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Abstract

We compare the effects of taxes and quotas for an environmental problemwhere the regulator and
polluter have asymmetric information about abatement costs, and environmental damage depends
on pollution stock. An increase in the slope of the marginal abatement cost curve, or a decrease in
the slope of the marginal damage curve, favors taxes. An increase in the discount rate or the stock
decay rate favors tax usage. Taxes dominate quotas if the length of a period during which decisions
are constant is sufficiently small. An empirical illustration suggests that taxes dominate quotas for
the control of greenhouse gasses.
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1. Introduction

Asymmetric information plays an important role in environmental regulation when the
polluter knows more than the regulator about the abatement cost function. In this situation,
the first-best optimum can seldom be reached by using emission taxes or quotas. The
first-best optimum equates the marginal abatement costs of the pollutants and the marginal
environmental damage.
Weitzman (1974) compared the expected payoff, under asymmetric information, for

taxes and quotas. He assumed linear marginal costs, uncertainty about only the level of
the marginal cost curves (not their slopes) and no correlation between the uncertainty of
the abatement cost and the environmental cost. Under these assumptions, an emissions tax
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dominates a quota if and only if the marginal abatement cost curve is steeper than the
marginal environmental cost curve.
Subsequent contributions to this topic fall into two categories: (a) modifying the assump-

tions in Weitzman’s analysis,1 and (b) considering policy tools other than an emission tax
and a direct specification of the emission level.2 More complex policies can reduce the
potential loss in social welfare associated with asymmetric information about abatement
costs. However, in practice, policy-makers have not used these more sophisticated methods
of environmental regulation.
This earlier literature assumes that the environmental damage comes from the flow of

emissions. However, for several important environmental problems, damages depend on the
stock, and not the flow, of the pollution. Examples, of such problems include climate change
(due to atmospheric concentration of greenhouse gases), depletion of the ozone layer (due
to cumulative emissions of CFCs), deterioration of soil and water quality (due to acid rain),
and the pollution of rivers, lakes and oceans from emissions of heavy metals.
We revisit the problem originally posed byWeitzman, replacing the flow pollutant with a

stock pollutant. We assume that the cost shocks are serially uncorrelated. Section 2 presents
the basic model. In Sections 3 and 4 we analyze the case in which the entire trajectory of
the emissions tax or quota must be determined at the initial time (the open-loop policy).
Section 5 studies the opposite extreme, where the quota or tax can be adjusted in light of new
information (the feedback policy). We obtain the comparative statics of the policy ranking
with respect to the slopes of marginal abatement costs and marginal damages, the discount
rate, and the decay rate of the stock. We also emphasize the effect, on the policy ranking,
of the length of a stage, defined as the amount of time during which decisions are constant.
Section 6 provides an empirical illustration, which suggests that taxes dominate quotas for
the control of greenhouse gasses.
Staring (1995) obtained the criterion for the policy ranking in the open-loop setting,

without recognizing the importance of the length of a stage. The current paper was first
distributed as a FEEM working paper (Hoel and Karp, 1998). In the intervening 3.5 years
several related papers have been written.
Shortly, after our paper was distributed (but working independently), Newell and Pizer

(1998) generalized the open-loop setting by considering serially correlated cost shocks, but
ignoring the importance of length of a stage. Under the assumption that the regulator’s priors
equal their stationary values, they reproduce the comparative statics results that we obtain
in Section 4, and they generalized these by showing that more positively correlated shocks
favor quotas. A later version of their paper provides an empirical application, reproducing
the conclusions that we report in Section 6.
The inclusion of serial correlation greatly complicates analysis of the feedback (but not

the open-loop) setting, because it requires a two-dimensional state variable. Arguably, serial
correlation ismost interesting in the feedback setting,where the regulator has the opportunity
to learn about the current cost shock by using previous observations of the firm’s response
to taxes, or equilibrium quota prices. In the open-loop setting, the regulator cannot update

1 See, e.g. Yohe (1977), Watson and Ridker (1984), Malcomson (1978), and Stavins (1996). Tisato and Allen
(1993) compare taxes and marketable permits.
2 See, e.g. Dasgupta et al. (1980), Kwerel (1977), McKitrick (1997), Roberts and Spence (1976).



M. Hoel, L. Karp / Resource and Energy Economics 24 (2002) 367–384 369

information and therefore, cannot use the correlation to learn about the shock. In our view,
serially correlated shocks are not central to the issue of stock regulation with asymmetric
information. In the interest of obtaining clear results and maintaining focus, we decided not
to include serial correlation.
A later paper, (Karp and Zhang (1999)) generalizes the feedback model here (by consid-

ering serially correlated shocks) and generalizes the open-loop model in Newell and Pizer
(by allowing arbitrary priors). The policy comparisons under the feedback structure are
less clear, because of the complexities caused by the additional state variable. However, the
more general setting makes it possible to examine the manner in which different policies
provide different information about the cost shocks.
All of these papers maintain the assumption of linear–quadratic functions with additive

cost shocks. These functional assumptions make it possible to obtain analytic comparisons
of the taxes and quotas, but they imply that the expected trajectories are the same under the
two policies and that the difference in payoffs (and the policy ranking) is independent of
the stock of pollution. Neither of these properties holds when shocks are multiplicative, as
in Hoel and Karp (1999). However, that model does not yield clear analytic results.
Karp and Zhang (2000) consider the case where firms with rational expectations make

investment decisions in abatement capital. Those decisions depend on the firms’ belief about
future policies; the firms’ decisions affect the future abatement costs. Karp andZhang (2001)
study a model in which the regulator does not know, but is able to learn about, the stochastic
relation between pollution stock and environmental damages. In a model where damages
are associated with pollution flow rather than stock, Costello and Karp (2001) examine the
effect of relaxing the assumption that the quota is binding with Probability 1.

