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The tendency to foreshorten time units as we peer further into the future provides an

explanation for hyperbolic discounting at an inter-generational time scale. We study

implications of hyperbolic discounting for climate change policy, when the probability of a

climate-induced catastrophe depends on the stock of greenhouse gasses. We characterize

the set of Markov perfect equilibria (MPE) of the inter-generational game amongst a

succession of policymakers. Each policymaker reflects her generation’s preferences,

including its hyperbolic discounting. For a binary action game, we compare the MPE set

to a ‘‘restricted commitment’’ benchmark. We compare the associated ‘‘constant-equiva-

lent discount rates’’ and the willingness to pay to control climate change with assumptions

and recommendations in the Stern Review on Climate Change.

‘‘yMy picture of the world is drawn in perspectivey. I apply my perspective not

merely to space but also to time’’—Ramsey.

& 2011 Published by Elsevier Inc.
1. Introduction

The long delay between the times when society incurs the cost and reaps the benefit of climate policy may make cost-
benefit analysis sensitive to the discount rate [30,6,7,22,35]. Few people would defend the view that today’s generation
should ignore the welfare of all generations in the distant future, but standard discounting assumptions imply
approximately that attitude. Our alternative to the standard analysis incorporates a plausible view of how people
evaluate trade-offs across distant generations, and is also consistent with observable market discount rates. The analysis
emphasizes the danger of catastrophic change. The model we develop is sufficiently tractable that we can analytically
characterize equilibria. By choosing a few key parameter values, we can numerically assess whether it is reasonable to
incur a particular level of expenditure to reduce a particular risk.

There are many political-economy processes (intra-generational games) that could explain how the social planner in a
generation aggregates her generation’s preferences. The precise intra-generational game is unimportant for our purposes,
so we focus instead on inter-generational issues.

In each generation there is a representative agent whose ‘‘ypicture of the world is drawn in perspectivey. [applied]
not merely to space but also to time’’ [27, p. 291]. This perspective gives rise to hyperbolic discounting at the level of the
individual agent (Section 2). These agents care less about future generations’ utility than about their own, so their pure
rate of time preference (at the generational time scale) is positive and over some interval may be large. However, they
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make smaller distinctions between successive generations in the distant future, compared to successive generations in the
near future, so their pure rate of time preference falls. Arrow [2] describes this attitude as ‘‘agent-relative ethics’’. Cropper
et al. [5] and Section 8 of Heal [11] provide empirical evidence that individuals discount utility in this manner. Hyperbolic
discounting leads to a model that is flexible enough to produce short and medium run social discount rates equal to
market discount rates, and which also gives non-negligible weight to the well-being of distant generations.

The optimal program for any generation is time inconsistent under hyperbolic discounting [31,25]. This time
inconsistency is a plausible feature of the policy problem: politicians, like other mortals, tend to procrastinate in solving
difficult problems. Because of the long time scale over which policies must be implemented, we focus on Markov Perfect
equilibria (MPE), in which the current generation cannot commit to future actions.

Nordhaus [23] and Mastrandrea and Schneider [20] imbed hyperbolic discounting in integrated assessment models of
climate change. These authors assume that the decision-maker in the current period can choose the entire policy
trajectory, thus solving by assumption the time-inconsistency problem. Karp [14,9] studies MPE in climate change models
with hyperbolic discounting and deterministic damages.

The current paper is the first to imbed hyperbolic discounting (with a MPE) in a model of catastrophic climate-related
damages.2 Our sequential game captures the risk of abrupt climate change [4,33,1,30,13] and the inertia in the climate
system. That inertia leads to a delay between current actions and future reductions in risk.

There are multiple MPE, because the optimal policy today depends on beliefs about the policies that future regulators
will choose. We obtain a closed form characterization for a binary action model in which the feasible actions are either to
stabilize atmospheric greenhouse gas concentration or to follow business-as-usual (BAU). The MPE set to this game can be
bounded in a simple manner. We compare it to a benchmark, ‘‘restricted commitment’’, in which the policymaker’s
feasible policies are restricted in order to cause the resulting optimal choice to be time consistent. This outcome is not
plausible but it has an obvious welfare interpretation and therefore provides a useful comparison to the MPE set. A MPE
may result in either too much or too little stabilization, relative to the benchmark.

For the binary action model we calculate a ‘‘constant equivalent’’ discount rate; this is a constant rate that would lead
to policy prescriptions identical to a particular MPE in the sequential game. This constant-equivalent discount rate
depends on the individual agents’ time-varying pure rate of time preference, which should be the same function for all
public projects. The constant-equivalent discount rate also depends on the specifics of the problem, in particular the
longevity of the public project. For example, decisions about climate policy affect welfare over centuries, while a decision
about a bridge affects welfare over decades. The differing time scale of these two types of public projects means that the
constant-equivalent discount rates corresponding to them may be very different, even though both are based on the same
time-varying pure rate of time preference.

After showing the relation between time perspective and hyperbolic discounting, we discuss damages associated with
abrupt climate change. We then explain the relation between risk and climate policy in our model, and describe the payoff.
The analytic results characterize the MPE and its relation to a benchmark equilibrium with restricted commitment. The
numerical results provide a new perspective on policy recommendations in the Stern Review. Proofs and technical
derivations are relegated to an online supporting material document, available in JEEM’s online supplementary materials
archive at http://aere.org/journals/.
2. Time perspective and discounting

There are a number of ways to motivate hyperbolic discounting at the generational level. Heal [10,11] proposes ‘‘logarithmic
discounting’’, based on the Weber–Fechner ‘‘law’’, a statement that human response to a change in a stimulus (e.g., vocal or visual)
is inversely related to the magnitude of the pre-existing stimulus. Sumaila and Walters [32] use an overlapping generations model
to justify hyperbolic discounting. They assume that each generation discounts its own future consumption stream at a constant
‘‘intra-generational’’ rate. In each period a new generation arrives that discounts its own future consumption at the same rate. The
generation born in period t discounts the stream of subsequent generations’ consumption at a different, inter-generational rate.
The greater is t0�t, the more generations have been born between periods t and t0. This fact causes the discount rate used by
generation t to evaluate future consumption to fall over time, leading to hyperbolic discounting.

