to the climate problem.

The lesson a reader takes away from this analysis depends on their views about the

plausibility of different assumptions. The analysis makes it possible to understand
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the relation between assumptions and results, but does not, of course, yield a ranking

that holds under all circumstances. The theoretical contributions clarify the rela-

tions between discount functions induced by agents with exponentially distributed

or deterministic finite lifetimes, and between pure and paternalistic altruism.

If people discount their own and their descendants’ utility at constant but differ-

ent rates, then the social planner who aggregates their preferences has non-constant

discounting, creating time-inconsistency. Having many rather than a single tribe

(countries, in the climate policy context) complicates the policy problem. I study a

game with  ≥ 1 tribes, each with an equal share of the world’s fixed population and
each with many generations. Tribal members care about their own utility stream

and — to the extent that they are altruistic — about their descendants’ utility streams.

Within each tribe and at each point in time, a planner aggregates the preferences

of agents alive, in her tribe, into those of a representative agent. These tribal

representatives have both a tribal and a time index; the game has two dimensions.

The planners alive in the same period (one for each tribe) act simultaneously, and

the planner of any tribe in any period acts before the future planners. I consider

symmetric Markov Perfect Equilibria (MPE) to a symmetric game: actions depend

on only the payoff-relevant state variable. If there is a single tribe whose members

discount their own and their descendants’ utility at different rates, the result is

the familiar problem of non-constant discounting (Strotz, 1956; Laibson, 1997). If

multiple tribes all have constant discount rates, they play a differential game (Long,

2010; Haurie, Krawczyk and Zaccour, 2012). If there is a single tribe with constant

discount rate, the result is a standard control problem.

The baseline OLG model contains “paternalistically altruistic” individuals (Ray,

1987; Andreoni, 1989; Saez-Marti and Weibull, 2005) with exponentially distributed

lifetimes (Yaari, 1965; Blanchard, 1985). This agent cares about future generations’

utility flows, but does not take into account that the not-yet-born also care about

their descendants. A discount factor, with non-constant discount rate, aggregates

the welfare of agents in a tribe alive at a point in time.

I compare the baseline model with two variations. The first replaces the pa-

ternalistic with the “purely” altruistic agent, one who does take into account the
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fact that her successors also value their own successors’ utility flows. In the second

variation, paternalistically altruist agents live a known finite amount of time, as in

Diamond (1965)’s two period model or in Schneider, Traeger, and Winkler (2012)’s

continuous time setting. These variations provide a robustness check for results;

they are of intrinsic interest because they show the relation between the simplest

and most familiar model and two alternatives.

To assess the relative importance of altruism and cooperation, in determining

climate policy, I need to solve the model, not merely describe its equilibrium; this

requires functional assumptions. I begin with a “linear-in-state” model, generalizing

the climate component in Golosov et al. 2011. Within the class of state-independent

policies, I obtain analytic expressions for the unique equilibrium emissions, the sup-

porting tax, and its elasticities. In the scalar version of this model, international

cooperation is more important than altruism in determining climate policy. A

higher-dimensional version of this model can reverse that conclusion. In general,

in a Nash equilibrium an agent’s optimal action depends on the actions that other

agents take. In the linear-in-state model with state-independent strategies, equilib-

rium strategies are dominant: an agent’s optimal decision does not depend on the

state-independent actions that other agents take. The functional assumptions thus

eliminate strategic interactions across generations and nations.

I need a model with convex damages, or some other source of non-linearity, to

generate non-trivial strategic interactions. I therefore turn to a linear-quadratic

model, and use numerical methods.1 The linear equilibrium to this model (like

the state-independent equilibrium in the linear-in-state model) is the limit of the

equilibria of the finite horizon model, as the horizon becomes large. There are

many other equilibria in the infinite horizon setting, even with Markov perfection

and requiring differentiability. For the linear equilibrium, cooperation is again more

1The linear-quadratic constant-discounting differential game has been widely used in both indus-

trial organization (Fershtman and Kamien, 1987; Reynolds, 1987) and natural resource economics

(van der Ploeg, 1992; Dockner and Long, 1993; Wirl, 1994); it has also been used to study quasi-

hyperbolic discounting in the one-agent setting (Karp 2005). A log-linear model (logarithmic utility

and Cobb Douglas growth functions) is a popular alternative, both for differential games (Levhari

and Mirman 1980) and for non-constant discounting (Barro 1999).
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important than altruism. However, this conclusion is easily reversed if we also

consider equilibria arising only in the infinite horizon setting. The life of our planet

is finite, but equilibria that rely on an infinite horizon can be motivated as -equilibria

to a finite horizon game (Fudenberg and Levine 1983).

I obtain a continuous time setting by taking the limit of a discrete time model

as the length of a period becomes small. This approach makes the mathematics

straightforward. Technical details appear in appendices.

2 Discounting

The objective of this paper is to evaluate the relative influence, on investment in a

public good, of agents’ attitudes toward future generations and on the ability of dif-

ferent groups to cooperate at a point in time. Infinitely-lived- agent models conflate

impatience with respect to one’s own future utility and attitudes toward descendents’

utility. An OLG model is essential for disentangling these two distinct preference

attributes. A discount function aggregates the intertemporal preferences of different

generations within a tribe. I emphasize the case where lifetime is exponentially

distributed and agents’ altruism is paternalistic, and then consider two alternatives.

The first replaces paternalistic with pure altruism, under exponentially distributed

lifetime. The second alternative replaces the exponentially distributed lifetime with

a known finite lifetime, under paternalistic altruism. Several papers use a convex

combination of exponentials to represent non-constant discounting (Li and Lofgren,

2000; Gollier and Weitzman, 210; Zuber, 2010; and Jackson and Yariv, 2011). Eke-

land and Lazrak (2010)’s motivation, based on an OLGs, is quite different, and leads

to a sum (but not necessarily convex combination) of exponentials. Their paper pro-

vides the formula for exponentially distributed lifetime with paternalistic altruism

(equation (1), below), but the two alternatives are new.

The population is constant, so the birth rate equals the death rate. This section

constructs and analyzes the discount factor to aggregate utility streams. Consider

a public project, e.g. protection of the climate system. An agent’s utility flow at

a point in time depends on the current stock of the public good (e.g., greenhouse
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gasses, GHGs) and on her tribe’s current investment in that good (e.g., abatement).

This investment cost is shared equally by all tribal members then alive, so at time 

they all have the same utility flow, .
2 For an arbitrary sequence of bounded utility

flows, {}∞=, I find the discount factor  () for which welfare of a social planner
at  is

R∞


 () . The discount factor  () depends on the both the type of

altruism and on whether lifetime is exponentially distributed or deterministic. There

is no tribal index here, because I consider a representative tribe.

2.1 Exponential lifetime, paternalistic altruism

Agents’ welfare consists of a selfish and an altruistic component. The selfish compo-

nent equals the expected present discounted value of the flow of the agent’s utility,

using a constant pure rate of time preference, . The altruistic component consists of

the agent’s evaluation of her successors’ stream of utility. Those successors discount

their own utility at the constant rate , and the previous agent discounts the selfish

component of her successors’ welfare at rate . Completely selfish agents put no

weight on the welfare of the unborn ( =∞). A smaller value of  implies a higher

level of altruism. “Altruism” here refers to benevolence toward one’s descendants,

not toward other tribes. At the cost of introducing another parameter, one could

distinguish between altruism within and across tribes. The paternalistic agent cares

about her successors’ utility stream, but does not take into account that each succes-

sor also cares about their own successors’ utility stream. The agent’s mortality rate

is , so  ≡  +  is the agent’s risk-adjusted pure rate of time preference. Measure

zero individuals face mortality risk, but there is no aggregate risk.

The memoryless feature of the exponential distribution means that all tribal mem-

bers alive at a point in time have the same distribution function for their remaining

lifetime. Because there is no private capital accumulation in this model, all agents

alive at a point in time are identical. In this case, there is a representative agent in

2Schneider et al (2012) note that the relation between the intergenerational discount rate and

the selfish pure rate of time preference affects the distribution, amongst agents living at a point in

time, that a planner would like to achieve. In order to focus on intergenerational allocations, I

exclude the possibility of such intra-generational transfers.
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the usual sense. The discount factor for this agent, and thus the discount factor for

the social planner who represents these identical agents, is

() =

µ
− 

− 

¶
− − 

− 
− (1)

2.2 Alternative OLG models

Both because of its intrinsic interest, and also to gauge the sensitivity of the results

to assumptions about agents’ lifetime and their type of altruism, I consider two

alternatives to the model above.

2.2.1 Pure altruism, exponentially distributed lifetime

The purely altruistic agent does take into account the fact that her successors care

about their own successors’ utility streams. Deriving the discount factor for the rep-

resentative agent under pure altruism is more complicated than under paternalistic

altruism. In the latter case, one can simply write down the discount factor from

its definition, and then simplify by changing the order of an integration to obtain

equation (1). With pure altruism, in contrast, it is necessary to solve a recursion.

I achieve this in two stages. First, I begin with a discrete time model, in which

each period lasts for  units of time. I solve the resulting discrete time recursion,

to obtain the discrete time discount function for the representative agent. Taking

the limit as → 0 gives the continuous time discount function under pure altruism.

Comparing that function with the expression for () in equation (1) establishes an

isomorphism between paternalistic and pure altruism for individual agents, and thus

for the representative agent of a tribe:

Proposition 1 Suppose the agent with pure altruism discounts future agents’ welfare

at rate 0, and the agent with paternalistic altruism discounts future agents’ utility

at rate . Both have exponentially distributed lifetimes with mortality rate  and

the pure rate of time preference . The two agents have the same preferences if and

only if 0 = + .
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The following corollary is a consequence of Proposition 1 and the fact that for  ()

given by equation (1), 


 0 for   0:

Corollary 1 Given the same mortality rate, , and the same discounting preference

parameters ( ), the agent with paternalistic altruism discounts the future flow of

utility more heavily than the agent with pure altruism.

This comparison is not surprising: the agent with pure altruism cares about future

utility flows both because they affect the future generations that directly experience

those flows, and because they affect the welfare of earlier generations that care about

those future generations. In contrast, the agent with paternalistic altruism cares

only about the direct affect of future utility flows on the agents who experience them.

2.2.2 Paternalistic altruism, known finite lifetime

Each agent lives for  = 1

years, so the known finite lifetime in this setting equals

the expected lifetime in the exponentially distributed setting: the two models are

directly comparable. With deterministic lifetimes, agents alive at a point in time

are different: the older ones will die sooner than the younger ones. In this setting, I

assume that the social planner at a point in time is utilitarian; she puts equal weight

on the preferences of all tribal members currently alive. This model can be viewed

as a generalization of the   of quasi-hyperbolic discounting (Laibson 1997). That

relation is easiest to see in a discrete time setting; see Appendix A.1.3

The structure of the discount function differs for    and    . For    ,

some of the agents alive at time 0 will still be alive. Those agents continue to benefit

from the utility flow, and that utility flow contributes to the selfish component of

the welfare of the time 0 social planner. For    , all of the agents alive at time 0

will have died, so the social planner at time 0 places a positive weight on the utility

flow at    only to the extent that agents are altruistic (  ∞). Calculations

establish:

Proposition 2 For finitely lived agents, the discount factor is
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() =

⎧⎨⎩ −
³
1−−(−)
 (−) + −



´
for  ≤ 

−
¡
(−) − 1¢ 1

 (−) for  ≥ 

(2)

2.3 Discount rates: a comparison

The model of exponentially distributed lifetime is more tractable and more frequently

used, but perhaps less descriptive than the model of finitely lived agents. Compar-

ison of the two models with paternalistic preferences shows how the assumptions

about lifetime affect the imputed discount factors, and thus influence model results.

The discount rate, , for the baseline model with discount factor in equation (1) is

() ≡ −


1


=
−+  + −(−)

−+  + −(−)
 (3)

and the discount rate for the agent with finite lifetime, using equation (2), is

 () =

⎧⎨⎩
−(−)−(−)(−)−
−(−)−1−(−)(−) for  ≤ 

 for  ≥ 
(4)

Table 1 summarizes the characteristics of the discount rates. If agents discount

future generations’ utility less than their own (  ), the discount rate falls from

the selfish rate  to ; for  = , the discount rate is constant.

0 ≤     =     ∞  =∞
Lifetime is exponentially distributed




− 0 + 0

 (0)     + 

 (∞)    +   + 

Lifetime is finite and deterministic



for    − 0 + +

 (0)    

 () for  ≥     

Table 1: Characteristics of discount rates
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Figure 1: Discount rates (d.r.) for = 002 =  = 1

. Solid curves (labelled E) correspond

to exponentially distributed lifetime and dashed curves (labelled F) correspond to fixed

lifetime. Numerical values in label show value of .

If agents have less concern for future generations’ welfare than for their own, (  ),

the discount rate increases over time from ; with exponentially distributed lifetime,

the discount rate increases to +  as →∞, and with finite deterministic lifetime,
the discount rate increases to . With exponentially distributed lifetime, the

probability that an agent is alive at a point in time in the future decreases at a

constant rate. Therefore, even if she cares nothing about unborn generations, her

discount rate for future utility flows never rises above  + . In the deterministic

lifetime case, all agents currently alive will be dead within  years, so the utilitarian

social planner who aggregates their preferences values utility flows after  years only

to the extent that agents currently alive care about future generations.

Figure 1 illustrates the discount rates in the two models, using  = 002 =  (so

 = 50). Solid curves (labelled ) correspond to exponentially distributed lifetime,

and dashed curves (labelled  ) correspond to fixed lifetime. The increasing curves

correspond to  = 006 and the decreasing curves correspond to  = 001.

In summary, the discount rate trajectories for the two models have the same

initial value, the same direction of change over time, and for  ≈  +  or smaller,

they have similar long run values: the two trajectories are similar. However, if

   +  the two discount rates are quite different for    ; this difference is
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likely to be important for current decisions unless  is large. Thus, unless  is

large and  is small, the trajectories of discount rates, and thus preferences, under

the two models are “quite similar”. The actual difference between results based on

the two assumptions about lifetime depends on model specifics (Section 4.2.2).

The formulae for the discount rates also show the importance of the OLG struc-

ture. If  =∞ ( = 0) a tribe consists of a succession of agents, each of whom lives

for a single instant, and has a constant discount rate . At the other extreme,  = 0

( = ∞) a tribe consists of an infinitely lived agent, with a constant discount rate
. For these two limiting cases, there is no time consistency problem.