2. The model

We use a discrete time formulation, in which each stage lasts for h units of time. Units
of time are arbitrary; in our subsequent discussion we choose years as the unit of time. A
new realization of the random shock occurs at intervals of h units of time; agents are able
to change their decision (e.g. the tax and the level of emissions) every h units of time. The
decision variables (taxes or quotas, and the firm’s response to the tax) and the realization
of the random shock are constant within a stage. The firm observes the current cost shock
and the current tax before deciding how to respond to an emission tax. A smaller value
of h corresponds to the case where information arrives more often and agents are able to
change their decisions more frequently, i.e. there is more flexibility.3 When the unit of time
is a year, h = 1 means that agents can change their decisions once a year, while h = 1/12
means that agents can change their decisions once a month. We treat the value of h as a
parameter in the model, an exogenous constant.
In most discrete stage control problems, the value of the payoff (the value function)

depends on the length of a stage. For example, if a resource owner is able to adjust output
twice in a year rather than once in a year, she is able to use a more flexible policy and

3 A more general specification would allow the arrival of new information and changes in the firms’ and the
regulator’s decisions to occur at different intervals.
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(typically) obtains a higher payoff. The length of a stage is usually not an interesting
parameter, and it is customary to normalize it to 1. In comparing taxes and quotas, we need
to compare two value functions. A change in the length of a stage has different effects
on these two value functions. We introduce the parameter h in order to make the relation
between the length of a stage and the policy ranking easy to study. Section 4 discusses the
parameter h in more detail.
Let x(t) be the constant (aggregate) flow of pollutant during the stage beginning at time

t, so x(t)h is the contribution to the stock during that stage. We define Δ as fraction of the
stock remaining in the next stage in the absence of additional pollution. With additional
pollution x(t)h, the stock at time t + h is

S(t + h) = �S(t)+ x(t)h. (1)

We use a representative firm model with n firms. Firm i emits the flow xi(t) during the
period beginning at time t. Since firms are identical, aggregate emissions are x(t) ≡ nxi (t).
In each period the representative firm incurs abatement costs. These costs are increasing
and convex in the amount of abatement. Thus, the amount of abatement costs that the firm
avoids—the benefit of emissions—is an increasing concave function of emissions. The flow
of this benefit for firm i is given by the quadratic function.

Bi = Bi(xi(t), θ(t)) = f

n
+ (a + θ(t))xi(t)− bn2 xi(t)

2

The aggregate flow of benefit is B(x(t), θ(t)) ≡ nBi (xi(t), θ(t)), which equals

B(x(t), θ(t)) = f + (a + θ(t))x(t)− b

2
x(t)2. (2)

Our results are independent of the number of firms; hereafter, we use the aggregate benefit
function given in Eq. (2). The parameters f, a, and b are positive, and θ(t) is the realization
of a random variable.
We can interpret B(x, θ) as a restricted profit function in which prices are suppressed.

Since B is a rate, the total benefit from emissions obtained in the stage beginning at time t
is B(x(t), θ(t))h.
As in Weitzman’s model, uncertainty affects the level but not the slope of marginal ben-

efits. We assume, that the random variable θ (t) is independently and identically distributed
(iid), with mean 0 and variance σ 2. This assumption enables us to obtain a clear comparison
withWeitzman’s result, regardless of whether the regulator uses an open-loop or a feedback
control rule. That is, we are able to rank policies under persistent asymmetric information
when damages depend on stocks rather than flows.
The assumption of zero correlation means that observations of previous responses to a

tax, or previous equilibrium quota prices under a quota system, provide no information to
the regulator about the current cost shock.
We assume that if the regulator uses a quota, it is always binding. This assumption requires

that the lower bound of the support of θ be sufficiently large. Thus, when the regulator
chooses quantity restrictions, dS≡S(t + h)− S(t) is nonstochastic, and the expectation of
the flow of benefits is independent of σ : E(B) = (f + ax− bx2)/2 (since Eθ = 0).
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The representative firm understands that its emissions decisions have no (appreciable)
effect on aggregate emissions. Since, it takes aggregate emissions as exogenous, it under-
stands that it cannot affect future regulations. It is therefore, rational for the representative
firm to behave nonstrategically. Since the firm takes both the current and future policies as
exogenous, the firm solves a sequence of static optimization problems.
The regulator maximizes expected social utility: the expected payoff of the firm, net of

emissions taxes (if any) minus the expected damages. If the regulator uses a tax, p(t), firms
choose x to maximize [B(·)−p(t)x]. The first-order condition is a+ θ(t)− bx(t) = p(t),
which we rewrite as4

x(t) = a − p(t)

b
+ θ(t)

b
≡ z(t)+ θ(t)

b
. (3)

