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Preface

Please send suggestions and corrections to: karp@berkeley.edu. For the on-
line version of this book, click here.
The book is designed for upper division undergraduates. Together with

the appendices, it is also suitable for a masters level course. Prerequisites
include an intermediate micro-economics course and a grounding in calcu-
lus. The presentation uses derivatives, and in a few cases partial and total
derivatives. Appendix B reviews the required mathematical tools. Asterisks
identify sections with more advanced material.
The text covers standard resource economics topics, including the Hotelling

model for nonrenewable resources, and renewable resource models such as
fisheries. The distinction between natural resource and environmental eco-
nomics has blurred and become less useful over the decades. This book
reflects that evolution by including some topics that also fit in an environ-
mental economics text, while still emphasizing natural resource topics. For
example, the problem of climate change involves resource stocks, and there-
fore falls under the rubric of natural resources. Environmental externalities
drive the problem, so the topic also fits in an environmental economics text.
Two themes run through this book. First, resources are a type of nat-

ural capital; their management is an investment problem, requiring forward-
looking behavior, and thus requiring dynamics. Second, our interest in
natural resources stems largely from the prevalence of market failures, no-
tably incomplete or nonexistent property rights. “Policy failures”complicate
matters; in many circumstances, policy is inadequate to address market fail-
ures, or exacerbates those failures. The book emphasizes skills and intuition
needed to think sensibly about dynamic models, and about regulation in the
presence of both market and policy failures. The opportunity cost of this
focus is the omission of a detailed discussion of several important resources
(e.g. forestry). This pedagogic decision reflects the view that upper division

xi

file:karp@berkeley.edu
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(and masters-level) students are better served by acquiring a good under-
standing of concepts and tools that will help them to think critically about
a broad range of resource issues. Students at this level are already adept
at acquiring information about whatever subject interests them. It is more
diffi cult to master (or even identify) the concepts and tools that promote
critical analysis of resource issues.

Standard topics The eleven chapters, (3 — 5, 7, and 12 — 18 cover
the nuts and bolts of resource economics, and could stand alone as a mini-
course. Chapters 3 —5 and 7 cover nonrenewable resources. Chapters 3 and
4 study the two-period model, first in the simplest setting and then including
stock-dependent costs. Chapter 4 explains the role of resource scarcity and
stock-dependent extraction costs in determining resource rent. This chap-
ter shows how to obtain the optimality condition using the “perturbation
method”; Chapter 5 adapts that method to the T−period setting to obtain
the Euler equation, known in this context as the Hotelling condition. The
perturbation method (the discrete time calculus of variations) enables stu-
dents to perform constrained optimization almost without being aware of it:
it is simpler and more intuitive than the method of Lagrange. We use the
two-period optimality condition to write the T -period optimality condition
merely by replacing time subscripts. Chapter 5 also discusses the idea of the
shadow value of a resource stock, and illustrates the transversality condition
by means of an example. Chapter 7 presents the backstop model. Backstops
are economically important, and this material gives students practice work-
ing with the Hotelling model while preparing for a subsequent policy-focused
chapter.
Chapters 12 —18 study renewable resources. We emphasize fisheries be-

cause these provide a concrete setting, and they illustrate most of the issues
found in other renewable resources. Chapter 12 defines and provides his-
torical perspective on different types of property rights, and then discusses
the Coase Theorem. The rest of the chapter uses real world examples and a
one-period analytic model to describe the diffi culties and the unintended con-
sequences arising from fishery regulation. It discusses attempts to establish
property rights in fisheries, as an alternative to regulation.
Chapter 13 introduces the concepts needed to study renewable resources,

including the growth function, steady states, (local) stability, and maximum
sustainable yield. This chapter explains the relation between and the relative
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advantages of discrete time versus continuous time models, and describes
how the rest of the text uses these two approaches. Chapter 14 discusses
the open access fishery, showing how the long run effect of policy depends on
the initial stock size. Chapter 15 introduces the sole owner fishery, deriving
the Euler equation and discussing policy under multiple market failures. We
compare steady states under open access and for the sole owner. We explain
the effect of harvest cost and the discount rate on the sole owner’s steady
state(s). Chapter 16 shows how to analyze the sole owner fishery outside
the steady state. There we begin with a problem that can be studied using
only the Euler equation and careful reasoning; we then move to a more
complicated example requiring phase portrait analysis. Chapter 17 discusses
water economics, showing how the tools developed for the fishery setting can
be adapted to other resources. Chapter 18 explains concepts of weak and
strong sustainability and then discusses the Hartwick rule. Concern over
sustainability has led to the development of modifications and alternatives
to gross national product (GNP) as measures of welfare.

Less standard topics Chapter 2 reviews topics in micro-economics
needed to study resource economics. These topics include the concept
of arbitrage, the use of elasticities, the relation between competitive and
monopoly equilibria, and the use of discounting. Chapter 6 discusses empir-
ical tests of the Hotelling model.
Chapters 8 —11 introduce policy problems. Chapter 8 uses the Hotelling

model to examine the “Green Paradox”, an important topic in climate policy.
In addition to its intrinsic interest, this material gives students practice in
using the Hotelling model, and more generally illustrates the use of models to
study policy questions. The material promotes critical thinking by discussing
limitations of the green paradox model.
Chapter 9 provides the foundation for policy analysis when market failures

are important. It explains and illustrates the Theory of the Second Best and
the Principle of Targeting, and discusses the importance of political lobbying
and the distinction between policy complements and substitutes. In order to
present this material simply, examples in the chapter use static environmental
problems, instead of stock-dependent natural resource problems. Chapter
12 uses the concepts developed here, again in a one-period setting. Chapter
14 then develops these concepts in a dynamic setting.
Taxes and other market-based instruments are becoming increasingly im-
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portant regulatory tools. Chapter 10 introduces the principles of taxation
in a static framework. We discuss tax equivalence, tax incidence, and dead-
weight loss. These basic ideas provide a conceptual framework for estimating
the fraction of permits in a cap and trade scheme that would need to be grand-
fathered in order to compensate firms for the cost of regulation. Chapter 10
is essential for understanding taxes in the dynamic natural resource setting,
the topic of Chapter 11. That chapter provides an overview of actual tax-
ation (and subsidy) or fossil fuels, and then explains how to synthesize the
Hotelling model with the information on taxes studied in the static setting.
A numerical example illustrates this synthesis.
Chapter 19 studies the role of discounting, emphasizing its role in recom-

mendations for optimal climate policy. The chapter explains the difference
between utility and consumption discounting. It discusses the Ramsey for-
mula for the social discount rate in the deterministic setting, and then intro-
duces uncertainty. We emphasize the importance, to the social discount rate,
of projections of future economic growth. A concluding section introduces
hyperbolic discounting and explains its relevance to climate policy.