Our explanation of hyperbolic discounting is based on time perspective—the tendency to foreshorten time periods as
we peer further into the future. A function s(n) captures time perspective by assigning a perceived length to a year that
begins n years from now. This function satisfies s(0)¼1, s0ð�Þr0 and sð1ÞZ0; undistorted time corresponds to sð�Þ � 1. The
relation between real time (t) and perceived (foreshortened) time is

SðtÞ ¼

Z t

0
sðzÞ dz:

From the standpoint of today, the time period from now until t ‘‘looks like’’ a period from now until S(t).
2 Weitzman [36] builds a model from which he concludes that uncertainty about catastrophic changes can (i) make cost-benefit analysis of climate

change impractical and (ii) render the effect of discounting a second-order issue. Nordhaus [24], Horowitz and Lange [12] and Pindyck [26] argue that

Weitzman’s model does not imply the first conclusion, and Karp [15] argues that in addition it does not imply the second conclusion.

http://aere.org/journals/
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The constant pure rate r0 represents impatience as applied to the perceived time S. From today’s perspective, the
present value of a utility stream UðcðSÞÞ,SZ0, isZ 1

0
UðcðSÞÞe�r0S dS:

Making a change of variables from S to t (i.e., from foreshortened time to real time), the payoff expressed in real time isZ 1
0

exp �r0

Z t

0
sðzÞ dz

� �
UðcðtÞÞsðtÞ dt:

The utility discount factor is, therefore,

yðtÞ ¼ exp �r0

Z t

0
sðzÞ dz

� �
sðtÞ,

and the corresponding pure rate of time preference is

rðtÞ ��
_yðtÞ
yðtÞ
¼ r0sðtÞ�

_sðtÞ

sðtÞ
: ð1Þ

Eq. (1) shows how the pure rate of time preference originates from impatience r0 and from ‘‘time perspective’’ sð�Þ.
A constant pure rate of preference occurs in the following special cases: when s(t)¼1 identically for all t (undistorted time
perspective), in which case rðtÞ ¼ r0; or when

sðtÞ ¼
a

r0þða�r0Þe
at

, a4r0,

in which case rðtÞ ¼ a.
In order to focus on the time-perspective motive of discounting we set r0 ¼ 0, so sðtÞ ¼ yðtÞ. We choose a functional form

for s(t) to accommodate the situation where the pure rate changes little during the near future (e.g., the next 20–30 years)
then decreases rapidly for a while and finally tapers off towards a limiting (vanishing or positive) rate. The following
specification exhibits this pattern:

sðtÞ ¼ yðtÞ ¼ be�gtþð1�bÞe�dt , d4g: ð2Þ

The corresponding pure rate of discount is

rðtÞ � �
_yðtÞ
yðtÞ

¼
gbe�gtþdð1�bÞe�dt

be�gtþð1�bÞe�dt
, ð3Þ

which decreases from rð0Þ ¼ gbþdð1�bÞ to rð1Þ ¼ g when b 2 ð0,1Þ. An increase in b lowers the discount rate, i.e.,
increases the concern for the future. The constant rates r¼ d or r¼ g correspond to the special cases where b¼ 0 or 1,
respectively. This functional form is flexible and tractable; Ekeland and Lazrak [8] use this form to study an overlapping
generations model.

Other functional forms for hyperbolic discounting are consistent with the time perspective explanation. For example,
logarithmic discounting is obtained by setting sðtÞ ¼ 1=ð1þktÞ,k40, with the resulting pure rate rðtÞ ¼ ðr0þkÞ=ð1þktÞ.
Barro [3] uses the discount factor e�ðrðt�tÞþfðt�tÞÞ, with r a constant; for (our parameter) r0 ¼ 0, Barro’s formulation
corresponds to sðt�tÞ ¼ e�ðrðt�tÞþfðt�tÞÞ.

3. Catastrophic climate change

Recent evaluations suggest that global warming could result in catastrophic damages [13,30]. The current atmospheric
GHG concentration is estimated at 380 ppm CO2 (430 ppm of CO2e), compared with 280 ppm CO2 at the onset of the
Industrial Revolution. Under BAU, the concentration could double the pre-Industrial level by 2035 and treble this level by
the end of the century. The recent IPCC report gives 224:5 3C as a likely range for the increase in equilibrium global mean
surface air temperature due to doubling of atmospheric GHG concentration with a non-negligible chance of exceeding this
range [13, p. 749]. The Stern Review gives 225 and 3210 3C as likely ranges for equilibrium global mean warming due to
doubling and trebling of GHG concentration, respectively [30]. The probability of outcomes that significantly exceed the
most likely estimates are not negligible; under doubling of GHG concentration, there is a 50% chance that the global mean
warming will exceed 5 3C (close to the warming since the last ice age) in the long term [30, Summary and Conclusion,
p. vi]. Global warming can therefore give rise to catastrophic events, including the reversal of the thermohaline circulation,
a sharp rise in sea level, the spread of lethal diseases and massive species extinction.

Each link in this chain, leading from changing GHG concentration to the ensuing damage, involves uncertain elements
[28]. Following Clarke and Reed [4] and Tsur and Zemel [33,34], we account for this uncertainty by assuming that a
catastrophic climate event occurs at random time T with a distribution that depends on the GHG concentration, Q(t).
Denote the distribution and density functions of T by F(t) and f(t), respectively. This distribution induces a hazard rate
function hðQ ðtÞÞ ¼ �d½lnð1�FðtÞ�=dt, the conditional density that the catastrophe will occur during [t,tþdt] given that
it has not occurred by time t when atmospheric GHG concentration is Q(t). When h(Q) is an increasing function, there is
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one-to-one relation between the hazard and the atmospheric GHG concentration and we can use the hazard as the state
variable.

A common modeling practice uses post-event scenarios that are easy to understand, e.g., a reduction in GDP or in the
growth rate. These scenarios provide a basis for evaluating a policy that spends a certain amount today to decrease the
expected damage. In our model, the event reduces income by a constant known share, D, from the occurrence date onward.
Most climate change models assume a continuous relation between GHG stocks and damages. In our setting, which
includes only abrupt changes, there is a continuous relation between GHG stocks and expected damages.
4. Risk and climate policy

The actions that society takes at a point in time (e.g., abatement, levels of consumption) determine greenhouse gas
(GHG) emissions at that time. These flows, and existing GHG stocks, Q, determine the evolution of the stock, dQ/dt. The risk
of a climate-related catastrophe, or hazard rate, h, is a strictly increasing function of the stock of GHG: h¼H(Q). The time
derivative of the hazard rate is H0ðQ Þ dQ=dt. The monotonicity of Hð�Þ enables us to write the time derivative of the hazard
rate as a function of the current hazard rate and society’s current action, which we denote w(t). We adopt the following
functional form:

_hðtþtÞ ¼ mða�hðtþtÞÞð1�wðtþtÞÞ, hðtÞ given: ð4Þ

We restrict 0rwðtÞr1; wð�Þ ¼ 1 corresponds to abatement that stabilizes the hazard (equivalently, the GHG stock) and
wð�Þ ¼ 0 corresponds to no abatement, i.e., BAU. We let X measure the cost of stabilization as a fraction of the income-at-
risk, D. An abatement effort w costs wXD.

