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Abstract

Because carbon emissions create externalities across countries and genera-

tions, climate policy requires international cooperation and intergenerational

altruism. A differential game using overlapping generations with intergener-

ational altruism shows how altruism and cooperation interact, and provides

estimates of their relative importance in determining equilibrium steady state

carbon levels. A small increase in cooperation has a larger equilibrium effect

than a small increase in altruism, beginning at empirically plausible levels. A

large increase in altruism may have a larger equilibrium effect, compared to a

large increase in cooperation. Climate investments may be dynamic strategic

complements, reducing but not eliminating incentives to free ride.
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1 Introduction

The reduction of greenhouse gas (GHG) emissions is a global public good whose

payoff may occur in the distant future. Nations, or coalitions of nations, choose

their climate policy primarily with a view to their constituents’ welfare. These

constituents care about their own current and future utility flows, and about their

successors. At a point in time, the social planner in each nation (or coalition)

aggregates their constituents’ preferences and chooses current policy. Two factors

impede meaningful climate policy: people have limited altruism with respect to their

successors, and they have limited ability to cooperate with their contemporaries.

Distinct literatures examine separately the effect on climate policy of international

cooperation or attitudes toward future generations. By including both of these

features in a tractable model, I am able to study the interaction between them,

and to illustrate how each influences equilibrium outcomes. Holding fixed either

international cooperation or intergenerational altruism, how does an increase in the

other characteristic alter the equilibrium?

I describe the contours of the model and then summarize the findings. I view

climate policy as the equilibrium of a game, not (except in limiting cases) the solution

to an optimization problem. The world consists of a fixed population, divided

into  symmetric coalitions. At each point in time, the decisionmaker in each

coalition chooses a level of emissions or a carbon tax to maximize her constituents’

welfare, ignoring welfare in other coalitions. Each coalition contains 1

’th of the

world and therefore internalizes 1

’th of their effect on the climate. A decrease in 

increases internalization across countries, and represents an increase in international

cooperation;  = 1 maximizes international cooperation.

Each coalition contains many generations; over time, people die and new gener-

ations replace them. People care about their own current and future flow of utility,

which they discount at the constant pure rate of time preference; this parameter

measures agents’ impatience for their own future utility. People discount the utility

(or welfare) of unborn generations in their coalition at a constant rate, an inverse

measure of intergenerational altruism. No one cares about people in other coalitions.
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A costly current emissions reduction (abatement) may benefit people currently alive

late in their life, but future generations likely obtain most of the benefit. Abatement

therefore involves transfers from a person to her future self, and to people who have

not yet been born. An altruism parameter that differs from the pure rate of time

preference disentangles the welfare effect of these two types of transfers, and results

in time inconsistent preferences for the planner who aggregates the preferences of

currently living coalition citizens.

The parameters measuring international cooperation and intergenerational altru-

ism correspond to mutable features of the real world. For example, the European

countries’ delegating their climate policy to the European Union, or developing na-

tions following the lead of Brazil-Russia-India-China, encourage countries to replace

national interest with the interest of a larger bloc. These moves correspond to a de-

crease in , i.e. an increase in international cooperation. Components of the Kyoto

Agreement (e.g. the Clean Development Mechanism and Joint Implementation) and

of the Copenhagen Accord (e.g. the global funding scheme to finance adaptation to

climate change) can be construed as attempts to increase international cooperation,

and thus correspond to a reduction in .

Economists agree that discounting is important, but disagree about how dis-

counting should be used to formulate climate policy (Stern, 2006; Nordhaus, 2007;

Weitzman, 2007; Roemer, 2011; Arrow et al, 2013; Drupp et al, 2014). The disagree-

ment may arise from differences in preferences, and possibly also from a conflation

(inherent in the infinitely lived agent model) of intra- and intergenerational trans-

fers.1 Many preference characteristics (e.g., associated with racism, sexism, and

homophobia) have changed over time, at least partly as a consequence of efforts

to change them. Educating people about the potential long run effects of carbon

emissions might alter their views on intergenerational altruism.

I examine the relative importance of altruism and cooperation on the equilibrium

steady state atmospheric carbon stock (equivalently, the carbon tax that supports

1France, the UK and the US use lower social discount rates to evaluate climate policy. Changing

views about the proper way to take into account the welfare of distant generations may have

contributed to the use of a lower long run discount rate.
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this stock). This comparison uses altruism and cooperation indices that range from

0 to 1. At empirically plausible levels, a small increase in cooperation has a much

larger equilibrium effect, compared to a small increase in altruism. Beginning at

empirically plausible levels, a large increase in altruism can have a much greater

effect on the steady state, compared to a large increase in cooperation. I also find

that an increase in altruism (respectively, cooperation) has a larger effect on the

steady state when cooperation (respectively, altruism) is low. In addition, climate

investments may be dynamic strategic complements, thus reducing incentives to free

ride.

This paper bridges two large literatures. The first category consists of models

(some cited above) that calculate optimal climate policy for an infinitely lived agent,

or equivalently for finitely lived agents whose altruism parameter equals their pure

rate of time preference. The second category, using game theory to examine equi-

librium policy, underpins suggestions for designing an effective climate agreement

(Aldy and Stavins, 2007, Guesnerie and Tulkens, 2008). One strand studies coali-

tion formation (e.g. Barrett 2005); with few exceptions (e.g. Harstad 2012), most

papers in this strand use static models. A second strand uses differential games, in

which infinitely lived agents have a constant discount rate, to model international

externalities (van der Ploeg and de Zeeuw, 1992; Wirl, 1994; Long, 2010; Haurie,

Krawczyk and Zaccour, 2012).2

Section 2 describes the overlapping generations (OLG) model, and explains how

altruism affects the discount rate of the planner who aggregates the preferences

of agents alive in a coalition at a point in time. Section 3 describes the game

and the equilibrium conditions. The model nests a single-agent problem of non-

2Calvo and Obstfeld, 1988 and Schneider, Traeger and Winkler, 2012 study OLG models in

which agents discount their own and their successors utility at different rates. However, the social

planner discounts the old generations’ future utility from the time of their birth, not the current

time, giving older people less weight in evaluating current policy, eliminating the time inconsistency.

Many papers use OLG models to study environmental and resource problems (Kemp and Long

1979; John, Pecchenino and Schhimmelfennig, 1995; Kosekla, Ollikainen and Puhakka, 2002), and

a growing number use OLG models to study climate policy (Howarth, 1998; Gerlagh and van der

Zwaan, 2001; Rasmussen, 2003; Laurent-Lucchetti and Leach, 2011 ). Those papers do not include

the strategic elements that arise with non-constant discounting, which is central to my paper.
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constant discounting (Strotz, 1956; Laibson, 1997), a differential game with constant

discounting, and a standard optimal control problem. Section 4 describes the climate

model and obtains the results summarized above.

2 Discounting

This section describes the model of time preferences, altruism, and dynasties. A

social planner who aggregates her constituents’ preferences has a non-constant utility

discount rate, a function of agents’ impatience, altruism, and longevity. Ekeland

and Lazrak (2010) obtain this discount rate for paternalistically altruistic agents;

I extend their result by also considering purely altruistic agents. Saez-Marti and

Weibull (2005) establish an isomorphism between paternalistic and pure altruism for

a general sequence of pure rates of time preference, in a setting where a sequence

of agents each lives a single period. I identify a different isomorphism in an OLG

setting, for a less general model of discounting. There is no coalition index in this

section, because I consider a representative coalition here.

Agents’ lifetime is exponentially distributed with mortality rate , giving expected

lifetime 1

; with constant population, the birth rate is also . Due to the exponential

distribution’s memoryless property, currently living agents’ random times of death

do not depend on their current ages. Agents have the pure rate of time preference

, so their risk-adjusted pure rate of time preference is  + . For a utility stream

{}∞=0 with utility flow  ∞, the expected present discounted value of lifetime
utility for an agent alive at time  is  () =

R∞
=

−(+)(−) ()  ; this integral is

the “selfish” component of the agent’s welfare.

An agent at  with paternalistic altruism cares about the lifetime utility of her

successors, all those born at   . But she does not take into account the fact

that those born at 0, with   0  , also care about the agents born at time .

In contrast, an agent with pure altruism does take into account the fact that her

successors care about their own successors’ welfare, not just their utility streams.

The paternalistic agent discounts her successors’ utility at rate , and the agent with

pure altruism discounts her successor’ welfare at rate ̃.

4



To obtain a tractable model, I adopt

Assumption 1 (i) All agents have the same utility function, which depends only on

the global public good and the agent’s investment in the public good. (ii) In each

period, agents in a coalition share equally their coalition’s cost of investment in the

public good. (iii) Agents might care about current and future members of their own

coalition, but they do not care about the citizens of other coalitions.

Assumption 1.i means that there are no privately owned assets. Due to the

exponential distribution and Assumption 1.i, any two currently living citizens of a

coalition are identical, rendering Assumption 1.ii innocuous. Assumption 1.i&ii

imply that any currently living coalition member can be chosen as the social planner

who decides current (but not future) investment levels. Assumption 1.iii makes it

possible to consider discounting within a coalition independently of events in other

coalitions.

The welfare of an agent with paternalistic altruism and utility stream {}∞=0, is

 () ≡  () + 

Z ∞



−(−) ()  =
Z ∞

=

 ( − ) ()  (1)

Her welfare consists of two components: her own lifetime utility (the “selfish” com-

ponent,  ()) and an altruistic component. Over the interval of time (   + ),

approximately  new agents are born, accounting for the  in front of the first

integral in equation 1. Each future agent has her own lifetime utility  (), which

the agent at  discounts at rate . The equality implicitly defines the discount factor,

 ( − ), under paternalistic altruism. Using the definition of  () in equation 1

and simplifying by changing the order of integration, produces Ekeland and Lazrak’s

(2010) discount factor under paternalistic altruism, ():3

() =

µ
− 

− ( + )

¶
−(+) − 

− ( + )
− (2)

3Several papers use a convex combination of exponentials to represent non-constant discounting

for a single infinitely lived agent (Li and Lofgren, 2000; Gollier and Weitzman, 2010; Zuber, 2010;

and Jackson and Yariv, 2015). In Ekeland and Lazrak’s OLG model, the discount factor is a

weighted combination of exponentials; it is a convex combination only if  ≤ .
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If  =∞, a coalition consists of a succession of agents, each of whom lives for a single
instant, implying a constant social discount rate . At the other extreme,  = 0, a

coalition consists of an infinitely lived agent, with a constant discount rate . For

these two limiting cases, there is no time consistency problem.