3 The game

I use equilibrium conditions obtained by taking the limit, as the length of a period

goes to 0, of the equilibrium conditions to a discrete stage game. In that game,

social planner   has a tribal index  and a time index ; this planner takes an

action, . The value of the state variable at , common to all tribes, is . A

stationary symmetric MPE is a function  () with the Nash property: if planner

  believes that all future planners (including those in her own tribe) and all other

planners currently alive, will make their decision according to  =  () (where 

is the value of the state when a particular decision is made) then it is optimal for

planner   to set  =  (). (I use “believe” to mean “act as if she knows”.)

Planner   chooses a single state-contingent action, rather than a (possibly infinite)

sequence of actions, as in a control problem. A Nash equilibrium requires that her

action maximize her current flow payoff plus a state-dependent continuation value.

Karp (2007), building on Harris and Laibson (2001), finds the formal limit, as

the length of a period goes to 0, of the equilibrium conditions to the discrete time

sequential game where  = 1. Ekeland and Lazrak (2010) independently obtain the

same necessary conditions using a variational argument that begins with a continuous

time model, i.e., without detouring via the discrete time game. The symmetry

assumption makes it possible to use those necessary conditions for the game with

  1, making only minor changes involving notation. The succession of planners in

10



tribe  who believe that all planners in all other tribes will use the policy rule  ()

face the problem considered in Karp (2007) and Ekeland and Lazrak (2010), apart

from details regarding notation, described below. For the climate model, I establish

existence constructively.

Denote x ∈ R as the vector of actions at time , with ’th element , the

action taken by planner  . In the continuous time limit, the state variable 

evolves according to 

=  (x;), with the initial condition (the current value of

) given. For example,  is the stock of GHG, with  equal to tribe ’s emissions at

time . Tribe ’s flow of utility at ,  ( ;), depends only on the state variable

and ’s action; including ’s current action in ’s utility flow would make it possible

to consider trade effects and cross-tribal altruism.

An increase in the parameter  in the growth function,  , and the utility function,

, represents a fragmentation of the economy that leaves unchanged the set of feasible

utility. Fragmentation (a larger ) has no intrinsic effect on aggregate (or per capita)

utility or stock changes, but it does alter the equilibrium decisions, thereby altering

the equilibrium aggregate utility and stock changes:  has a strategic but not an

intrinsic effect on outcomes. For example, if the world consists of  countries, and

each tribe controls  countries, then  = 

. A tribal social planner internalizes

the effect of her action on residents in all  of the countries that the tribe controls.

If each of these tribes fragments into two equal tribes, then  = 2

. It is worth

emphasizing that a larger  means not only that there are more tribes, but also that

each tribe is absolutely smaller (not merely a smaller fraction of the whole).3

Denote i−1 ∈ R−1 as the vector consisting of 1’s. Given the decision rule 

that planners in tribe  expect planners in other tribes to use, denote  ( ) ≡
 ( i−1 ()  ;). This function is the time derivative of the stock at a point in

time when the current value of the state variable is , all other tribes use  (), and

3When members of the EU allow a central agent to determine their climate policy, that agent

has the incentive to internalize a greater fraction of the effect of a single country’s emissions, than

would the country. Apart from the fact that countries in the real world are not identical, a coalition

such as the EU is analagous to a smaller .
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tribe  uses . The payoff and constraint facing tribe  isZ ∞



(− )( ;) and ̇ ≡ 


=  ( ) (5)

The discount factor, , is given by equation (1) if agents have exponentially distrib-

uted lifetime, and by equation (2) if agents have deterministic lifetime.

A larger value of  means that the time  social planner in tribe  internalizes

a smaller fraction of the effect of her actions on other tribes. A larger value of

 means that this social planner internalizes a smaller fraction of the future effect

of her actions. The point of this paper is to determine the relative sensitivity of

equilibrium investments in a public good, to changes in  and .

3.1 Equilibrium conditions

Given beliefs that all planners in other tribes use the decision rule  (), equation

(5) contains the payoff and constraint facing tribe  in the continuous time limit

of a discrete time game. I use the conditions given in Karp (2007) to obtain the

necessary conditions to that game. The symmetric Nash condition requires that

the equilibrium policy function equals  (): this function is a fixed point. The

validity of this procedure requires that the value function, defined below, and its first

derivative exist — an assumption that can be checked given a particular equilibrium.

The equilibrium conditions differ in the two cases corresponding to    and  

 with exponentially distributed lifetime (because lim→∞  () differs in these two

cases), and in the case where agents have deterministic lifetimes (because the function

, introduced below, has a different form here). For  =  with both deterministic

and exponentially distributed lifetimes, and for  =∞ with exponentially distributed

lifetime, the discount rate is constant. In these cases, the tribes play a standard

differential game, i.e. one without the strategic interactions within a tribe, across

periods. I provide details for the model with exponentially distributed lifetime and

0   ≤  (where lim→∞  () = ), relegating the other two cases to Appendix B.1.

Dropping the tribal index  (because of symmetry) Proposition 1 and Remark

12



1 of Karp (2007) imply that  () satisfies the necessary condition to the following

auxiliary optimal control problem with constant discount rate :

() = max

Z ∞

0

− (( ;)−())  subject to ̇ =  ( ) (6)

with the side condition (a definition):

() = ( − )

Z ∞

0

−(∗+  
¡
∗+

¢
;) (7)

The tribe’s utility flow on the equilibrium path is  (   () ;), and ∗ is the

solution to the differential equation in (6) when all agents use the decision rule  ().

The function  can be interpreted as an annuity, which if received in perpetuity and

discounted at the rate − , equals the present value of the stream of future utility,

discounted at the rate  =  + .4

This model includes familiar special cases. For   1, the endogenous function

 ( ) =  ( i−1 ()  ;) depends on the policies of the other  − 1 agents.
Those agents do not exist if  = 1, in which case,  ( ) =  ( ;1), an exogenous

function, and the model collapses to a sequential game with a single agent at each

point in time. For  = ,  ≡ 0 and the model collapses to a standard (constant
discounting) differential game for   1 or a control problem for  = 1.

3.2 Nonuniqueness

In general, the equilibrium to this game is not unique. Tsutsui and Mino (1990)

note the existence of a continuum of stable steady states (an open interval) in the

differential game with constant discounting when decision rules are differentiable.

For each point in this interval there is an equilibrium policy function, defined at least

in the neighborhood of that point. The economic explanation for this multiplicity

4The dynamic programming equation is () = max [( ;)−() +  () ( )].

In the two models of Section 4,  is concave and  is linear in , so a sufficient condition for

equilibrium is that  () = argmax [( ;) +  () ( )] and  solves the DPE. The

sufficient conditions for a MPE are simpler in the game here, involving non-constant discount rates,

than in the differential game with constant discount rates. Appendix B.2 discusses this issue.
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in the differential game is that the decision whether to remain in a particular steady

state depends on an agent’s beliefs regarding the actions that rivals would take if

a single agent were to drive the state away from that steady state. The MPE

conditions do not pin down these beliefs. In a standard optimal control problem,

the envelope theorem eliminates that kind of consideration, because the first order

welfare effect of a deviation from the steady state is 0. This theorem is not applicable

in the differential game, because rivals’ actions do not maximize an agent’s welfare.

The same consideration applies in  = 1 under non-constant discounting.

When   1 and the discount rate is non-constant, there are two sources of

multiplicity of steady states, so the equilibrium is unique (within the class that induce

differentiable value functions) only under special circumstances (Ekeland, Karp, and

Sumaila 2012). The multiplicity of equilibria creates a coordination problem across

tribes and generations.5 Some MPE may Pareto dominate others.

3.3 Interpretation of this game

My objective is to provide intuition about how limited cooperation amongst con-

temporaneous agents, and different levels and types of intergenerational altruism,

interact to affect equilibrium decisions. Here I consider the paternalistic agent with

exponentially distributed lifetime. For  = 1, there is no conflict amongst con-

temporaneous agents, and for  =  or  = ∞ the time inconsistency problem also

vanishes. These parameter values produce a standard optimization problem, with

the usual normative interpretation, instead of a game, whose equilibria typically do

not have normative properties.

The lower is , the more weight people today put on both the utility flows and

the welfare of their successors; thus,  is an inverse measure of altruism. In this

stationary model, the upper bound of altruism corresponds to  = 0. This definition

5If one drops the assumption that the value function is differentiable, many other MPE can

exist (Dutta and Sundaram 1993). Agents might “behave well” if the state variable is in a certain

region, but follow a “bad” MPE if the state variable leaves that region. This kind of MPE has the

flavor of trigger strategies in repeated games. There are many types of equilibria, apart from the

MPE with differentiable value functions, studied here. Krusell and Smith (2003) and Vieille and

Weibull (2009) discuss multiplicity in different settings.
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of altruism is consistent with different conclusions about what constitutes an ethical

choice of . The utility flow  periods in the future may be shared by some agents

currently alive and by some agents who have not yet been born. The agent currently

alive puts the same weight on the utility flow received by her future self and the not-

yet born if and only if  = . If ethical preferences require equal weighting of utility,

across agents with different ages, then  =  would be regarded as ethical. With

this view, the model has a standard normative interpretation if  = 1 and  = .

However, many economists define ethics by comparing welfare rather than point-

wise utility flows. For any   0, the agent alive today puts lower value on the

lifetime welfare of an agent born in the future, the further in the future that agent is

born. An agent weights the present discounted value of the stream of utility of all

tribal members equally, (i.e., regardless of their date of birth) only if  = 0. Basing

ethics on welfare rather than utility flows implies that  = 0 is an ethical choice

(Ramsey 1928).6 Nevertheless,  = 0 with  = 1 implies non-constant discounting

and therefore produces a game across generations. An equilibrium outcome to that

game is in general not normative, for the same reason that the non-cooperative Nash

equilibrium to virtually any game is not normative.

For  = 0, the discount rate converges to 0, so unless the flow payoff converges to

0 sufficiently rapidly, the payoff is unbounded. Nevertheless, the equilibrium policy

function may be well defined even as  → 0, as in Section 4. For small positive 

and bounded , the payoff is well defined and is approximately proportional to
∞

,

the steady state utility flow divided by :

Lemma 1 For any bounded utility flow  () that converges to ∞ 6= 0, and given the
discount factor under paternalistic altruism where lifetime is exponentially distributed

(equation (1)), lim→0
³


∞

R∞
0

()()
´
= 




6People might object to    as implausible rather than unethical: why would an agent today

put higher weight on her successor’s utility flows than on her own, when they are both alive at a

point in time, and both have the same utility flows? That objection amounts to the claim that

we can only expect people to base ethical judgements on utility rather than welfare comparisons.

In addition, the claim that    is implausible may be incorrect. As noted in the Introduction,

some countries have decided to discount some public projects at lower than the market-based social

discount rate. There may be reasons, having nothing to do with ethics, for this decision; but one

rationale for it is to reflect a more ethical treatment of future generations.
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For small , the payoff in the steady state determines the evaluation of welfare.

Denote the steady state that maximizes the steady state utility flow as the

“U tility Maximizing Steady State”, or UMSS, the solution to max  ( ; 1) sub-

ject to ( ; 1) = 0. This is the steady state chosen by the infinitely patient

planner who controls the system ( = 1); no sensible welfare criterion would choose

a smaller steady state (in the case where the state is a bad rather than a good).

Suppose that this static optimization problem is concave, so that levels of the state

variable closer to the UMSS have higher utility levels. Consider the case where 

is small and where the MPE state trajectory does not approach the UMSS. In this

situation, Lemma 1 together with the concavity assumption imply that a deviation

from the equilibrium that causes the state to move closer to the UMSS, is a Pareto

improvement over the MPE. Each generation prefers this deviation.

The following proposition states that for small , there is a MPE that supports

a steady state arbitrarily close to the UMSS.

Proposition 3 Consider the class of differentiable MPE policy rules. For  = 1

and for arbitrarily small positive , it is possible to support a MPE steady state that

leads to a utility flow within  of the utility level at the UMSS, provided that  is

sufficiently small (but positive).

This proposition, together with Lemma 1 and the generic multiplicity of equilibria,

implies that when  is small but positive, there exists a MPE that maintains the state

close to the UMSS; moreover, that MPE Pareto dominates any MPE that maintains

the state further from the UMSS. The proof of the proposition uses the assumption

that the policy function is differentiable. Section 3.2 notes that for this class of

policy function, the set of MPE stable steady states is an open interval. Proposition

3 states that a boundary of that interval moves close to the UMSS as  becomes small.

We have no information about the measure of the domain of a policy function that

drives the state close to this utility-maximizing level. If that measure is small, it is

possible to support such a steady state only for initial conditions close to it. In that

case, the existence of this steady state may have little practical importance.
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4 An application to climate policy

I begin with a linear-in-state model with state-independent strategies, yielding ana-

lytic results. In this model, there are no (interesting) strategic interactions amongst

agents, because strategies are dominant. I then consider a linear-quadratic model,

which requires numerical methods but gives rise to strategic interactions.

Technological progress may make distant generations vastly richer than us, caus-

ing actions that we take over the next several generations to affect successors’ welfare

for a few generations, but not in the long run: the climate problem ends, perhaps in

a millennium or two. With this view, an economic-climate model must account for

growth associated with technological change.

For at least three reasons, it is worth considering alternatives to the hypothesis

that in the very long run we will grow our way out of the climate problem. First,

the familiar relation between high expected growth and high discount rate arises in

the standard model with additive expected utility. In a model that disentangles risk

aversion from the elasticity of intertemporal substitution, stochastic growth might

have little effect on the certainty equivalent discount rate (Traeger 2012b). Second,

the assumption, adopted by most integrated assessment models (IAMs), that natural

and man-made capital are highly substitutable, may be incorrect (Guersnerie 2004),

(Hoel and Sterner 2007), (Traeger 2012a). Third, most IAMs, identify growth

with increased GDP. The limitations of GDP as an index (or sole argument) of

utility are well understood; alternatives, such as Genuine Progress Indicator (GPI),

Human Development Index (HDI) and Ecological Footprint have been proposed as

alternatives or supplements. Kubiszewski et al. (2013) find that over the past 25

years, GPI has been flat, while GDP has continued to grow. For these reasons, and

in the interest of tractability, I abstract from growth. (But see footnote 7.)