Chapter 1

Resource economics in the
Anthropocene

Natural resources are under threat of misuse and depletion, but human in-
genuity makes it possible to devise rules and create institutions to protect
them. Policies that harness the power of markets are more likely to be suc-
cessful. Resource economics offers a framework for analyzing resource use,
providing tools that can contribute to improved stewardship.
Natural resources are a type of capital: natural, as opposed to man-made

capital. Resource use potentially alters the stock of this capital, and is a type
of investment decision. Change is thus a key feature of natural resources,
requiring a dynamic (i.e., multiperiod) perspective. Natural resources, like
other types of capital, provide services that affect human well-being. In
some cases, as with burning oil or eating fish, we consume those services
by consuming a part of the resource. In other cases, we consume natural
resource services indirectly. Wetlands provide filtration services, reducing
the cost of clean water. Transforming wetlands into farms or cities changes
the flow of these services. Other resource stocks, such as bees and bats,
critical to agricultural production, provide indirect but essential services.
Diminishing those stocks, by reducing habitat or otherwise changing the
ecosystem, alters future pollination services.
These examples are anthropocentric, attributing value to natural resources

only because they provide services to humans. Species or wilderness areas
may have intrinsic value apart from any effect, however indirect, they have
on current or future human welfare. Regardless of whether one begins with
a purely anthropocentric view or a more spiritual/philosophical perspective,

1
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resource value depends on the remaining stocks: oil, fish, wetlands, pollina-
tors, wilderness etc. These stocks affect current and future flows of services.
Spiritual or philosophical arguments can be effective in galvanizing public
action, but the anthropocentric view, putting humans at the center of the
narrative, can lead to more effective remedies. The protection of forests or
fisheries is more likely achieved if the people near these resources have a stake
in their protection. Ecotourism in nature preserves can give local residents
an incentive to respect the preserve; using the dung of elephants and rhinos
to create paper products for sale abroad gives people an incentive to protect
the animals when they stray from the preserves. Elevating philosophical
abstractions above concrete human needs risks promoting ineffi cient policy.
In common usage, “capital”refers to man-made productive inputs, such

as machinery, or the monetary value of those inputs. A broader definition
treats capital as anything that yields a flow of services. Education augments
our stock of human capital, making us more productive or otherwise enhanc-
ing our lives. Natural resources fall under this broader definition of capital.
A firm’s decision about purchasing additional machinery, or an individual’s
decision about acquiring more education, are investment decisions, and thus
“forward looking”; they depend on beliefs about their future consequences.
The decisions are “dynamic” rather than “static” because their temporal
aspect is central to the decision-making process.
Natural capital, like machinery, obeys laws of physics: trees age, ma-

chines rust. The fact that the two types of capital inhabit the same physi-
cal universe connects resource economics to the broader field of economics.
However, natural and man-made capital differ in the severity of the market
failures that affect them. An “externality”, a type of market failure, arises
when a person does not take into account all of the consequences of their
action. Unregulated pollution or excessive use of a resource stock are lead-
ing examples of externalities. Externalities and other market failures, often
associated with weak or nonexistent property rights, are central to the study
of resource economics.
A natural resource without property rights cannot be bought and sold,

and therefore does not have a market price reflecting its value. Informed
policy decisions require a comparison of costs and benefits of different alter-
natives, e.g. protecting the natural resource or allowing development. The
lack of a price for the natural resources makes it diffi cult to value its services,
greatly complicating the policy problem. (Box 1.1).
Changes in resource stocks occur either intentionally, via the exercise of
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property rights, or accidently, arising from externalities. A mine owner
understands that extracting a unit of ore today means that this material
cannot be sold in the future. Where property rights to resources do not exist,
individuals often make decisions without regard to their effect on resource
stocks. Farmers choose levels of pesticide and fertilizer in order to increase
their profits. Some of these inputs enter waterways, where they damage the
publicly owned ecosystem, as has occurred in the Everglades and in the Gulf
of Mexico. Individual farms have negligible effect on the aggregate outcomes,
and individual farmers have no (selfish) interest in those outcomes, so it
is rational for them to ignore these consequences. In these cases, society
chooses how to use publicly owned resources. Often the choice, made by
default, involves little resource protection.

Box 1.1 Valuing natural capital. (a) The cost of protecting watershed-
based filtration systems for New York City’s water supplies was esti-
mated in 1996 at $1—1.5 billion; the cost of building and operating a
filtration system was estimated at $6—8 billion. New York City pro-
tected the watershed. (b) The value of irrigation in a region of Nigeria
was 4—17% of the losses to downstream floodplains arising from the
diminished water flows caused by this irrigation. (c) Shrimp farming
in Thailand causes the destruction of mangrove swamps, which pro-
vided nurseries for other fisheries and storm protection. The value
of shrimp farming was about 10% of the lost value of ecosystem ser-
vices. The estimates for (b) and (c) were made after the damage
had occurred (the irrigation was put in place, and the shrimp farms
developed). It may be costly or politically infeasible to undo these
actions, e.g. to reduce irrigation in order to increase water flows, or
to restore the mangroves.

Rapid changes in resource stocks, and the expected change of future
stocks, make resource economics an especially important field of study. The
2005 Millennium Ecosystem Assessment reports that the recent speed and
extent of human-induced change in ecosystems is greater than the world
has previously seen. Some changes, such as those associated with the ex-
pansion of agricultural production, contribute to current human well-being.
However, many of the changes degrade resources, eroding natural capital and
threatening future well-being. The last half-century saw a fifth of the world’s
coral reefs lost, and another fifth degraded; a third of mangrove forests have
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been lost; water use from rivers and lakes has doubled; nitrogen flows enter-
ing ecosystems have doubled, and phosphorus flows have tripled. Human
actions have increased the rate of species extinction as much as 1000-fold, rel-
ative to rates found in the geological record. Estimates of mammal, bird and
amphibian species threatened with extinction range from 10 —30%. Tropical
forests and many fisheries are in decline.
The Millennium Assessment evaluates 24 different types of ecosystem

services and concludes that 60% of these are degraded or threatened. The
loss in natural capital may lead to abrupt changes, e.g. flips in water quality
(eutrophication) and the rapid emergence of new diseases. These damages
tend to disproportionately harm the poor and most vulnerable. Barring
major policy changes or technological developments, ecosystems will likely
face increasing pressure. Standard measures of wealth ignore these changes
in natural capital. Attempts to account for natural capital, show that almost
half of countries in a World Bank study are depleting their wealth, living off
natural capital.
Climate change may pose the single greatest danger to future well-being.

Climate change is likely to exacerbate the types of problems already seen,
such as loss of species, the spread of diseases, and increased water short-
ages. It may also lead to new problems, including rising sea levels, increased
frequency of severe weather events, and decreased agricultural productivity.
The costs of these changes will depend on uncertain relations between stocks
of greenhouse gasses and changes in temperature, ocean acidity, and the sea-
level, and on the uncertain relation between these variables and economic and
ecological consequences (e.g. decreased agricultural productivity and species
loss). The future stocks of greenhouse gasses depend on future emissions,
which depend on uncertain changes in policy and technology.
In recognition of man’s ability to fundamentally alter the earth’s ecosys-

tem, many scientists refer to the current geological period as the Epoch of the
Anthropocene (“New Human Epoch”). Proposals for this Epoch’s starting
date range from the early industrial age to the middle of the 20th century.
The view that current resource use will create large costs to future gen-

erations leads to resource pessimism. Thomas Malthus, an early resource
pessimist, claimed that if unchecked by war, disease, or starvation, human
population tends to rise faster than food production. He concluded that
population eventually outstrips food supplies, until starvation, war, or dis-
ease brings them back into balance. This description was quite accurate for
most of human history, but events since he wrote in 1800 have contradicted
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his predictions. Many countries have seen a demographic shift associated
with higher income, leading to stabilization or decreases, not increases, in
population. In poor societies, children are a form of investment for old age.
In rich societies, children do not provide the primary support for their aged
parents, and the cost of raising children is high. These factors encourage
smaller family sizes with rising income. Technological innovations have in-
creased agricultural productivity and reduced the cost of transporting and
storing food. Population and food security have both increased. Most re-
cent famines were caused not by the absolute lack of food, but by its unequal
distribution.
In the 19th century the British government was concerned that high con-

sumption of coal would lead to future scarcity. William Jevons, a prominent
economist at the time, advised the government not to use policies that would
lead to coal conservation, on the ground that the market would resolve any
future problem: if the price of coal did rise, businesses would reduce their
demand, and innovators would develop substitutes for coal. In 1931 Harold
Hotelling produced one of the cornerstones of the field of resource economics,
responding to the pessimists of his time. He wrote

Contemplation of the world’s disappearing supplies of ... ex-
haustible assets has led to demands for regulation of their ex-
ploitation. The feeling that these products are now too cheap
for the good of future generations, that they are being selfishly
exploited at too rapid a rate, and that in consequence of their ex-
cessive cheapness they are being produced and consumed waste-
fully has given rise to the conservation movement.