Choosing p(t) is equivalent to choosing z(t), the expectation of the flow of pollution. Here-
after, we treat a regulator who uses taxes as choosing z(t). From (2) and (3), the regulator’s
expectation at time s < t of the flow of benefits at stage t, conditional on z(t), is

E(B(x(t), θ(t)))h=E

[
B

(
z(t)+ θ(t)

b
, θ(t)

)]
h

=
(

f + az(t)− b

2
z(t)2 + σ 2

2b

)
h (4)

The flow of damages during the stage beginning at time t is

D = D(S(t)) = cS(t)+ g

2
S(t)2 (5)

where c and g are positive parameters. The total damage during the stage is D(S(t))h.
We now have all of the elements of the model. The regulator’s payoff is the present

discounted value of the expectation of the streamof benefitsminus costs, [B(x, θ)−D(S)]h,
where the equation of motion is given by (1). With quantity restrictions, the evolution of
the state is nonstochastic and the expected payoff within each period is also independent of
σ 2. With a discount factor of �, the regulator wants to maximize the payoff

∞
�
i=0

βi

[
f + ax(t + ih)− b

2
x(t + ih)2 − cS(t + ih)− g

2
S(t + ih)2

]
h (6)

subject to the equation of motion, Eq. (1). With taxes, the regulator wants to maximize

E
∞
�
i=0

βi

[
f + σ 2

2b
+ az(t + ih)− b

2
z(t + ih)2 − cS(t + ih)− g

2
S(t + ih)2

]
h (7)

subject to the constraint

S(t + h) = �S(t)+ z(t)h+ θ(t)h

b
. (8)

4 The first-order condition for firm i is a+ θ(t)− bnxi (t) = p(t). Solving for xi and summing over i reproduces
Eq. (3).
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Table 1
Units of functions and parameters

x Tons per year
B(·) US$ per year
D(·) US$ per year
B US$×year per tons2
g US$ per (tons2×year)
b/g Year2

We obtain Eq. (8) by using Eqs. (1) and (3). The expectation in (7) is taken with respect to
the evolution of S. The random variable θ appears explicitly only in the constraint, Eq. (8).
We have already replaced E{θ2/2b} by σ 2/2b in the single period payoff.
In this problem the payoffs are linear–quadratic functions of the state (pollution stock) and

the control (the quota or tax), and uncertainty enters the equation of motion (8) additively.
In this linear–quadratic control problem, the Principle of Certainty Equivalence holds. This
principle states that the optimal policy rules in the stochastic model are identical to the rules
obtained when the random variable in Eq. (8) is set equal to its expected value, 0.
There are three important consequences of this principle. The first is that the expected val-

ues of the stock and emissions trajectories are identical under optimal taxes and quotas, and
under anopen-loop and feedbackpolicy.Only the highermoments of these trajectories differ.
The payoff ranking therefore, depends on these highermoments. The second consequence is
that the payoff difference—and therefore the policy ranking—is independent of the value of
the stock of pollution. Since the policy ranking depends only on the exogenous parameters
but not on the stock, the regulator would never want to switch from one policy to another.
Therefore, the assumption that the regulator always uses the same policy results in no loss
in generality. The third consequence is that the payoff difference is proportional to the mag-
nitude of uncertainty (the variance of the cost shock); the variance does not affect the sign
of the payoff difference and therefore does not affect the policy ranking. None of these three
properties hold in the model with multiplicative shocks, analyzed in Hoel and Karp (1999).
Before turning to the comparison of taxes and quantity restrictions, we note that if dam-

ages in the next period depend on the flow of pollution rather than the stock (e.g. D(x) =
β(cx+ gx2)/2), our model is equivalent to Weitzman’s. For that model, taxes are preferred
to quotas if and only if 1 > βg/b. With stock dependent damages, g and b have different
units, so their ratio is not unit-free (unlike the number 1).
Table 1 gives the units of functions and parameters when we measure benefits and costs

in dollars, stock in tons, and time in years. Since the ratio b/g is not a pure number, it cannot
provide a criterion for ranking policies that is independent of other parameters in the model.
However, the ranking is related to this ratio.

3. Nonflexible tax or quota

In this section we consider the case in which the trajectories of the tax and the quota
must be determined at t = 0. The regulator uses an open-loop policy. Once he has
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chosen his policy trajectory, it is written in stone; in that sense, the regulator has no
flexibility.5
We noted that when quotas are used, the expectation of the payoff is independent of σ

and the evolution of S is nonstochastic. We define Q(S(0)) as the maximized value of the
payoff in (6), subject to (1). We define T(S(0);σ ) as the maximized value of the payoff in
(7), subject to (8) under an open-loop policy. When there is no uncertainty, the two policies
obviously have the same payoff: Q(S(0)) = T (S(0); 0). We previously commented that
the Principle of Certainty Equivalence implies that the expected trajectories are the same
under taxes and quotas. This fact simplifies the comparison of the two policies, so we restate
it as.

Remark 1. The optimal quota trajectory is identical to the expected pollution trajectory
under optimal taxes, i.e. x∗i = z∗i for all i.