4.1 The linear-in-state model

Here I assume that lifetime is exponentially distributed and  ∈ [0 ], so I use the
formulae in Section 3.1; the same methods apply if    and for other discount

functions. The state variable,  ∈ R, includes carbon stocks in different sinks and
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a measure of damages. Gerlagh and Liski (2012) show that a multi-dimensional

linear model can capture delayed and persistent emissions’ impacts, and can closely

mimic damages in DICE (Nordhaus 2008). The flow payoff depends directly on only

the first element of  (“damages”), denoted  ≡ 01, where 1 is the first unit vector.

Primes denote transpose. Appendix B.4.1 confirms claims made in this section.

The equation of motion is ̇ =  +  +  (+ (− 1)). The scalar  is

tribe 0s emissions, and  is the emission of any other tribe, all of which are equal

in a symmetric equilibrium. The constant matrix  and vectors  and  determine

the climate dynamics and damages. The matrix of eigenvalues of  is Λ with ’th

diagonal element Λ, and the matrix of eigenvectors is  . I assume that Λ are non-

positive real numbers and  is of full rank. If  and  (the emissions of a particular

tribe, and of all other tribes) are state-independent, but possibly time varying, then

 = Λ−10 + ();  () depends on values of   over (0 ).

Suppressing time subscripts, denote  =  as aggregate emissions in a sym-

metric equilibrium and  as the state variable at a point in time. Aggregate utility

flow is  ( ; 1) =  (; 1) −  for a concave function ;  is the damage para-

meter. Because  measures fragmentation, not population, aggregate utility in a

symmetric equilibrium depends only on aggregate emissions and the state, not ex-

plicitly on . Therefore, for the linear-in-state model, utility of a particular tribe is

 ( ;) =  (;)− 

 with  (;) = 1


 (; 1).

Example 1 (Log-linear model) Emissions, , are proportional to fossil fuel use; the

elasticity of output with respect to fossil fuel use is , a constant; and utility is

logarithmic in consumption = output. Climate-related damage reduces output by the

factor (1− −). With aggregate emissions  = , aggregate output is −

and aggregate utility is ln [()

−]. A tribe emitting  obtains utility  ( ;) =

1

ln [()


−]. Here,  (;) = 


ln () and  (; 1) =  (; 1) =  ln.

Example 2 (Quadratic model) Utility for a tribe emitting  is  ( ;) =  (;)−


, with  (;) =  − 

2
2. Aggregate utility in a symmetric equilibrium is

 ( ;) =  (; 1)− , where  (; 1) =  (; 1) =  − 
2
2.
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For both examples, aggregate utility and the change in the stock depend on aggregate

emissions and the stock, but not directly on . Example 1 is taken from Golosov et

al. (2011), eliminating the investment decision.7

Proposition 4 For the linear-in-state model, suppose that a planner of a tribe at a

point in time believes that all other agents (future planners in her own tribe and all

planners in all other tribes) will use state-independent (but possibly time- and tribe-

dependent) emissions policies. (i) Her annuity function,  () and value function

 () are linear in the state,  (; ) = 0 + 0 and  (; ) = 0 + 0 with:

0 = − − 


̃0 with ̃0 =

Z ∞

0

01
−(−Λ)−1 ; 0 =




(01 − ( − ) ̃0) ( − )

−1


(8)

where  is the  dimensional identity matrix.

(ii) Her optimal action, a constant emissions level, is a dominant strategy: it does

not depend on her beliefs about the state-independent actions of any future planner,

or about the actions of other current planners. Within the class of state-independent

policies, the unique equilibrium is the constant

 = argmax


 (;) + 0 (9)

Corollary 2 In the log-linear model, equilibrium emissions per tribe are independent

of , so aggregate emissions are proportional to . In the quadratic model, equilib-

rium emissions per tribe fall with , and aggregate emissions are a strictly concave

increasing function of .

For the log-linear model, if each of  tribes fragments into two, aggregate equilibrium

emissions double, despite no fundamental (i.e., non-strategic) change in the economy.

The quadratic model does not have this extreme feature. The corollary also shows

that the comparative statics of emissions depend on the function .

7I could replace the production function − with 
− to capture changes in tech-

nology and capital stock. With Cobb Douglas production and logarithmic utility, equilibrium

investment is a constant fraction of output, and that constant is independent of climate parame-

ters. In this case, consumption is 1 minus the savings rate times output, instead of output. For

the log-linear specification, investment and  are irrelevant to my research question.
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However, the tax that in a decentralized economy supports the equilibrium level

of emissions is invariant to . Let  () denote aggregate equilibrium emissions,

and denote  = 0 ( () ; 1) as the tax that supports this level of emissions. If 

is the utility of consumption, then the tax equals marginal utility times the value

of marginal product of emissions (units: utility/emissions). If utility is linear in

consumption, so that  is output as a function of emissions, then the tax equals the

value of marginal product of emissions (units: money/emissions).

Proposition 5 For the linear-in-state model, the tax  = 0 ( () ; 1) that supports

the state-independent equilibrium is invariant to :

 = −

(01 − ( − ) ̃0) ( − )

−1
 (10)

The absolute value of the elasticity of this tax with respect to  is 1, and the elasticity

of the tax with respect to  is

 = −





= −

£
̃0 + (01 − ( − ) ̃0) ( − )

−1¤
( − )

−1


(01 − ( − ) ̃0) ( − )
−1


 (11)

Each of the tribes takes into account only the climate-related damages that they

suffer, 1’th of total damages. Therefore, the tribe’s equilibrium tax is 1’th the

tax chosen by a global planner with the same level of altruism.

The tax and elasticity formulae simplify if  is a scalar. Denote ̂, ̂, and ̂ = 1

as the scalar coefficients in the equation of motion. Here, Λ = ̂  0 and ̃ = 1

−̂ .

Corollary 3 For the case where  is a scalar,

 =

³
 − ̂ + 

´

³
− ̂

´³
 − ̂

´  and  =
³

− ̂
´³

 + − ̂
´ ;

 is independent of  and increases with ̂, reaching its upper bound at ̂ = 0, where

 = 
+

 1: as the pollutant becomes more persistent (̂ increases toward 0), the

tax becomes more sensitive to .
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The elasticity  is maximized at  =
p
̂2 − ̂. A 2%/year mortality implies

  033 for a 100 year half-life of the stock, and   051 for a 300 year half-life.

In the scalar model, the effect of emissions on damages is immediate, and decays

at a constant rate. Delayed and persistent effects of emissions require a higher

dimensional state variable. The following corollary states that (particular) limiting

values of the tax in the higher dimensional and the scalar models are equal. I denote

Λmin = minΛ and Λmax = max Λ, the minimum and maximum eigenvalues of .

Corollary 4 (i) Where  is a scalar, as ̂ varies over its domain (−∞ 0), the

constant tax varies monotonically over its range,
³
0

(+)

(+)

´
. (ii) Where  is a

vector, as all stock variables decay infinitely rapidly, the tax approaches 0, and as all

stocks become infinitely persistent, the tax approaches the upper bound of the scalar

model. Formally: the constant tax approaches 0 as Λmax → −∞ and the constant

tax approaches
(+)

(+)
as Λmin → 0 (from below).

Remark 1 Corollary 4.(ii) does not establish monotonicity: for some matrices ,

the tax (and its elasticity) in the higher dimensional model might lie outside the

range in the scalar model. To explore this possibility, I convert Gerlagh and Liski’s

(2012)’s discrete time climate model to my continuous time setting, and compute 

using equation (11). For small values of ,   1 (as in the scalar case). For

sufficiently large ,   1. This example shows the importance of non-monotonic

dynamics, and illustrates the flexibility of the tools developed here.

The linear-in-state model makes the source of multiplicity and dominance trans-

parent. If all social planners believe that other tribes and their own successors

use state-independent policies, the auxiliary optimal control problem used to obtain

the equilibrium is linear in the state, and the shadow value of the state variable

(0) does not depend on other agents’ actions. The solution to that problem is a

state-independent emissions policy that is independent of the other agents’ strate-

gies. Thus, the equilibrium strategy is dominant and unique, within the class of

state-independent policies. If, instead, the planner believes that the other agents’

policy rule is a non-linear function of the state, then the planner’s auxiliary optimal
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control problem is non-linear in . In this case, the planner’s optimal policy is

state-dependent, and in general not a dominant strategy.

Iverson (2013) shows, for the discrete-time log-linear model with investment and

 = 1, that the first period action of a planner who can commit does not depend on

her beliefs about future state-independent actions; this first period action equals the

constant policy in a state-independent MPE. Phelps and Pollack (1968) obtain this

result for a simpler model. This result is consistent with the dominance result in

Proposition 4.ii, which holds for arbitrary  and concave function .

The linear-in-state model with state-independent policies is a good place to begin,

but these functional assumptions imply that the unique equilibrium is in dominant

strategies. The functional assumptions therefore eliminate the strategic interactions

both across countries and generations. These issues are central to climate policy, and

the focus of this research. In addition, the model implies that the elasticity of the

equilibrium with respect to either international cooperation () or intergenerational

altruism () does not depend the other variable.

4.2 The linear-quadratic model

To overcome these limitations, I assume that damages are quadratic rather than

linear in the state. Here, an agent’s shadow value of the state depends on the state,

and thus depends on other agents’ actions: the strategic interactions across tribes

and generations are non-trivial.

I also broaden the research question to study the multiplicity of equilibria. For

the linear-in-state model, the state-independent equilibrium is the limit equilibrium

to a finite horizon model as the horizon approaches infinity. For the linear-quadratic

model in this section, the linear equilibrium is the limit equilibrium. There are many

other equilibria, but even numerical computation of those is an unsolved problem

unless  is a scalar.8 I therefore consider a scalar model, eliminating non-monotonic

8Numerical methods using function iteration can find a differentiable MPE for a general (non-

scalar) model. However, experience with these methods suggests that they identify a single equi-

librium, the limit of the equilibrium to a finite horizon model (Fujii and Karp (2008)). I have not

succeeded in using these methods to study the kind of multiplicity of MPE discussed above.
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impulse-response functions. Remark 1 illustrates that ignoring those features of

the climate problem can impact model results. The choice is between studying

multiplicity of equilibria with simple dynamics, or a single equilibrium with rich

dynamics. I choose the former, leaving the latter to work in progress. Appendix C

contains supplementary material for this section.

4.2.1 Calibration

The scalar state variable, , is the atmospheric stock of carbon, in parts per million

(ppm) by volume. The control variable (previously ) is abatement, denoted ,

defined as the percent reduction in Business as Usual (BAU) emissions. The flow

payoff is a quadratic function of the stock and abatement, and the equation of motion

is linear in the stock and abatement.

The time derivative of the stock of atmospheric carbon, the function  ( ;1),

is linear in . This function contains three parameters: an intercept and the

coefficients of  and . I use the following three calibration assumptions:

(i) The steady state absent anthropogenic emissions is 280 ppm.

(ii) The half-life of the atmospheric stock is 83 years.

(iii) The year 2100 BAU stock is 700 ppm, given 2010 stock of 380.

The first calibration assumption is non-controversial. The 83-year half life is slightly

less than the level used in DICE (Nordhaus 2008). The IPPC’s 2007 projections

of year 2100 stocks range from 535 to 983 ppm. My definition of BAU means

literally incurring no cost to reduce emissions, whereas the IPPC’s projections refer

to levels that are likely to occur. The IPPC lower bound of 535 ppm represents

a 24% reduction relative to my assumed BAU. My assumptions imply that under

BAU, the stock reaches 870 ppm after 200 years.

For the aggregate economy ( = 1), the flow payoff is −1
2

¡
2 +  ( − 280)2¢ =

−1
2

¡
2 + 


( − 280)2¢. The flow cost is the sum of a term proportional to the

square of abatement and to the square of the increase in the stock relative to preindus-

trial levels, so damages are convex. To calibrate the model, I define Ω ≡ (560−280)2
502

, a
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parameter that equals the flow cost of doubling the stock of GHG, relative to prein-

dustrial levels, as a ratio of the flow cost of a 50% reduction in BAU emissions. In

view of the amount of uncertainty about both abatement costs and climate damages,

I calibrate the model using the ratio of these, instead of the coefficients  and  sep-

arately. This approach makes it easy to consider a range of beliefs about relative

damages and costs, without the need to consider independently damages and costs.

The model solves for equilibrium  as a function of the stock .

Karp and Zhang (2006) estimate an abatement cost parameter that matches (with

2 = 097 in a psuedo-regression) the Nordhaus (1994) cost assumptions.9 That

estimate implies that a 50% abatement reduces Gross World Product (GWP) by

1.1%. A low-to-moderate estimate of damages from doubling stocks is 1.33% of

GWP. These estimates suggest that Ω = 133
112
≈ 12 is consistent with (at least

some) previous modeling efforts. I report results for Ω = 1 (low damages) and

Ω = 3 (moderate damages). As a plausibility check for the range Ω ∈ [1 3], note
that given the calibration assumptions for the equation of motion, Ω determines the

UMSS (the Utility Maximizing Steady State). For Ω = 1, UMSS = 553 ppm and

for Ω = 3, UMSS = 402 ppm. A steady state carbon stock of 450 ppm has been

proposed as a reasonable target. This target incorporates some discounting, whereas

the UMSS effectively sets the discount rate to zero. Thus, a UMSS of 402 (Ω = 3)

appears to be broadly consistent with the 450 ppm target; the UMSS of 553 (Ω = 1)

is consistent with the view that it is not worth doing much to slow emissions.

The model captures many features of the climate problem using four climate-

related parameters. To be useful, numerical results require that model inputs be

transparent. The three parameters of particular interest are: (i) Ω, a measure of

the damages from increased carbon stock relative to the costs of abatement; (ii) ,

an inverse measure of intra-tribal altruism; (iii) , an inverse measure international

cooperation. I show above that Ω is consistent with “prevailing views”.

The choice of  and  presents different problems. These parameters have

different units, and the elasticities of interest depend on the current stock. In

9Significantly, I use this early cost estimate only to obtain an idea of a reasonable magnitude of

Ω. Despite refinements in cost estimates, I do not think that they have changed by multiples.
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addition, I assume agents are symmetric, but in the real world, nations are not.