Hotelling studied the use of natural resources in an idealized market with
perfect property rights, where a rational owner takes the finite resource sup-
ply into account. In this setting, prices signal scarcity, influencing deci-
sions about extraction, exploration, and the development of alternate energy
sources and new technologies. Prices signals can also lead to fundamental
changes in human behavior, such as family size.
Barnett and Morse (1963) examined trends in resource prices, finding no

evidence of increased scarcity. However, increased resource use led to a resur-
gence in resource pessimism, exemplified by Paul Ehrlich’s The Population
Bomb. Ehrlich, a biologist, observing rapid increases in the use of natural
resources in the 1960s, and accustomed to working with mechanistic models
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of insect populations, predicted imminent and catastrophic resource scarcity.
Julian Simon, like Jevons almost a century earlier, thought that the market
would take care of scarcity, as higher prices encouraged exploration, discov-
ery, production and conservation. Simon proposed, and Ehrlich accepted, a
bet that the inflation-adjusted price of a basket of five minerals would fall
over a decade. This period of time seemed long enough to test Ehrlich’s
forecast of imminent scarcity. Simon won the bet; Ehrlich claimed that he
had underestimated the rapacity of man’s resource extraction, and that his
prediction of scarcity was wrong only in the timing. (Appendix A)

Box 1.2 The (im)possibility of extinction. In the mid 1800s, driftnet
herring fishermen asked for regulation to restrict the use of “longlines”,
which they claimed damaged fish stocks and reduced catches. Many
scientists, believing that the self-correcting power of nature would
take care of any temporary problems, resisted those requests. The
influential scientific philosopher Thomas Henry Huxley, a member
of British fishing commissions charged with investigating the com-
plaints, explained in 1883 why the requests were unscientific, and
merely designed to impede technological progress: “Any tendency to
over-fishing will meet with its natural check in the diminution of the
supply,... this check will always come into operation long before any-
thing like permanent exhaustion has occurred.”
Others disagreed. Maine’s fishery commissioner Edwin Gould stated
in 1892 “It’s the same old story. The buffalo is gone; the whale is
disappearing; the seal fishery is threatened with destruction. Fish
need protection.”

The resource pessimism of the 1960’s led to renewed interest in resource
economics during the 1970s and 1980s. The dominant strand of this litera-
ture extends Hotelling’s earlier work, using the paradigm of rational agents
operating with secure property rights. However, there has also been in-
creased recognition of market failures, especially externalities associated with
missing markets and weak property rights. Modern resource economics pro-
vides a powerful lens through which to study natural resources precisely
because it takes market failures seriously. The discipline provides a counter-
weight to pessimists’tendency to understate society’s ability to respond to
market signals, while also providing a remedy to the excessively optimistic
belief that markets, by themselves, will solve resource problems.
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Agriculture and fisheries illustrate the power of markets and the problems
arising from market imperfections. In both cases, markets have unleashed
productivity gains leading to abundance. But these gains occur in the pres-
ence of market failures, threatening (in the case of agriculture) or reversing (in
the case of fisheries) the initial gains. Neither markets nor natural forces will
automatically solve these problems without policy intervention. Increases in
agricultural productivity since the 1960s made it possible to feed twice the
population with slightly more than a 10% increase in farmed land, reduc-
ing or eliminating the threat of starvation for hundreds of millions of people.
Those changes were associated with increased pesticide and fertilizer use that
threaten waterways, increased and likely unsustainable use of water, and in-
creased loss of habitat. Rising fish harvests reduced fish stocks, resulting
in relative scarcity and higher prices. Responding to market signals, fishers
adopted new technologies, increasing their ability to catch fish. These gains
have often been short-lived, as the increased harvest degrades fish stocks,
ultimately lowering harvest.
Markets have been essential in “disproving”the resource-pessimists thus

far. Markets are powerful in part because they are self-organizing. They
require a legal and institutional framework that respects private property
and contracts; they often require regulation, but not detailed governmental
management. However, the beneficial changes assisted by markets, occurring
in the context of market imperfections, may in the longer run validate the
resource-pessimists. Where market imperfections are severe, markets are
unlikely to solve, and may exacerbate resource and environmental problems.
There are objective technological and demographic obstacles to solving

resource problems, but politics also create obstacles. Proposed remedies usu-
ally create winners and losers, with the losers often in a better position to
defend their interests. For example, effective climate policy will reduce fossil
fuel owners’wealth; this group is politically powerful.
The resource policies actually in use emerge in the political marketplace,

both in democracies and under other forms of governance. Some policies
are driven by self-interest and not explicitly linked to resource issues, while
still having direct and harmful effects on resources. In a few cases, there is
a near-consensus (at least amongst economists) that the policies harm nat-
ural capital and more broadly are socially irrational. Prominent examples
include: agricultural policies that promote environmentally damaging pro-
duction along with commodity gluts; water policy that promotes excessive
use and ineffi cient allocation across users; fossil fuel subsidies that exacer-
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bate the problem of excessive greenhouse gas emissions; fishing subsidies that
worsen the problem of overharvest. Other policies, such as the promotion
of corn-based ethanol by the US Renewable Fuel Standard, are at best ques-
tionable. Still other policies, such as US fishing regulation during the last
two decades, improve on previous policies, but still fall short of achieving
their objectives.
These are all examples of policy failure, some naked and some nuanced,

some extreme and others mild. The worst policies can be explained by polit-
ical power in the service of self-interest. The inherent diffi culty of managing
complex problems even where there is good will also explains policy limita-
tions. Market failures require a policy response, but experience shows that
policy intervention sometimes is part of the problem, not part of the solution.
Clearer thinking will not dispel the technical, demographic and political

obstacles to socially rational resource use. However, clearer thinking and
more precise language can help overturn prejudice and identify effective pol-
icy, and can provide a basis for negotiations. People might disagree on a
conservation measure, but it is counter-productive to base the disagreement
on identification with a political party or a disciplinary speciality (economics
versus ecology). Resource economics can provide a common language and
analytic framework, creating the possibility of moving beyond ideology.
Resource economics also helps in understanding that institutional reform,

such as the creation of property rights rather than the introduction of a new
tax, is often an effective remedy to problems. Some people distrust property
rights because they (correctly) see these as the basis for markets, and they
(probably incorrectly) think that markets are responsible for the resource
problem. Resource economics teaches that many problems are due not to
markets, but to market failures.
Disagreements about resource-based problems tend to be easier to re-

solve where the problems are local or national rather than global, and where
changes occur quickly (but not irreversibly), rather than unfolding slowly.
The local or national context makes the horse-trading needed to compensate
losers easier. The rapid speed of change makes the problem more obvious,
and makes the potential benefits of remedying the problem, and the costs
of failing to do so, more pressing for the people who need to engage in this
horse-trading. The most serious contemporary resource-based problems are
global and unfold over long periods of time, relative to the political cycle.
A prominent international treaty, the Montreal Protocol, helped to re-

verse the global problem of ozone depletion. The rapid increase in the ozone
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hole over the southern hemisphere made the problem hard to ignore, and
the availability of low-cost alternatives to ozone-depleting substances made
it fairly cheap to fix. International negotiations on other global problems,
prominently climate change, have been notably unsuccessful. It is diffi cult
to summon the political will to make the international transfers needed to
compensate nations that would be, or think they would be, better offwithout
an agreement. The most serious effects of climate change will impact future
generations, who have no direct representation in current negotiations.