In Eq. (4), a represents the maximal hazard rate that hð�Þ approaches under BAU (as t increases) and m measures the rate
of convergence to a. The hazard grows most quickly when h is small. This feature means that each dollar spent on
abatement effort leads to a larger reduction in expected damages when h is small. For hazards close to the steady state a,
there is little benefit in incurring the abatement costs in order to prevent the hazard from growing.3

The model implies that the level of the hazard, not simply the occurrence of the catastrophe, is irreversible. This
assumption reflects the considerable inertia in the climate system, and it simplifies the characterization of equilibria
because it prevents non-monotonic hazard processes.

The simplicity of Eq. (4) is important. There are conjectures on the level of risk for different types of events (such as a
reversal of the thermohaline circuit or a rapid increase in sea level) corresponding to different policy trajectories (e.g., BAU
or specific abatement trajectories). We can use these kinds of conjectures to suggest reasonable magnitudes for the
parameters of Eq. (4) (the initial value of h, and the constants a and m). There is little empirical basis for calibrating a more
complicated model.
5. The payoff

The payoff of the generation alive at time t, ‘‘generation t’’, is the expectation of the present discounted value of current
and future generations’ utility, using the discount factor yðtÞ. Consumption grows at an exogenous constant rate g and the
utility of consumption is iso-elastic, with the constant elasticity Z.4 With initial (time 0) consumption normalized to 1, the
flow of consumption from time t onward prior to the event occurrence is egðtþtÞð1�DXwðtþtÞÞ. After the occurrence date
there is no role for abatement, and consumption equals egðtþtÞð1�DÞ. The corresponding pre- and post-event utility flows
are, respectively,

ðegðtþtÞð1�DXwðtþtÞÞÞ1�Z�1

1�Z
and

ðegðtþtÞð1�DÞÞ1�Z�1

1�Z
:

Conditional on the event occurring T periods from now, i.e., at time tþT, the present (time t) value under policy wðtþtÞ
is

Z T

0
yðtÞ ðe

gðtþtÞð1�DXwðtþtÞÞÞ1�Z�1

1�Z dtþ
Z 1

T
yðtÞ ðe

gðtþtÞð1�DÞÞ1�Z�1

1�Z dt

¼

Z T

0
yðtÞe�gðZ�1ÞðtþtÞ ð1�DXwðtþtÞÞ1�Z�ð1�DÞ1�Z

1�Z
dtþj,
3 The results in a model in which _h is non-monotonic in h would change in fairly obvious ways. For example, if _h is small when h is close to both 0

and the steady state level, stabilization would not be worthwhile either for very small or for very large levels of h.
4 This model does not contain capital, so it does not distinguish between income and consumption. The model is consistent with a neoclassical

growth model in which capital and income grow at a constant rate, and the savings rate is constant. It is also consistent with a model in which all

expenditures for climate control are deducted from consumption, so that climate policy does not affect aggregate savings or the trajectory of income.
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where the constant j is

j¼
Z 1

0
yðtÞ ðe

gðtþtÞð1�DÞÞ1�Z�1

1�Z
dt: ð5Þ

Ignoring the constant j, the present value at time t can be written as

e�gðZ�1Þt

Z T

0
yðtÞe�gðZ�1ÞtUðwðtþtÞÞ dt, ð6Þ

where

UðwÞ �
ð1�DXwÞ1�Z�ð1�DÞ1�Z

1�Z : ð7Þ

We now introduce expectations. Let

yðt,tÞ ¼
Z tþt

t
hðzÞ dz¼

Z t

0
hðtþzÞ dz: ð8Þ

Taking expectation of (6) conditional on T4t, recalling that PrfT4tg ¼ 1�PrfTrtg ¼ e�yð0,tÞ, gives the expected payoff at
time t:

e�gðZ�1Þt

Z 1
0

yðtÞe�gðZ�1Þt�yðt,tÞUðwðtþtÞÞ dt:

Multiplying by egðZ�1Þt (to re-scale time-t BAU consumption to unity) gives the payoff to generation t, conditional on h(t)
and the sequence of current and future policies:

JðhðtÞ,wð�ÞÞ ¼

Z 1
0

yðtÞe�gðZ�1Þt�yðt,tÞUðwðtþtÞÞ dt: ð9Þ

In view of Eqs. (2) and (9), we define the ‘‘effective discount factor’’, a function that incorporates both the pure rate of
time preference and the effect of Z and g:

~yðtÞ � yðtÞegð1�ZÞt ¼ be� ~gtþð1�bÞe�
~dt,

where

~g � gþgðZ�1Þ and ~d � dþgðZ�1Þ:

The ‘‘effective discount rate’’ is the rate of decrease of ~yðtÞ.

6. Equilibria

Different assumptions about commitment ability and about the set of feasible policies lead to different equilibrium sets.
If the decision-maker at time 0 can commit to an arbitrary function w(t) (conditional on the event not having occurred
before t), the solution is obtained by solving a standard non-stationary optimal control problem. This ‘‘full commitment’’
solution is time inconsistent (unless it happens to involve the boundary solution wðtÞ � 0 or wðtÞ � 1, i.e., never begin
stabilization, or begin full stabilization immediately). Since ‘‘full commitment’’ over a long period of time is implausible,
we do not consider it further and focus instead on Markov Perfect Equilibria (MPE) to a sequential game. The agents in this
game consist of a sequence of policymakers. We study the limiting game where each agent acts for an arbitrarily short
period of time, leading to a continuous time model [16].

In a MPE, the current regulator cannot commit future generations to a specific course of action but she can influence

successors’ actions by affecting the world they inherit, i.e., by changing the payoff-relevant state variable. The MPE
recognizes the difference between influencing future policies and choosing those policies. In a MPE agents condition their
actions on (only) the payoff-relevant state variable, and they understand that their successors do likewise. Therefore, an
agent’s beliefs about future policies depend on her beliefs about the future trajectory of the state variable. An agent’s
action has an immediate effect on her current flow payoff and it also affects the continuation value via its influence on the
state variable. We provide the necessary condition for a MPE for the general case and then analyze a binary action
specialization. In order to provide a benchmark for the set of MPE in this binary case, we then consider an equilibrium
involving ‘‘restricted commitment’’.

6.1. MPE in the general model

The state variable is the vector z� ðh,yÞ. A policy function maps the state z into the control w. The decision-maker at
time t chooses the current policy w(t) but not future policies. She understands how the current choice affects the evolution
of the state variable and forms beliefs about how future regulators’ decisions depend on the future level of the state
variable. Each regulator chooses the current decision and wants to maximize the present discounted value of the stream of
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future payoffs, given by expression (9). A MPE policy function ŵðzÞ satisfies the Nash property: wðtÞ ¼ ŵðzðtÞÞ is the optimal
policy for the regulator at time t given the state z(t) and given the belief that regulators at t4t will choose their actions
according to wðtÞ ¼ ŵðzðtÞÞ.