Given the utility stream {+}∞=0, welfare at  for the agent with pure altruism,
 (), satisfies the recursion

 () ≡  () + 

∞Z


−̃(−) () =

∞Z


 ( − ) ()  (3)

The agent’s welfare consists of the discounted stream of her own utility, plus the

stream of successors’ welfare, discounted using the altruism parameter ̃. The

equality implicitly defines the discount factor  ( − ).

The two discount factors are related in a simple way:

Proposition 1 Agents have mortality rate  and pure rate of time preference ;

agents with pure altruism discount future agents’ welfare at rate ̃  , and agents

with paternalistic altruism discount future agents’ utility at rate   0. (i) The two

types of agents, and thus the planners who represent them, have the same preferences

if and only if ̃ = + . (ii) If ̃  + , the planner under paternalistic altruism

discounts the future flow of utility more heavily than the planner with pure altruism.

In view of the isomorphism described in Proposition 1.i, I hereafter consider only

the case of paternalistic altruism, and drop the superscript on the discount factor.

Using  ≡ + to denote the risk-adjusted pure rate of time preference, the discount

rate,  (), corresponding to equation 2, is

() ≡ −


1


=
−+  + −(−)

−+  + −(−)
 (4)

with
sign

()


= sign − ;  (0) =  for  ∞;

lim→∞  () =  for  ≤ ; and lim→∞  () =  for   .
(5)
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Constant discounting corresponds to  = ; hyperbolic discounting (a declining

discount rate) corresponds to   ;    means that the discount rate used to

evaluate future utility increases with distance.

It is important to agree on the meaning, but not on the “correct” value, of .

For  =∞, currently living agents do not care about those born in the future. For
 = , people make no distinction between a utility exchange from a person to her

older self, and from a person to a different person born in the future.

For  = 0, people put the same value on the lifetime expected utility stream,

 () of all agents, regardless of their date of birth. “Brute luck” is the outcome of

an involuntary and uninsurable lottery. The school of “luck egalitarians” claims that

it is morally wrong to disadvantage others as a consequence of brute luck (Roemer,

2009). Because the date of a person’s birth is a matter of brute luck, this school

regards  = 0 as the ethical choice. With  = 0, the weight put on the lifetime

expected utility stream of a person does not depend on their date of birth.4

3 The game

This section describes the game, defines the equilibrium, presents the necessary con-

ditions, and then discusses the generic multiplicity of equilibria. A final subsection

considers a particular equilibrium for  close to 0.

3.1 Description of the game

The vector of state variables at , common to all coalitions, is S. This vector

possibly includes average temperatures and carbon stocks in different reservoirs, e.g.

the atmosphere and ocean. At time  coalition  takes an action , such as a carbon

tax or a ceiling on carbon emissions. The vector of these actions for the  coalitions

is x ∈ R, with ’th element . The evolution of the state variable depends on the

state variable and coalitions’ actions. Coalition ’s flow payoff depends on the state

4The integrals in equation 1 fail to converge in general, if  = 0. Adding a small positive

constant to  to take into account that our species might vanish, accommodates the case  = 0.
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variable and coalition ’s actions (Assumption 1).

The equation of motion for the state variable, the utility flow for coalition , and

the payoff for the planner in coalition  at time  are, respectively:

constraint: S

=  (Sx;) ; utility:  =  (S ;) ;

and payoff:
R∞


( − )(S   ;)
(6)

Coalition ’s payoff uses the discount function in equation 2.

Section 4 shows how  enters  (Sx;) and  (S ;). A larger  represents

greater fragmentation, not a larger population. A change in  alters equilibrium

decisions, changing the evolution of the state variable and the flow payoff, without

altering the set of feasible paths for the state variable or aggregate utility flows.5

3.2 Equilibrium

At time  the state variable, S, is predetermined; it is the initial condition for

the subgame that begins at . There are many subgame perfect Nash equilibria

to the game defined by this initial condition and the constraint, utility flow, and

payoff in equation 6. I consider only stationary symmetric Markov Perfect equilibria

(hereafter, “MPE”). In a MPE, agents’ actions depend only on the directly payoff-

relevant state, here S. I denote the mapping from the state variable at  to ’s

action at  as  =  (S);  does not depend explicitly on time or the coalition

index, because of the assumption of stationarity and symmetry (over coalitions).

Planner   (the planner in coalition  at time ) plays a game involving both

present and future planners in all other coalitions. Due to the time inconsistency of

preferences arising from the nonconstant discount rate, a subgame perfect equilibrium

requires that planner   also play strategically with respect to future planners in her

coalition, agents   for   . Planner   chooses the current action for her

coalition, and understands that future coalition actions depend on the future value

5If the world consists of  countries, and each coalition controls  countries, then  = 

. A

coalition planner internalizes the effect of her action on residents in all  of the countries in her

coalition. A smaller  means that there are fewer coalitions: that each internalizes a greater

fraction of the effect of its emissions.
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of the state variable. The function  (S) is a MPE if and only if  =  (S) is the

best response, for all feasible S, for planner   when all other planners (including

future planners in coalition ) use the decision rule  =  (S ).

Symmetry and stationarity make it straightforward to write the necessary con-

ditions for a MPE. Denote i−1 ∈ R−1 as the vector consisting of 1’s, and denote

 (S ) ≡  (S i−1 (S)  ;). This function is the time derivative of S () when

the current value of the state variable is S, all other coalitions use  (S), and coalition

 uses . When all other coalitions use  (S), coalition ’s payoff and constraint areZ ∞



(− )(S ;) and Ṡ ≡ S


=  (S ) (7)

 (S ) is a functional, depending on the endogenous  (S). Apart from this fact,

the game defined by the payoff and constraint in equation 7 is identical to the games

studied by Karp (2007) and Ekeland and Lazrak (2010); both papers find the neces-

sary conditions, and Ekeland and Lazrak (2010) establish sufficiency.

The limiting values, as →∞, of the discount rate,  (), differ in the two cases
corresponding to    and    (equation 5). The equilibrium conditions also

differ in these two cases. I provide details for 0   ≤  (where lim→∞  () = ),

relegating the other case to Appendix B.2.1. Define  (S) as the equilibrium value

of ’s payoff (the integral in equation 7), when all other coalitions use the decision

rule  (S). Denote S∗+ (S) as the equilibrium value of S+ , the solution to the

differential equation in the first line of equation 6, given initial condition S, when

all players use the equilibrium decision rule  (S). The coalition’s utility flow on the

equilibrium path is 
¡
S∗+(S) 

¡
S∗+ (S)

¢
;
¢
.

Proposition 2 Suppose that  (S) is differentiable and 0   ≤ . A (symmetric

stationary) MPE  (S) satisfies the necessary condition to the following “auxiliary”

optimal control problem with constant discount rate :

(S0) = max

Z ∞

0

− ((S ;)−(S))  subject to Ṡ =  (S ) (8)
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with the side condition (a definition):

(S) ≡ ( − )

Z ∞

0

−
¡
S∗+(S) 

¡
S∗+ (S)

¢
;
¢
 (9)

The integral in equation 9 equals, in equilibrium, the function previously defined as

 (), the “selfish component” of welfare. The quantity  −  can be interpreted

as an “altruism weight”, with a limiting value  corresponding to  = 0. The

function(S) equals selfish component of welfare times the “altruism weight”. The

integrand in equation 8 equals the current flow of utility minus (S), discounted at

the rate used to evaluate intergenerational transfers.

This model includes familiar special cases. For   1, the endogenous function

 (S ) =  (S i−1 (S)  ;) depends on the policies of the other  − 1 agents.
Those agents do not exist if  = 1, in which case,  (S ) =  (S ;1), an exogenous

function; there, the model collapses to a sequential game with a single agent at each

point in time. For  = ,  = 0 and the model collapses to a standard (constant

discounting) differential game for   1 or a control problem for  = 1.

In general, the equilibrium to this game is not unique.6 Tsutsui and Mino

(1990) note the existence of an open interval of stable steady states in the game

with constant discounting. For each point in this interval, there exists a different

equilibrium policy function. The economic explanation for this multiplicity is that

the decision whether to remain in a particular steady state depends on an agent’s

beliefs regarding the actions that rivals would take if a single agent were to drive

the state away from that steady state. The MPE conditions do not pin down these

beliefs. The same consideration applies for  = 1 under non-constant discounting.

Thus, when   1 and the discount rate is non-constant, two sources of multiplicity

create a coordination problem across coalitions and generations.

6Ekeland, Karp, and Sumaila (2015) study a model in which the equilibrium is unique, within

the class that induce differentiable value functions. Dropping the differentiability assumption leads

to many other MPE (Dutta and Sundaram 1993). Agents might “behave well” if the state variable

is in a certain region, but follow a “bad” MPE if the state variable leaves that region. This kind

of MPE has the flavor of trigger strategies in repeated games. There are many types of equilibria,

apart from the MPE with differentiable value functions, studied here. Krusell and Smith (2003)

and Vieille and Weibull (2009) discuss multiplicity in different settings.
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3.3 The Green Golden Rule

For  = 1, there is a single coalition, and thus no conflict amongst contemporaneous

agents; however, unless  =  or  =∞, the time inconsistency of preferences results
in a game across generations, not a standard optimization problem. Here I assume

that  = 1 and that the state is a scalar, .

The “Green Golden Rule” (“GGR”) is the steady state chosen by an infinitely

patient planner (Chichilnisky, Heal, and Beltratti 1995):  ≡ argmax  ( ; 1)
subject to ( ; 1) = 0. I assume that this static optimization problem is concave,

so steady state utility increases as the state variable approaches the GGR. There is

no presumption that the GGR is an ethically attractive steady state, but it provides

an obvious benchmark against which to compare any other steady state.

For small positive  and bounded , the payoff is well defined and is asymptotic

to ∞

, the steady state utility flow divided by . For small , the payoff in the

steady state therefore determines the evaluation of welfare. (Lemma 2 in Appendix

B.1.) This fact and the assumed concavity of the problem that defines the GGR

implies that MPE are Pareto ranked for  sufficiently small: if a particular MPE

supports a steady state not equal to the GGR, then all generations would prefer a

deviation that causes the state to move closer to the GGR. Moreover, there exists

a MPE that supports a steady state arbitrarily close to the GGR:7

Proposition 3 With the class of differentiable MPE policy rules and  = 1, and

for arbitrarily small positive , there exists a MPE steady state within  of the GGR,

provided that  is sufficiently small (but positive).