We calculate expected damages under a tax by using Eq. (8) to obtain

S(ih)=�iS(0)+ h[z((i − 1)h)+�z((i − 2)h)+ · · · +�i−1z(0)]

+ h

b
[θ((i − 1)h)+�θ((i − 2)h)+ · · · +�i−1θ(0)]. (9)

In view of the quadratic form of damages, we can write the expectation of damages as

ED(S(ih)) = D(ES(ih))+ g

2
[E(S(ih))2 − (ES(ih))2]. (10)

Eqs. (9) and (10) imply

ED(S(ih)) = D(ES(ih))+ gh
2σ 2

2b2
1−Δ2i

1−Δ2
. (11)

Uncertainty increases the single-period expected benefits (under taxes) by the amount
hσ 2/2b (see Eq. (7)). Using Eqs. (7) and (11), and Remark 1, we can write T (S(0); σ) −
Q(S(0)) as

T (S(0); σ)−Q(S(0)) = �∞i=0β
i

[
σ 2h

2b
− gh

2σ 2

2b2
1−Δ2i

1−Δ2
h

]
. (12)

We simplify this expression to obtain

T (S(0); σ)−Q(S(0)) = σ 2h

(1− β)2b

(
1− gh2β

b(1− βΔ2)

)
. (13)

Eq. (13) implies that an emission tax is superior to a quota (i.e. T [S(0)] > Q[S(0)]) if and
only if g/b < ϕ1, where the critical value ϕ1is

ϕ1 ≡ 1− βΔ2

βh2
. (14)

5 The regulator is able to announce a time-varying policy, and in that sense does have flexibility. We define the
inflexible regulator as one who has to choose a trajectory at time 0 and then follow it.
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We use the expression for ϕ1 to show how the policy ranking depends on the decay rate
and the discount rate and on the length of a stage. For a given length of a stage, an increase
in either β or Δ is equivalent to a lower discount or decay rate. Since the function ϕ1 is
decreasing inβ andΔ, an increase in the decay rate or the discount rate favors the use of taxes.
The future stock is a random variable under taxes; under quotas the regulator can control

the future stock exactly. Sincedamages are convex in the stock, an increase in the randomness
of the stock (holding fixed its expected trajectory) increases future expected damages. This
difference favors the use of quotas. As the stock decays more rapidly (smaller Δ) or as the
future becomes less important (smaller β), this advantage is less significant, making it “less
likely” that the regulator wants to use quotas.

4. The parameter h

The section discusses the parameter h in detail. As noted in Section 2, we write benefits
and damages as flows, and define the single stage benefit and damage as the number of
dollars per year, multiplied by the length of a stage. This formulation enables us to change
the length of a stage without changing the parameters of the benefit and damage function.
This simplificationmakes it easy to see how the length of a period affects the policy ranking.
The parameters β andΔ depend on h: β ≡ e−rh andΔ ≡ e−δh, where r is the continuous

yearly discount rate and δ the continuous yearly decay rate. With these definitions, when
we change the length of a stage we hold fixed the rate of discount and decay.
We could have avoided introducing the parameter h by maintaining the normalization

h = 1, i.e. by using a suitable definition of a unit of time. In that case, when changing the
length of a stage, we would need to change the definition of a unit of time. That change
would require changing parameters in the benefit and damage function. Our decision to
have the model depend explicitly on h makes those kinds of changes unnecessary. It also
makes the importance of the length of a stage obvious in formulae below.
Before discussing how the length of a period affects the policy ranking, we need to

explain the role of a particular set of assumptions. Our model assumes that the flow of costs
and benefits within a period are not discounted; that current emissions do not contribute
to the stock level during the same period; and that there is no stock decay within a period.
These types of assumptions are standard for discrete stage control problems, and they are
not related to our use of the parameter h. That is, we would have adopted these assumptions
even if we had maintained the normalization h = 1 as described in the previous paragraph.
However, the plausibility of these assumptions does depend on the length of a period.
In order to understand this dependence, it helps to consider an alternative to our assump-

tions. To this end, suppose that discounting occurs continuously at rate r within a period
and that the stock also changes continuously, decaying at rate δ and increasing at rate x. We
do not change any other assumptions, the tax p(t) is announced and the shock θ(t)occurs at
the beginning of a period, and the firm chooses a constant rate of emissions for that period,
x(t) = (z(t)+ θ(t))/b. Under the alternative assumption of a continuous decay rate within
a period, the evolution of S within a period beginning at time t is

dS(τ)

dt
= z(t)+ θ(t)

b
− δS(τ), t < τ < t + h.
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With this model of continuous decay and continuous discounting, we can calculate the
expected payoff for a period of length h, conditional on z(t) and S(t). This payoff is a
linear–quadratic function of on z(t) and S(t). To a first-order approximation in h (evaluated
at h = 0), this expression equals the summand in Eq. (7) (the formulae for the general case
when h� 0 are available upon request).
Consequently, our model (in which variables are constant and there is no discounting or

decay within a period) is a good approximation of a more general model (with continuous
discounting and decay) provided that the length of a period is small. If a stage lasts for a
long time, it is obviously unreasonable to hold the stock constant and to ignore discounting
during the stage.6 Thus, when we consider the effect of h on the policy ranking, we are
interested in the situation where h is small.
We can now provide an intuitive explanation for the effect of h on the policy ranking. We

noted above that the expected value of the regulator’s payoff under quotas does not depend
on the cost shock. Under taxes, on the other hand, the variance of the cost shock appears in
the single period payoff, and the cost shock makes the evolution of the state random, see
Eq. (8).
The variance of the cost shock increases the expectation of the single period payoff by