An increase in  represents less international cooperation, but what represents an

empirically relevant level of ? Also, the range of parameters is large:  ∈ (0∞] and
 ∈ [1∞]. These difficulties are easily overcome. With a unit of time of one year,
I choose  = 002 = , an annual pure rate of time preference and mortality of 2%.

I begin with the linear equilibrium, where the equilibria under  = 01 and  = ∞
are similar;  = ∞ implies zero altruism and  = 01 implies such a low level of

altruism as to have only a small affect on the outcome. As →∞ all international

cooperation vanishes, and zero abatement is the only equilibrium. Abatement is

low for  = 10: this value therefore implies a high degree of fragmentation. Thus,

 ∈ [0 01] and  ∈ [1 10] provide reasonable bounds for studying parameter changes.

4.2.2 The linear equilibrium in the linear-quadratic model

In the linear equilibrium I find: (i) The equilibrium is not sensitive to whether we

use the exponentially distributed lifetime or the finite deterministic lifetime model.

(ii) The degree of fragmentation () has a much larger effect on the equilibrium

outcome, compared to the degree of altruism (); and (iii) for moderately high levels

of fragmentation, the degree of altruism is unimportant.

Finding the linear equilibrium in the infinite horizon model requires finding a root

of a cubic satisfying an inequality that is necessary and sufficient for the equilibrium

state trajectory to converge, and thus satisfies a transversality condition. The coef-

ficients of both the cubic and the inequality are complicated functions of the model

parameters, excluding further analytic results. However, the numerical problem is

trivial. For all the cases I consider, I find a unique linear equilibrium.

I report results for the year 2100 stock, a level often used in policy discussions, for

 = 002 =  = 1

(a risk-adjusted discount rate of 4%), using  ∈ {0 002 01∞}

to represent a range of altruism,  ∈ {1 5 10} to represent a range of fragmentation
amongst tribes, and Ω ∈ {1 3} to represent a range of beliefs about the cost of
climate change relative to the cost of abatement. Table 2 shows the equilibrium

reduction in year 2100 stock, as a percent of the BAU stock in that year (hereafter,

25



“stock reduction”). The left panel corresponds to the agent with exponentially

distributed lifetime, and the right panel corresponds to the agent with finite lifetime,

both with paternalistic altruism. The first element in an entry corresponds to low

damages, Ω = 1, and the second element corresponds to moderate damages, Ω = 3.

Keeping the year 2100 stock to 400 500 and 600 ppm requires, respectively, stock

reductions of 43%, 29% and 14% of the BAU levels of 700 ppm. For the parameter

values here, the equilibrium year 2100 stock ranges from 470 ppm (with  = 1 and

 = 0) to just under 700 ppm for large values of  and .

I.

\ 1 5 10

0.0 (19 33) (6 12) (3 8)

0.02 (11 25) (2 7) (1 4)

0.1 (8 19) (2 5) (1 2)

∞ (7 17) (2 4) (1 2)

II.

\ 1 5 10

0.0 (24 37) (7 15) (4 10)

0.02 (11 25) (2 7) (1 4)

0.1 (5 14) (1 3) (05 2)

∞ (3 9) (07 2) (03 1)

Table 2: Reduction in the year 2100 stock as a % of BAU level (“stock reduction”).

Rows vary the altruism parameter, , and columns vary the fragmentation parameter, .

First element corresponds to low relative damages, Ω = 1, and second corresponds to

moderate relative damages, Ω = 3. Table 2.I corresponds to the agent with exponentially

distributed lifetime and Table 2.II corresponds to the agent with finite lifetime.Table 2

justifies my emphasis on parameter ranges  ∈ [0 01] and  ∈ [1 10].Equilibrium
abatement under  = 01(= 5× ) is similar to equilibrium abatement under  =∞.
Equilibrium abatement for  = 10 is small, and thus similar to equilibrium abatement

under  = ∞. The rows corresponding to  = 002 =  in the two panels are

identical, because for  =  the two problems are equivalent; both have the constant

discount rate  +  =  + 1

. Comparisons between other rows illustrate the points

made in Section 2.3. Figure 1 shows that for   0, the discount rate corresponding

to exponentially distributed lifetime is less than the discount rate corresponding to

finite deterministic lifetime if   ; the relation between discount rates is reversed

if   . The two panels in Table 2 reflect these relations: for   , equilibrium

abatement is higher under the exponential than the deterministic case;    reverses

the comparison. The absolute difference between discount rates is greatest for large

26



  . Reflecting this fact, the ratio of equilibrium abatement levels (expressed as

a number greater than 1), under the two assumptions about lifetime, is greatest for

 = ∞. However, because the equilibrium levels are similar under  = 01 and

 = ∞, the difference in the ratios is likely not of great practical significance. My
assessment is that for this model, the difference between the exponentially distributed

and finite deterministic model is of second order importance. That conclusion might

not hold under different calibrations; thus, it is important to have the formulae. The

rest of this paper discusses only the agent with exponentially distributed lifetime.

An increase of  from 1 to 5 causes a much larger equilibrium change, relative to

an increase in  from 0 to 002. Changing both parameters from their lower bound

to the moderate levels causes, for Ω = 3, a nearly 80% fall in equilibrium stock

reduction; an increase in only  causes a 24% fall in stock reduction and an increase

in only  causes a 64% fall in stock reduction. By these measures, a decrease in

contemporaneous cooperation has a much larger effect on the equilibrium than does

a decrease in altruism. This conclusion echoes Corollary 3.

Increasing Ω from 1 to 3, holding  and  fixed, increases the stock reduction

by a factor of 2 — 3 in most cases. An increase in  from 1 to 5 leads to a much

larger stock reduction, in both percentage and absolute terms, than the reduction

caused by a change of  from 5 to 10. Cooperation breaks down rapidly even at

small levels of fragmentation. A larger value of  decreases the effect of changes

in altruism. If there is little contemporaneous cooperation, the degree of altruism

is rather unimportant. For example, at  = 10 equilibrium stock is close to BAU

levels for all values of , so changes in  do not have much effect. In contrast, even

at high values of , a change in  has a large effect on the equilibrium.

For Ω = 3,  = 1 and  = 0, the equilibrium steady state is 496 ppm, an almost

50% reduction in the BAU steady state. The same steady state results from a

standard optimization problem with a constant discount rate of 0.9%. As noted

above, the stock that maximizes the steady state utility flow (the “UMSS”) is 402

ppm; the same steady state results from the social planner’s problem in the limit as

the constant discount rate approaches 0.

27



4.2.3 Nonlinear equilibria in the linear-quadratic model

For non-linear equilibria and the agent with exponentially distributed lifetime: (i)

Altruism and fragmentation are similarly important in determining equilibrium be-

havior; and (ii) Altruism may be especially important in very fragmented environ-

ments. Thus, consideration of non-linear equilibria can reverse the conclusions

obtained under the assumption of a linear equilibrium. I establish these claims by

first comparing equilibrium policy rules, and then examining the effect of  and 

on a particular steady state. Non-linear equilibria — unlike the linear equilibrium

— may be defined over only a strict subset of state space. The three-dimensional

system () does not permit a graphical analysis of the domain of existence

of non-linear equilibria. However, where  is a scalar, nonlinear equilibria can be

obtained by solving the system of differential equations for  and  as functions

of , as an initial value problem. The domain of existence of (many) nonlinear

equilibrium policy functions is large, so these equilibria are not vacuous.

Figure 2 illustrates the multiplicity of equilibria for  = 5, Ω = 3,  = 000001,

and the other parameters given above. The dashed line shows the graph of  (; 1) =

0, the set of steady states, between the initial stock, 380, and the steady state in

the linear equilibrium, 760. At points () strictly below this line, the stock is

increasing over time. Each solid graph shows a particular equilibrium decision rule,

giving abatement () as a function of the stock (). The numerical label on each

of these three graphs shows the steady state induced by that policy function. The

positively sloped line is the linear equilibrium, with a steady state of 760 ppm. In

this equilibrium, the level of abatement increases with the stock. The non-monotonic

policy function drives the state to 745 ppm. In this equilibrium, abatement starts

out high and falls until the stock gets close to its steady state; in the neighborhood

of the steady state, abatement increases. Even though the two steady states, 760

and 745, are similar, the speed of increase in much higher in the linear equilibrium.

As a consequence of the scale of the figure, the curve labeled “463 ppm” appears

to be coincident with the dashed line. The actual curve lies below the dashed line

except at the steady state, so this policy rule drives any stock 380 ≤ 0 ≤ 463 to the
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Figure 2: Abatement,  (as a percent of BAU emissions) as a function of the stock, 

(ppm), for  = 5,  = 000001 and Ω = 3. The three MPE policy functions drive the

state from the initial value 380 ppm to different steady states, shown by the labels on the

curves. The dashed line shows the combinations of abatement and stock that maintain a

steady state.

steady state 463. In this equilibrium, abatement falls over time, allowing the stock

to grow slowly until it reaches the steady state. The stock 463 is slightly above the

commonly used target of 450 ppm, and is about 10% larger than the infimum steady

state (discussed below) with  = 5, Ω = 3, and  = 000001.

Figure 2 has two messages. First, the domain of existence of non-linear equilibria

that maintain low stock levels may include the current stock level: the multiplicity of

equilibria is not a mere curiosity. With a moderate to high degree of fragmentation

( = 5) and a high degree of altruism ( = 000001), equilibrium abatement might

result in either a very high or moderately low stock. Second, actions may be strategic

complements or substitutes, or may switch from one to the other as the state variable

changes. Where the equilibrium decision rule is increasing in the stock, actions are

strategic substitutes: a higher level of abatement by an agent today leads to a lower

future stock, with lower future equilibrium abatement by all agents. Conversely,

when the decision rule is decreasing in the stock, actions are strategic complements:

an agent has an incentive to abate at a high current level in order to keep the
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stock from growing, and thus maintaining high future abatement. Consequently,

strategic complementarity is associated with relatively high levels of abatement, slow

increases in the stock, and low steady state stocks. Strategic complementarity

implies especially large abatement efforts early in the trajectory, while the stock is

still low.10 In contrast, if actions are strategic substitutes, an agent has an incentive

to abate at a low level, knowing that the higher future stock will increase future

abatement. Thus, strategic substitutes correspond to low abatement, rapid growth

in the stock, and a high steady state stock.

The set of steady states that can be supported as a MPE is an open interval. I

define  as the infimum of this set, as a ratio of the UMSS;  is a function of  and

 and other model parameters, and provides a measure of the distance between the

UMSS and the set of steady states. Proposition 3 implies that for  = 1,  → 1 as

 → 0. The solid graphs in Figure 3 show  for 0 ≤  ≤  = 002 for  = 1 and

 = 5, given moderate damages (Ω = 3) and the other parameter values discussed

above. The dashed graphs show, for different values of  and , the steady state in

the linear equilibrium as a ratio of UMSS.

For  =  and  = 1 the game is a standard optimal control problem, so the

linear equilibrium is the unique MPE; consequently, for  = 1 the solid and dashed

graphs converge at  = . For    or   1 there are multiple equilibria. In

this circumstance, the gap between the smallest stable MPE steady state and the

steady state under the linear equilibrium (reflected in the distance between a solid

and a dashed curve) increases with both  and  − . Higher  or  −  increase

the coordination problem arising from the multiplicity of equilibria.

For small values of  it is possible to support, as a MPE steady state, a GHG

stock close to UMSS regardless of whether  = 1 or  = 5. (For small , the solid

curves corresponding to  = 1 and  = 5 are close to each other and both close to

1.) However, for larger values of , the smallest possible steady state in a MPE is

10The possibility that equilibrium abatement falls over time, ignores the likely reality of convex

adjustment costs in emissions levels. It also ignores that abatement costs may fall over time, an

assumption that is important to the “policy ramp” in DICE, but absent in my stationary model.

These simplifications, and many others, mean that this model is not suitable for detailed policy

advice; as noted above, it does not have that normative objective.
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Figure 3: Solid curves show , the ratio of the infimum of stable MPE steady state to

the UMSS. Dashed curves show ratio of steady state in linear equilibrium to the UMSS.

Moderate damages, Ω = 3.

much larger for  = 5 compared to  = 1. Thus, with non-linear equilibria, the

altruism parameter becomes more important for larger . Section 4.2.2 notes that

with linear equilibria, the altruism parameter is less important for large .

5 Discussion

The provision of a long-lived public good depends on the ability of contemporaneous

agents to cooperate, and on their degree of altruism towards future generations.

Limited altruism and lack of cooperation are both first order obstacles to effective

climate policy. Which is a greater obstacle, and how do the two interact? There can

be no general answer to such a question. Any answer is conditional on assumptions

about the model and the equilibrium set. This paper sheds light on the question

by providing a framework for addressing it. It applies that framework to obtain

analytic answers in a model with linear climate-related damages, and numerical

answers in a model with convex damages. In constructing the framework, I obtain

results of independent interest, clarifying the relation between the induced aggregate

discount factors for agents with paternalistic or pure altruism, and with exponentially
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distributed or finite deterministic lifetimes.

For the scalar linear-in-state model, I show analytically that the elasticity of

the constant equilibrium tax with respect to the measure of fragmentation exceeds

(easily by a factor of 2 - 3) the magnitude of the elasticity with respect to the degree

of altruism: here, lack of international cooperation is a much bigger impediment to

climate policy than is limited altruism toward future generations. The linear-in-state

model is valuable for intuition, but regardless of its dimension it obscures inter- and

intra-generational strategic interactions: the equilibrium state-independent policies

are dominant, i.e. they do not depend on the actions that other agents take.

I therefore consider a linear quadratic model, where damages are convex in the

pollution stock. Here, there are non-trivial inter- and intra-generational strategic

interactions in all equilibria. I find that the relative importance of the two obstacles

depends on the equilibrium type. The linear equilibrium has a special claim to our

attention; it is the limit of the unique equilibrium to a finite horizon game, and where

it exists it is defined over the entire state space. If one considers only the linear equi-

librium in the climate application, the two conclusions for the scalar linear quadratic

model are: (i) the degree of contemporaneous cooperation has significantly greater

effect on equilibrium policy than does the degree of intergenerational altruism, and

(ii) once the degree of cooperation is even moderately low, the outcome is insensitive

to the degree of altruism. Conclusion (i) echoes the comparison of elasticities for

the constant policies in the linear-in-state model.