An overview of the book

Two points made above set the stage for the rest of this book. (i) Markets
have the potential to ease environmental and resource constraints, contribut-
ing hugely to the increase in human welfare. (ii) Many problems arise from
market failures, such as externalities associated with pollution; those mar-
ket failures may diminish or even reverse the beneficial effects arising from
markets that function well. A corollary to these claims is that regulation
that harnesses the power of market forces, or the establishment of property
rights, may make it easier to solve resource problems. Those regulations and
institutional changes require political intervention; they do not arise spon-
taneously from market forces. This book develops and uses a theoretical
apparatus that can contribute to coherent analysis of these issues. Theory
makes it possible to intelligently evaluate the facts of specific cases, in pursuit
of better policy prescriptions.
The pedagogic challenge arises because resources are a type of capital,

requiring a dynamic setting in which agents are forward looking. In a static
setting, firms’and regulators’decisions depend on current prices and (for
example) pollution. In the dynamic resource setting, a firm’s decision on
how much of the resource to extract and sell in a period depend on the price
in that period, and the firm’s beliefs about future prices. A regulator’s
(optimal) policy depends on beliefs about future actions, and these depend
on future prices. This difference between the static and dynamic setting is
central in our presentation of resource economics.
The first half of the book provides the foundation for studying nonre-

newable resources, such as coal or oil. This foundation requires a review
of some aspects of microeconomic theory, and the development of methods
needed to study dynamic markets. We apply these methods to the resource
problem, emphasizing perfectly competitive markets with no externalities or
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other distortions. This material identifies incentives that are important
in determining resource use, and helps the reader understand the potential
for markets, when they work well. The second half of the book applies
these tools, emphasizing situations where market failures create a rationale
for policy intervention. We consider both the possibility that policies ame-
liorate the market failure, and the possibility that policy is harmful due to
unintended consequences. We also move from nonrenewable to renewable
resources, making it possible to show how different systems of property rights
and policies alter resource levels at different time scales.

Terms and concepts

Epoch of the Anthropocene, renewable versus nonrenewable resource, eu-
trophication, market failure, externality, resource pessimist/optimist

Sources

Barnett and Morse (1963), observing that inflation-adjusted resource prices
were not trending upward, concluded that there was no evidence of increased
resource scarcity.
The United Nations’(2005)Millennium Ecosytem Assessment reports an

international group of scholars’assessment of recent environmental changes,
their consequences on human well-being, and likely scenarios for future changes.
Alix-Garcia et al (2009) discuss the payment of environmental services in

agriculture, an example of a market-based remedy to externalities.
Elizabeth Kolbert The Sixth Extinction: an Unnatural History docu-

ments species extinction.
Duncan Foley (2006) Adam’s Fallacy discusses Thomas Malthus and

other important economists.
Scott Barrett Environment and Statescraft (2003) discusses the diffi culty

of creating effective global environmental agreements.
Gregory Clark A Farewell to Alms provides a long run historical perspec-

tive on Mathus’ideas.
Paul Sabin, “The Bet”examines the tension between resource optimists

and pessimists, in particular between Ehrlich and Simon.
The World Bank’s (2014) Little Green Data Book provides statistics on

green national accounting.
Robert Solow (1974) provides the quote from Hotelling (1931).
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Partha Dasgupta (2001)Human Well-Being and the Natural Environment
develops the concept of natural resources as a type of capital.
Edward Barbier Capitalizing on Nature: Ecosystems as Natural Assets

extends this concept to ecosystems, or ecological capital, e.g. wetlands,
forests, and watersheds. The examples in Box 1 are taken from his book.
The quote from Huxley in Box 1.2 is from Kurlansky (1998), and the

quote from Gould is from Bolster (2015).
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Chapter 2

Preliminaries

Objectives

• Prepare students to study resource economics.

Information and skills

• Understand the meaning of arbitrage, the distinction between exoge-
nous and endogenous variables and the use of comparative statics.

• Be able to calculate and know the definition and purpose of elasticities.

• Understand the relation between a competitive and a monopoly out-
come.

• Know the definition and purpose of a discount rate and a discount
factor; use them to calculate present values.

• Know the basics of welfare economics, in particular the fact that in the
absence of market failures, a competitive equilibrium is effi cient.

This chapter reviews and supplements the micro-economic foundation
needed for natural resource economics. In the familiar static setting, a
competitive equilibrium occurs when many price-taking firms choose output
to maximize their profits. A competitive equilibrium in the resource setting
involves a time-path of output. Resource-owning firms begin with an initial
stock of the natural resource, and decide how much to supply in (typically)
many periods, not just in a single period. For a non-renewable resource

13
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such as coal or oil, the cumulative extraction over the firm’s planning horizon
cannot exceed the firm’s initial stock level. For renewable resources such as
fish, natural growth can offset harvest, causing the stock to either rise or fall
over time. Discounting makes profits in different periods commensurable,
and is key in framing the firms’optimization problems.

“Arbitrage”takes advantage of differences, often price differences, in dif-
ferent markets. Moving a commodity from one place to another involves
“spatial arbitrage”. The resource firm engages in “intertemporal arbitrage”,
in deciding to sell a unit of resource in one period instead of another. In-
tertemporal arbitrage is the basis for understanding equilibria in resource
markets, and spatial arbitrage, discussed in this chapter, provides the foun-
dation for understanding intertemporal arbitrage. The two types of arbitrage
can be studied using similar methods.

Models can help in understanding how changes in data, or an assumption,
affect an “endogenous”outcome. The data/assumption is “exogenous”; it is
taken as given, i.e. determined “outside ”the model. For example, we might
take the cost of shipping goods as exogenous, and ask how a change in this
cost alters the endogenous quantity shipped, and ensuing price. Answering
this type of question uses comparative statics. We sometimes use elasticities
for comparative statics questions. Elasticities provide a unit free measure of
the relation between two variables, such as quantity and price; “unit free”
means, for example, that the relation does not depend on whether we measure
prices in dollars per pound or Euros per kilo.

We emphasize competitive equilibria. However, many important resource
markets, including markets for petroleum, diamonds, and aluminium (pro-
duced using bauxite, a natural resource) are not, or have not always been,
competitive. We therefore supplement the study of competitive markets by
considering the case of monopoly. Few, if any resource markets are literally
monopolistic, but the monopoly model provides a limiting case, against which
to compare perfect competition. Many resource markets lie somewhere on
the continuum between these two. We use the elasticity of demand to relate
the equilibrium conditions under perfect competition and monopoly.