4 Climate policy

I present the climate model, discuss some of its features, and then explain why two of

the many MPE have a special claim to our attention. The next subsections use the

7Karp (2007), Proposition 2, and Ekeland and Lazrak (2010), Theorem 8, establish similar

results for cases in which the utility flow is independent of the state. A climate model requires

that utility depend on the state variable, as in Proposition 3.
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climate model to study these two equilibria. I then discuss the relative importance

of altruism and cooperation.8

4.1 The linear-in-state model

In the “linear-in-state” (LIS) model: (i) the utility function is linear in the state

variable and additively separable in the state and the control variables; and (ii) the

equation of motion is linear in the state and in the control. I first describe the utility

function and then the equation of motion, suppressing time indices.

Utility flow The state variable, S, contains all climate-related stocks, such

as temperatures and carbon stocks in the carbon reservoirs. Denote the first el-

ement as  (e.g. atmospheric temperature) and assume that climate-related dam-

ages depend only on .9 Define  as aggregate (= world-wide) emissions. The

LIS structure means that for  = 1 the aggregate utility flow at a point in time,

 (  ;)|=1 , can be written as  ( ;)|=1 − , where  is a parameter; to

obtain a stationary equilibrium I assume that  is a constant. In a symmetric equi-

librium,  = , where  is emissions in a particular coalition. In order that 

represent only an increase in fragmentation, the aggregate utility given the state 

and aggregate emissions  must equal the sum of coalitions’ utility if each coalition

emits  = 

: 

¡


  ;

¢ ≡  (  ; 1). This identity and the LIS structure

require 
¡


  ;

¢
=

(;1)−


. The function  ( ; 1) and the parameter  thus

determine the function  (  ;).

One can take the function  ( ; 1) as primitive, but I use an alternative in

which the aggregate utility flow,  (  ; 1), depends only on consumption and

exogenously changing variables captured by . Moreover, aggregate consumption

depends only on aggregate emissions, the state , and exogenously changing variables.

For example, increased emissions increase consumption by making it possible to

8Supplementary material B.2.3 (“Robustness”) discusses (i) an OLG model in which agents live

a known finite amount of time, and (ii) a climate model that is not linear-in-state.
9This restriction is not plausible because, for example, damages might also depend directly on

oceanic temperature. It is easy to dispense with this assumption in the LIS framework, but the

generalization requires more demanding calibration.
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avoid costly abatement; a larger climate-related stock, , creates damage, decreasing

output and thereby decreasing equilibrium consumption. I assume that utility is

logarithmic in consumption. Denoting  ( ; 1) as aggregate consumption in the

absence of environmental damage, and − as the multiplicative damage function,

actual aggregate consumption is  ( ; 1) − and the utility of consumption is

 (  ; 1) = ln ( ; 1)−. Defining  ( ; 1) = ln ( ; 1) gives the desired

form. The argument  allows for the possibility of exogenous changes, including those

associated with changes in technology (e.g., carbon intensity) or capital stocks.10

Two examples of  ( ; 1) illustrate this formulation. In the first,  is Cobb

Douglas in , leading to a simplified version of Golosov et al (2014), the GeaS

(“Golosov et al. Simplified”) model. In the second (“Quadratic”) example,  is the

exponential of a quadratic in , causing  to be quadratic.

Example 1 (GeaS model):  ( ; 1) = 

 . Aggregate utility is  (  ; 1) =

ln +  ln − , i.e.  ( ; 1) = ln +  ln. Setting  ( ;) = ln


+



ln () means that in a symmetric equilibrium (where  = ) aggregate utility

is 
¡
ln


+ 


ln ()− 



¢
=  (  ; 1) 

Example 2 (Quadratic model):  ( ; 1) = exp
¡
0 +  − 

2
2
¢
, so  ( ; 1) =

0+− 
2
2. Here, utility for a coalition emitting  is  (  ;) =  ( ;)−



, with  ( ;) =

0

+−

2
2. Aggregate utility in a symmetric equilibrium

is  (  ;) =  ( ; 1)−, where  ( ; 1) =  ( ; 1) = 0+− 
2
2.

The equation of motion Carbon emissions enter the atmosphere and disperse

amongst the different sinks, influencing temperature and altering the variable , and

thus altering the utility flow. With constant matrix  and vector , LIS requires

Ṡ = S+  (10)

10For example, if  equals average carbon intensity of energy, and if all anthropogenic emissions

were caused by energy consumption, then  = × energy consumption. This formulation

provides one of many ways to link emissions to economic variables.
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Discussion of this model Integrated assessment models such as DICE treat

capital as endogenous, although they typically treat other time-varying features such

as technology as exogenous. My “stripped down” model treats everything except

for the climate-related variables as exogenous.

Failure to treat capital as endogenous might not matter much. Golosov et al.

(2014) use a discrete time model with endogenous investment, logarithmic utility,

and Cobb Douglas production; capital depreciates 100% in a single period. In that

setting (with  = 1 and constant discounting), the optimal savings rate is a constant

that is independent of climate parameters. Gerlagh and Liski (2012) and Iverson

(2013) study that discrete time model under more general discounting (with  = 1)

and again find that the savings rate (in one equilibrium) is a constant, independent of

climate parameters. These models decouple the investment and climate components.

In the continuous time setting, there is no analog to “100% depreciation in a

period”, so the savings rate in the continuous time setting, extended to include

endogenous capital, would not be constant. I avoid this complication by taking the

capital stock, in addition to technology, as exogenous. The functional assumptions

in Golosov et al. (2014) produce an exact decoupling between investment and the

climate. There, and in other models where the investment decision is insensitive to

climate considerations (Hwang, Reynes, and Tol 2013), studying the climate problem

in isolation from the investment decision has little effect on climate policy.

Technological progress and capital accumulation might make distant generations

so much richer than us, that climate-induced reductions in their consumption are

unimportant. Reductions in future carbon intensity might make future abatement

cheap. In these cases, we should not sacrifice much today to reduce our carbon

emissions. These policy conclusions are driven by assumptions about technology.

There are at least three reasons why we might want a model in which policy is

not driven by the assumption that we will grow our way out of the climate prob-

lem. First, the familiar relation between high expected growth and a high consump-

tion discount rate arises in the standard model with time-additive expected utility;

making growth uncertain leads to only a second-order correction. However, in a

model that disentangles risk aversion from the elasticity of intertemporal substitu-
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tion, Traeger (2014) shows that stochastic growth (compared to zero growth) might

have little effect on the certainty equivalent discount rate. Second, the assump-

tion, adopted by most integrated assessment models, that natural and man-made

capital are highly substitutable, may be incorrect (Guesnerie 2004, Hoel and Sterner

2007, Traeger 2011). In that case, we may want to protect natural capital even

if future generations have much more man-made capital than we do. Third, most

integrated assessment models identify growth with increased GDP, leading to in-

creased consumption. The limitations of GDP as the sole index of well-being are

well understood; alternatives or supplements include the Genuine Progress Indicator

(GPI), Human Development Index (HDI) and Ecological Footprint. Kubiszewski

et al. (2013) discuss these, and note that over the past 25 years GPI has been flat,

while GDP has continued to grow: the indices might be only weakly correlated.

The modeling dilemma is that we can anticipate large changes in technology, but

we might want to avoid having today’s climate policy driven by beliefs about future

technological improvements. The LIS model provides one solution to this dilemma.

The parameters in the equation of motion, Ṡ, are determined by natural processes,

and thus independent of technology. The damage parameter, , could be altered

by technology, but given the model’s level of abstraction, treating  as a constant

parameter is defensible. With this assumption, only the function  depends explicitly

on changing technology or capital. For one equilibrium studied below, the tax in

utility units is independent of , and thus independent of technology. However,

both emissions and the tax in monetary units do depend on , and thus on current

technology. They do not, however, depend on beliefs about future technology.

Equilibrium selection Section 3.2 notes the generic multiplicity of MPE. The

most natural equilibrium candidate, the “limit equilibrium”, is the limit of the se-

quence of equilibria of finite horizon models, as the horizon goes to infinity. For

the LIS model, this equilibrium is unique, independent of the state variable, and

dominant. Gerlagh and Liski (2012) and Iverson (2013) use this equilibrium to

study LIS climate models with  = 1 (although Gerlagh and Liski (2012) describe

the equilibrium differently).
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The infinite horizon model also has many other differentiable MPE. The life

of our planet is finite, but insisting on a finite horizon model (or its limit) implies

that there is some generation that knows it is the last generation. Equilibria that

rely on an infinite horizon are used throughout economics, and can be motivated as

-equilibria to a finite horizon game (Fudenberg and Levine 1983).

For a scalar specialization of the LIS model, I use the infimum of the set of states

that can be supported as a MPE steady state as a means of describing the set of

“non-limit” equilibria . All other MPE steady states lie above this infimum, and

thus are further from the GGR and have lower steady state utility. The limit and

the non-limit equilibria have different properties: the latter, unlike the former, are

functions of the state variable and are not dominant. Consideration of non-limit

equilibria provides both a different perspective on the climate policy game and a

robustness check for conclusions obtained using the limit equilibrium.

Equilibrium representation It is convenient to present results in terms of a

tax, measured in units of utility, instead (as is more common) in monetary units. The

utility-denominated tax,  , that supports aggregate emissions , in a decentralized

aggregate economy is

 (S ) =
1

 ( ; 1) −
 ( ; 1)


− =

1

 ( ; 1)

 ( ; 1)


 (11)

which equals the marginal utility of consumption times the marginal increase in con-

sumption due to an extra unit of emissions. This tax has units of utility/emissions.

Dividing by the marginal utility of consumption (multiplying by  ( ; 1) −)

converts the tax from utility to monetary units.

4.2 The limit equilibrium

Here I assume that  ∈ (0 ], so I use Proposition 2. In a finite horizon model,
backward induction yields a unique equilibrium. The utility-denominated tax in the

limit equilibrium is independent of the state variable and time, . If other agents use
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state-independent decision rules, then the shadow value of the state, for an arbitrary

coalition at an arbitrary point in time, depends on model parameters but not on the

level of the state. Therefore, the agent’s optimal action is independent of the state.