However, non-linear equilibria, which owe their existence to the infinite horizon,

can support a broad range of outcomes, some with high levels of abatement and

low pollution stocks. Here, the outcome may be as or even more sensitive to the

degree of altruism than to the level of cooperation, and the degree of altruism may

be important especially when the degree of cooperation is low. The domain of

non-linear equilibria can be large enough to be relevant.

This summary pertains to the scalar model, which cannot capture delayed and

persistent effects of emissions on damages. A higher dimensional model can capture

those effects, but with (my knowledge of) available methods, that model cannot be

used to study the multiplicity of equilibria. Investigation of a particular equilibrium
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for the higher dimensional model is the subject of current research.

A general conclusion is that there may be many equilibria in games that deter-

mine the provision of a long-lived public good by countries that care about only their

own current and future citizens. The logic of Nash’s noncooperative equilibrium does

not doom us to bad outcomes, even if we exclude trigger or other punishment strate-

gies. (Consideration of such strategies increases the equilibrium set, leading to the

possibility of still better outcomes.) This conclusion, although not specific to this pa-

per, is nevertheless worth stating, because many non-cooperative models of climate

policy build in strategic substitutability, implying that agents have an incentive to

undertake less public investment, in order to increase future public investment. This

built-in free riding causes the models to be quite pessimistic about the chance of a

meaningful climate agreement amongst sovereign nations. Recognition of the possi-

bility of strategic complementarity, where agents have an incentive to increase their

current investment in order to increase future investment, moderates this pessimism.

International negotiations on climate policy are important, even if they do not result

in enforceable agreements. Negotiations make coordination on a good equilibrium

easier to achieve.

33



References

Aldy, J., and R. Stavins (eds.) (2007): Architectures for Agreement: Addressing

Global Climate change in the Post-Kyoto World. Cambridge Univerisity Press.

Andreoni, J. (1989): “Giving with impure altruism: applications to charity and

Ricardian equivalence,” Journal of Political Economy, 97, 1447—1458.

Barro, R. (1999): “Ramsey meets Laibson in the neoclassical growth model,”

Quarterly Journal of Economics, 114, 1125—52.

Blanchard, O. J. (1985): “Debts, deficits and finite horizons,” Journal of Political

Economy, 93, 223—247.

Diamond, P. A. (1965): “National Debt in a Neoclassical Growth Model,” The

American Economic Review, 55(5), 1126—1150.

Dockner, E., and N. van Long (1993): “International pollution control: coop-

erative versus non-cooperative strategies,” Journal of Environmental Economics

and Management, 24, 13—29.

Dutta, P. K., and R.-K. Sundaram (1993): “HowDifferent Can Strategic Models

Be?,” Journal of Economic Theory, 60, 42—61.

Ekeland, I., L. Karp, and R. Sumaila (2012): “Equilibrium management of

fisheries with altruistic overlapping generations,” University of British Columbia

Working Paper.

Ekeland, I., and A. Lazrak (2010): “The golden rule when preferences are time

inconsistent,” Mathematical and Financial Economics, 4(1), 29—55.

Fershtman, C., and M. Kamien (1987): “Dynamic Duopolistic Competition with

Sticky Prices,” Econometrica, 55, 1151—1164.

Fudenberg, D., and D. Levine (1983): “Subgame perfect equilibria of finite and

infinite horizon games,” Journal of Economic Theory, 31, 251—268.

34



Fujii, T., and L. Karp (2008): “Numerical analysis of non-constant pure rate of

time preference: a model of climate policy,” Journal of Environmental Economics

and Management, forthcoming, 56, 83—101.

Gerlagh, R., and M. Liski (2012): “Carbon prices for the next thousand years,”

Unpublished Working Paper.

Gollier, C., and M. Weitzman (2010): “How should the distant future be dis-

counted when discount rates are uncertain?,” Economic Letters, 107, 350—353.

Golosov, M., J. Hassler, P. Krusell, and A. Tsyvinski (2011): “Optimal

taxes on fossil fuels in general equilibrium,” NBER Working Paper 1738.

Guersnerie, R. (2004): “Calcul economique et developpement durable,” Revue

economique, 55(3), 363—382.

Guesnerie, R., and H. Tulkens (eds.) (2008): The Design of Climate Policy.

MIT Press.

Harris, C., and D. Laibson (2001): “Dynamic Choices of Hyperbolic Consumers,”

Econometrica, 69(5), 935—957.

Haurie, A., J. Krawczyk, and G. Zaccour (2012): Games and Dynamic

Games. Imperial College Press; World Scientific, Hackensack, New Jersey.

Hoel, M., and T. Sterner (2007): “Discounting and Relative Prices,” Climatic

Change, 84, 265— 80.

Iverson, T. (2013): “Optimal carbon taxes with non-constant time preference,”

http://mpra.ub.uni-muenchen.de/43264/.

Jackson, M., and L. Yariv (2011): “Collective dynamic choice: the necessity of

time inconsistency,” Department of Economics, Stanford, Working Paper.

Karp, L. (2005): “Global Warming and hyperbolic discounting,” Journal of Public

Economics, 89, 261—282.

35



(2007): “Non-constant discounting in continuous time,” Journal of Eco-

nomic Theory, 132, 557 — 568.

Karp, L., and J. Zhang (2006): “Regulation with Anticipated Learning about

Environmental Damage,” Journal of Environmental Economics and Management,

51, 259—280.

Krusell, P., and A. Smith (2003): “Consumption-saving desisions with quasi-

geometric discounting,” Econometrica, 71(1), 365—75.

Kubiszewski, I., R. Costanza, C. Franco, P. Lawn, J. Talbreth, T. Jack-

son, and C. Aylmer (2013): “Beyond GDP: Measuring and achieving global

genuine progress,” Ecological Economics, 93, 57—68.

Laibson, D. (1997): “Golden eggs and hyperbolic discounting,” Quarterly Journal

of Economics, 62, 443—78.

Levhari, D., and L. Mirman (1980): “The Great Fish War: An Example Using

a Dynamic Cournot-Nash Solution,” Bell Journal of Economics, 11, 322—334.

Li, C. Z., and K. G. Lofgren (2000): “Renewable Resources and Economic Sus-

tainability: A Dynamic Analysis with Heterogeneous Time Preferences,” Journal

of Environmental Economics and Management, 40, 236—250.

Long, N. V. (2010): A Survey of Dynamic Games in Economics. World Scientific,

Singapore.

Nordhaus, W. (1994): Managing the Global Commons: The economics of the

greenhouse effect. Cambridge, MA: MIT Press.

Nordhaus, W. D. (2007): “A Review of the Stern Review on the Economics of

Climate Change,” Journal of Economic Literature, 45(3), 686 — 702.

Nordhaus, W. D. (2008): A Question of Balance. Yale University Press.

36



Phelps, E., and R. Pollack (1968): “On Second-best National Savings and

Game: Equilibrium Growth,” Review of Economic Studies, 35, 185—199.

Ramsey, F. (1928): “A Mathematical Theory of Savings,” Economic Journal, 38,

543—59.

Ray, D. (1987): “Nonpaternalistic intergenerational altruism,” Journal of Economic

Theory, (41), 112—132.

Reynolds, S. (1987): “Capacity Investment, Preemption and C ommitment,” In-

ternational Economic Review, 28, 69—88.

Saez-Marti, M., and J. Weibull (2005): “Discounting and altruism to future

decision- makers,” Journal of Economic Theory, (122), 254—66.

Schneider, M., C. Traeger, and R. Winkler (2012): “Trading off generations:

equity, efficiency and climate change,” forthcoming, European Economic Review.

Stern, N. (2007): The Economics of Climate Change. Cambridge University Press.

Strotz, R. (1956): “Myopia and Inconsistency in Dynamic Utility Maximization,”

Review of Economic Studies, 23, 165—180.

Sumaila, U., and C. Walters (2005): “Intergenerational discounting: a new

intuitive approach,” Ecological Economics, 52, 135—142.

Traeger, C. (2012a): “Sustainabililty, limited substitutability and non-constant

social discount rates,” Journal of Environmental Economics and Management, 62,

215—228.

(2012b): “Why uncertainty matters - Discounting under Intertemporal risk

aversion and ambiguity,” DARE Working Paper 1092R2.

Tsutsui, S., and K. Mino (1990): “Nonlinear Strategies in Dynamic Duopolisitc

Competition with Sticky Prices,” Journal of Economic Theory, 52, 136—161.

37



van der Ploeg, R., and A. de Zeeuw (1992): “International aspects of pollution

control,” Environmental and Resource Economics, 2, 117—39.

Vieille, N., and J. Weibull (2009): “Multiple solutions under quasi-exponential

discounting,” Economic Theory, 39, 513—26.

Weitzman, M. (2007): “A Review of the Stern Review on the Economics of Climate

Change,” Journal of Economic Literature, 45(3), 703—724.

Wirl, F. (1994): “Pigouvian taxation of energy for stock and flow externalities,”

Environmental and Resource Economics, 26, 1—18.

Yaari, M. E. (1965): “Uncertain lifetime, life insurance and the Theory of the

Consumer,” Review of Economic Studies, 32, 137—150.

Zuber, S. (2010): “The aggregation of preferences: can we ignore the past?,” Theory

and Decision, 70, 367 — 384.

38



Referees’ Appendices: not for publication

The following three appendices provide an exhaustive compilation of calculations,

proofs, and discussion of the model, presented in a manner to make it relatively easy

for a referee to check any detail. I expect that little if any of this material needs to

be published, although sketches of the proofs of Lemma 1, Propositions 1, 3, and 5,

and Corollaries 3 and 4 should be made available in an online appendix.

I re-purpose some symbols, in order to avoid using obscure symbols. For example,

in Section 4.1,  is an elasticity, whereas in Appendix A,  is the length of a period

in a discrete time setting. Because the different appendices and the text are self-

contained, I expect that this practice will not create confusion.

A Discounting

This appendix contains the proofs of Propositions 1 and 2. Ekeland and Lazrak

(2010) provide the continuous time discount factor under exponentially distributed

lifetime and paternalistic altruism, equation (1), without the discrete time detour;

I include that case so that this appendix is self-contained. I begin with a discrete

time model, in which each period lasts for  units of time (e.g., years), and obtain

the discount factors in the continuous time setting by passing to the limit, as → 0.

This approach is useful for explaining the meaning of the different models, and

particularly for deriving the discount functions under pure altruism and for a finite

lifetime.

A.1 The discrete time model

Table 3 introduces notation used to obtain concise expressions of the discrete time

discount factors. The pure rate of time preference that an agent uses to evaluate her

selfish component of welfare is , and  is the rate she uses to evaluate the utility or

welfare of future generations;  = − and  = − are the corresponding discount

factors. For the case of exponentially distributed lifetime,  is the mortality = birth

= hazard rate, so  =  +  is the risk-adjusted discount rate and  = − is the

1



corresponding risk-adjusted discount factor. With a constant population normalized

to 1,  = 1− − is the mass of agents born at the end of a period of length . In

order to make the models with exponentially distributed and deterministic lifetimes

comparable, I assume throughout that the lifetime in the latter case equals  = 1

,

the expected lifetime under the exponential distribution.

mortality
selfish time

preference

risk adjusted

discounting

altruism

weight

continuous

time rates
 = 1


  =  +  

discrete time

factors
 = 1− −  = −  = −  = −

Table 3: Parameters that appear in the discount functions

A.1.1 Exponentially distributed lifetime, paternalistic altruism

Agents use the risk-adjusted discount factor − to evaluate their own future utility.

Agents alive in a period are identical, so any can be chosen as the social planner who

makes the decision about investment in the public good in that period. The social

planner alive in period 0 gives weight − to the period  utility of agents currently

alive, and the weight
¡
1− −

¢
−−(−) to the period  utility of agents born in

period  ≤ . There are 1− − of these agents, each of whom discounts her period

 utility at −(−), and the current social planner values that utility at − .

The total weight that the current social planner puts on period  utility flow (the

discount factor) is the sum of the selfish and altruistic components for those currently

alive:

(; ) = − +
¡
1− −

¢ X
=1

−−(−) (12)
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A.1.2 Exponentially distributed lifetime, pure altruism

The expected present value of the flow of utility of an agent alive in period  (the

selfish component of her welfare) is

∞X
=0

−+

An agent’s total welfare equals the sum of her own selfish utility and the utility that

she receives from the welfare of agents who are born in the future. Denote the total

welfare of the agent born in period  +  as +. In each period, 1− − agents are

born. The agent currently alive attaches the weight
¡
1− −

¢
− to the welfare

of the generation born  periods in the future. Thus, the welfare of the agent alive

at period  is11

 =

∞X
=0

−+ +
¡
1− −

¢ ∞X
=1

−+ (13)

The following proposition gives the formula for the discount factor (; ) such

that welfare  equals the present discounted value of future utility flows , i.e.:

 =

∞X
=0

(; )+ with (0; ) = 1 (14)

Proposition 6 Assume −
¡
2− −

¢ − − 6= 0 and   . (i) The additively

separable function  defined in equation (14) equals the solution to the recursion in

equation (13) if and only if the discount factor equals

(; ) =
−

¡
− − −

¢
+ −

¡
−

¡
2− −

¢¢


− (2− −)− −
 (15)

(ii) (a) (; ) is positive, bounded and approaches 0 as  → ∞(b)
P∞

=0(; ) is

11Replacing the first term on the right side of equation (13) by ̃ ≡
P∞

=0 
+ and defining

() =
¡
1− −

¢
−, results in equation (2) of Saez-Marti and Weibull (2005).
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bounded, so  is bounded given that  is bounded.

The term −
¡
2 + −

¢
=  (1 + ) appears in a formula used to prove Proposi-

tion 6. The following lemma establishes a bound on this term.

Lemma 2 The necessary and sufficient condition for  +   1 for all  ≥ 0 is

  .

Proof. Necessity: Using the definitions of  and ,  +  = −
¡
2− −

¢
. The

first order approximation of this expression, evaluated at  = 0, is 1+( − ) + ().

This expression is less than 1 if and only if   . Sufficiency: Use
(−(2−−))


=

−
¡
( + ) − − 2¢. If    then ( + ) − − 2  2

¡
− − 1¢  0 so

−
¡
2− −

¢
is decreasing in . Therefore, it is negative for all  ≥ 0 if and only

if it is negative for  = 0.

Proof. Proposition 6. Substituting equation (14) into (13) gives

 =

∞X
=0

+ + 

∞X
=1



Ã ∞X
=0

++

!