The state variable h is standard: at a future time tþt, t40, the value of hðtþtÞ depends on the current hazard h(t) and
the intervening decisions wðtþxÞ, 0rxrt. The probability of survival until time tþt, conditional on T4t, is
PrfT4tþtjT4tg ¼ e�yðt,tÞ, which also depends on h(t) and the intervening decisions. However, if the regulator at time t

is in a position to make a decision, the event has not yet occurred: yðt,0Þ ¼ 0. Therefore, a stationary equilibrium depends
only on the current hazard, h(t). Conditional on survival at time t, h(t) is the only payoff-relevant state variable. We restrict
attention to stationary pure strategies.

Let qðhðtþtÞ,wðtþtÞÞ denote the right-hand side of Eq. (4) and let h and w stand for h(t) and w(t), respectively. The
following Lemma gives the necessary condition for a MPE (proofs can be found in an online supporting material document,
accessed via JEEM’s online supplementary materials archive at http://aere.org/journals/):

Lemma 1. Consider the game in which the payoff at time t equals expression (9); the regulator at time t chooses wðtÞ 2 O � R,
taking as given her successors’ control rule ŵðzÞ; and the state variables h and y obey Eqs. (4) and (8). Let V(h) equal the value of

expression (9) in a MPE (the value function). A MPE control rule wðhÞ � ŵðzÞ satisfies the (generalized) dynamic programming

equation (DPE):

KðhÞþð ~gþhÞVðhÞ ¼max
w2O
fUðwÞþqðh,wÞV 0ðhÞg, ð10Þ

with the ‘‘side condition’’

KðhÞ � ðd�gÞð1�bÞ
Z 1

0
e�ð

~dtþyðt,tÞÞUðwðhðtþtÞÞÞ dt: ð11Þ

Remark 1. The control rule that maximizes the right-hand side of Eq. (10) depends on the payoff-relevant state h, but not
on y. This control rule also depends on the current regulator’s beliefs about her successors’ policies. Those policies affect
the shadow value of the hazard, V 0ðhÞ.

Remark 2. The DPE is ‘‘generalized’’ in the sense that it collapses to the standard model with constant discounting in the
two limiting cases b¼ 1 and 0. The former case is obvious from Eq. (11). To demonstrate the latter case, note that for b¼ 0,

KðhÞ ¼ ðd�gÞ
Z 1

0
e�ð

~dtþyðt,tÞÞUðwðhðtþtÞÞÞ dt¼ ðd�gÞVðhÞ:

Substituting this equation into (10) produces the DPE corresponding to the constant discount rate ~d.

6.2. A binary action specialization

We focus on the situation where w(t) is limited to either full stabilization (w¼1) or BAU (w¼0). There are in general
multiple MPE because the optimal decision for the current regulator depends on her beliefs about the actions of
subsequent regulators. The equilibrium beliefs of the current regulator (i.e., those that turn out to be correct) depend on
her beliefs about the beliefs (and thus the actions) of successors. There is an infinite sequence of these higher order beliefs,
leading to generic multiplicity of equilibria. However, the equilibrium set has a simple characterization.

We now develop some notation needed for this characterization. Recall that D is the reduction in income due to the
climate event, and XD is the fractional reduction in income due to complete stabilization (w¼1); X is a measure of the
income cost of stabilization. It is convenient to describe the equilibrium set using the ‘‘utility cost of stabilization’’, denoted
as x. To derive the relation between x and X, we use Eq. (7) to define

Uð1Þ ¼
ð1�DXÞ1�Z�ð1�DÞ1�Z

1�Z
and Uð0Þ ¼

1�ð1�DÞ1�Z

1�Z
: ð12Þ

Recall that U(0) is (proportional to) the difference in the flow of utility under BAU before and after the climate event, so
U(0) is a measure of the utility at risk. The utility cost of stabilization, x, equals the fraction of utility at risk sacrificed to
achieve full stabilization:

x� 1�
Uð1Þ

Uð0Þ
¼ 1�

ð1�DXÞ1�Z�ð1�DÞ1�Z

1�ð1�DÞ1�Z
:

The relation between the income cost of stabilization, X, and the utility cost of stabilization, x, is

X ¼
1

D
½1�f1�x½1�ð1�DÞ1�Z�g1=ð1�ZÞ�: ð13Þ

The elasticity of marginal utility, Z, affects the equilibrium in offsetting ways. First, an increase in Z increases the
‘‘effective discount rate’’ rðtÞþgðZ�1Þ, which tends to reduce the amount that society is willing to spend to stabilize the
hazard rate. Second, Z is a measure of risk aversion. We hold the utility cost x constant and use Eq. (13) to find the effect of

http://aere.org/journals/
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Z on the income cost of stabilization. Substituting plausible values into Eq. (12) and using numerical methods, we find that
@X=@Zo0 tends to hold. This inequality means that an increase in Z decreases the monetary cost X of a given utility cost x,
a fact that makes society willing to spend more to stabilize the hazard.

6.2.1. Markov perfect equilibria

The control space is wðtÞ 2 f0,1g, the flow payoffs are given in Eq. (12) and the hazard evolves according to Eq. (4). Let
wðhÞ be a MPE decision rule. Using the equilibrium condition (10) and the convention that in the event of a tie the regulator
chooses stabilization, in the binary setting w satisfies

wðhÞ ¼
1 if Uð1ÞZUð0Þþmða�hÞV 0ðhÞ,

0 if Uð1ÞoUð0Þþmða�hÞV 0ðhÞ:

(
ð14Þ

A particular control rule corresponds to a division of the state space [0,a] into a ‘‘stabilization region’’ (where wðhÞ ¼ 1) and
a ‘‘BAU region’’ (where wðhÞ ¼ 0).