Two welfare theorems explain the circumstances under which a profit
maximizing competitive industry and a welfare maximizing social planner
lead to the same outcome. These theorems also provide the basis for studying
market failures.
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Figure 2.1: Horizontal axis shows tea sold in China Solid line shows demand
for tea in China. Dashed line shows demand for tea in US. Dotted line shows
price received by Chinese exporter with 30% transportation costs.

2.1 Arbitrage

Objectives and skills

• Understand arbitrage and graphically represent and analyze the “no-
arbitrage”condition.

Much of the intuition for later results rests on the idea of “arbitrage over
time”. This idea is closely related to the more familiar idea of arbitrage over
space. Suppose that there are ten units of tea in China, where the inverse
demand is pChina = 20 − qChina; pChina and qChina are price and quantity
consumed in China. A demand function gives quantity as a function of
price, and the inverse demand function gives price as a function of quantity.
The inverse demand for tea in the U.S. is pU.S. = 18− qU.S..
Figure 2.1 shows the inverse demand in China (solid line) and in the

U.S. (dashed line). Moving left to right on the horizontal axis increases
consumption in China, and decrease U.S. consumption, because total supply
is fixed at ten. The U.S. demand function is therefore read “right to left”;
the point 3 on the tea axis means that China consumes 3 units and the
U.S. consumes 7 units. Except where noted otherwise, we assume that
the equilibrium is “interior”, meaning (here) that some tea is sold in both
countries.
If transportation is free, and sales are positive in both countries, then

price in a competitive equilibrium must be equal in the two countries. This
“no-arbitrage” condition is necessary for profit maximization: if it did not
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hold, a price-taking trader could buy a unit of tea in the cheap country
and sell it in the expensive country, increasing profits. The no-arbitrage
(= profit maximizing) condition implies that China consumes 6 units, the
U.S. consumes 4 units, and the equilibrium price, 14, is the same in both
countries.
It is easy to become confused about causation in a competitive equilib-

rium. The trader in our tea example does not move tea from one location to
another in order to cause the prices in the two locations to be the same. This
competitive trader takes prices as given, and continues to move tea from one
location to another until no further trade is profitable. The cross-country
equality of price is a consequence, not the purpose, of trade.
Transportation costs are important in the real world. These costs can

be expressed on a per unit basis (some number of dollars per unit) or on an
ad valorem basis (some percent of the value). In the latter case, costs are
sometimes called “iceberg costs”; it is as if a certain fraction of the value
melts in moving the good from one place to another. These costs include
the physical cost of transportation, and ancillary costs of setting up distribu-
tion networks, acquiring information about prices in different locations, and
insurance. Denote the iceberg cost as b (for “berg”); expressed as a percent,
the cost is b × 100%. For b = 0.3, transportation cost equals 30% of the
purchase price. An exporter who buys the good for pChina and spends bpChina

to transport the good, has a total unit cost of (1 + b) pChina. In a competitive
equilibrium with positive sales in both countries, (1 + b) pChina = pU.S., or

pChina =
1

(1 + b)
pU.S.. (2.1)

Equation 2.1 is the no-arbitrage condition in the presence of iceberg trans-
portation costs, b ≥ 0. If b > 0, then equation 2.1 implies that the U.S.
price exceeds the China price in a competitive equilibrium.
The dotted line in Figure 2.1 shows the U.S. demand, adjusted for 30%

transport costs (b = 0.3). A point on this dotted line gives the amount that
an exporter receives, at a given level of U.S. consumption, after the exporter
pays transportation costs. The equilibrium sales occurs at the intersection
of the solid line and this dotted line, where the price in China equals the
price, net of transportation costs, that an exporter receives for U.S. sales.
In equilibrium China consumes 7.8 units, at price 12.2; the U.S. consumes
the remaining 2.2 units. The U.S. transportation-inclusive price, a point on
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the U.S. demand function (the dashed line), is 1.3 × 12.2 = 15. 9. Net of
transportation costs, the exporter receives 12.2, a point on the dotted line.
Here, “the law of one price”holds: the price, adjusted for transport costs,

is the same in both locations. This “law”describes a tendency. Arbitrage
requires that people have information about prices in different locations. If
this information is imperfect, then arbitrage creates a tendency for prices to
move together, but not price equality. The potential to gain from price dif-
ferences gives people an incentive to acquire information, but the individual
selling tea in China need not know the U.S. price. If a chain of people in
markets between China and the U.S. each knows only the price in neighbor-
ing markets, they know whether it is profitable to move tea east or west.
Markets “aggregate”information; the middlemen move the commodity from
where the price is low to where it is high, in the process revealing information
about and also reducing price differences. Technological advances make the
flow of information cheaper and reduce transportation costs, assisting the
forces of arbitrage. Apps make it possible to instantly compare prices in
different stores. Farmers in developing countries use cell phones to learn
about price differences in different markets.

2.2 Comparative statics

Objectives and skills

• Understand the distinction between endogenous and exogenous vari-
able, and the meaning of a comparative statics question.

• Use an equilibrium condition for comparative statics analysis.

This section uses a an example to illustrate a comparative statics ques-
tion, and how it can be answered: “How do transportation costs affect the
equilibrium prices and quantities in the two markets?” This question is
simple enough to answer without a model: higher transportation costs de-
crease exports from China to the U.S., increasing supply and decreasing the
equilibrium price in China, and having the opposite effect in the U.S. The
simplicity enables the reader to focus on the method. Figure 2.1 illustrates
the graphical approach to answering this question. The figure shows how
moving from zero to positive transport costs shifts down a curve, changing
the equilibrium. Mathematics helps for more complicated questions. The
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first step in addressing a comparative statics question is to be clear about
which variables are exogenous (= given, or determined outside the model),
and which are endogenous (= determined by the model). Here, the trans-
portation parameter, b, is exogenous, and the prices and quantities in the
two markets are endogenous.
The second step is to identify the equilibrium condition that determines

the endogenous variables. In this case, the equilibrium condition is the
no-arbitrage condition 2.1. The demand functions for the two countries,
pchina = 20− qChina and pU.S. = 18− qU.S., the constraint qU.S. = 10− qChina,
and this equilibrium condition imply

20− qChina =
1

1 + b

(
18−

[
10− qChina

])
. (2.2)

Once we know qChina it is straightforward to find qU.S. and the two prices, so
we consider only the comparative statics of qChina with respect to b.
Equation 2.2 gives qChina as an implicit function of b. Because of its

linearity, this equation can be easily solved to yield the explicit equation.

qChina =
20b+ 12

b+ 2
.

Using the quotient rule, we obtain the derivative:

dqChina

db
=

28

(b+ 2)2 > 0, (2.3)

showing that an increase in transport costs increases equilibrium sales in
China. Appendix C shows how to solve more complicated problems, where
we are unable to obtain the endogenous variable as an explicit expression of
the exogenous parameters.

2.3 Elasticities

Objectives and skills

• Calculate elasticities and understand why it is important that they are
“unit free”.
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Economists frequently use elasticities instead of slopes (derivatives) to
express the relation between two variables, e.g. between price and quantity
demanded. The slope of the demand function tells us the number of units
of change in quantity demanded for a one unit change in price. The elastic-
ity of demand with respect to price tells us the percent change in quantity
demanded for a one percent change in price. Unless the meaning is clear
from the context, we have to specify the elasticity of something (here, quan-
tity demanded) with respect to something else (here, price). In general, the
value of an elasticity depends on the price (or the “something else”) at which
it is evaluated.
The symbol dQ denotes the change in Q and the ratio dQ

Q
denotes the rate

of change; multiplying by 100 converts a rate to a percent, so dQ
Q

100 is the
percent change in Q. The percent change in Q for each one percent change
in P is the ratio

dQ
Q

100
dP
P

100
=

dQ
Q

dp
p

=
dQ

dP

P

Q
.