Making a change of variables,  = +  and then reversing the order of summation

and simplifying yields

 =  +

∞X
=1

Ã
 + 

X
=1

−

!
+ (16)

Equating coefficients in equations (14) and (16) implies

 =  + 

X
=1

− (17)

with initial condition0 = 1. The manipulations above are valid because
P∞

=0(; )

is bounded, as established in part (ii) below.
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An inductive proof establishes part (i). Setting  = 0, the trial solution in equation

(15) satisfies the initial condition 0 = 1. Suppose that for  ≥ 0, the trial solution
solves the recursion (17) for  ≤ . I need to show that this hypothesis implies that

the trial solution solves the recursion for + 1. The hypothesis implies

+1 = +1 + 

+1X
=1

+1− = +1 + 

+1X
=1


+1− ( − ) +  (+ )

+1−

−+ + 


Simplifying the last expression gives

+1 =
+1 ( − ) +  (+ )

+1

−+ + 


as was to be shown.

(iia) The facts that   1 and (+ )  1 (from Lemma 2) imply that 

is bounded and approaches 0 as  → ∞. To show that   0, consider three

cases, where   , where     
+1
, and where   

+1
. In the first case, the

numerator and denominator of  are positive by inspection. In the second case,

the denominator is positive. The numerator is positive iff

() ≡
µ
+ 



¶


− 


 (18)

The function () is increasing in , (0) = 1, and −


 1 because   
+1
; therefore,

inequality (18) is satisfied. Consequently, the numerator of  is positive, so  is

positive. In the third case, the denominator of  is negative and the numerator is

negative iff

() ≡
µ
+ 



¶


− 


 (19)

Here, (0) = 1 and is decreasing in  and the right side of inequality (19) is greater

than 1, so the inequality is satisfied.

(iib) The fact that  is the sum of two geometrically decreasing terms, means

that it’s infinite sum is bounded. The sum equals 1−
(1−−)(1−) .
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A.1.3 Deterministic lifetime, paternalistic altruism

Here, in contrast to the case of exponentially distributed lifetimes, agents alive in a

period are different: the older ones will die sooner than the younger ones. Agents

therefore have different views about the future benefits of the public good. The

social planner in a period is utilitarian: she maximizes the sum of the discounted

utility of those currently alive, plus the value that those agents give to the utility of

the not-yet born.

Agents live for  ≥ 1 periods.12 For  = 2, this model produces Laibson’s (1997)
  model of quasi-hyperbolic discounting. Next period, the fraction

¡
1− 1



¢
of

current agents will still be alive. The agents alive at  = 0 discount their future utility

using the selfish discount factor −. The utilitarian social planner representing the

agents alive at  = 0 discounts their  = 1 utility at −
¡
1− 1



¢
, which takes into

account both the agents’ impatience and the death of some of the agents alive at

 = 0. For  ≤  − 1 the discount factor that this social planner uses to evaluate
the future utility of agents currently alive is −

¡
1− 



¢
and for  ≥  the discount

factor is 0, because all of the original agents will have died.

With a constant population, 1

new agents are born in each period. The agents

alive in period 0 discount future generations’ utility at −; for example, the weight

that the agents alive in period 0 give to those born in year 1 is −

, a factor that

accounts for both the current agents’ altruism and the fact that 1

new agents arrive

in each period. The agents who arrive in year 1 discount their own next period

utility at −, and because the agents alive in period 0 discount those agents’ utility

at −, the weight that the period 0 agents place on the  = 2 utility of the agents

who arrived at  = 1 is −−


. Those alive at time 0 place the weight −−(−)


on the period   0 utility of agents who arrive in period , for −    ≤ .

The weight that the  = 0 social planner places on the utility flow at period  ≥ 0,
 (; ), equals the sum of the weights that the agents whom she represents place on

the selfish and the altruistic components of their preferences. As noted above, the

12Sumaila and Walters (2005) propose a similar model, but their formulae account for birth but

not for death. With constant population, the discount factor must account for both death and

birth.
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selfish component of this discount factor has a different structure for    and for

 ≥  . Therefore, the function  (; ) also has a different structure for    and

for  ≥  .

In the discrete time setting, the weight that the social planner places on utility

flow at a future time equals the sum of the weight attributed to agents currently alive

and to those have not yet been born. This sum has a different structure, depending

on whether  ≤  − 1 or  ≥  . For  6=  the discount factor is

(; ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
¡
1− 



¢
+ 1



P

=1 
−−(−) =

1


µ
−(−−−)
(−−−)

+ ( − ) −
¶
for  ≤  − 1

1


P

=−+1 
−−(−) =

1

−(+1− ) 

−−−
−−− for  ≥ 

(20)

For  = 2, the discount factor at  = 1 is −+−
2

and the discount factor at   1

is 1
2
−(−1)

¡
− + −

¢
. Defining  = −+−

2
,  = − produces the  

model.

A.2 The continuous time limit

In the discrete time setting I do not need to distinguish between the number of units

of time (e.g. years) and the number of periods. This distinction is important in

using the discrete time model to obtain (by passing to a limit) the continuous time

discount factors. That is,  and  refer to period indices in the discussion of discrete

time models, and they refer to units of calendar time in the discussion of continuous

time models; similarly,  refers to the number of periods that the agent lives in the

discrete time setting, and the number of units of time that she lives in the continuous

time setting. For fixed , this notation does not present an issue, but here I want

to consider the limiting case as → 0. For this purpose, it is important to maintain

the distinctions between the period index and units of time.

For this appendix (only) I use  and Γ to refer exclusively to units of time and
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 and  to refer exclusively to number of periods. If a period lasts  units of time,

 =  and Γ = . Using these definitions, I set  = 

and  = Γ


and use the

definitions in the last row of Table 3 to write the discrete time discount factors as

a function of units of time (rather than number of periods) and the length of each

period, . It is then a simple matter to take limits as → 0.

A.2.1 Exponentially distributed lifetime, paternalistic altruism

Equation (12) can be simplified to

(; ) =

¡¡
− − −

¢
− +

¡
1− −

¢
−

¡
− − −

¢¢
(− − −)



This simplification assumes that  6= ; the case  =  follows from L’Hospital’s

Rule.

Define  () = 
− =

(1−−)−
−(+)−− and use L’Hospital’s Rule to obtain lim→0  () =


−− =


− . Using this definition of  and the last row of Table 3, equation (12),

the discount function expressed as a function of time, rather than number of periods,

is

(1 +  ()) −(+) −  () − 

Letting → 0 gives the continuous time discount factor for calendar time  , equation

(1). Ekeland and Lazrak (2010) obtain this formula directly (without the discrete

time detour).

A.2.2 Exponentially distributed lifetime, pure altruism

Proof. Proposition 1 In order to establish the claim, denote the discount rate that

the agent with pure altruism applies to future generations as 0 (instead of , the

rate under paternalistic altruism). Define the function

 () =
−+  (+ 1)


=
−− + −

0
¡
2−−¢



8



and use lim→0  () = +2−0. Also define  () = ln(2−)


and use lim→0  () =

. Finally, note that

(+ 1)

=
¡
2−−¢  = expÃ ln ¡2−−¢



!
= ()

so lim→0
¡
2−−¢  = . With these definitions and the last row of Table 3, the

discrete time discount factor in equation (15) can be written

−
³
−

0−−


´
+ −

0 (1−−)


−
0()




Using the limiting expressions given above, the limit of this function as → 0 gives

the continuous time discount factor for the agent with pure altruism:

() =
− ( − 0) + −(

0−)

 +  − 0
 (21)

The right side of equations (1) and (21) are equivalent if and only if 0 = + .

A.2.3 Finite lifetime, paternalistic altruism

Proof. Proposition 2 Define  () = −

=
(−−−)


and use lim→0  () =  − .

With this definition of  and the last row of Table 3, the discrete time discount factor

for   Γ can be written


Γ(−)

³

¡
 − 

¢
+ (Γ− ) 

(−)


´
=

−(−−−)
Γ

+
(Γ−)
Γ

− 

Taking the limit as → 0 and rearranging the resulting expression produces the first

line of equation (2).
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For  ≥ Γ the discount factor is



Γ ( − )
(Γ−−)

¡
−Γ − −Γ

¢


Taking the limit as → 0 produces the second line of equation (2).

B Proofs and technical details

This appendix provides the equilibrium conditions for cases not considered in the text

(B.1), discusses sufficiency (B.2), provides the proofs of Lemma 2 and Proposition

3 (B.3) and the proof of Propositions 4 and 5, and Corollaries 2, 3, and 4, and the

justification for Remark 1 (B.4).

B.1 Equilibrium conditions for other cases

There are two cases under exponentially distributed lifetime and a single case with

a deterministic lifetime, because in the former but not in the latter, lim→∞  ()

depends on whether    or   . For the exponential case with 0   ≤ ,

and using the differentiability of () (already assumed in deriving the problem

comprised of (6) and ), a necessary condition for the MPE is that

 =  () ≡ argmax (( )−() +  () ( ))  (22)

and that () satisfy the dynamic programming equation13

() = ((  ())−() +  () (  ()))  (23)

For the exponential case with   , where lim→∞  () = , the fictitious control

13Appendix B.2 explains why these necessary conditions, together with the definition in equation

(7), are also sufficient for a MPE.
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problem is

() = max

Z ∞

0

− (( )−())  subject to ̇ =  ( ) (24)

with the side condition (definition):

() ≡
Z ∞

0

() (()− )(∗   (
∗
 )) (25)

Equation (1) and the first line of equation (3) imply  () ( ()− ) = −− so
equation (25) simplifies to

() = −
Z ∞

0

−
¡
∗+  

¡
∗+

¢¢
 (26)

The integral in equation (26) is the present discounted value of the equilibrium

future flow of payoff, computed using the discount rate . Thus, −() is an
annuity, which if received in perpetuity and discounted at  (the constant birth =

death rate), equals the value of this future stream of payoff. The flow payoff in

the fictitious control problem equals the flow playoff in the original model, plus this

annuity. A necessary condition for the MPE is that

 =  () ≡ argmax (( )−() +  () ( ))  (27)

and that () satisfy the dynamic programming equation

() = ((  ())−() +  () (  ()))  (28)

For agents with deterministic lifetime  , the function  has a slightly different

form than above. Using equation (4) of Karp (2007) and equations (4) and (2), −

11



equals14

−() ≡ (− )

Z 

0

( − )


−

¡
∗+  

¡
∗+

¢¢
 (29)

The integral on the right side of definition (29) is the present value, discounted at the

selfish rate , of the payoff that those alive at  receive from the flow
¡
∗+  

¡
∗+

¢¢
over [  + ]. Over that interval, the number of agents remaining from the time 

population decreases linearly. Again, we can interpret − as an annuity, which if

received in perpetuity and discounted at the rate (− ), equals the present value

to those currently alive of the program 
¡
∗+  

¡
∗+

¢¢
.

The dynamic programming equation in this case is

() = max

(( )−() +  () ( )) (30)

with the annuity  given by equation (29).

B.2 Sufficiency

The discussion of sufficiency in Karp (2007) is misleading, and I take this opportunity

to clarify it. The endogeneity of the function (), and the resulting difficulty in

determining its curvature, makes it difficult to apply standard sufficiency conditions

for optimal control problems, to the fictitious control problem defined by equations

(24) and (25). However, the fictitious control problem is merely a device for describ-

ing the equilibrium to the sequential game induced by non-constant discounting; for

that purpose, we use only the necessary conditions to the fictitious problem. The

maximization problem in equation (21) of Karp (2007) is a statement of the problem

for the planner in a particular period in a discrete time setting, under the assump-

tion of Markov perfection. Equation (5) of that paper (equivalently, equation (28)

above) is the limiting form of the discrete time condition, as the length of a period of

commitment goes to 0. Therefore, provided that we are willing to restrict attention

14Karp (2007) sets up the problem using a discount rate () for  ≤  and () = ̄ for  ≥  .

The results for the case of exponentially distributed lifetime use the limiting case as  → ∞. In

the OLG model with finitely lived agents,  is finite and ̄ = 
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to the limiting game (as the length of a period goes to zero in the discrete time

game), and provided that the value function is differentiable, a sufficient condition

for the MPE is that the control rule satisfy equation (27) above, and that the value

function satisfy the DPE (28).

The primitive functions of some interesting optimal control problems do not have

the curvature need to satisfy familiar sufficient conditions. Sufficiency in optimal

control problems is therefore sometimes a difficult issue, and the analysis sometimes

proceeds without reference to sufficiency. The difficulty arises because sufficiency

is a global property in optimal control problems. In contrast, sufficiency is a much

simpler issue in the type of sequential game induced by non-constant discounting and

the requirement of Markov perfection. In this game, each of the succession of social

planers chooses a single action; given her beliefs about successors’ policy function,

each policy maker thus solves a static optimization problem. Because each of the

policymakers treats the functions () and () as predetermined (although they

are endogenous to the game), sufficiency requires (in the limit as  → 0) only that

 =  () maximizes (( ) +  () ( )).

For the climate model,  is concave in the control and  is linear, so the necessary

condition to max (( ) +  () ( )) is also sufficient.

B.3 Proof of Lemma 1 and Proposition 3

Proof. (Lemma 1) For small   0 define the  as the smallest time beyond which¯̄̄
()−∞

∞

¯̄̄
≤ . That is

 = inf


½
 :

¯̄̄̄
 ()− ∞

∞

¯̄̄̄
≤ ∀ ≥ 

¾


Note that  ∞. Use

lim→0
³∞

0
()()
∞


´
= lim→0

[(
 
0
()())+(∞

∞


())+(
∞


()()−∞
∞


())]
∞



(31)
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Consider each of the three terms on the right side of this equation. The fact that

 ∞ implies that

lim
→0



Z 

0

()() = 0

A calculation confirms thatZ ∞



µµ
− 

− 

¶
− − 

− 
−

¶
 =

−−2 + − + −
(−+ ) 



Taking the limit as  → 0 of this expression, implies that the second term on the

second line of equation (31) equals 

. By definition of  ,

¯̄̄̄ R∞


()()− ∞
R∞


()

∞

¯̄̄̄
 

Z ∞



()

The limit as → 0 of the last expression is  

.