The next lemma provides conditions under which perpetual stabilization or perpetual BAU are MPE. It makes use of the
following functions:

pðhÞ � 1

1�mða�hÞx0ðhÞ
ð15Þ

and

sðhÞ � 1þmða�hÞn0ðhÞ, ð16Þ

where

xðhÞ �
Z 1

0
e�ht ~yðtÞ dt¼

ð1�bÞðgþgðZ�1ÞÞþhþbðdþgðZ�1ÞÞ

ðdþgðZ�1ÞþhÞðhþgþgðZ�1ÞÞ
ð17Þ

and

nðhÞ �
Z 1

0
exp

�amtþða�hÞð1�e�mtÞ

m

� �
~yðtÞ dt: ð18Þ

Lemma 2. (i) Perpetual stabilization is a MPE if and only if

Uð1Þ

Uð0Þ
¼ 1�xZpðhÞ: ð19Þ

(ii) Perpetual BAU is a MPE if and only if

Uð1Þ

Uð0Þ
¼ 1�xosðhÞ: ð20Þ

Proof. The proof contains notation and definitions that will be used below and is therefore presented here. We begin by
introducing some notation. Superscripts B and S denote functions under perpetual BAU or stabilization, respectively. Under
BAU, using Eq. (4), the probability of disaster by time t is

FBðtÞ ¼ 1�exp
�atmþða�h0Þð1�e�mtÞ

m

� �
:

Substituting FB(t) into Eq. (9) gives the expected payoff under perpetual BAU:

VBðh0Þ �Uð0Þ

Z 1
0
ð1�FBðtÞÞ ~yðtÞ dt¼Uð0Þnðh0Þ: ð21Þ

Under perpetual stabilization, the probability of disaster by time t is 1�e�h0t and the expected payoff is

VSðh0Þ �Uð1Þ

Z 1
0

e�h0t ~yðtÞ dt¼Uð1Þxðh0Þ: ð22Þ

Using Eq. (14) we see that in order for perpetual stabilization to be a MPE, the current regulator must want to stabilize
when she believes that all future regulators will stabilize. Under this belief, VðhÞ ¼ VSðhÞ and V 0ðhÞ ¼ VS0 ðhÞ ¼Uð1Þx0ðhÞ. Thus,
using the equilibrium rule (14), Uð1ÞZUð0Þþmða�hÞUð1Þx0ðhÞmust hold for the initial value of h in order for stabilization to
be a MPE, as stated in Eq. (19).

Similarly, for perpetual BAU to be a MPE, it must be the case that Uð1ÞoUð0Þþmða�hÞVB0 ðhÞ ¼Uð0Þþmða�hÞUð0Þn0ðhÞ.
Recalling Eqs. (16)–(18), the condition under which perpetual BAU is a MPE can be written as in Eq. (20). &
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The properties of pðhÞ and sðhÞ are summarized in

Lemma 3. The functions pðhÞ and sðhÞ are increasing over (0,a) with pðaÞ ¼ sðaÞ ¼ 1, and sðhÞ is concave.

The following proposition provides a condition for the existence of MPE and characterizes the class of MPE in which
regulators never switch from one type of policy to another:

Proposition 1. There exists a pure strategy stationary MPE for all 0oxo1 and all initial conditions h¼ h0 2 ð0,aÞ if and only if

pðhÞosðhÞ, h 2 ð0,aÞ: ð23Þ

Under inequality (23), there exists a MPE with perpetual stabilization (w� 1) if and only if at the initial hazard h the cost of

stabilization satisfies

xoxUðhÞ � 1�pðhÞ; ð24Þ

there exists a MPE with perpetual BAU (w� 0) if and only if at the initial hazard h the cost of stabilization satisfies

x4xLðhÞ � 1�sðhÞ: ð25Þ

The fact that we have closed form expressions for the functions pðhÞ and sðhÞ means that it is straightforward to
determine when the conditions of Proposition 1 are satisfied. Fig. 1 illustrates the proposition, showing the graphs of
1�sðhÞ and 1�pðhÞwith pðhÞosðhÞ for h 2 ð0,aÞ. The curves divide the rectangle f0rhra,0rxr1g into three regions. For
points above the curve 1�sðhÞ there is a MPE trajectory with perpetual BAU, and for points beneath the curve 1�pðhÞ there
is a MPE trajectory with perpetual stabilization. For points between the curves, both perpetual stabilization and perpetual
BAU are MPE.

Because the region between these two curves has positive measure (when inequality (23) is satisfied), the existence of
multiple equilibria is generic in this model.5 The multiplicity of equilibria stems from the fact that the optimal action today
depends on the shadow value V 0ðhÞ, which depends on future actions that the current regulator does not choose. If future
regulators will stabilize, the shadow cost of the state (�V 0ðhÞ) is high, relative to the shadow cost when future regulators
follow BAU. The current regulator has more incentive to stabilize if she believes that future regulators will also stabilize.
Actions are ‘‘strategic complements’’, a circumstance common to coordination games. Our problem resembles the dynamic
coordination game familiar from the ‘‘history versus expectations’’ literature [21,17]. In those coordination games, the
optimal decision for (non-atomic) agents in the current period depends on actions that will be taken by agents in the
future. The non-convexity in the payoffs in these problems typically leads to multiple rational expectations equilibria for a
set of initial conditions of the state variable. These equilibria are in general not Pareto efficient. We show that inter-
generational coordination problems in our game can lead to either too little or too much stabilization, relative to a
benchmark under restricted commitment.

Proposition 1 characterizes only equilibrium trajectories in which the action never changes. It is clear that a switch
from stabilization to BAU is impossible, since the hazard remains constant under stabilization and the decision-maker uses
a pure strategy. However, the proposition does not rule out the possibility of a MPE with delayed stabilization, i.e., an
5 Laibson [19] shows that there are multiple equilibria to this kind of sequential game under non-Markov policies. Krussel and Smith [18] show the

existence of a continuum of MPE when agents use step functions. Elements of this equilibrium set involves an infinite sequence of steps, and the step

sizes are endogenous. Our setting contains a single, exogenously determined step size. Karp [14,16] shows the existence of multiple candidates solving

the necessary conditions for MPE, due to an indeterminacy in the steady state conditions. Ekeland and Lazrak [8] show that these candidates are in fact

equilibria. In our setting, the multiplicity arises because of a non-convexity in the game. Section 7 elaborates on this observation, showing the

resemblance between the problem under constant discounting and the familiar ‘‘Skiba problem’’ in optimal control [29].
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equilibrium beginning with BAU and switching to stabilization once the hazard reaches a threshold. The next proposition
shows that such equilibria exist.6 We use the following definition:

YðhÞ �
mða�hÞ b

~gþh þ
1�b
~dþh

� �
hþb ~gþ ~dð1�bÞþmða�hÞ b

~g þh þ
1�b
~dþh

� � : ð26Þ

Proposition 2. Suppose that Condition (23) is satisfied. (i) For x41�pðhÞ the unique (pure strategy) MPE is perpetual BAU.
(ii) There are no equilibria with ‘‘delayed BAU’’. (iii) A necessary and sufficient condition for the existence of equilibria with

delayed stabilization is

YðhÞoxo1�pðhÞ: ð27Þ

(iv) For all parameters satisfying 0rhra, 0obo1, dag, and m40, a MPE with delayed stabilization exists for some

x 2 ð0,1Þ.