The demand function Q = D (P ) gives the relation between quantity
demanded and price, Q and P . The elasticity of Q with respect to P ,
denoted η, is defined as

η = −dQ
dP

P

Q
= −D′ (P )

P

D (P )
.

The convention of including the negative sign in the definition makes the
elasticity a positive value. If we want to evaluate this elasticity at a particular
price, say Po, we express it as

η (Po) = −D′ (Po)
Po

D (Po)
.

Economists frequently use elasticities instead of slopes (derivatives) to
describe the response of one variable to a change in another variable, because
the elasticity, unlike the slope, is “unit free”.1 The elasticity does not change

1Units are important. Columbus underestimated the diameter of the world partly as
a consequence of confusion over units. The common belief that Napoleon was quite short
(the “little man complex”) resulted from confusing English with French units; in fact, he
was slightly taller than the average man of his era. The 1999 Mars Climate Orbiter was
lost due to miscommunication about units between Lockheed Martin and NASA.
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if we change units from pounds to kilos, or measure prices in cents or pesos
rather than dollars. The derivative does change if we change units.
To illustrate this difference, suppose that if quantitate is measured in

pounds and price in dollars, the demand and inverse demand functions are:

demand: Q = 3− 5P inverse demand: P =
3−Q

5
.

The elasticity of demand with respect to price, evaluated at P = 0.5 is

− dQ

dP

P

Q
= 5

0.5

3− 5(0.5)
= 5. (2.4)

If we measure price in cents (P̃ ) per pound instead of dollars per pound
(P ), then using P̃ = 100P , the demand and inverse demand functions are

demand: Q = 3− 0.05P̃ inverse demand P̃ = 60.0− 1

0.05
Q.

Changing units from dollars to cents changes both the vertical intercept
and the slope of the inverse demand function, altering demand function’s
appearance, but not the information it contains. Calculating the elasticity
of demand at P̃ = 0.5× 100 = 50.0 returns the same value, 5, as in equation
2.4. Changing the units of a variable changes the derivative, but not the
elasticity.
The magnitude of the elasticity of demand depends on characteristics of

the good, income, and prices of complements and substitutes. The elasticity
of demand for necessities, such as food staples, tends to be small: except
in extreme circumstances, a 10% increase in the price of rice causes only a
small drop in the demand for rice. In contrast, the elasticity of demand for
luxuries may be large.

2.4 Competition and monopoly

Objectives and skills

• Write the payoffs and the equilibrium conditions for a competitive in-
dustry and a monopoly.

• Understand the similarities and the differences between these two mar-
ket structures and their equilibrium conditions.
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• Understand the meaning of “marginal revenue”, and write it using the
elasticity of demand.

The competitive firm takes the market price as given; the monopoly un-
derstands that price responds to sales. To understand the effect of moving
from competition to monopoly, it is important to hold everything else con-
stant: the inverse demand function, p (Q), and the industry cost function,
c (Q), are the same in the two types of markets, where Q is aggregate sales.
We compare outcomes under the competitive and the monopoly by compar-
ing the necessary conditions to their profit maximization problems.

The industry and firm cost functions What does it mean to say that
an industry, consisting of many firms, has a particular cost function? The
simplest way to think of this is to imagine that the industry consists of a large
number, n, of factories. Under monopoly, a single firm owns all factories;
under the competitive structure, each firm own a single factory. Suppose
that the cost of producing q in a single factory is c̃ (q). All firms in the
competitive industry are identical, making it is reasonable to assume that
they all produce the same quantity, 1

n
’th of industry quantity, so nq = Q.

If each factory produces q = Q
n
, then the cost in each firm is c̃ (q) = c̃

(
Q
n

)
.

The total industry cost is then nc̃
(
Q
n

)
. We can define the industry cost as

c (Q) ≡ nc̃

(
Q

n

)
.

(The symbol “≡”means “is defined as”.) Taking the derivative of both
sides of this equation, with respect to Q, using the chain rule, gives

c′ (Q) ≡ dc

dQ
= n

dc̃

dQ
n

dQ
n

dQ
= n

dc̃

dq

1

n
=
dc̃

dq
≡ c̃′ (q) (2.5)

Equation 2.5 states that the marginal cost of the industry (the expres-
sion on the left) equals the marginal cost of the firm (or factory), the last
expression. This relation holds for any number of firms, n, provided that
q = Q

n
. The cost and marginal cost of producing an arbitrary amount does

not change with the market structure. A change in the market structure al-
ters the equilibrium amount produced, but not the technology and therefore
not the relation between costs and output.
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The competitive equilibrium A representative firm chooses output, q,
to maximize profits, pq−c̃ (q), taking price as given. The first order condition
is:

d (pq − c̃ (q))

dq
= p− c̃′ (q) set= 0⇒ p = c̃′ (q) .

Using the relation in equation 2.5, we replace c̃′ (q) with c′ (Q); recognizing
that the price depends on aggregate sales, we replace p with the inverse
demand function p (Q) and then rewrite the optimality condition for the
representative firm as

price = industry marginal cost: p (Q) = c′ (Q) . (2.6)

The monopoly equilibrium The monopoly recognizes that the price,
p (Q), depends on its sales. It chooses output, Q, to maximize profits,
p (Q)Q− c (Q), yielding the first order condition

Marginal revenue = Marginal cost: p (Q)

(
1− 1

η (Q)

)
= c′ (Q) . (2.7)

Box 2.1: Derivation of equation 2.7. The first order condition for profit
maximization is

d(p(Q)Q−c(Q))
dQ

= p′ (Q)Q+ p− c′ (Q)
set
= 0

⇒ p′ (Q)Q+ p = c′ (Q) ,

which states that marginal revenue, p′ (Q)Q+p, equals marginal cost, c′ (Q).
We can write marginal revenue (denoted MR (Q)) using the elasticity of
demand, η:

MR (Q) ≡ d[p(Q)Q]
dQ

= p′ (Q)Q+ p = p
(

1 + dp
dQ

Q
p

)
p

(
1 + 1

dQ
dp

p
Q

)
= p (Q)

(
1− 1

η(Q)

)
.

Comparing the two equilibria The equilibrium conditions for the
competitive industry and the monopoly are

Competition: p (Q) = c′ (Q)

Monopoly p (Q)
(

1− 1
η(Q)

)
= c′ (Q) .
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Both of these equations involve the inverse demand function, p (Q), and
the industry marginal cost function, c′ (Q). The competitive equilibrium
condition sets price equal to the industry marginal cost, and the monopoly
condition sets marginal revenue equal to industry marginal cost. Once we
have the necessary condition for a competitive equilibrium, we can (in many
cases) obtain the necessary condition for a monopoly equilibrium merely by

replacing p with p
(

1− 1
η

)
.2

The more elastic is the demand function that the monopoly faces (the
larger is η), the less opportunity the monopoly has to exercise market power:
it understands that any effort to raise the market price requires a large re-
duction in sales, and a corresponding fall in revenue. As the market demand
becomes infinitely elastic, i.e. as η →∞ (“η goes to infinity”), the monopoly
looses all market power, and behaves like a competitive firm. The monopoly
never produces where η < 1; at such a point, marginal revenue is negative.
Examples 1 —3 at the end of this chapter show how to set up the objective
functions for the competitive and monopoly industries, use the first order
conditions to the two maximization problems to find equilibrium price and
quantity in the two cases, and then examine the effect of the elasticity of
demand on difference in equilibrium price.