The independence with respect to time is then a consequence of the fact that the

climate-related parameters ( and ) do not depend on time. I characterize the

limit equilibrium for the general model, and then specialize to the climate setting.

General results Denote the diagonal matrix of eigenvalues of  (in the equa-

tion of motion 10) as Λ, with ’th diagonal element Λ, and the matrix of eigenvectors

as  . I assume that Λ are non-positive real numbers and  is of full rank.

Proposition 4 For the LIS model, if other agents use state-independent (but pos-

sibly time- and coalition-dependent) emissions policies, the functions  (S ) and

 (S ) in the auxiliary control problem (Proposition 2) are linear in the state;  (S; ) =

0 + 0S with:

0 =



(01 − ( − ) ̃0) ( − )

−1
with ̃0 =

Z ∞

0

01
−(−Λ)−1 (12)

where  is the  dimensional identity matrix and 1 the first unit vector.

(ii) A planner’s best response to rivals’ state-independent policies is independent

of the state, and is a dominant strategy: it does not depend on her beliefs about

the state-independent emissions of any future planner, or about the actions of other

current planners. Equilibrium emissions are also independent of beliefs about future

technology. Within the class of state-independent policies, the unique equilibrium is

 = argmax


 ( ;) + 0 (13)

Iverson (2013) demonstrates uniqueness of the limit equilibrium for the discrete-time

log-linear model with 100% depreciation in a period and  = 1. He also shows that

the first period action of a planner who can commit equals the action in a state-

independent MPE. Phelps and Pollack (1968) obtain this result for a simpler model.

These results are consistent with Proposition 4.ii, which holds for arbitrary  and
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concave function . State-independence is a consequence of the LIS structure. State

independence, plus Assumption 1.iii, imply dominance.

The utility-denominated tax depends on climate-related parameters, , and dis-

counting parameters, but not on  (·) or the state or :

Corollary 1 (i) The utility-denominated tax that in the aggregate economy supports

the equilibrium level of emissions,  ≡ (();1)


, is

 = −

(01 − ( − ) ̃0) ( − )

−1
 (14)

and thus independent of the state variable, time, and the payoff function  (·). (ii)

The absolute value of the elasticity of this tax with respect to  is 1, and the elasticity

of the tax with respect to  is

 ≡ −





= −

£
̃0 + (01 − ( − ) ̃0) ( − )

−1¤
( − )

−1


(01 − ( − ) ̃0) ( − )
−1


 (15)

Equilibrium emissions, unlike the utility-denominated tax, depend on , and thus

on current (but not future) technology (equation 13). Examples 1 and 2 illustrate

the relation between  (·) and equilibrium emissions. For the GeaS model, if each

of  coalitions fragments into two, aggregate equilibrium emissions double, despite

no fundamental (non-strategic) change in the economy. The Quadratic model does

not have this extreme feature:

Corollary 2 In the GeaS model, equilibrium emissions per coalition are indepen-

dent of , so aggregate emissions are increasing in and proportional to . In the

Quadratic model, aggregate emissions are a strictly concave increasing function of ,

so emissions per coalition fall with .

The climate application Temperature change likely adjusts to GHG stocks with

a lag.11 This lag causes the marginal damage of emissions to rise over time (as

11In DICE and other policy models, the delay between emissions and maximum temperature

change is several or many decades. Ricke and Caldeirar (2014) challenge this feature, claiming

that most of the temperature change due to current emissions occurs within a decade.
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temperature slowly responds to the increased GHG stock) and eventually to decrease

(as the stock dissipates, and temperature slowly adjusts). A two-dimensional model

captures this non-monotonicity with respect to time, and still leads to an explicit

expression for the equilibrium tax,  . I also consider a scalar model, which eliminates

the lag, forcing the marginal damage of current emissions to fall over time.

For the two-dimensional model, I choose units of  so that  = −1, making the
fractional consumption loss at  due to climate change equal 1 − (). I assume

that emissions enter the atmospheric stock and decay at a constant rate. Rezai

(2010) reports estimates of dissipation rates for CO2 that imply half-lives between

126 and 276 years, for a midpoint of 200 years, the value that I use.12 To calibrate

the two remaining climate parameters, I rely on Gerlagh and Liski (2012), who use

DICE. I adopt their assumptions that: (i) doubling atmospheric stocks (relative to

preindustrial levels) reduces output (in my setting, consumption) by 2.6%, once 

has adjusted, and (ii) following a pulse increase in atmospheric CO2, the loss rises

during the first 60 years, and then falls slowly. Appendix B.2.2 provides the formula

for the equilibrium tax, explains how I use the calibration assumptions, and discusses

the relation between my two-dimensional model and Gerlagh and Liski (2012) and

Nordhaus (2008).

The dashed curve in Figure 1 shows the tax elasticity with respect to , and the

solid curve shows the tax expressed in $100/ton of CO2. The tax increases by a

factor of 4.9 as  falls from  = 002 to its lower bound 0, ranging from $17/ton to

$83/ton. (I multiply  by annual gross world consumption to obtain a tax measured

in dollars. I set gross world output to $63 Tr and the investment rate to 25%, giving

consumption at $47.25 Tr. C02 is in units of Teratons, so the units of  × $ are
dollars/ton of C02.)

Remark 1 There is “observational equivalence” between the model with discount

parameters   and a second model with a constant discount rate  (; ): the two

12No single half-life provides a close approximation of the carbon cycle, although a higher di-

mensional linear model, with different sinks, can approximate that cycle (Forster 2007, note ,

page 213). The two-dimensional linear model captures important aspects of the non-monotonic

dynamics contained in earlier models.
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Figure 1: Tax elasticity with respect to , and the tax ($100/ton CO2);  = 1,

baseline climate parameters,  =  = 002 and world consumption = $47.25 trillion.

models yield the same equilibrium tax. For the baseline parameters in the two-

dimensional model, with  = 1,  (; ) increases by a factor of almost 10, from

0003 (at  = 0) to 002 (at  =  = 002).

Observational equivalence is not general, but is due to functional assumptions.

The tax and elasticity formulae are even simpler if S is a scalar, ; here, ̇ =

+,  is a scalar, Λ =   0 and ̃ = 1
− . Specializing Corollary 1 implies:

Corollary 3 For the case where S is a scalar,

 =
 ( − + )

 (−) ( −)
 and  =



(−) ( + −)
;

the elasticity  is independent of  and increases with , reaching its upper bound at

 = 0, where  = 
+

 1: as the pollutant becomes more persistent, the tax becomes

more sensitive to . As  varies over (−∞ 0), the tax varies monotonically over³
0

(+)

(+)

´
.

The dashed graph in Figure 1 shows the elasticity of the tax with respect to  in

the two-dimensional model. This elasticity is independent of , and the elasticity

of the tax with respect to  is identically 1. The curve is always less than 0.6. In
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the scalar limit equilibrium, Corollary 3 gives the formula for the elasticity . This

elasticity is maximized at  =
√
2 −. At a 2%/year mortality, the maximum

elasticity ranges from 033 to 069 as the half-life of the stock ranges from 100 to 1000

years. For the baseline value of a 200 year half-life, the maximum elasticity equals

0.45. Comparison of the two-dimensional and the scalar models shows that the

lag between emissions and damages increases the elasticity with respect to altruism

(having no effect on the elasticity with respect to cooperation). The magnitude of the

elasticity is similar for both the scalar and two-dimensional model. This similarity

is important, because I rely on the scalar model for the non-limit equilibria.

4.3 “Non-limit” MPE

The limit equilibrium for the LIS model is dominant and state-independent. Many

other, qualitatively different MPE exist in the infinite horizon setting. The procedure

for obtaining the necessary conditions for these “non-limit” equilibria in the scalar

model is straightforward.13 This section uses exclusively the scalar model, where

̇ = + and   0. Non-limit equilibria (unlike the limit equilibrium) depend

on the flow payoff,  (·). I use the GeaS model, where  ( ; 1) = 

 , requiring

 to be constant, to consider stationary equilibria;  can depend on time.

I define Φ () ≡ ()

 |=∞ , the derivative of aggregate equilibrium emissions,

evaluated at the steady state; Φ () provides a means of comparing steady states of

different MPE equilibria. The analysis here subsumes the limit equilibrium, Φ = 0.

Local asymptotic stability (“stability”) of any equilibrium requires +Φ  0. Thus,

Φ = −  0 is the supremum of values of Φ that correspond to stable equilibria.

The GRR (a steady state stock) for this model is 

. To eliminate  , I define

Υ (Φ;   ) as the steady state stock induced by Φ, expressed as a ratio of the

GGR. Using equation 11 and the GeaS model,  () = 
()

; here, the steady state

tax equals  |∞ = − 
|∞

. Thus, Υ also equals the tax that supports the GGR divided

13Numerical methods using function iteration can find a differentiable MPE for a non-scalar

model. My experience with these methods suggests that they identify only the “limit equilibrum”

(Fujii and Karp 2008). Other papers that consider multiplicity of equilibria under non-constant

discounting (with  = 1) in the scalar case include Karp, 2005 and Karp and Tsur, 2011.
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by the MPE steady state tax.

Lemma 1 (i) The ratio of the steady state stock induced by Φ, and the GGR, is

Υ (Φ; ·) = −((−+
1

Φ(−1))(+Φ−)−Φ(−))
(−−Φ−+) ⇒

Υ (0) = 

( − ) −

+−− and Υ (−) = 1−  

(+)
 1

(16)

(ii) The ratio Υ (Φ) is greater than 1 and decreases in Φ; therefore, the infimum of

stable steady states corresponds to Φ = −.

Lemma 1.i is a formula, and part ii establishes that larger values of Φ correspond

to smaller steady states. Hereafter I consider only Φ ≥ 0; negative values induce
higher steady state stocks, strengthening the results discussed below.

Proposition 5 (i) For any 0 ≤ Φ  −, increased cooperation or altruism (smaller
 or ) move the MPE steady state closer to the GGR: Υ


 0, Υ


 0. (ii) Increased

cooperation (respectively, increased altruism) makes the steady state less sensitive to

altruism (respectively, cooperation): 2Υ


 0. (iii) For all values of , there exists a

MPE steady state arbitrarily close to the GGR for  close to 0. This steady state is

supported by a policy function corresponding to Φ close to its upper bound (Φ = −).
In contrast, even for full cooperation ( = 1), the steady state is bounded away from

the GGR for  bounded away from 0.