Recall that x equals the utility cost of stabilizing the hazard (or the atmospheric GHG concentration) as a fraction of the
value-at-risk U(0). Relation (27) defines the lower and upper bounds of x for a delayed stabilization MPE to exist. We verify
(see the Online Supplementary Material document) that

1�pðhÞ�YðhÞ ¼ ð
~d� ~gÞ2ð2hþ ~gþ ~dÞ
ðhþ ~gÞ2ðhþ ~dÞ2

bð1�bÞ: ð28Þ

Thus, these bounds form a non-empty interval when 0obo1 and gad, i.e., when the discount rate is non-constant.
6.2.2. Restricted commitment: a benchmark

We saw in the previous section that a class of MPE decision rules leads to either perpetual BAU or perpetual
stabilization. Here we consider a ‘‘restricted commitment’’ benchmark in which the decision-maker at time 0 behaves as if
she could commit future generations to either perpetual stabilization or perpetual BAU. In contrast, ‘‘full commitment’’
permits switches between BAU and stabilization—or vice-versa. The restricted commitment outcome requires solving a
standard optimization problem, leading to a unique solution.

Restricted commitment is not a plausible equilibrium concept, but it provides a useful benchmark for welfare
comparisons.7 Suppose, for example, we find that for some initial value of h all MPE involve BAU, but the restricted
commitment involves perpetual stabilization. In that case, there is an obvious sense in which there is ‘‘too little’’
stabilization in the MPE. Alternatively, if we find that there exist MPE involving perpetual stabilization, and the restricted
commitment outcome involves perpetual BAU, then there is a sense in which there can be ‘‘too much’’ stabilization in a
MPE. We show that both of these outcomes are possible.

Under restricted commitment there exists a critical function xC(h) such that initial decision-maker chooses perpetual
stabilization if xrxCðhÞ and she chooses perpetual BAU if x4xCðhÞ. To determine the function xCðhÞ, we note that the
regulator chooses to stabilize if and only if VS

ZVB, where VB and VS are, respectively, the values under BAU and
stabilization defined in (21) and (22). This inequality is equivalent to Uð1Þ=Uð0ÞZlðh0Þ, where

lðhÞ �
nðhÞ
xðhÞ

:

Noting that Uð1Þ=Uð0Þ ¼ 1�x, the condition VS
ZVB holds if and only if xrxCðh0Þ, where

xCðhÞ � 1�lðhÞ: ð29Þ

A restricted commitment policy that involves stabilization is obviously time consistent, since under stabilization the
hazard does not change. Under a restricted commitment policy of BAU, the hazard h increases. In our model, a larger value
of h decreases the value of stabilization, because the growth rate of the hazard falls as its steady state approaches.
Therefore, with restricted commitment, if the regulator wants to follow BAU for a given initial value of h, all of her
6 From the proof of the proposition it is evident that for initial conditions such that delayed stabilization equilibria exist, there are a continuum of

such equilibria, indexed by the threshold at which the decision-maker begins to stabilize.
7 Since we are interested in a situation that unfolds over many decades or centuries, it is not reasonable for the current regulator to act as if she can

commit future generations to follow the plan that she announces. The problem with such a policy as an equilibrium concept (in our setting) is not that it

requires commitments that subsequent generations would want to break. When policies are time consistent, future generations are happy to abide by the

choice made by a previous generation, provided that they can make the same choice for their successors. Instead, commitment is an unsatisfactory

equilibrium concept because it is based on an assumption that is patently false, namely that the current generation can commit future generations to a

specific course of action.
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successors would make the same choice at the larger future values of h. Consequently, a restricted commitment policy that
involves BAU is also likely to be time consistent. We summarize this discussion in8:

Proposition 3. Given the initial hazard h 2 ½0,a�, the optimal restricted-commitment policy is to stabilize if and only if xrxCðhÞ.
This policy is time consistent for all h 2 ½0,a� and x 2 ½0,1� if and only if dxc=dhr0. A sufficient condition for this inequality is

mZaþdþgðZ�1Þ.

The last part of the proposition provides a condition under which the policy is time consistent. When this condition is
satisfied, a larger value of h decreases the range of x for which the policymaker wants to stabilize. Here, stabilization is
‘‘more likely’’ at lower values of h, as noted above. In exploring numerical examples, we found no parameter values that
violate the time-consistency condition dxc=dhr0, suggesting that time consistency is ‘‘typical’’ for this model. The optimal
plan under full commitment is, in general, time inconsistent. By reducing the set of possible plans that a regulator can
announce, we also reduce the temptation for subsequent regulators to deviate from the plan announced by the initial
regulator.

6.2.3. Constant discounting

The specialization with constant discounting is useful for interpreting numerical results in the next section, and more
generally for understanding the MPE when b is near one of its boundaries. Because our empirical application involves a
small value of b, we consider the case where b¼ 0. Analysis of the case b¼ 1 requires only replacing ~d with ~g. With b¼ 0,
the constant discount rate is ~d, so the distant future is ‘‘heavily discounted’’. Following the standard procedure to obtain
the DPE, or invoking Remark 2, we have the following DPE:

ð ~dþhÞVðhÞ ¼ max
w2f0,1g

fUðwÞþmða�hÞð1�wÞV 0ðhÞg: ð30Þ

Let p0ðhÞ and s0ðhÞ denote the functions pðhÞ and sðhÞ, defined in Eqs. (15) and (16), evaluated at b¼ 0. The following
proposition describes the optimal solution to the control problem with b¼ 0.

Proposition 4. Under constant discounting (with b¼ 0), it is optimal to stabilize in perpetuity when xr1�s0ðhÞ and it is

optimal to follow BAU in perpetuity when x41�s0ðhÞ. The function s0ðhÞ determines the boundary between the BAU and

stabilization regions and p0ðhÞ is irrelevant.

The proposition has two implications. First, there can be MPE involving ‘‘excessive stabilization’’. The functions pðhÞ and
sðhÞ are continuous in b, so p0ðhÞ and s0ðhÞ are the limits of these functions as b-0. Consider a value of b that is positive
but close to 0 and values of h and x that satisfy 1�pðhÞ4x41�sðhÞ. (Such values exist because pðhÞ and sðhÞ are
continuous in b, and there exists h,x that satisfy 1�p0ðhÞ4x41�s0ðhÞ, as shown in the proof of Proposition 4.) For this
combination of parameters and state variable, there are two MPE, involving either perpetual stabilization or perpetual BAU
(by Proposition 1), but the payoff under perpetual BAU is higher than under stabilization (by continuity and Proposition 4).
That is, there are MPE that involve excessive stabilization relative to the benchmark under restricted commitment.

The second implication is that 1�xCðhÞ ¼ sðhÞ under constant discounting. This equality means that the optimal solution
when the regulator is restricted to making a commitment (in perpetuity) at time 0, is equal to the solution when the
regulator has the opportunity to switch between BAU and stabilization. For abrupt events, the regulator is tempted to
delay stabilization (i.e., the ‘‘restriction’’ in restricted commitment binds) only under hyperbolic discounting. The ability to
switch between policies is of no value for abrupt events under constant discounting. The economic explanation for this
result is simply that BAU is the optimal policy only if the hazard is sufficiently large; under BAU the hazard increases,
whereas it remains constant under stabilization.