σ 2h/2b, an amount proportional to σ 2h. Under taxes (unlike quotas) the firm can adjust
emissions in response to the cost shock, leading to a higher expected payoff, for a given level
of expected emissions. However, conditional on information at time t, dS ≡ S(t+h)−S(t)

is a random variable under taxes, but is deterministic under quotas; var(dS) = (σh/b)2

under taxes. Since damages are convex in the stock, expected damages are higher (for a given
level of emissions) the higher is the variance of dS. Since the damage function is quadratic,
the increase in expected damages in a single period is proportional to the variance of the
stock. This increase in expected damages is discounted, because of our assumption that
current emissions cause future (not current) damages.
Thus, under taxes, the cost shock increases expected payoffs by an amount proportional

to σ 2h and it decreases the expected payoff (i.e. it increases damages) by an amount pro-
portional to (σh/b)2. The ratio of these two magnitudes (the functions associated with the
benefits and the costs of using taxes rather than quotas) is 1/2h, a decreasing function h.
Therefore, the policy ranking depends on h.
To provide a formal statement of this dependence, we use the definitions β ≡ e−rh and

Δ ≡ e−δh to rewrite Eq. (14) as

ϕ1 ≡ 1− βΔ2

βh2
= 1− e−(r+2δ)h

e−rhh2
. (14′)

The function ϕ1 is nonmonotonic in h. A straightforward calculation shows that ∂ϕ1/∂h is
decreasing for small values of h and is increasing for large values of h. Also, it is straight-
forward to show that ϕ1 → ∞ as h → 0 or as h → ∞. Neither of these two limiting
values of h is intrinsically interesting; however, these limiting cases and the fact that ϕ1 is

6 For example, when h is large and there is no decay within a period, it makes a big difference whether we
assume that current emissions contribute to the stock in the next period (as in Eq. (1)) or in the current period.
When h is small, these two formulations are approximately the same.
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continuous in h means that if h is either very small or very large, taxes certainly dominate
quotas.
We explained that our assumption that there is no decay or discountingwithin a stage is not

reasonable when h is large.When h is large, discounting is important, since (by assumption)
current emissions affect damages only in subsequent periods. For large h, var(dS) becomes
large, but discounting causes it to have a negligible effect on the present value of damages.
The benefit associated with taxes (σ 2h/2b) is received in the current period. Thus, when
h is very large, taxes certainly dominate quotas, as Eq. (14′) implies. However, when h is
large, our model is not appropriate.
The meaning of “large” and “small” depends on the particular pollutant. If the pollutant

decays very slowly (i.e. has a long half-life) a period of several years is “small”. For
example, suppose we choose units of time to be a year and we let r = 0.03 and δ = 0.0077,
corresponding to a yearly discount rate of 3% and a half-life of the stock of 90 years. For
these values of r and δ, ϕ1 is decreasing for h < 60.4. This inequality means that as long
as h < 60.4, a further decrease in h increases the set of values of g/b for which taxes are
preferred. It is reasonable to assume that the length of a period is much shorter than 60 years,
so for a very persistent pollutant, an increase in h favors the use of quotas. The minimum
value of ϕ1 in this example is 0.0016. Here, a sufficient condition for taxes to dominate
quotas (regardless of the value of h) is g/b < 0.0016.
Our conclusion that for sufficiently small h, taxes dominate quotas implies nothing about

the magnitude of the preference for taxes. Thus far we have treated σ 2 as a parameter.
However, sinceσ 2 measures the amount of uncertainty in a period of length h, it is reasonable
to view σ 2 as an increasing function of h. Our analysis does not depend on the precise form
of σ 2(h), but in order to consider limiting cases when h→ 0, we adopt.

Assumption 1. σ 2 is of the same order of magnitude as h or smaller: σ 2(h) ∼ 0(h).

Under Assumption 1, the amount by which taxes are preferred to quotas approaches 0
as h → 0. In the limit as the length of a period becomes very small, taxes and quotas are
equivalent.
To verify this claim, we multiply and divide the right side of Eq. (13) by h to rewrite this

equation as

T (S(0); σ)−Q(S(0)) =
(

σ 2(h)

h

)[
h2

(1− e−rh)2b

(
1− gh2e−rh

b(1− e−(r+2δ)h)

)]
.

(13′)

Under Assumption 1, the first term converges to a finite constant and (using L’Hopital’s
Rule) the term in square brackets converges to 0 as h → 0. In the limit, taxes and quotas
are equivalent, although for sufficiently small but positive h taxes are preferred to quotas.
It is worth emphasizing that we do not view this limiting case as a continuous time model.
It is simply a device for studying the discrete stage model when h is small.
If δ →∞, Δ → 0 and ϕ1 approaches 1/β. This limiting result reproduces Weitzman’s

result. We have 1/β rather than 1 because the damages caused by this period’s emissions
are felt in the following period.
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5. A flexible tax or quota