Proposition 5.i confirms that increased cooperation or altruism lead to lower

steady state carbon stocks (higher taxes). Part (ii) states, for example, that in-

creased altruism (smaller ) leads to a larger fall in the steady state stock, the lower

is cooperation (the larger is ). Part (iii) implies that for sufficiently high levels of

altruism ( close to 0), there is a MPE steady state (corresponding to Φ close to −)
near the GGR, regardless of the degree of international cooperation. In contrast,

perfect international cooperation ( = 1) does not lead to a steady state near the

GGR if altruism is limited ( bounded away from 0). Proposition 5.iii complements

Proposition 3; the latter holds for  = 1 and general functional forms, whereas the

former holds for general  and the LIS model.
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Remark 2 Because the equilibrium steady state decreases in Φ, the move from Φ = 0

to Φ = − maximizes the percent change in the steady state (for Φ ≥ 0). This maxi-
mum percent change () provides a measure of the importance of the multiplicity

of equilibria in the neighborhood of the steady state.  = 0 if  =  and  = 1;

because of continuity,  is small at neighboring values, where there is little loss

in generality in focusing exclusively on the limiting equilibrium. For  =  = 002

and the 200 year half-life,  is negligible for  = 1 and 
2
   , but is large

(50 — 80%) for other combinations of  .

Dynamic Strategic complements Because  () = 
()

, in the steady state


= − 


Φ. Thus, for Φ  0, the equilibrium tax decreases in the state in the

neighborhood of the steady state. Here, taxes are dynamic strategic complements

(Jun and Vives 2004): If a coalition reduces its current tax below the equilibrium

level, the future stock is above the equilibrium level, causing future taxes to be lower

than the non-deviation level; future taxes respond in the same direction as a current

deviation. Equilibria with lower steady state stocks correspond to dynamic strategic

complementarity. When taxes are strategic complements, coalitions have an incen-

tive to use high taxes, in order to keep the stock low, thereby encouraging future

decision-makers to use high taxes and also maintain a low stock. This incentive is

absent in the limit equilibrium with state-independent taxes, where the steady state

stock is consequently higher.

Strategic complementarity arises from two features that likely hold in more gen-

eral models: (i) A higher tax reduces emissions everywhere, not just at the steady

state. (ii) Whenever there is a natural decay rate, i.e. when ̇ can be written as

 (), with   0   , there are locally asymptotically stable steady states with

 0 ()  0 near the steady state (because stability requires only +Φ  0). For

equilibrium tax rules that support these steady states, the equilibrium tax decreases

in the stock, in the neighborhood of the steady state. For the GeaS model (but

not more generally) the limit equilibrium (where Φ = 0) divides the equilibrium set

between dynamic strategic substitutes and strategic complements.
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4.4 The relative importance of altruism and cooperation

This section examines the relative importance of either small or large changes in

altruism and cooperation. The utility-denominated tax is constant in the limit

equilibrium and varies with the state variable in non-limit equilibria. To nest these

equilibria, I compare the effect of altruism and cooperation on the steady state utility-

denominated tax, or equivalently the steady state stock. I use  ≡ 1

∈ [0 1] as

an index of cooperation and  ≡ −

∈ [0 1) as an index of altruism.14

Small changes in altruism or cooperation The “local criterion” ()

equals the semi-elasticity of the steady state with respect to the altruism index,

divided by the semi-elasticity with respect to the cooperation index;  is the ratio

of two derivatives.15 Figure 2 shows two level sets of ; the solid curves correspond

to the limit equilibrium (Φ = 0) and the dashed curves correspond to the non-limit

equilibrium with Φ = −. Moving north-east in the unit square raises the level of
cooperation and altruism (lowers  and ).

At combinations of altruism and cooperation north-east of the solid line labelled

 = 1,   1 in the limit equilibrium. Over this region, the outcome is more sen-

sitive to altruism than to cooperation (as measured by the ratio of semi-elasticities).

The outcome is more sensitive to cooperation south-west of this curve, where coop-

eration or altruism are low. Each dashed curve lies below the corresponding solid

curve. A larger value of Φ leads to a lower equilibrium steady state carbon stock,

and also increases the parameter set where a small increase in altruism has a larger

equilibrium effect than a small increase in cooperation.

The policy interpretation of this figure depends on which part of parameter space

14As noted above Proposition 2, the equilibrium condition differs depending on whether   

or   . My analysis is restricted to the case  ≤ . My altruism index reflects this restriction,

assigning a zero index value to  = . Treating intra- and inter-personal transfers as equivalent

( = ) is not literally the same as “zero altruism”. An alternative index ̂ ≡ +
++

∈ [0 1)
implies (for  = ) ̂ = 2

3
, not 0, at  = .

15These derivatives use the formulae for Υ (0) and Υ (−) in equation 16, expressed as functions
of the cooperation index 1


and the altruism index −


. Earlier versions of this paper used a

different “Local Criterion”, the ratio of elasticities, instead of derivatives. This alternative local

criterion is less than 1 for all equilibria with 0 ≤ Φ  −.
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Figure 2: Level sets of  = 1 and  = 02 in the limit equilbrium (solid) and

for the non-limit equilibrium with Φ = −. Above  = 1, a small increase in

altruism has a larger equilibrium effect than a small increase in cooperation.

most accurately characterizes the current policy environment. Most integrated as-

sessment models are based on the infinitely lived agent model, at which  = . To

the extent that policy would be guided by these models, in the event that nations

began to cooperate, the altruism index is 0. In addition, governments clearly do

not act in unison. A cooperation index well below 0.5 ( = 2) seems reasonable.

With low levels of altruism and cooperation, the figure suggests that a small increase

in cooperation would have a much larger equilibrium effect, compared to a small

increase in altruism;  = 02 or lower seems plausible.

Large changes in altruism or cooperation Figure 2 shows that the rel-

ative importance (measured by semi-elasticities) of small changes in altruism and

cooperation depends on the value of those indices. Therefore, a large increase in

cooperation might have either a larger or a smaller equilibrium effect than a large

increase in altruism. Figure 3 graphs the level sets of Υ (the ratio of a MPE steady

state to the GGR), showing that a large increase in altruism has a larger equilibrium

effect. The magnitudes Υ = 68 and Υ = 271 correspond to the equilibrium Υ in

the limit equilibrium for the infinitely lived agents ( = , or  = 0) when
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Figure 3: Level sets of Υ (Φ), the ratio of a MPE steady state to the GGR. Solid

curves correspond to Φ = 0 and dashed curves correspond to Φ = − . Υ = 68 and

Υ = 271 are the ratio of eqquilibrium-to-GGR steady states in the limit equilibrium

for the infinitely lived agent ( = , or  = 0) for  = 1 and  = 4. Half-life

= 200 years and  =  = 002.

 = 1 and  = 4, respectively.

If planners act like the infinitely lived agent, then  ≈  is appropriate. If the

world is less cooperative than it would be if three blocs, the EU, the BRIC nations,

and North America, determine policy, then  ≥ 4. At  = 4 and  = , a move to

maximum international cooperation decreases the steady state by a factor of four.

A move close to maximum altruism, holding international cooperation at  = 4,

decreases the steady state by a factor of over 27. For the baseline parameter values,

large increases in altruism have a larger equilibrium effect than large increases in

cooperation As Proposition 5.iii notes, the system can get close to the GGR steady

state if altruism is high, even if cooperation is low; it cannot get close to the GGR

if altruism is low, even if cooperation is high.
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5 Discussion

The provision of a long-lived public good, such as a stable climate, depends on the

ability of contemporaneous agents to cooperate, and on their degree of altruism to-

wards future generations. A differential game/overlapping generations model shows

how these two features interact, and provides estimates of their relative importance in

determining equilibrium policy. Altruism is especially influential when cooperation

is low, and cooperation is especially influential when altruism is low.

At empirically plausible levels of altruism and cooperation, a small increase in

cooperation has a much larger equilibrium effect than does a small increase in altru-

ism. This comparison is stronger for the limit equilibrium, but also holds for all other

differentiable equilibria resulting in lower steady state carbon stocks. Large changes

in altruism and cooperation can reverse this comparison. A move to full cooperation

increases the provision of the public good, but is unlikely to get the steady state close

to the “Green Golden Rule” level. In contrast, a move close to maximal altruism

can get the state close to this level, even at low levels of cooperation.

The multiplicity of equilibria opens the possibility that actions are dynamic

strategic complements, rather than strategic substitutes (or dominant, as in the limit

equilibrium). The logic of Nash’s noncooperative equilibrium does not doom us to

bad outcomes, even if we exclude trigger or other punishment strategies. (Consider-

ation of such strategies increases the equilibrium set.) This conclusion, although not

specific to this paper, is nevertheless worth stating, because many non-cooperative

models of climate policy build in strategic substitutability, implying that agents have

an incentive to undertake less public investment, partly to induce their successors to

invest more. This built-in free riding causes the models to be quite pessimistic about

the chance of a meaningful climate agreement amongst sovereign nations. Recogni-

tion of the possibility of strategic complementarity, where agents have an incentive

to increase their current investment partly to induce higher future investment, mod-

erates this pessimism. International negotiations on climate policy are important,

even if they do not result in enforceable agreements. Negotiations make coordination

on a good equilibrium easier to achieve.
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A Proofs

The supplementary material provides more details of some of these proofs.

Proof. (Proposition 1) The restrictions   0 and ̃   and the assumption that

 is bounded (so  is bounded) imply that the integrals  and  exist. (i)

Differentiating the identities in equations 1 and 3 produce, respectively,



=  0 − ( + ) +  and



=  0 − ̃ +

³
̃− 

´


For arbitrary utility streams {}∞=0, the solutions to these two equations ( and

 , respectively) are identical if and only if ̃ = + . Part (ii) uses part (i) and the

fact that for  () given by equation (2), 


 0 for   0.