Proof. (Proposition 3) I first derive the necessary and sufficient condition, for

general , that must be satisfied at a stable steady state in a differentiable MPE. I

then specialize to  = 1 and show that the boundary of the open interval of states

that satisfies this condition is arbitrarily close to the UMSS for  close to 0. Because

I am interested in the case where  is small, I assume throughout that   .

Denote agent ’s policy function as  () and the aggregate decision as Ψ ≡ ,

so Ψ0 = 0. Define

 = ( + ΨΨ
0)|∞ 

where the subscript ∞ denotes that the function is evaluated at a steady state.

Stability requires   0. For  ≈ ∞, a first order approximation gives

+ =  + ∞ (1−  ) +  ( − ∞) =⇒ +


≈  (32)
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for  ≥ 0. Equation (7) implies

 0 () =

( − )
R∞
0

− ((+   (+ )) + (+   (+))
0 (+ ))

+



(33)

Using equation (32) and evaluating equation (33) at  = ∞ gives

 0 (∞) = ( − ) ( + 
0)|∞

R∞
0

−

=
(−)(+0)|∞

− =
(−)


+

Ψ0



|∞

− 

(34)

The Hamiltonian corresponding to the fictitious optimal control problem in equa-

tion (6) is

 =  ( )− () + 

µ
 +

− 1


Ψ ()

¶


where  is the current value costate variable. The necessary conditions for optimality

are

 +  = 0 =⇒  = −


and ̇ = −
µ
 − 0 + 

µ
 +

− 1


Ψ
0
¶¶



Using the first necessary condition and evaluating the costate equation at a steady

state (setting ̇ = 0) gives the conditionh
− + 0 + 



¡
 +

−1

Ψ

0 − 
¢i
|∞
=∙

− +
(−)


+

Ψ0



− + 



¡
 +

−1

Ψ

0 − 
¢¸
|∞
= 0

(35)

where the first equality uses equation (34). Using the definition of  and rearranging

the second line of equation (35) implies that Ψ0 = Ψ0 (∞) is a solution to the

quadratic equation

× (Ψ0)2 + ×Ψ0 +  = 0 (36)
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with
 ≡ 

−1



 ≡
³
( − ) 1


+ −1


( − )−

³
( − )− 




´´


 ≡ (−−  + ) +


( − ) ( − )

Hereafter I set  = 1, so

Ψ0
b∞ =

(+  − )


− 1


( − ) ( − )

 −  +




=⇒

 =  + 
(+−)−

1

(−)(−)

−+



=





− 



+




− 

+ 





+



− 







(37)

The UMSS is a solution to µ



− 



¶
 = 0

I define the state and the control variables so that   0 and   0. For

example, in the climate model,  is the stock of atmospheric carbon and  is the

level of abatement, so the flow of utility is decreasing in both variables. These

definitions (the state variable is a “bad” and the action is costly) mean that the

model is sensible if and only if   0 (so that incurring a cost reduces the public

bad). Given the concavity of the static optimization problem (which determines the

UMSS), a stock level slightly greater than the UMSS satisfiesµ



− 



¶
 =   0 or

µ



− 



¶
=




 0 (38)

for  small in absolute value. Such a stock level yields approximately the maximum

steady state level of utility. (Given that the costly action  reduces the stock, it

would never be part of an equilibrium to drive the stock below the optimal static

level.)
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Using equation (38) in (37) gives

 =
 

 + 

³


+ 



´


 + 





The denominator is positive for small . For  small in absolute value (so that


 +   0), the numerator is negative if and only if

− 

³



 + 

´  

i.e. if and only if  is sufficiently small, as was to be shown.

B.4 The constant MPE in the linear-in-state model

The first part of this appendix provides proofs Propositions 4 and 5 and Corollaries

2, 3, and 4. The second part justifies Remark 1.

B.4.1 Proofs: linear-in-state

Because  is of full rank,  = Λ−1. In a symmetric MPE, i.e. where all tribes

emit () =  (), ̇ () =  +  () +  (). Here, the equilibrium value of the

state  periods in the future, given the current value 0 is:  = Λ−10 + ().

I note for future use that if  is a constant, then  () = Ω ()−1 (+ ).

If all eigenvalues are negative, Ω () is a diagonal matrix with element
exp(Λ−1)

Λ
in

the ’th diagonal position. However, for the calibration in Section B.4.2 I want to

consider the case where the largest eigenvalue, denoted Λ1, equals 0,and others are

negative. In this case, Ω () is a diagonal matrix with first diagonal element equal

to  and the other  diagonal elements equal to
exp(Λ−1)

Λ
.

Proof. (Proposition 4) Given that the policy maker in tribe  at time  expects

future emissions to be independent of the state, using the flow payoff  (;)− 

=
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1

[ (; 1)− 01] and equation (7), the annuity function is :

( ) =
(−)


R∞
0

− [( ( (+ ) ; 1)− 01+)] 

=
(−)


R∞
0

−
£¡
 ( (+ ) ; 1)− 01

¡
Λ−1 + (+ )

¢¢¤


From this formula, it is apparent that  is linear in , ( ) = 0 + 0, with

the gradient 0 given by the first equation in (8). If future policies are constant,

then 0 is a constant, 0.

Using  = 0 + 0 and the utility flow  (;)− 

in equation (6), produces

the dynamic programming equation (DPE)

 ( ) = max{ (;)− 

01

− (0 + 0) +  0 ( ) [+ +  (+ (− 1))]}


Because this problem is linear in the state, the obvious trial solution is a linear

function,  ( ) = 0 + 0. Using this trial solution, the DPE becomes

 (0 + 0) = max { (;) + 0}
−


01 − (0 + 0) + 0 [+ +  (− 1)] 

The first order condition (which is sufficient due to concavity of ) is

 (;)


+ 0 = 0 (39)

The solution, ∗, possibly depends on time, but is independent of the state. Substi-

tuting the optimal flow payoff into the the DPE gives the maximized DPE

 (0 + 0) =  (∗;) + 0∗

−

01 − (0 + 0) + 0 [+ +  (− 1)] 


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Equating coefficients of  gives

0 = −



01 − 0 + 0

Because  and 0 are constants, 0 is also a constant, 
0, given by the last equation

in (8). Thus, 0, and 0 are also constants.

In summary, regardless of planner  ’s beliefs about other planners’ state-independent

policies, planner  ’s optimal policy is the constant given by  = argmax { (;) + 0}.
Because  is independent of other planners’ policies, the equilibrium policy is domi-

nant both respect to actions by future planners in one’s own tribe, and by all current

and future planners in other tribes.

Proof. (Corollary 2) For the log-linear model, where  (;) = 

ln (), the

first order condition for the problem in (9) is 

+ 0 = 0 =⇒  = − 

0 =⇒
 =  = − 

0 = −
(01−(−)̃0)(−)−1

. Emissions are positive (0  0),

so aggregate emissions are an increasing linear function of . For the quadratic

model, where  (;) =  − 
2
2, the first order condition for the problem in (9)

is  −  + 0 = 0 =⇒  = +0


=⇒  =  = +0

. Using

(0)


=

− 
2
(01 − ( − ) ̃0) ( − )

−1
  0, aggregate emissions is an increasing strictly

concave function of .

Proof. (Proposition 5) The first order condition for the problem in equation (9) is
(;)


= − ()0, where I make the dependence of  on  explicit for emphasis. By

concavity of , this first order condition is sufficient. Using the definition  (;) =
1

 (; 1), and the chain rule, I have

(;)


= 1



(;1)

()


=

(();1)


. Using this

relation in the first order condition gives
(();1)


= − ()0. Using the definition

of  ()
0
from equation (8) in this first order condition gives equation (10).

By inspection, the absolute value of the elasticity of this tax with respect to  is

1. In order to obtain equation (11), use



= −



[(01−(−)̃0)(−)−1]


=

−


£
̃0 ( − )

−1
 +

¡
01 − ( − ) ̃0 ( − )

−2

¢¤
=

−


£
̃0 +

¡
01 − ( − ) ̃0 ( − )

−1¢¤
( − )

−1


19



Multiplying this expression by −

to convert to an absolute value elasticity, gives

equation (11).

Proof. (Corollary 3) For the scalar case, ̃ = 1

−̂ . Using this result in equation

(10) produces the formula for  ∗ in the scalar case. Straightforward calculation

establishes the other claims in the corollary.

Proof. (Corollary 4) Part (i) is immediate from Corollary 3. To establish Part

(ii), recall that the Woodbury Matrix Identify states that (+  )
−1
= −1 −

−1 (−1 +  −1)−1  −1. Let  = −,  =  ,  = −1 and  = Λ.

First consider limΛmin→0  ∗. Suppose that Λ−1 exists, i.e. Λmax  0. Applying the

Woodbury Matrix Identity gives

(− + Λ−1)−1 = 1
− − 1

−
¡
Λ−1 − 1


−1

¢
−1 1

−

= 1
− +

1

2

¡
Λ−1 − 1



¢
−1

Using 
¡
Λ−1 − 1



¢
−1 → 0×  as Λmin → 0 (from below), I have

lim
Λmin→0

¡− + Λ−1
¢−1

=
1

−

I also have

limΛmin→0 ̃ = limΛmin→0
R∞
0

01
−(−Λ)−1

= limΛmin→0 01
R∞
0

−(−Λ)−1 = 01
1

−1 = 01

1



Putting these results together

limΛmin→0  ∗ = −

limΛmin→0 (01 − ( − ) ̃0) ( − )

−1


= −

01
³
1− −



´
1
− =




¡
+−+

+

¢
= 



¡
+
+

¢


Now consider limΛmax→−∞  ∗. Using the definition of ̃, limΛmax→−∞ ̃ = 0.

In addition, ( − )
−1
= (Λ−1 − )

−1 → 0 ×  as Λmax → −∞. Thus,

limΛmax→−∞  ∗ = 0.
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B.4.2 The Gerlagh and Liski (2012) calibration

Gerlagh and Liski (2012) calibrate a four dimensional discrete time model that pro-

duces relations among emissions, stock accumulation, and economic damages that

are similar to those in DICE (Nordhaus 2008). Here I explain how I modify their

model to fit the continuous time setting. The state variable is  = (1 2 3).

These variables correspond to: (damages (), carbon stocks in the atmosphere +

upper ocean (1), carbon stock in the biosphere (2) and carbon stock in the deep

ocean (3). Using a unit of time equal to a decade, their calibration “almost”

produces 1 = (1− )0 + 10, with the adjustment parameter  = 0156 and

the damage parameter  = 00122.15 Let the parameters corresponding to an

annual step be ̃ and ̃. After 10 years (holding 1 constant at 10) 10 =

(1− ̃)
10
0 +

P9

=0 (1− ̃)

̃̃10. I convert from a decadal to an annual time

step, using (1− ̃)
10
= 1 −  =⇒ ̃ = 0017; for the annual time step I replace 

with ̃00122 = 2 05× 10−4.
This procedure gives the parameters for the first difference equation, with an

annual time step. I obtain the remaining parameters in the dynamic system (with

the assistance of personal communication) from the supplementary material that

accompanies their paper. The equation of motion is  = ̃−1 + ̃, with

̃ =

⎡⎢⎢⎢⎢⎣
0983 182 737 4 2 051 706 037× 10−4 0 0

0 0963084 0027280 0003262

0 0025115 0972720 0000000

0 0011801 0000000 0996738

⎤⎥⎥⎥⎥⎦ ; ̃ =

⎡⎢⎢⎢⎢⎣
0

1

0

0

⎤⎥⎥⎥⎥⎦ 

At a constant aggregate emissions rate of  (as in the constant symmetric equi-

librium), and given an initial condition 0, the state in the next period is 1 =

15In their model, current damages depend on lagged damages and the current atmospheric stock,

so they have  = (1− )−1 + 1. I have current damage depend on lagged damage and

lagged atmospheric stock. With their formulation, the utility flow depends on two state variables,

 and 1. I would need to introduce an additional state variable, a weighted sum of  and 1 in

order for the utility flow to depend on a single state. My alternative is to have current damages

depend on lagged 1.
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̃0 + ̃. Given these numerical values, I find the eigenvalues and eigenvectors to

write ̃ = ̃ Λ̃̃−1.

In the continuous time system, the stock after one year of constant emissions is

1 = Λ−10 + Ω−1. Given the same initial condition and the same level

of emissions, the state at the end of the period should be the same in the discrete

and the continuous time systems. This condition requires

Λ−1 = ̃ Λ̃̃−1 and Ω−1−1 = ̃.

The first equation is satisfied by setting  = ̃ and Λ = Λ̃. With these values, I

solve the second equation to obtain  = Ω−1−1̃.16 With Λ,  and values for

  , I compute the formula for the elasticity in equation (11).

With their calibration and  = 02 = , Table 4 shows that for   00133, the

elasticity of the tax with respect to  is less than the elasticity with respect to 

(always equal to 1). The relation reverses for larger ; for  close to its upper bound

(in this setting, ), the elasticity of the tax with respect to altruism is nearly five

times as large as the elasticity with respect to . This example shows the flexibility

of the tools developed here, and the importance of non-monotonic dynamics.

 006 01 00133 016 018 002

 029 06 1 1 94 2 89 476

Table 4: Relation between  and  in model adapted from Gerlagh and Liski (2012)

16In the discrete time model, all emissions go first to 1 the upper atmosphere and shallow ocean

(̃ is a unit vector). In order for the continuous time and the discrete time models to have the

same trajectory (sampled at annual intervals), given the same level of emissions,  is not a unit

vector. For the calibration here,

 0 ≈ ¡ −1 06× 10−4 1 02 −1 31× 10−2 −6 07× 10−3 ¢
The negative values do not have a physical interpretation. They arise only because I want the

continuous time model to “match” the discrete time model. The elements of  sum to 1.
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C The linear-quadratic model with  tribes

In the interest of generality, I provide the formulae for the linear-quadratic model

that includes an interaction between the control and state variables in the utility

function, even though the climate model does not require this interaction. I first

make a linear transformation of the state and control variables in order to reduce

the dimension of parameter space in the linear-quadratic one-tribe model. I then

convert the  = 1 model to the multi-tribe setting. The next subsections provide

formulae for the linear equilibria for general , under both exponentially distributed

lifetimes and deterministic lifetimes. I also explain how to obtain nonlinear equilibria

for the model with exponentially distributed lifetime. I then discuss the calibration.