This section studies the more interesting case where the regulator has the same degree of
flexibility as firms. At the beginning of each stage, the regulator observes the current value of
the stock, but not the current realization of θ , and chooses the current policy level. Here, the
regulator uses a feedback rule. The previous section considered the case where the regulator
had to commit to a tax or quota trajectory at the initial time, i.e. he used an open-loop policy.
The two cases thus represent two extreme assumptions about the regulator’s ability to use
new information.
The regulator’s increased flexibility has no value if he uses a quota. Eq. (1) shows that

under a quota the development of the stock is nonstochastic, so the regulator learns nothing
from observing it. Therefore, nothing is gained by postponing the decision of the level of
the period t quota until t, rather than choosing the entire emission path at the initial time:
the open-loop and feedback policies are identical and give the same payoff. In addition, the
random variable θ does not affect the expectation of the current payoff (the payoff in Eq. (6)
is independent of σ 2). The value of the regulator’s program under a flexible quota is Q(S),
defined in the previous section.
If the policy is an emission tax, the flow of pollution and thus the evolution of the stock is

stochastic (Eq. (8)). In this case, flexibility in setting the tax increases the regulator’s payoff.
The optimal emission tax at any time depends on the stock of the pollutant at that time.When
the tax pathmust be chosen at time t = 0, the regulator chooses future taxeswithout knowing
the future value of the stock. Denoting the optimal value of regulator’s program under a
flexible tax as T ∗(S; σ), it is clear that T ∗(S; σ) ≥ T (S; σ). In general, the inequality is
strict. When there is no ambiguity, we suppress the second argument of T ∗ and T.
The regulator who conditions taxes on current information is “more likely” to prefer taxes

than quotas, compared to the regulator who must choose the tax trajectory at time 0. More
precisely, there exist parameters such that the regulator would prefer a quota rather than a
tax under an open-loop policy, but allowing the regulator to use a feedback policy reverses
the ranking. This conclusion holds because we know that when g/b > ϕ1, the “inflexible
regulator” prefers the quota (i.e.Q(S) > T (S)) and that in general T ∗(S) > T (S). There-
fore, (as we show below) there exist parameter values such that T ∗(S) > Q(S) > T (S).
Appendix A derives the criterion for a quota to be preferred to a tax when the regulator

conditions the policy at time t on the stock at time t. There we show that quotas are preferred
to taxes if and only if g/b exceeds a critical value, denoted ϕ2. This function is defined as

ϕ2 ≡
(
2− βΔ2

2(1− βΔ2)

)(
1− βΔ2

βh2

)
≡ γ ϕ1, (15)

γ ≡ 2− βΔ2

2(1− βΔ2)
= 2− e−(r+2δ)h

2(1− e−(r+2δ)h)
> 1.

The function ϕ1 is defined in Eq. (14). Since γ > 1, the critical value of g/b is higher under
the feedback policy, relative to the open-loop policy. That is, taxes are more likely to be
preferred under the feedback policy. In addition, γ is a decreasing function of h, so the
difference between the critical levels of g/b (under the open-loop and feedback policies) is
greatest when h is small.
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All of the qualitative comparative statics of the critical levels under open-loop and feed-
back policies are the same. The intuition is also the same. A simple calculation shows that
ϕ2 is decreasing in β and Δ; increases in the discount and decay rates r and δ makes taxes
more attractive. In addition, ϕ2 is nonmonotonic in h, decreasing for small h and increasing
for large h. Since ϕ2 → ∞ as h → 0, taxes are certainly preferred to quotas for suffi-
ciently small h. For the limiting value of h = 0, taxes and quotas are equivalent. Finally,
since γ → 1 as Δ →∞, we again reproduce the chief result from the static model: when
damages are associated with flows rather than stocks, the policy ranking depends only on
the relative slopes of marginal damages and abatement costs. To summarize, we have the
following Proposition.

Proposition. For the quadraticmodelwith additive uncertainty about abatement costs, there
are critical values of the ratio of the slope of marginal damages to the slope of marginal
abatement costs, g/b. These critical values are given by Eq. (14′) when the regulator chooses
the trajectory of policies at time 0, and by Eq. (15) when the regulator conditions the current
policy on the current stock. The critical ratios are increasing in the decay and the discount
rates, and nonmonotonic in the parameter that measures the length of a period. If the length
of a period is sufficiently small, the regulator wants to use taxes, but the payoff difference
under the two policies is approximately 0.

6. An empirical illustration

We use the results of the previous sections to rank taxes and quotas in controlling CO2,
the major “greenhouse” gas. The control of greenhouse gasses is among the most important,
or at least most hotly debated current environmental issues.
Even our parsimonious model stretches the limits of available data. We use two estimates

for the slope of marginal damages, g: Falk and Mendelsohn’s (1993; hereafter, FM) “high”
estimate, and Nordhaus (1991) to estimate the parameter b, under a variety of specifications.
All of these specifications lead to estimates with similar orders of magnitude. We choose
the specification that produces the smallest estimate of b[= 5.94E(−8)], thus biasing the
results in favor of the use of quotas. Table 2 summarizes the estimates of g and the ratio
g/b. The appendix discusses the data more fully.
We choose one unit of time equal to one year and set the discount rate r = 0.03 and the

decay rate δ = 0.005. A review of the literature suggests that δ = 0.005 (implying a half-life
of 139 years) is widely accepted as a point estimate for the decay rate for greenhouse gasses
(FM and Nordhaus). Reilly uses δ = 0.0083 (implying a half-life of 83 years) in a study

Table 2
Estimates of g/b (using the estimate b = 5.94E(−8))

FM Reilly

Estimate of g 8.12E(−13) 1.19E(−12)
Estimate of g/b 1.37E(−5) 2E(−5)
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Table 3
Critical values of g/b (r = 0.03, δ = 0.005)
h Open-loop (ϕ1) Feedback (ϕ2)