Proof. (Proposition 2) Treating (provisionally) the function  (S ) as given, the

constraint and objective in equation 7 are (apart from obvious notational differences)

identical to the constraint and payoff in equations 1 and 2 of Karp (2007). In

addition, the discount function in equation 2 is (for  ≤ ) a special case of the

discount factor used in Remark 2 of Karp (2007); equation 9 above merely reproduces

equation 7 of that paper, taking into account the different notation. Equation 8 then

follows from Remark 1 of that paper.

Remark 3 Unless  = 1, the function  (S ) involves the endogenous function ,

whereas in Karp (2007) (where  = 1) the corresponding function is given. This

difference is important in computing an equilibrium , but it has no effect on the

statement of the “auxiliary” problem used to compute that equilibrium.

Proof. (Proposition 3) I use a Taylor expansion to evaluate  0 (S∞). This in-

formation, together with the necessary conditions for the auxiliary control problem,

evaluated at the steady state, and the requirement that the steady state is locally

asymptotically stable, produces a set of S, each element of which can be supported

as a locally stable steady state in a MPE. I then show that for  = 1, the infimum

of this set approaches the GGR as → 0.

1



Proof. (Proposition 4) The argument proceeds by showing that if all other coalitions,

and if future planners in one’s own coalition, use state-independent decision rules,

then the solution to the auxiliary control problem is linear in the state, with value

function and control rule given in the proposition.

Corollaries 1 — 3 involve straightforward calculation.

Proof. (Lemma 1) Part (i) parallels the method that Tsutsui and Mino (1990) use

to find non-linear equilibria in a linear quadratic differential game with constant dis-

counting. However, the endogenous function  () in the game with non-constant

discounting creates an additional dimension, ruling out Tsutsui and Mino’s use of

two-dimensional phase portrait analysis. Extending their approach to the non-

constant discounting setting, one manipulates the necessary conditions to the aux-

iliary control problem (equation 8) to obtain a two-dimensional system of ordinary

differential equations that a stationary differentiable MPEmust solve. There is some

latitude in choosing which two variables to use for this system, but a natural choice

consists of emissions (or the tax) and the annuity function , both expressed as a

function of the state variable. The condition that the steady state of the resulting

equilibrium state trajectory be locally asymptotically stable identifies an open inter-

val; the steady state to a stable MPE lies in this interval. Values of state variables

in this interval, and the corresponding steady state values of the control variable, are

boundary conditions for the system of ODEs.

Proof. (Proposition 5) This proposition relies on Lemma 1.i and routine but tedious

calculations.
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B Intended for Online Publication only

This material contains supplementary material. The first part of this appendix

contains additional details for the proofs that are only sketched in the main text.

The second part elaborates on three issues mentioned in the text.

B.1 Proofs

Proposition 3 requires the following lemma.

Lemma 2 For any bounded utility flow  () that converges to ∞ 6= 0, and given the
discount factor under paternalistic altruism where lifetime is exponentially distributed

(equation (2)), lim→0
³


∞

R∞
0

()()
´
= 




Proof. (Lemma 2) For small   0 define the  as the smallest time beyond which¯̄̄
()−∞

∞

¯̄̄
≤ . That is

 = inf


½
 :

¯̄̄̄
 ()− ∞

∞

¯̄̄̄
≤ ∀ ≥ 

¾


Note that  ∞. Use

lim→0
³∞

0
()()
∞


´
= lim→0

[(
 
0
()())+(∞

∞


())+(
∞


()()−∞
∞


())]
∞



(17)

Consider each of the three terms on the right side of this equation. The fact that

 ∞ implies that

lim
→0



Z 

0

()() = 0

A calculation confirms thatZ ∞



µµ
− 

− 

¶
− − 

− 
−

¶
 =

−−2 + − + −
(−+ ) 



1



Taking the limit as  → 0 of this expression, implies that the second term on the

second line of equation (17) equals 

. By definition of  ,

¯̄̄̄ R∞


()()− ∞
R∞


()

∞

¯̄̄̄
 

Z ∞



()

The limit as → 0 of the last expression is  

.

Proof. (Proposition 3) I first derive the necessary and sufficient condition, for

general , that must be satisfied at a stable steady state in a differentiable MPE. I

then specialize to  = 1 and show that the boundary of the open interval of states

that satisfies this condition is arbitrarily close to the GGR for  close to 0. Because

I am interested in the case where  is small, I assume throughout that   .

Denote agent ’s policy function as  (S) and the aggregate decision as Ψ ≡ ,

so Ψ0 = 0. Define

 = ( + ΨΨ
0)|∞ 

where the subscript ∞ denotes that the function is evaluated at a steady state.

Stability requires   0. For  ≈ ∞, a first order approximation gives

+ =  + ∞ (1−  ) +  ( − ∞) =⇒ +


≈  (18)

for  ≥ 0. Equation (9) implies

 0 () =

( − )
R∞
0

− ((+   (+ )) + (+   (+))
0 (+ ))

+



(19)

Using equation (18) and evaluating equation (19) at  = ∞ gives

 0 (∞) = ( − ) ( + 
0)|∞

R∞
0

−

=
(−)(+0)|∞

− =
(−)


+

Ψ0



|∞

− 

(20)
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The Hamiltonian corresponding to the fictitious optimal control problem in equa-

tion (8) is

 =  ( )− () + 

µ
 +

− 1


Ψ ()

¶


where  is the current value costate variable. The necessary conditions for optimality

are

 +  = 0 =⇒  = −


and ̇ = −
µ
 − 0 + 

µ
 +

− 1


Ψ
0
¶¶



Using the first necessary condition and evaluating the costate equation at a steady

state (setting ̇ = 0) gives the conditionh
− + 0 + 



¡
 +

−1

Ψ

0 − 
¢i
|∞
=∙

− +
(−)


+

Ψ0



− + 



¡
 +

−1

Ψ

0 − 
¢¸
|∞
= 0

(21)

where the first equality uses equation (20). Using the definition of  and rearranging

the second line of equation (21) implies that Ψ0 = Ψ0 (∞) is a solution to the

quadratic equation

× (Ψ0)2 + ×Ψ0 +  = 0 (22)

with16

 ≡ 
−1



 ≡
³
( − ) 1


+ −1


( − )−

³
( − )− 




´´


 ≡ (−−  + ) +


( − ) ( − )

Hereafter I set  = 1, so

Ψ0
b∞ =

(+  − )


− 1


( − ) ( − )

 −  +




=⇒

16The function  defined here is unrelated to consumption, used in the section on climate policy.
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 =  + 
(+−)−

1

(−)(−)

−+



=





− 



+




− 

+ 





+



− 







(23)

The GGR is a solution to µ



− 



¶
 = 0

I define the state and the control variables so that   0 and   0. For

example, in the climate model,  is the stock of atmospheric carbon and  is the

level of abatement, so the flow of utility is decreasing in both variables. These

definitions (the state variable is a “bad” and the action is costly) mean that the

model is sensible if and only if   0 (so that incurring a cost reduces the public

bad). Given the concavity of the static optimization problem (which determines the

GGR), a stock level slightly greater than the GGR satisfiesµ



− 



¶
 =   0 or

µ



− 



¶
=




 0 (24)

for  small in absolute value. Such a stock level yields approximately the maximum

steady state level of utility. (Given that the costly action  reduces the stock, it

would never be part of an equilibrium to drive the stock below the optimal static

level.)

Using equation (24) in (23) gives

 =
 

 + 

³


+ 



´


 + 





The denominator is positive for small . For  small in absolute value (so that


 +   0), the numerator is negative if and only if

− 

³



 + 

´  
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i.e. if and only if  is sufficiently small, as was to be shown.

Proof. (Proposition 4) Because  is of full rank,  = Λ−1. In a symmetric

MPE, i.e. where all coalitions emit () =  (), Ṡ () =  () +  (). Here, the

equilibrium value of the state  periods in the future, given the current value 0 is:

 = Λ−10+ (), where  () depends on the trajectory of controls from time

0 to . If  is a constant, then  () = Ω ()−1 (). Because all eigenvalues

are negative, Ω () is a diagonal matrix with element
exp(Λ−1)

Λ
in the ’th diagonal

position.

Under the assumption that the policy maker in coalition  at time  expects future

emissions to be independent of the state, and using the flow payoff  ( ;)− 

=

1

[ ( ; 1)− 01] and equation (9), the annuity function is:

( ) =
(−)


R∞
0

− [( ( (+ )  +  ; 1)− 01+)] 

=
(−)


R∞
0

−
£¡
 ( (+ )  +  ; 1)− 01

¡
Λ−1 + (+ )

¢¢¤


From this formula, it is apparent that  is linear in , ( ) = 0 + 0, with

0 = − − 


̃0

where ̃0 is given by the last equation in (12). If future policies are constant, and 

does not depend on time, then 0 is a constant, 0.

Using  = 0+ 0 and the utility flow  ( ;)− 

in equation (8), produces

the dynamic programming equation (DPE)

 ( ) = max{ ( ;)− 

01

− (0 + 0) +  0 ( ) [ +  (+ (− 1))]}

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Because this problem is linear in the state, the obvious trial solution is a linear

function,  ( ) = 0 + 0. Using this trial solution, the DPE becomes

 (0 + 0) = max { ( ;) + 0}
−


01 − (0 + 0) + 0 [ +  (− 1)] 

(25)

The first order condition (which is sufficient due to concavity of ) is

 ( ;)


+ 0 = 0 (26)

The solution, ∗, possibly depends on time, but is independent of the state. Substi-

tuting the optimal flow payoff into the DPE gives the maximized DPE

 (0 + 0) =  (∗() ;) + 0
∗

−

01 − (0 + 0) + 0 [ +  (− 1)] 



Equating coefficients of  gives

0 = −



01 − 0 + 0

Because  and 0 are constants, 0 is also a constant, 
0, given by the first equation

in (12). Equation 25 and the fact that  is a constant implies equation 13. If  is

independent of , then equilibrium emissions are also constant, in which case, 0, and

0 are also constants.

In summary, regardless of planner  ’s beliefs about other planners’ state-independent

policies, planner  ’s optimal policy is given by equation 13. Because  is indepen-

dent of other planners’ policies, the equilibrium policy is dominant both respect

to actions by future planners in one’s own coalition, and by all current and future

planners in other coalitions.