Optimization and equilibrium In most economic contexts, an equilib-
rium occurs where all agents simultaneously solve their optimization prob-
lems: no one wants to move unilaterally away from an equilibrium. At a
competitive equilibrium consumers maximize utility, resulting in quantity de-
manded on the demand function, and producers maximize profits, resulting
in quantity supplied on the supply function. Markets clear, so supply equals
demand.
Models help to clarify complex situations, but do not literally describe

behavior. If people behave completely randomly, then optimization-based
economic models are useless. If people attempt to pursue their self-interest,
and behave with a modicum of rationality, these models are informative.

2Early in the study of arithmetic we learn that the order in which operations are
performed matters: (3 + 4) × 7 = 49 6= 3 + (4× 7) = 31. The order of operations also
matters in carrying out economic calculations. For the monopoly, we first replace “price”
with the inverse demand function, and then we take the derivative of profit with respect
to sales. For the competitive firm, we first take the derivative of profit with respect to
sales, taking price as given, and then substitute the inverse demand function into the first
order condition to obtain an equation in quantity. The order of these two steps is critical.
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Firms that are consistently irrational are not likely to survive long in the
market place. Shoppers may not buy food that is good for them, but they
buy the food that they want, and in that respect they act in their self-interest.
Equilibrium is also an abstraction. Competitive firms’optimal produc-

tion level depends on the price they expect to receive, but their expectations
may be wrong. If they have already committed a certain quantity to the
market, but the price is lower than they expected, the price-quantity point is
below the supply curve. Markets are unlikely to be exactly in equilibrium,
but people respond to their mistakes, and those responses likely move a mar-
ket towards equilibrium. If firms find that the price has repeatedly been
lower than their marginal cost, they have an incentive to decrease quantity,
causing price to rise and the outcome to move toward equilibrium.

Optimality and no-arbitrage conditions We used only basic economic
logic to obtain the no arbitrage condition 2.1. We can also obtain this
equation as the first order condition to an optimization problem. Using the
constraint qU.S. = 10− qChina, profits for the price-taking tea seller (revenue
in China plus revenue in the US minus transportation costs) equal

π = pChinaqChina + pU.S
(
10− qChina

)
− bpChina

(
10− qChina

)
.

The first order condition (at an interior equilibrium) is

dπ

dqChina
= pChina − pU.S + bpChina

set
= 0.

Rearranging the last equation produces the no-arbitrage condition 2.1.

2.5 Discounting

Objectives and skills

• Understand the rationale for and the implementation of discounting.

• Use discount factors to calculate the present value of a “stream” (=
sequence) of future costs or payments.

• Understand the relation between the magnitude of a discount rate and
the length of a period over which discounting occurs.
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After explaining discounting, we provide three examples of its use. A
box of tea in China and a box of tea in the U.S. are not the same commodity
if it is costly to move the box from one location to the other. Similarly, a
dollar ten years from now is not the same as a dollar today, because there
is an opportunity cost, the foregone investment opportunity, of receiving the
dollar later rather than earlier. Resource management may involve deciding
when to take a unit of oil out of the ground, or when to harvest a unit of
fish, requiring the manager to compare the value to the firm of extracting at
different points in time. This comparison involves discounting.

Pick a period of arbitrary length, say one year. Suppose that the most
profitable riskless investment available pays a positive return of r after one
year. We call r the discount rate. If a person at period 0 invests z dollars
for one year in an asset that returns the rate r, then at the end of the
year the person has z (1 + r). The person with this investment opportunity
is indifferent between receiving $1 at the beginning of the next year and
$z in the current period, if and only if z (1 + r) = 1, i.e. if and only if
z = 1

1+r
. We define ρ = 1

1+r
as the discount factor. This person is indifferent

between receiving $43.60 at the beginning of next period, or $43.60 ×ρ at the
beginning of the current period. Multiplying an amount received one year in
the future by ρ, produces the “present value”of the future receipt.

A person is indifferent between receiving one dollar at the end of two years
and $z today if and only if (1 + r) (1 + r) z = 1, i.e. if and only if z = ρ2.
Thus, ρ2 is the present value today of a dollar in two years. Similarly, ρn is
the present value today of a dollar n years from now.3

If a firm obtains profits πt during periods t = 0, 1, 2...T , then the present
discounted stream of profits equals

∑T
t=0 ρ

tπt. In the special case where
πt = π, a constant, we can simplify this sum using the formula for a geometric
series:

∞∑
t=0

πρt = π

∞∑
t=0

ρt =
π

1− ρ. (2.8)

3The number of periods, n, it takes to double the value of an investment depends on the
discount (= interest) rate, using the formula (1 + r)

n
= 2, or (taking logs and simplifying)

n = ln 2
ln(1+r) . For r = 0.01 (a 1% interest rate), n ≈ 70; for r = 0.1, n ≈ 7.
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(π represents profits, not the number 3. 14... .) This formula implies

T∑
t=0

πρt =

∞∑
t=0

πρt −
∞∑

t=T+1

πρt =

∞∑
t=0

πρt − ρT+1

∞∑
t=0

πρt = 1−ρT+1

1−ρ π.

(2.9)

Relation between the discount rate and the length of a period The
numerical value of the discount rate, and thus of the discount factor, depends
on the length of a period of time. If a period lasts for ten years, and
an asset held for one ten-year period pays a return of r̃, then one dollar
invested in this asset for three periods (30 years) returns (1 + r̃)3. We
say that this return is “compounded” every decade. We can convert this
decadal return to an annual return by choosing the annual discount rate,
r to satisfy (1 + r)10 = (1 + r̃). Taking logs of both sides and simplifying
gives ln (1 + r) = ln(1+r̃)

10
. If r̃ = 0.8, then r = 0.061; this asset pays an 80%

return over a decade, or a 6.1% return compounded annually. (We multiply
by 100 to translate a rate into a percentage.) Given the decadal and annual
discount rates, the corresponding decadal and annual discount factors are
ρ̃ = 1

1+r̃
and ρ = 1

1+r
.4 The following three examples illustrate the use of

discounting.