0.1 0.4004 50.350
1 0.0404 0.535
10 0.0044 0.00897
25 0.0021 0.0028

which focuses on CO2. The values we choose for both the discount and decay rate are
therefore plausible but conservative (i.e. small) thus tending to bias the results in favor of
quotas.
We have no way of estimating the parameter h, but for units of time equal to 1 year, h = 1

and 10 are reasonable bounds. Table 2 presents the critical values ϕi for h ranging from 0.1
to 25.
Even though we chose parameter values from the plausible range in such a way to

make g/b large and ϕi small (thus making it more likely that quotas dominate taxes) our
calculations indicate that taxes lead to higher welfare (g/b << ϕi). Even if the larger
(based on Reilly) estimate of g is too small by a factor of 1000, so that the actual value of
g/b is approximately 0.02, taxes would still dominate quotas if the firm and the regulator
were “reasonably flexible” (h = 1). If the estimate of g is too small by a factor of 100,
taxes would still dominate quotas even if the firm and the regulator are inflexible (h = 10).
Consequently, in spite of the data limitations, our results support the use of taxes rather than
quantity restrictions to control greenhouse gasses.
Table 3 also illustrates the magnitude of error that arises from ignoring h, and the dif-

ference between the criteria for ranking taxes and quotas under open-loop and feedback
policies. For example, an increase in h from one to ten years decreases the critical ratio
g/b by a factor of nearly 10 under open-loop policies, and by a factor of nearly 60 under
feedback policies. When h = 1 the critical ratio under feedback policies is more than 10
times a large as the critical ratio under open-loop policies.

7. Conclusion

Previous literature ranked a tax and quota policywhen abatement costs and environmental
damages both depend on the flow of pollution, and the polluter has better information than
the regulator concerning abatement costs. In that case, for linear–quadratic functions with
additive uncertainty, the quota dominates the tax if and only if the slope of the marginal
damage function is greater than the slope of abatement costs. We studied the situation
where environmental damages depend on the pollution stock rather than the flow. In this
circumstance, a direct comparison of the two slopes is not meaningful, since the units of
the two are not the same.
The intuition provided by the static model continues to hold, insofar as greater convexity

of the damage function, or less concavity of the benefits function, make it more likely that
a quota is preferred. However, when environmental damages depend on pollution stocks,
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the ranking of the two policies also depends on the discount and stock decay rates. Higher
discount and/or higher decay rates increase the importance of current flows relative to future
stock effects. The chief advantage of the quota is that it makes it possible to control exactly
the evolution of the stock. Since a higher discount rate and a higher decay rate both decrease
the importance of future stock effects, they also decrease the value to the regulator of exact
control of the evolution of the stock. Consequently, higher discount and decay rates make
it more likely that a tax is preferred.
The ranking of the two policies also depends on the length of the period for which

agents keep their decision variables unchanged. We showed that under both feedback and
open-loop policies, the regulator always prefers taxes if the length of this period is very
small. However, the difference between the payoffs vanishes as the length of the period
becomes small. We also explained why the use of feedback rather than open-loop rules
favors the use of taxes.
We used the theoretical results, together with estimates ofmarginal benefits and damages,

to compare taxes and quotas in the control of greenhouse gasses. The point estimates suggest
that taxes dominate quotas. In order to overturn this ranking, we would need to adjust key
parameters by a factor of more than 1000.

Acknowledgements

We would like to thank Atle Seierstad and Jinhua Zhao and anonymous referees for their
comments on an earlier version of this model, without implicating them in any remaining
errors. We thank Maureen Cropper and Todd Sandler for suggestions on data, and Steve
Warmerdam for research assistance. Michael Hoel acknowledges Financial support from
the Research Council of Norway.

Appendix A. Details of feedback solution and derivation of Eq. (15)

We note that for σ = 0, T ∗(S; σ)≡T (S; σ)≡Q(S). We use dynamic programming to
determine the function T ∗(S; σ), and then show how this function is related to Q(S) for
σ > 0. The single period expected payoff in Eq. (7) is λh, with λ ≡ [f + az − bz2 −
/2 + σ 2/2b − cS − gS2/2]. Using this definition of λ and Eq. (8), we write the dynamic
programming equation (DPE) under the flexible tax as

T ∗(S) = max
z

λ(z, s)h+ βET∗
θ

(
�S + zh+ θh

b

)
. (16)

The method of solving the DPE (16) is standard, so we merely, sketch the steps. We know
the value function is quadratic: T ∗(S) = ρ0 + ρ1S + ρ2S

2/2. We substitute this “trial
solution” into Eq. (16), and use the first-order condition to find the optimal control rule as a
function of the state S, the known parameters, and the unknown parameters ρi . Substituting
this control rule into (16) gives the maximized DPE, a quadratic equation in S. Equating
coefficients of 1, S and S2 (in the maximized DPE) gives expressions for the values of ρi .
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The values of ρ2 and ρ0 satisfy

ρ2 =
(

(�βρ2)
2

b − βhρ2
− g

)
h+ βΔ2ρ2 (17)

and

ρ0 =
[
f + (a + βρ1)

2

2(b − βρ2h)

]
h+ βρ0 + σ 2h

2b

(
1+ βρ2h

b

)
. (18)