The text notes that a specialization of the linear-quadratic problem has the flow

payoff quadratic in the control and linear in the state. It is easy to see why there are

two globally defined MPE decision rules for this variation, a constant and a linear

decision rule. The constant equilibrium decision can be obtained in closed form; to

obtain the linear equilibrium it is necessary to solve a quadratic rather than a cubic

equation. Nonlinear equilibria must be solved numerically. If agent   believes

that other agents set their decision to a constant level, agent   faces a problem that

is linear in the state; the equilibrium decision to that problem is a constant. If agent

  believes that other agents use a linear control rule, the function  is quadratic

in the state; agent   therefore has a fictitious control problem that is quadratic in

the state; the solution to that problem is a linear control rule.

C.1 Reduction in parameter space

Here I make a linear transformation of the state and control variables that reduces

the dimension of parameter space from 8 to 4. Begin with a one-tribe model in

which the state variable is  and the control variable is . Given the 8 parameters

   , the flow payoff in the one-tribe setting is

− ¡+2 +  +  2 +
¢

(40)
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and the equation of motion is

̇ = +  +  (41)

Define a new state and control variable:

 =
√
2
¡
2−
4−2 + 

¢
 =

√
2

¡
2−
4−2 + 

¢ (42)

With these definitions, the flow payoff and the equation of motion are, respectively,

−1
2

¡
2 + 2 +

¢
+ constant, and ̇ =  +  +  (43)

with  ≡ √


and

 ≡
√
2

µ
−

2 −

4 −2
+ 

 − 2
4 −2

¶
and  ≡ 

√
√


 (44)

The constant in the flow payoff does not affect behavior, so I ignore it henceforth.

C.2 From one tribe to  tribes

I want to define a flow payoff and an equation of motion (the technology) such that the

aggregate feasible payoff does not depend directly on . The equilibrium aggregate

payoff and decision rule depends on  only insofar as  alters the equilibrium decision

rules of the individual tribes. That is,  has a strategic but not an intrinsic effect

on agents’ payoffs.

Define the flow payoff and the constraint facing the ’th tribe as

−1
2

µ
1


2 + 2 +

¶
̇ =  +  + 

Ã
 +

X
 6=



!
 (45)

where  is the control variable of the ’th tribe at an arbitrary point in time. If
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all tribes use the same decision, , the aggregate action is  =
P

  = . The

aggregate payoff when all tribes use the same action is  times the first expression

in system (45), which equals the first expression in system (43). When all tribes use

the same action, the equations of motion in the two systems are obviously identical.

The equilibrium flow payoff (where  = 

) simplifies to − 1

2
(2 +2 +)

C.3 Calculating the equilibria

This section provides details for the linear and non-linear equilibria in the model

where agents have exponentially distributed lifetime, and for the linear equilibrium

where agents have known finite lifetime.

C.3.1 Exponentially distributed lifetime

For the purpose of obtaining the linear equilibrium under exponentially distributed

lifetimes for the two cases,    and   , and for the limiting case  = ∞, I
introduce constants    that take the values given in Table 5

 =  =  =

if      

if     −  

if  =∞ n/a  = 0 

Table 5: values of    for different cases

Here,  is the discount rate used in the definition of ,  is the factor that multiplies

the integral in the definition of −, and  is the discount rate used in the fictitious

control problem.
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The Hamiltonian, , for the fictitious optimal control problem, the necessary

conditions for that problem, and the definition of , are

 = −1
2

¡
1

2 + 2

¢− () + 
¡
 +  + 

¡
+ −1


Ψ ()

¢¢


= −+  = 0 =⇒  = 


= 



̇ = − 

= − ¡−


− 0 + 

¡
+ −1


Ψ0
¢¢

 = − R∞
0

−
¡− 1

2

¢
(2 +2) 

(46)

In a symmetric equilibrium,  = Ψ ≡ .

Differentiating the second equation in system (46) with respect to time and using

the third equation gives

̇


= 




−
µ
−

− 0 +





µ
+

− 1


 0
¶¶



Dividing this equation by ̇, using ̇

̇
= 


=  0, gives

̇

̇
= 0


=



−(−


−0+

 (+
−1


0))
++

=⇒
 0 = ((−)++0)

(+)−(1−2) 
(47)

The fourth equation in system (46) implies

 = 
2
(2 +2) + 0 ( +  + ) =⇒

 0 =
− 

2(
2+2)

(++)

(48)

A MPE must solve the ODEs in the second lines of equations (47) and (48).
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Finding the linear equilibrium In the linear equilibrium,  is a linear and 

is a quadratic function of :

 = +∆

 = 0 + 1 +
1
2
2

2

The objective is to find the equilibrium values of , ∆. Substituting these two

functions in the ODEs in equations (47) and (48) and equating coefficients in  and

1 for the first equation, and coefficients of 2 and  in the second equation, implies

(− 2)∆2 +  ( − 2)∆+ + 2 = 0

(2−  + 2∆)2 + (∆
2 + ) = 0

(∆+  − − 2∆) + 1 − ∆ = 0

(2− 2 + 2∆)1 + (22 + 2∆+ 22) = 0

(49)

Solving the second equation for 2 and substituting the result into the first equation

implies

2 = − ∆2+
2−+2∆

Σ ≡ 22 (2− 1)∆3 + (((8− 2 − 2)+ (+  − 2)) )∆2

+(( − 2 − 2 + 42)− 22)∆+  (+  − 2) = 0

The correct root of the cubic Σ = 0must yield a stable equilibrium, i.e. the inequality

+ ∆  0 must hold. Use this root (or roots) to obtain the equilibrium value(s) of

2. Using these values, the last two equations in the system (49) are a pair of linear

equations in  1.

Finding nonlinear equilibria I begin by using the argument presented in Ap-

pendix B.3, generalized to allow arbitrary values of , but specialized to the linear-

quadratic setting. Denote Φ as the value of  0 at a steady state, i.e. where
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0 =  +  + . With this definition,  =  + Φ. A derivation that paral-

lels that which establishes equation (34) gives

 0 (∞) = 

( +Φ)|∞

R∞
0

− =


(+Φ)|∞

− =

(− 1


(+)Φ)

−−Φ 

(50)

Substitute this steady state value of  0 into the steady state value of  0, using

equation (47), and evaluate the result at a steady state ( = −1

( + )) to obtain

the quadratic in Φ :

Φ2 + Φ+  = 0 with

 = (1− )  ( + )

 = (−  − +  + 2 − 3) ( + ) +  (− ) +  (2−  − 2)

 =  (+  − ) + 

( + ) ( −  +  − 2) 

(51)

The set of  that can be supported as steady states in a MPE is

Λ =
©

¯̄
∃Φ for which + Φ  0 ∧Φ2 + Φ+  = 0

ª


To construct a non-linear MPE for this model, pick a value of  ∈ Λ with

 = −1

( + ) and solve the pair of ODEs in equations (47) and (48) with these

initial conditions. In general, these ODEs must be solved numerically. A possible

difficulty arises from the fact that we do not know the domain of such a solution.

For example, if we were to solve these ODEs using a function approximation over a

domain that is strictly larger than the domain of existence of the ODEs, then the

solver might return a poor approximation of the true solution.

MuPad can solve the initial value problem described above; MuPAD’s default

method is DOPRI78, an embedded Runge-Kutta pair of orders 7 and 8. This

procedure runs into difficulty because the expression for  0 (and also for  0 in

the case where  = 1) is an indeterminate form at a steady state. In order to
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avoid this difficulty, choose a small  and replace the initial condition (∞∞ ∞)

with a nearby point (∞ + ∞ + Φ∞ + 0 (∞) ). This point lies close to

the correct boundary, and it lies on the tangent to the trajectory that takes the

system to this boundary. The solution to this initial value problem,  (), can be

plotted, to confirm that it does not cross the line  ( + ) −  (1− 2), where
 0 is undefined. (As a consistency check, I confirmed that this approach returns

the linear equilibrium when given an initial condition near the steady state to the

linear equilibrium.) The results reported in the text use this method of numerically

obtaining non-linear equilibria.

In order to calculate the function  graphed in Figure 3 I set + Φ =  , where

 is a non-positive number close to 0. For   0, the value of Φ that solves this

equation is associated with a stable steady state;  = 0 gives the infimum of values of

Φ associated with a stable steady state. Substituting Φ = −

into Φ2+Φ+ = 0

results in an equation that is linear in . The value of  that solves this equation

equals the infimum of  that can be supported as a steady state in a stable MPE.

Replacing  with − 

2+2
expresses the infimum of stable steady states as a multiple

 of the UMSS, − 

2+2
. The resulting equation is linear in  and depends on all

other parameter values. Setting those values equal to the levels given in Section C.4

results in a  as a function of   and Ω, shown in Figure 3.

C.3.2 Deterministic lifetime

The simplicity of the model with exponentially distributed lifetime results from the

fact that for that case it is trivial to obtain the ODE for the function  (). It

is not clear how one would obtain the ODE for  in the case where agents have

known finite lifetime. I therefore use a slightly different argument to obtain the

linear equilibrium in this case, and I leave the non-linear case for future work.

The linear equilibrium  =  + ∆ must solve the ODE in the second line of

equation (47), a fact that leads to the first and the third line of system (49). Under

29



the linear policy  = +∆, and given a stock  (0) = ,

 () =
− ( + )

+ ∆

¡
1− (+∆)

¢
+ (+∆) (52)

Substituting this formula into the flow payoff  = − 1
2

¡
2 + (+∆)

2
¢
and col-

lecting terms,

 = 2
2 + 1+ 0 with

2 = − 1
2

¡
2((+∆)) +∆22((+∆))

¢
11 = − 1

2

¡−2 
+∆

¡
1− (+∆)

¢
(+∆) + 2

¡
1−  ∆

+∆

¡
1− (+∆)

¢¢
∆(+∆)

¢
12 = − 1

2

¡−2 

+∆

¡
1− (+∆)

¢
(+∆) − 2∆2 

+∆

¡
1− (+∆)

¢
(+∆)

¢
1 = 11 + 12

0 = − 1
2

³
(−−)2
(+∆)2

¡
1− (+∆)

¢2
+
¡
+∆−−

+∆

¡
1− (+∆)

¢¢2´
(53)

Under the linear policy,  () is a quadratic function: () = 2
2 + 1 + 0.

This fact and the definition of  imply

2
2 + 1+ 0 = ( − )

Z 

0

( − )



¡
−2

2 + 1+ 0
¢


Equating coefficients gives

2 = ( − )
R 
0

(−)


−2

1 = ( − )
R 
0

(−)


−1
(54)

The first line of system (49), together with the definitions of 2 and 2 is a non-

linear equation in ∆. A solution that satisfies + ∆  0 is a stable root. Given a

numerical value for ∆, the third line of system (49), together with the definitions of

1 and 1imply

 = − 14 − ∆

13 + ∆+ − − 2∆ 
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C.4 Calibration of the climate model

I first express the model in “natural units” and then rewrite the model so that the

control and state variables are percentages that have a convenient interpretation. I

then use the transformation in Appendix C.1 to reduce the dimension of parameter

space.

Let  be the stock variable at time , ppm of carbon and  be the flow, measured

in ppm per year. (One ppm by volume equals 2.13 GtC.) The equation of motion

for the stock of greenhouse gases is

̇ = ̄ +  +  (55)

The parameters ̄, , and 1 on the right side correspond to   in equation (41);

 corresponds to  and  corresponds to . To calibrate the model, I set the half

life of carbon to 83 years, the steady state in the absence of anthropogenic emissions

equal to the pre-industrial level to 280 ppm, and assume that under BAU the stock

increases from the current level, 380, to 700 in 90 years. These assumptions imply

 = −8 351 170 9× 10−3, ̄ = 2 338 327 8, bau = 5 892 686 0 (56)

With these parameters, the steady state stock under BAU is 986 ppm, and after 200

years of BAU the stock reaches 872 ppm.

For ease of interpretation, it is convenient to express the control variable, , as

abatement as a percent of BAU emissions, and the stock, , as the percent increase

over preindustrial levels:

 =
bau − 

bau
100 and  =

 − 280
280

100

With these definitions and the parameter values in equation (56), the equation of

motion is

̇ = − 1

280
BAU+

µ
5

14
BAU + 100 +

5

14
̄

¶
= + + (57)
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with

 = 2 104 530 7  =  = −8 351 170 9× 10−3  = −2 104 530 7× 10−2 (58)

In this stationary setting, denote the constant  as gross world product (GWP)

exclusive of climate related damage and abatement costs. In this linear-quadratic

model, the flow cost of abatement, as a percent of GWP, and the flow cost of the

stock, as a percent of GWP are, respectively,



2

2


100 and



2

2


100.

For calibration, suppose that the flow cost of a 50% reduction in emissions relative to

BAU ( = 50), is  percent of GWP; and the flow cost of doubling of ppm relative

to pre-industrial level ( = 100), is  percent of GWP. These assumption imply

 =
1

125 000
,  =

1

500 000
 =⇒ 


=



4


Define Ω = 

, so that the total flow costs, as a percent of GWP, corresponding to

actual abatement  and actual stock  equalµ
100

2

¶µ
()

2
+

Ω

4
()

2

¶


Hereafter I drop the positive factor 100
2

to write flow benefits (negative costs) as

−
µ
2 +

Ω

4
2
¶


Table 6 shows the correspondence between the variables and parameters in the

general model in Section C.1 and in the climate model here.

control state

general          

climate   0 1 0 Ω
4

0   
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Table 6: Correspondence between parameter values in general model from Section

C.1 and the climate model in this section

Equation (58) gives the numerical values of    that appear in the last row of

Table 6, for this calibration. Use Table 6, the numerical values in equation (58) and

the formulae in equation (44), to obtain the values of the model parameters that are

used in finding the equilibria in the climate model:

 = 1 488 127 9
√
Ω and  = −1 052 265 4× 10−2

√
Ω (59)

In interpreting the equilibrium results, it is important to keep in mind that the model

is solved in terms of the transformed state and control  and. The percent increase

in the stock relative to preindustrial level, , and aggregate abatement as a percent

of BAU emissions, , are related to  using system (42) and the correspondences

in Table 6:

 =

r
2

Ω
, and  =

√
2


The initial condition for the problem is  = 380−280
280

100 = 35 714 286 or  = 35

714 286
q

Ω
2
. The text describes the results in terms of the stock of atmospheric

carbon expressed in ppm.
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