7. Policy bounds and constant-equivalent rates

When Za1 and ga0 this model has one degree of freedom: for given b, the ‘‘effective discount rate’’ depends on ~g and
~d, determined by two equations in three unknowns, d, g, and g. These parameters, unlike Z, do not enter the function U,
defined in Eq. (7). We normalize by setting g¼ 0.9 This normalization implies that the long run pure rate of time preference
is 0, i.e., it means that we are unwilling to transfer utility between two agents living in the infinitely distant future at a rate
other than one-to-one. It also implies that the long run effective discount rate is gðZ�1Þ.

We discuss the calibration of the model and then present the three critical values of X that characterize the MPE and the
restricted commitment equilibrium. We also present, for each critical X value, the constant equivalent (‘‘observationally
equivalent’’) pure rate of time preference; each of these is the rate that would yield the same policy bound if r were
8 The proof of this proposition (see ‘‘Online Supporting Material’’) shows that the shadow value of h is negative and decreasing (in absolute value)

under either policy, and 1�xC ðhÞr1, with equality holding only when h¼a. Since Uð1ÞoUð0Þ, the regulator does not want to stabilize for h sufficiently

close to the steady state value a.
9 When Z¼ 1 the equilibrium is always independent of g. For Z¼ 1 or g¼0, g and d equal ~g and ~d . In this case, setting g¼ 0 is an assumption, not a

normalization. When g40, the constant defined in Eq. (5) is finite if and only if Z41. In contrast, the maximand in expression (9) is defined even for

some values of Zo1, because the hazard has an effect similar to discounting. For Zr1 we can adopt the ‘‘overtaking criterion’’ to evaluate welfare.
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constant. For each critical level of X we obtain an exact constant-equivalent discount rate because each bound is a single
number.10

7.1. Calibration

We choose the hazard parameters h(0), m and a in order to satisfy: (i) under stabilization the probability of occurrence
within a century is 0.5%; (ii) in the BAU steady state, where h¼a, the probability of occurrence within a century is 50%; and
(iii) under BAU it takes 120 years to travel half way between the initial and the steady state hazard levels. These
assumptions imply a¼0.00693147, h0¼0.000100503 and m¼ 0:00544875. (The unit of time is one year.) With these
values, the probability of occurrence within a century is 15.3% under BAU, compared to 0.5% under stabilization.

In order to be able to compare the damage estimates under our calibration with those used by other models, we define
PBðtÞ � PrfTrtjBAUg as the probability that the catastrophe occurs by time t under BAU, and PSðtÞ � PrfTrtjStabilizationg
as the corresponding probability under stabilization. The future (time t) expected increase in damages from following BAU
rather than stabilization, as a percentage of future income, is DðtÞ ¼ ðPBðtÞ�PSðtÞÞ100D%. For all calibrations where hð0Þ40,
limt-1DðtÞ ¼ 0, because both probabilities converge to 1.11 Fig. 2 shows the graphs of D(t) over the next millennium for
D¼ 0:05, 0.1 and 0.2. The corresponding damages after 100 and 200 years are D(100)¼{0.72, 1.43, 2.88} and
D(200)¼{2.03, 4.01, 8.11}.

The Stern Review provides a range of damage estimates. Their second-lowest damage scenario (‘‘market impacts þ risk
of catastrophe’’) assumes that climate-related damages equal to about 1% of annual consumption in one century, and 5%
after two centuries. Our calibration with D¼ 0:05 implies significantly lower damages over the next two centuries. The
Stern Review also describes scenarios in which damages might be as high as 15–20% of income, a level considerably above
our scenario with D¼ 0:2 (for the next two centuries).

The Stern Review assumes that climate-related damages are zero after 200 years, whereas in our calibration damages
continue to rise for 800 years and then decrease asymptotically to 0. The maximum level of D(t) equals 91D%, i.e., 4.5%,
9.1% and 18.2% for the three values of D. In view of the different profiles of damages in the Stern Review and in our
calibration, exact matching is not possible. However, our case D¼ 0:2 approximates one of the high (but not the highest)
Stern damage scenarios; the value D¼ 0:1 approximates the Stern ‘‘market impacts þ risk of catastrophe’’ scenario, and
the value D¼ 0:05 corresponds to a much lower damage scenario.

We set g¼ 0, so that the long-run pure rate of time preference is 0, and use Eq. (3) to choose b and d in order to satisfy

rð0Þ ¼ 0:03 and rð30Þ ¼ 0:01:

This parameterization implies that the pure rate of time preference begins at 3% and falls to 1% by 30 years, eventually
declining to 0. Our value of rð30Þ is 10 times greater than the Stern Review’s constant pure rate of time preference. An
ethical concern for generations in the distant future requires a small pure rate of time preference only in the case of a

constant pure rate of time preference. A declining pure rate of time preference is consistent with both ethical considerations
10 The exact equivalence occurs if the decision rules under both hyperbolic and constant discounting can be characterized by a single parameter.

Barro [3] also obtains a constant-equivalent discount rate, because the single parameter in his logarithmic model is the slope of the decision rule. When

the decision rules cannot be described by a single parameter, it is possible only to obtain an approximate constant-equivalent discount rate. For example,

in the linear-quadratic model there exists a linear equilibrium control rule under both constant and hyperbolic discounting. Because this control rule

involves two parameters – the slope and the intercept – it is in general not possible to find an exact constant-equivalent discount rate for the hyperbolic

model [14].
11 Using Eq. (4), PBðtÞ ¼ 1�e�atþða�hð0ÞÞð1�e�mt Þ=m and PSðtÞ ¼ 1�e�hð0Þt . For h0 ¼ 0, DðtÞ ¼ PBðtÞ100D, which converges to 100D%.
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and a large pure rate of time preference in the near and medium term. This flexibility means that the model is compatible
with both a reasonable ethical view and also with market discount rates.

7.2. Results

For a variety of parametric and equilibrium assumptions, we calculated upper and lower bounds on X—the fraction of
income-at-risk that society spends to stabilize risk. These values were insensitive to choices of D over the interval (0.1,0.2),
so the tables below report only results for D¼ 0:2. We also report the corresponding constant-equivalent pure rate of time
preference (r). We discuss results for g 2 ½1%,2%� and Z 2 ½1:1,4�. Due to the iso-elastic utility functional form, the
numerical results of the X bounds are sensitive to parameter changes in the neighborhood of Z¼ 1 (cf. Eq. (13)).