Proof. (Corollary 1) The first order condition for the problem in equation (13)

is
(;)


= − ()0 , where I make the dependence of  on  explicit for emphasis,

and I drop the argument  in  to simplify notation. By concavity of , this first
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order condition is sufficient. Using the definition  (;) = 1

 (; 1), and the chain

rule, I have
(;)


= 1



(;1)

()


=

(();1)


. Using this relation in the first order

condition gives
(();1)


= − ()0 . Using the definition of  ()

0
from equation

(12) in this first order condition gives equation (14).

By inspection, the absolute value of the elasticity of this tax with respect to  is

1. In order to obtain equation (15), use



= −



[(01−(−)̃0)(−)−1]


=

−


£
̃0 ( − )

−1
+

¡
01 − ( − ) ̃0 ( − )

−2

¢¤
=

−


£
̃0 +

¡
01 − ( − ) ̃0 ( − )

−1¢¤
( − )

−1


Multiplying this expression by −

to convert to an absolute value elasticity, gives

equation (15).

Proof. (Corollary 2) For the GeaS model, where  (;) = 

ln (), the first order

condition for the problem in (13) is 

+0 = 0 =⇒  = − 

0 =⇒  =  = − 
0 =

−
(01−(−)̃0)(−)−1

. Emissions are positive (0  0), so aggregate emissions are

an increasing linear function of .

For the quadratic model,  ( ;) =  − 
2
2. Suppressing the time sub-

scripts, the first order condition for the problem in (13) is −+ 0 = 0 =⇒  =
+0


=⇒  =  = +0

. Using

(0)


= − 
2
(01 − ( − ) ̃0) ( − )

−1
  0,

aggregate emissions is an increasing strictly concave function of .

Proof. (Corollary 3) For the scalar case, ̃ = 1
− . Using this result in equation

(14) produces the formula for  ∗ in the scalar case. Straightforward calculation

establishes the other claims in the corollary.

Proof. (Lemma 1) Here the state is a scalar, . I use the necessary conditions for

a differentiable MPE to find two ordinary differential equations (ODEs) in , with

dependent variables  and  (emissions and the annuity function). For ease of

interpretation, I then translate the ODEs in  and  into equivalent ODEs in 

(the tax in units of utility) and . I then use the stability condition to find the set

of stable steady states in a MPE.
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Construct the ODEs in  and . For a given symmetric decision rule,  ()

define aggregate emissions as z () =  (). In the scalar linear model, ̇ =  +P
 . With

P
 6=  =

−1

z (), a representative coalition (so I drop the dynastic

index) faces the equation of motion

̇ =  ( ) = +
− 1


z () + 

The GeaS model allows non-stationarity, entering via the time-dependent term

. Thus, the annuity function, , also has time as an argument. This fact requires

a slight change in notation, but because the non-stationarity enters additively, it does

not complicate the derivations. In the GeaS model,  (;) = ln


+ 


ln (). To

incorporate the non-stationarity, I replace the definition of the annuity, equation 9,

by

̃( ) = ( − )
R∞
0

−
¡
 (+ ;)− 


+

¢


= ( − )
R∞
0

−
³
ln+


+ 


ln (+)− 


+

´


= ̄ () + () 

which uses the definitions

̄ () = ( − )
R∞
0

−
³
ln+



´


 () = ( − )
R∞
0

−
¡


ln (+)− 


+

¢


In a symmetric equilibrium, the function  satisfies the ODE

 () = ( − )
¡


ln ()− 



¢
+ 0 () (+)⇒

 0 () =
()−(−)( ln()−


)

+


(27)

The second line of equation 27 is the ODE for . The numerator and denominator

are both 0, evaluated at a steady state. I therefore use a Taylor expansion (below)

to find the value of  0 at a steady state.
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The auxiliary control problem for the GeaS model (see equation 8) is

̃( ) = max
R∞
0

−
³
ln+


+ 


ln (+ )− 


+ − ̃(+)

´


subject to ̇ =  ( )

=
R∞
0

−
³
ln+


− ̄+

´
 +max

R∞
0

−
¡


ln (+)− 


+ −(+ )

¢


subject to ̇ =  ( )

Defining

 () = ̃( )−
Z ∞

0

−
µ
ln


− ̃

¶


produces the stationary auxiliary control problem

 () = max

Z ∞

0

−
³

ln ()− 


−()

´
 subject to ̇ =  ( )

Defining  as the costate variable for , the Hamiltonian and necessary conditions

to this problem (taking the function  and z as given for the time being) are

 = max
£


ln ()− 


−() + 

¡
+ −1


z () + 

¢¤


1

+  = 0

̇ = + 

+ 0 ()− 

¡
 + −1


z0 ()

¢
= 


+ 0 () + 

¡
− − −1


z0 ()

¢


(28)

Evaluating the necessary conditions at a symmetric equilibrium (replacing z0

with  0) gives
 = − 



̇ = 

+ 0 () + 

¡
− − −1


 0 ()

¢
= 


+ 0 ()− 



¡
− − −1


 0 ()

¢


(29)

Differentiating the first equation with respect to time, using the second, gives



2
̇ =




+ 0 ()− 



µ
− − − 1


 0 ()

¶

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Dividing this equation by ̇ = +, using ̇
̇
= 


=  0 () gives


2 ̇

̇
=



+ 0 ()− 



¡
− − −1


 0 ()

¢
+



2

̇

̇
=



2
 0 =

£


+ 0 ()− 



¡
− − −1


 0 ()

¢¤
+



Solving for  0 gives

 0 =

£


+ 0 ()− 


(−)

¤

¡
+ 1



¢ 2 (30)

A differentiable MPE solves the ODEs 27 and 30.

Translation from  to  . In the GeaS model,  = 

, or  = 


, so 


= − 

2


.

Using this fact in equations 27 and 30 produces




= −

¡


+ 0 ()

¢
 − (−)  2¡

 + 


¢ and



=

 ()− ( − )
¡


ln
¡



¢− 


¢

+ 




(31)

Find the set of boundary conditions for these ODEs. A steady state, a triple

∞, ∞ and ∞, is a feasible boundary condition for the ODEs if it is locally

asymptotically stable. Denote Φ as the value of  0 at a steady state, i.e. where

0 = +, and define  = +Φ. Stability requires   0. Equation 20, repeated

here, is

 0 (∞) =
( − )

¡
 + 

z0


¢
|∞

 − 
 (32)

In the GeaS model,  =  (;)− 

 = 


ln ()− 


, so  = −


and  =



1

 =



. Using these results and equation 32 gives

 0 (∞) =

µ
(−)


−

+ 


0



−−0

¶
|∞

=

µ
(−)(−


+ 
−

Φ
 )

−−Φ

¶
|∞



(33)
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where the second equality uses the fact that  = − at a steady state, and the
notation Φ =  0

|∞ .

Using equation 29 and setting ̇ = 0 gives

0 =



+ 0 ()− 



µ
− − − 1


 0 ()

¶


Using this equation and the second line of equation 33, and  = − at a steady
state, I obtain

0 = 

+ 0 ()− 

−
¡
− − −1


Φ
¢

= 

+

∙
(−)(−


+ 
−

Φ
 )

−−Φ

¸
− 
−

¡
− − −1


Φ
¢


Rearranging this equation gives

0 = Φ2 + Φ+ 

using the definitions

 = 1


 (− 1) ,  =
¡− 1



¢
+ 

(1−)+(2−1)+((1−)−)


 = − 1

 ( −  − ) + 1


 ( − ) ( − ) 

(34)

with boundary condition

(∞ ∞ ∞) =

µ
∞− 

∞

( − )


[ ln (−∞)− ∞]

¶
(35)
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for ∞ ∈ ∆, where17

∆ =
©

¯̄
∃Φ for which  + Φ  0 ∧Φ2 + Φ+  = 0

ª
 (36)

The relation between Υ and Φ. Solving Φ2 + Φ +  = 0 for the steady

state  and dividing by the GGR gives the ratio Υ in the first line of equation 16.

Evaluating this ratio at Φ = 0 and Φ = − establishes the second line of equation

16, thus establishing part (i) of the proposition.

Part (ii):The derivative of Υ with respect to Φ is

Υ
Φ
= 

(+Φ−−)2 with

 (Φ) = (− 1)Φ2 + 2 (− 1) ( −  − )Φ+¡
( − )

2
+
¡
+ 2 − 2¢¢ (− 1) +  ( − ) 

(37)

 is convex in Φ, and calculation confirms that

 (0)  0  (−)  0
and 

Φ
 0 for 0 ≤ Φ ≤ −

These inequalities confirm that  is positive and decreasing for Φ ∈ [0−]. The

first line of equation 37 then implies that Υ
Φ

 0 for Φ ∈ [0−]. Using this

derivative and the expression for Υ at Φ = −, from part (i), confirms part (ii) of

the proposition.

Proof. (Proposition 5) Part (i) evaluates the derivatives of Υ (Φ; ·), given in Lemma
1.i, with respect to  and . Part (ii) evaluates the cross partial derivative to

establish 2Υ


 0. Part (iii) notes that Υ (−)→ 1 as → 0, for any finite . In

contrast, at  = 1, Υ (−) remains bounded away for 1 for  bounded away from 0.
17As consistency checks, note that for  = 1 and  = , where the game collapses to a standard

control problem, ∆ is a singleton, with  =
(−)


. As required, this is the steady state in the

control problem ( = 1 and constant PRTP, ). The GGR steady state ( = argmax  ln −,

subject to 0 = +) equals the limit of this value as → 0; here the GGR steady state is 

.

Negative values of Φ are feasible, but these yield higher, i.e. less cooperative, steady state stocks.

I do not consider these, because it seems that agents should be able to coordinate on an equilibrium

at least as good as the unique limit equilibrium, corresponding to Φ = 0.

12



B.2 Additional supporting material

I provide the necessary conditions for the case not considered in the text, discuss

calibration of the two dimensional GeaS model, and then provide some comments on

robustness.