The parameter σ affects the constant term (f + σ 2/2b)h in the expected payoff flow
and the variance of the additive error (hσ /b)2 in the stock evolution. Therefore, in view
of well-known properties of the linear–quadratic control problem with additive errors, σ
affects only the value of ρ0; the values of ρ1 and ρ2 are independent of σ . In addition,
from Eq. (18), the effect of σ on the value of ρ0 depends on the value of ρ2 but not on the
value of ρ1. Consequently, in order to determine how σ affects the value function, we do
not need to know the value of ρ1; we therefore, do not include the equation that determines
that parameter.
Since the values of ρ1 and ρ2 do not depend on σ , the control rule that determines

the optimal tax as a function of the stock is also independent of σ . Again, this fact is a
reflection of the Principle of Certainty Equivalence in the linear–quadratic control problem
with additive errors. The expected flow of pollution is the same under taxes and quotas, in
both the open-loop and in the feedback models.
The slope of the shadow value of the stock is the unique negative root of Eq. (17):

ρ̂2 = T ∗′′ . From (18) we see that quotas are preferred to taxes (in the feedback setting) if
and only if ρ̂2 < −b/βh. In the static problem, the ranking of taxes and quotas depends on
the curvature of the benefits function (b) relative to the curvature of the damage function
(g). In the dynamic problem with stock pollution, the ranking depends on the curvature of
the benefits function relative to the curvature of the value function (ρ2).
By rearranging Eq. (17) and dividing by h, we can write ρ̂2 as the unique negative root

of m(ρ2) = 0, where

m(ρ2) ≡ βρ22 +
(

gβh− b(1− βΔ2)

h

)
ρ2 − gb. (19)

We want to know whether p̂2 is greater or less then −b/βh. Since m(0) < 0, m(p̂2) = 0,
and m′(p̂2) < 0we know that p̂2 < −b/βh if and only if m(−b/βh) < 0 (Fig. 1). Using
Eq. (19) to evaluate m(−b/βh) gives

m

(
− b

βh

)
= 2b2

[
2− β�2

2βh2
− g

b

]
. (20)

Eq. (20) and the previous remarks imply that quotas are preferred to taxes if and only if g/b
exceeds a critical value, denoted ϕ2, defined in Eq. (15).
In the text we noted that the difference in payoffs under taxes and quotas vanishes as

h approaches 0. This conclusion follows because ρi approach limiting (finite) values as
h→ 0, and from Eq. (18) we see that in the limit ρ0 is independent of σ 2.
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Fig. 1. Graph of m(ρ2) when ρ̂2 < −b/βh.

Appendix B. Background for empirical illustration

We surveyed the literature on damage and abatement costs associated with greenhouse
gasses. The volumes by Bruce et al. (1996), Cline (1992) and OECD (1992) and the papers
by Barns et al. (1993) and Manne (1993) provide background material and summarize
previous estimates.
(FM, 1993) use data fromNordhaus (1991) to estimate a linearmarginal damage function,

which provided our first estimate of the parameter g. Reilly (1992) estimates damages as
a function of the concentration of greenhouse gasses (ppm). In 1990 the concentration of
greenhouse gasses was 441 ppm and the stock of CO2 was 800 billion tons. We used these
quantities and the assumption of a linear relation between concentration rate and stock to
convert Reilly’s estimate, obtaining a second estimate of g. The two estimates differ by a
factor of approximately two, which we regard as small, given the imprecision of all these
numbers.
To get an idea of the range of plausible estimates of the slope of marginal damages,

Tables 3 and 4 reports estimates of the cost to the world (in billions of 1990 dollars) resulting
from a doubling of the atmospheric stock of CO2. Where the original study estimates the
cost of damages for the US economy only, we assumed for the rest of the world the same
ratio between damages and GDP as in the US. Using this ratio and data on world GDP
we can then estimate the economic cost of damages for the world Thus, we can compare
estimates across the studies.

Table 4
Damage estimates in billions of 1990 dollars resulting from a doubling of tons of carbon in atmosphere

Cline (1992) 220
Fankhauser (1995) 260
FM (1993) 50 (low) 400 (high)
Maddison (1995) 300
Nordhaus (1991) 50
Nordhaus (1993) 266
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These estimates vary by a factor of 8. Thus, it seems unlikely that estimates of g based
on these studies (if such estimates were possible to construct) would vary by a factor of
more than 1000. We noted in the text that the ranking of taxes over quotas would survive a
thousand-fold increase in g.
Nordhaus (1991) reports estimates of total and marginal costs associated with different

percentage reductions in greenhouse gasses. We converted these percentages to tons of
greenhouse gas at 1990 levels, thus obtaining 15 “observations” of abatement and asso-
ciated marginal and total costs. We used these data to estimate marginal abatement costs
under a variety of specification. For example, we regressed total costs against abatement
and (abatement)2 with and without an intercept, and we regressed marginal costs against
abatement with and without an intercept). Our estimates of b ranged from 5.94E(−8) to
8.2E(−8). We used the smallest value of b in our calculations, in order to make it more
likely that quotas would be preferred.
Maddison (1995) estimates a cubic abatement cost function, using percentages rather

than absolute level. We converted his estimates to levels and fit a quadratic function through
the resulting curve. The resulting estimate of b was of the same order of magnitude as the
estimates we obtained using Nordhaus’s data.
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