Tables 1–3 show the (X) policy bounds and constant-equivalent r values for the six cases corresponding to Z 2 f1:1,2,4g
and g 2 f0:01,0:02g. In each case the constant-equivalent social discount rate (not shown) equals the constant-equivalent
value of r plus Zg. We emphasize the case where Z¼ 2 and compare the results for g¼1% and 2% across the different
equilibria.

We begin with the restricted commitment equilibrium, which is both time consistent and constrained optimal. For
Z¼ 2, the maximum fraction of the income-at-risk that society would forgo in order to stabilize the hazard ranges between
6% and 17% as g changes from 2% to 1%. For these experiments, where D¼ 0:2, these bounds imply expenditures of
between 1.2% and 3.4% of GWP. If D¼ 0:1, the corresponding values of XC are 5.4% and 15.5%, implying an expenditure of
between 0.54% and 1.5% of GWP. These values bracket the Stern recommendation to spend 1% of GWP annually on climate
change policy. For D¼ 0:2 and Z¼ 2, the constant-equivalent values of r range from 0.13% and 0.32%, so the constant-
equivalent social discount rate ranges between 2.13% and 4.32%.

For g¼1% and Z¼ 2 the upper and lower bounds of X in a MPE are 17.8% and 9.9%, with corresponding constant-
equivalent values of r of 0.1% and 0.7% (Tables 2 and 3). In this case, for 17%oXo17:8% of the value at risk, the optimal
policy is to follow BAU, but there are MPE that result in stabilization. For 9:9%oXo17% the optimal policy is to stabilize,
but there are MPE that result in BAU. Thus, a MPE may result in either excessive or insufficient stabilization (although, in a
sense, the latter is more likely). The broad range of values for which there are multiple MPE indicates the importance of
establishing commitment devices that enable the current generation to lock in the desired policy trajectory.

For g¼2% and Z¼ 2, the upper and lower bounds (5.4% and 4%) are much closer (compared to when g¼1%), and both lie
below the upper bound under restricted commitment. In this case, for any X such that stabilization is a MPE, stabilization
Table 1
Restricted commitment upper bounds XC and constant-equivalent r values for Z� g ¼ f1:1,2,4g � f0:01,0:02g and D¼ 0:2.

Z g¼1% g¼2%

XC (%) Cons-equiv r (%) XC (%) Cons-equiv r (%)

1.1 76.22 0.01 60.71 0.02

2 17.1 0.13 6.07 0.32

4 3.78 0.53 1.06 1.09

Table 2

MPE upper bounds XU and constant-equivalent r values for Z� g¼ f1:1,2,4g � f0:01,0:02g.

Z g¼1% g¼2%

XU (%) Cons-equiv r (%) XU (%) Cons-equiv r (%)

1.1 94.15 �0.08 81.55 �0.12

2 17.80 0.1 5.44 0.49

4 3.33 0.8 0.98 1.4

Table 3

MPE lower bounds XL and constant-equivalent r values for Z� g¼ f1:1,2,4g � f0:01,0:02g.

Z g¼1% g¼2%

XL (%) Cons-equiv r (%) XL (%) Cons-equiv r (%)

1.1 38.3 0.37 30.86 0.41

2 9.89 0.69 3.98 1.00

4 2.73 1.25 0.9 1.76
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also maximizes welfare. For 5:4%oXo6:1% all MPE involve BAU even though stabilization is optimal. With g¼2% and
Z¼ 2, the constant-equivalent r in a MPE ranges between 0.5% and 1% (the upper and lower bounds that correspond to the
MPE set). As expected, higher growth rates make the current generation less willing to sacrifice for the sake of wealthier
future generations, decreasing the X bounds.

The online appendix contains additional numerical analysis, showing the circumstances where stabilization in a MPE is
either excessive or insufficient, relative to the limited commitment level. This analysis also shows that the possibility of
delayed stabilization in a MPE is non-negligible.
8. Conclusion

Individuals may care less about the utility of future generations than about their own, but make smaller distinctions
between the utility of successive distant generations, compared to the utility of the current and next generation. ‘‘Time
perspective’’ is consistent with this kind of agent-relative ethics, and it leads to hyperbolic discounting across generations.
In a sequential game, each of a succession of policymakers aggregates the preferences of her generation and chooses the
policy for that generation. In a MPE to this sequential game, each policymaker takes as given her successors’ stationary
decision rule, a function of the current economic fundamental (the GHG concentration).

In our binary action model, a reduction in current consumption (‘‘stabilization’’) reduces the future hazard rate of a
random event that causes permanent loss of utility. There are multiple MPE for an interval of stabilization costs. The upper
bound of this interval is the maximum cost consistent with a MPE involving stabilization; the lower bound is the minimum
cost consistent with a MPE involving BAU. For each of these bounds we calculated a constant equivalent pure rate of time
preference, i.e., a constant rate that leads, in the control problem, to the same decision rule as does the time-varying pure
rate of time preference in the sequential game. We compared the set of MPE to a time-consistent reference equilibrium.
The MPE equilibrium set indicates how much society would be willing to spend to stabilize the risk if it managed to solve
the intra-generational but not the inter-generational collective action problem; the reference equilibrium indicates how
much society should be willing to spend, if it solves both the intra- and the inter-generational problems.

Our risk and damage calibration includes the moderate and the high damage estimates in the Stern Review. If the
catastrophe reduces income by 10–20%, the calibration implies a range of expected damages (under BAU) of 1.4–2.9% after
100 years and 4–8% after 200 years. Our discounting calibration assumes that the pure rate of time preference begins at 3%,
falls to 1% over the first 30 years, and then asymptotically declines to 0. As Z, the elasticity of marginal utility, ranges
between 2 and 4 and g, the growth rate, ranges between 1% and 2%, the constant equivalent pure rate of time preference
ranges between 0.1% and 1.8%, depending on the equilibrium assumption. For Z¼ 2 and g¼2%, society is willing to spend
between 0.5% and 1% of GWP per year to reduce the risk in a MPE; society is willing to spend between 0.6% and 1.2% under
limited commitment.

Across most dimensions, our model is vastly simpler than the integrated assessment models typically used for policy
recommendations. However, catastrophic risk is central to our model, and we take seriously the fact that future policies
are not chosen at the current time, but will instead be conditioned on future fundamentals. In addition, our model of the
pure rate of time preference provides a reasonable description of ethics while also being consistent with observed market
rates. Ethical concern does not require a small pure rate of time preference in the near and medium run; it requires that
the pure rate of time preference eventually become small. Our numerical results concerning the acceptable level of
expenditure to reduce the threat of climate-related catastrophe bracket the recommendations in the Stern Review. The
simplicity and parsimony of the model make it easy for other researchers to examine the sensitivity of those results.
Appendix A

Proofs and additional numerical results can be found in a supporting online material document at http://aere.org/journals/
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