B.2.1 Equilibrium conditions

There are two cases under the exponentially distributed lifetime, because lim→∞  ()

depends on whether    or   . For the exponential case with 0   ≤ ,

and using the differentiability of () (already assumed in deriving the problem

comprised of (8) and (9), a necessary condition for the MPE is that

 =  () ≡ argmax (( )−() +  () ( ))  (38)

and that () satisfy the dynamic programming equation

() = ( (  ())−() +  () (  ()))  (39)

With   , where lim→∞  () = , the auxiliary control problem is

() = max

Z ∞

0

− (( )−())  subject to ̇ =  ( ) (40)

with the side condition (definition):

() ≡
Z ∞

0

() (()− )(∗   (
∗
 )) (41)

Equation (2) and the first line of equation (4) imply  () ( ()− ) = −− so

13



equation (41) simplifies to

() = −
Z ∞

0

−
¡
∗+  

¡
∗+

¢¢
 (42)

The integral in equation (42) is the present discounted value of the equilibrium

future flow of payoff, computed using the discount rate . Thus, −() is an
annuity, which if received in perpetuity and discounted at  (the constant birth =

death rate), equals the value of this future stream of payoff. The flow payoff in

the fictitious control problem equals the flow playoff in the original model, plus this

annuity. A necessary condition for the MPE is that

 =  () ≡ argmax (( )−() +  () ( ))  (43)

and that () satisfy the dynamic programming equation

() = ((  ())−() +  () (  ()))  (44)

B.2.2 The two-dimensional GeaS model

The two-dimensional model consists of two state variables, the scalars  and ̃. I de-

fine ̃ as the difference between actual and pre-industrial atmospheric CO2 measured

in Teratons (Tt CO2). The emissions flow, , increases this stock, which decays

at a constant rate, , but has no immediate effect on . Because I use only two

state variables to represent complicated dynamics, the scalar  is only a proxy for

temperature change; unlike the carbon stock (̃),  does not have a simple physical

meaning. The proxy  ≤ 0 responds to increased ̃ with a lag. With multiplicative
exponential damages and the normalization  = −1, the fractional consumption loss
at  due to climate change is 1− ().

With these assumptions, the parameters in equation 10 are

 =

Ã
 

0 

!
and  =

Ã
0

1

!

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The matrix of eigenvalues and eigenvectors corresponding to  are

Λ =

Ã
 0

0 

!
and  =

Ã
− 

− 1

1 0

!
 (45)

Solving the pair of differential equations for  and ̃, with initial conditions  (0) and

̃ (0) and aggregate emissions flow  (), givesÃ
 ()

̃ ()

!
= Λ−1

Ã
 (0)

̃ (0)

!
+ 

Ã

R 
0
− () 



−

R 
0
− () 

!


Using this equation and

Λ−1 =

Ã
 −

−
0 

!

implies that a one unit increase increase in ̃ (0) causes an  () ≡ −
− increase

in  () (“ ()” for “effect”.)

Using the two-dimensional analog of equation 10 and the formula in equation 14,

the equilibrium tax is

 = − 


1

−
0
12 with

1 =

Ã
( − ) ( − ) + 1

−
(−)(−) (( − ) ( − ) + 1)

!
2 =

Ã
−1
(−)
1

!


(46)

I need three assumptions to calibrate the three parameters , , and . I obtain 

using an estimate of the half-life of atmospheric carbon. A half-life of  years implies

 =
ln(05)


. Thus,  = 200 implies  =

ln(05)

200
= −3 47× 10−3, while  = 400 implies

 =
ln(05)

400
= −1 73 3 × 10−3. I calibrate  and  using Gerlagh and Liski (2012),

who calibrate a higher dimensional linear model, based primarily on DICE. I adopt

their assumptions that: (i) doubling atmospheric stocks (relative to preindustrial
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levels) reduces output (in my setting, consumption) by 2.6%, once  has adjusted,

and (ii) following a pulse increase in atmospheric CO2 at time 0, the loss rises (from

0) during the first 60 years, and then falls slowly. These three assumptions imply

the “baseline parameter values”  = −3 47×10−3,  = −4 685×10−2, and  = −5
66× 10−4. Note that  ()  0 for   0 (The baseline also includes  = 002 = .)

I now explain these calculations in more detail. Doubling atmospheric stocks

relative to pre-industrial levels implies an increase of 280 parts per million by volume

(ppm) of CO2. One ppm corresponds to 2.13 Gigatons of carbon, or 213 (366)

Gigatons of CO2 or
213(366)

1000
Teratons of CO2 (Tt CO2). Therefore, an increase of

280 ppm represents an increase of
213(366)

1000
280 ≈ 2 18 Tt CO2. The steady state

level of ∞ equals −


̃∞. I assume that doubling the steady state of ̃ (relative to

preindustrial levels), leads to a 2.6% reduction in output (and consumption). This

assumption implies
³
1− −



̃∞
´
=
³
1− −



218
´
= 0026 or − ln 0974

218
= 


.

An instantaneous one unit increase in the stock at time 0 leads to a change in

 () of  () = −
− units. The increase in percent reduction in output after

 years, due to this time-zero increase in ̃, is 100
¡¡
1− ()+()

¢− ¡1− ()
¢¢
=

100()
¡
1− ()

¢
, where  () is the equilibrium value of  absent the initial increase

in stock ̃. The time profile of 100()
¡
1− ()

¢
depends on  (). For purpose

of calibration, I consider the case where  () is a constant, as in a steady state. In

this case, the increase in loss is maximized where


¡
1− ()

¢


= −()

= −()

 − 

 − 
= 0

Following Gerlagh and Liski (2012), I assume that the increase in loss is maximized

at  = 60 years, giving the calibration equation

60 − 60

 − 
= 0

Solving the last equation, using the calibration assumption  = −3 47× 10−3, cor-
responding to a half-life of 200 years, gives  = −4 685 × 10−2. Using this result

and − ln 0974
218

= 


implies  = −5 66× 10−4.

16



With these values, the additional consumption loss, due to a unit increase in ̃,

beginning at a steady state, increases for the first 60 years and then slowly falls.

The increased loss after  years, as a fraction of the (maximal) increased loss after

60 years, is ³
1− exp

³
−

−

´´
³
1− exp

³
60−60

−

´´  (47)

Figure 4 shows the graph of this ratio assuming a half-life of 200 (solid curve) or

400 (dashed curve) years. Given the other two calibration assumptions, the graph

is insensitive to the half-life for   60. Beyond that time, a longer half-life causes

the additional stock, and thus the additional damage, to decay more slowly, causing

the curve to rotate up.

Comparing Figure 4 with Gerlagh and Liski’s (2012) Figure 1 shows that for a

half-life of 200 years, the damage trajectory in my two-dimensional model has the

same shape as their representation of the DICE results. For a 400 year half-life, the

trajectory has the same shape as in their model for the first 600 years or so. The

profiles in my two-dimensional model and in their four dimensional model differ in

the very long run. Their climate system is closed, whereas for   0, emissions

and thus damages eventually dissipate in my model. Therefore, lim→∞ () = 0 in

my setting, whereas it approaches a positive constant in theirs. Their closed climate

system would present a problem in the GeaS setting, where equilibrium emissions

are constant; with constant emissions, damages in the closed climate system become

unbounded. In contrast, in my setting, steady state damages for constant  equals



.

I use the expressions for Λ and  in equation 45 to calculate

̃0 =
R∞
0

01
−(−Λ)−1 = 01

R∞
0

−(−Λ)−1 =³
 −  − 

(−)(−) ( − 2 −  +  + 1)
´
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Figure 4: The ratio given in expression 47 for a half life of 200 years (solid curve)

and a half life of 400 years (dashed curve). Other two calibration assumption as in

the text.

and

 −  =

Ã
 −  

0  − 

!
⇒ ( − )

−1
=

Ã
1

− − 

2−+−
0 − 1

−

!


Using these results in the formula for the tax (with  = −1), equation 14, and
simplifying the result, gives equation 46.

B.2.3 Robustness

Different OLG structure I first compare the discount rate under the assump-

tion of exponentially distributed lifetime and under a deterministic alternative where

agents live for Γ periods. Setting Γ = 1

, the expected lifetime under the exponential

distribution, makes the two comparable. When agents have deterministic lifetime,

currently living agents have different incentives to invest in a long-lived public good,

because some will die sooner than others. Other complications also become im-

portant in this setting, such as the possibility of transfers among currently living

members of a coalition. For the exponentially distributed lifetime, where all citizens
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Figure 5: Discount rates (d.r.) for = 002 =  = 1
Γ
. Solid curves (labelled E) correspond

to exponentially distributed lifetime and dashed curves (labelled F) correspond to fixed

lifetime. Numerical values in label show value of .

are identical, there would be no reason for those transfers.

The discount factor for the deterministic case (with paternalistic altruism) can be

calculated under Assumption 1 and the additional assumption that a utilitarian social

planner aggregates the preferences of currently living citizens, giving the same weight

to each of these. The discrete time analog to this model in which people live for

two periods produces quasi-hyperbolic ( ) discounting; the continuous time model

(and the discrete model where agents live more than two periods) generalizes quasi-

hyperbolic discounting. Figure 5 shows the graphs of the discount rates under the

exponential distribution and under finitely-lived agents, for Γ = 1

, with  = 002 = ,

for  = 001 (the negatively sloped curves) and for  = 006 (the positively sloped

curves). For   , the two assumptions about lifetime lead to very similar discount

profiles. For   , the two profiles are similar for the first 15 - 20 years. However,

for large , the future ceases to matter much after a few decades.18

18An earlier version of this paper shows numerically that equilibrium policy under the two as-

sumptions about lifetime are similar for    and for large . To satisfy space constraints, I

hereafter consider only the case of exponentially distributed lifetime, emphasizing the situation

where  ≤ .
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Departure from the linear-in-state model An earlier version of this paper

considered a model that is non-linear in the state. That model is equivalent to the

Quadratic model in Example 2, if one replaces the damage function − by −
2

, so

that consumption is exp
¡
 − 

2
2 − 2

¢
and utility is ln+− 

2
2−2,

resulting in the familiar linear-quadratic payoff. The greater complexity of this

model requires numerical analysis. The qualitative results obtained above also hold

in the numerical results under the stationary linear-quadratic specification.

The tractability of the LIS model is appealing, especially for a research question

that seeks general insights. However, that model implies that the climate-related loss

is linear in the state when measured in utility units, and is concave when measured

in output units. The linear-quadratic model implies that the climate-related loss in

utility units is convex in ; the loss in output units is convex at low  and concave for

large . Many environmental economics models assume convex damages. The limit

equilibrium to the LIS model implies that strategies are dominant; the limit equi-

librium in the linear-quadratic model does not involve dominant strategies. There

are strategic interactions in the linear-quadratic model that are absent from the LIS

model (for the limit equilibrium). In short, both the LIS and the linear-quadratic

models have distinct advantages.
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