The levelized cost of electricity Electricity can be produced using differ-
ent production methods and different inputs, leading to different cost streams
and producing different amounts of power. Nuclear-powered plants are ex-
pensive to build and require decommissioning, but have low fuel costs. Fossil
fuel plants have relatively low investment and decommissioning costs, but
high fuel costs. The “levelized cost” of electricity (LCOE) provides a ba-
sis for comparing the cost of producing electricity using different methods.
The data for this calculation includes estimates of the year-t capital cost,
Ct, variable cost, Vt (including fuel and maintenance), the amount of energy
produced, Et, and the lifetime (including construction and decommissioning

4Under continuous discounting at rate r̃, the discount factor after t units of time is e−r̃t.
If a unit of time equals one year, and the annual discount rate is r, then the continuous
rate r̃ satisfies e−r̃ = 1

1+r . Taking logs of both sides gives r̃ = ln (1 + r). If r = 0.05 (5%
annual discount rate), r̃ = ln (1.05) = 0.049.
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time) of the project, n+ 1 years. The formula for LCOE is

LCOE =

∑n
t=0 ρ

t (Ct + Vt)∑n
t=0 ρ

tEt
. (2.10)

The LCOE often excludes potentially important considerations: wind or so-
lar may require significant network upgrades in order to bring the power
to market; fossil fuels have health and climate-related externalities; nuclear
power creates the risk of rare but catastrophic events. Incorporating these
and other considerations requires additional data.
The example in Table 2.1 illustrates the calculation and shows the sensi-

tivity of LCOEs to the discount rate. Type A generation method is expensive
to construct but cheap to run and lasts a long time. Type B is cheap to
build, expensive to run, and has a shorter lifetime. They both produce the
same amount of energy per year (one unit).

capital cost
(billion $)

annual
operating cost

lifetime
construction

time
Type A 2 0.05 45 years 5 years
Type B 0.3 0.12 30 years 2 years

Table 2.2: Example: two different types of power plants

For this example, the LCOE of the two power plants are

LCOEA =

(
2 +

∑50
t=5 ρ

t (0.05)
)∑50

t=5 ρ
t1

and LCOEB =

(
0.3 +

∑32
t=2 ρ

t (0.12)
)∑32

t=2 ρ
t1

Figure 2.2 shows the ratio of the two levelized costs as a function of the
discount rate. The costs are equal (the ratio is 1) for r = 2.7%; Type A is
10% cheaper at r = 2% and 17% more expensive at r = 4%. When “money
is cheap”(the interest rate is low), it is economical to use the method that
has large up-front costs but lower costs overall (Type A). However, when the
interest rate is high, it is economical to use Type B, which has lower initial
costs but higher undiscounted total costs.
Table 2.2 shows U.S. estimates for several power sources.

Conventional
Coal= 96

IGCC∗ =116
Natural Gas
CCC∗∗ = 66

Advanced
Nuclear = 96

Wind = 80
Wind

offshore = 204
Solar PV2 = 130 Hydro = 85
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Figure 2.2: Ratio of LCOE Type A
Type B .

Table 2.2 Estimated LCOE (2012$/MWh) for plants entering service in
2019. *Integrated Coal-Gasification Combined Cycle. ** Conventional
Combined Cycle (U.S. Energy Information Administration, 2014)

The social cost of carbon The “social cost of carbon”(SCC) is defined as
the present discounted stream of damages due to a unit of carbon emissions
today. It plays an important role in climate economics (Chapter 19); the
US Environmental Protection Agency (EPA) uses the SCC in cost/benefit
analyses of rules and legislation affecting greenhouse gas emissions. The SCC
depends on: the relation between a unit of emissions today and future car-
bon stocks; the relation between carbon stocks and temperature changes; the
relation between temperature changes and economic damages; and the dis-
count rate. Higher discount rates (lower discount factors) place less weight
on future damages, and therefore lead to a lower SCC. With a discount rate
of 2.5%, the EPA estimates the SCC in 2015 at $11 per metric ton of CO2,
rising to $56 for a 2.5% discount rate: halving the discount rate increases the
SCC by a factor of five.
These estimates involve complex models, but an example shows the role

of discounting. Suppose that each metric ton of atmospheric CO2 creates
d dollars of annual economic damage, and that carbon decays at a constant
rate δ.5 With these assumptions, one unit of emissions today increases the
carbon stock t periods from now by (1− δ)t and creates d (1− δ)t dollars of

5Carbon does not literally decay. CO2 is emitted to the atmosphere, and over time
some of it moves to different oceanic and terrestrial “reservoirs”. The model of constant
decay is one of the simplest ways to approximate carbon leaving the atmosphere.
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damage in period t. The present discounted value of the stream of damages
due to this unit of emissions equals

SCC =
∞∑
t=0

d (1− δ)t ρt =
d

1− (1− δ) ρ =
d

r + δ
(r + 1) .

The second equality uses formula 2.8 and the third uses the definition of ρ.
The smaller is the discount rate (the larger is ρ), the larger is the SCC.

Implicit subsidies from ignoring discounting The US Reclama-
tion Act of 1902 used receipts from the sale of federal lands to finance the
Reclamation Fund, which paid for irrigation projects in western states. The
Fund was designed to be self-perpetuating, with the settlers who used the
water repaying the cost of the project, without interest. The settlers were
thus given a no-interest loan. The repayment period was initially ten years,
but later projects were financed over 40 - 50 years. The implicit subsidy
arising from these no-interest loans could be as high as 90% of the cost of the
project, depending on the length of the repayment period and the interest
rate (the opportunity cost of money).
If users repay, without interest, the cost of a project, C, over a period

of T years; their annual repayment is C
T
. If the opportunity cost of funds is

r, the value of this stream of payments is (using equation 2.9) C
T

1−ρT
1−ρ . The

subsidy, as a percent of the cost of the project, C, is

S =
C − C

T
1−ρT
1−ρ

C
100 =

(
1− 1− ρT

T (1− ρ)

)
100.

Figure 2.3 shows that the subsidy is sensitive to both the repayment pe-
riod, T , and the interest rate. Low- or no-interest loans can result in large
subsidies.

2.6 Welfare

Objectives and skills

• Understand the meaning of “Pareto effi cient”.

• Be familiar with the two Fundamental Welfare Theorems.
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Figure 2.3: Percent subsidy as a function of repayment time, T years, for
r = 0.02 (solid) and r = 0.04 (dashed), and r = 0.1 (dashed)

Resource economics studies the allocation of a natural resource over time.
Under certain conditions, the allocation under competitive markets is Pareto
effi cient, meaning that there does not exist another allocation of the resource
that makes at least one agent better off, without making any agent worse
off. “Pareto effi cient” is not a value judgement; “effi cient”does not mean
“good”. If Jiangfeng and Mary get utility only from their own consumption
of a good with fixed supply equal to one unit, a feasible allocation gives
Jiangfeng z ≥ 0 and Mary w ≥ 0 units of the good, with z + w ≤ 1. An
effi cient allocation makes sure that all of the good is consumed; any outcome
with z + w = 1 is effi cient. Effi ciency is a rather weak criterion. We might
prefer the equal but ineffi cient allocation, z = w = 0.4999 to the effi cient but
ethically questionable allocation w = 1, z = 0.
Chapters 4 —5 emphasize the competitive equilibrium without market

failures. Firms own natural resource stocks and choose how much to extract
and sell in each period. In order to make statements about the social wel-
fare in a competitive equilibrium, we must decide how to measures welfare.
Given a welfare criterion, we chooses how much to extract and sell in each pe-
riod in order to maximize welfare. We can then compare the outcome under
competition (or monopoly) with the outcome under this social planner.
We use partial equilibriummodels: those that involve a single market, e.g.

the market for a particular resource. These models take as given all “out-
side”considerations that influence this market. If the resource is petroleum,
the partial equilibrium model seeks to explain petroleum prices and quanti-
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ties, over time, taking as given: levels of income (which affect demand for
petroleum); prices of factors used to produce petroleum (labor, machinery);
prices of substitutes (natural gas) and complements (cars); and technology
(drilling techniques). With a partial equilibrium model, consumer and pro-
ducer surplus are reasonable measures of consumer and producer welfare,
and their sum is a reasonable measure of social welfare in a period. We
take the social welfare function to be the discounted sum (over time) of wel-
fare in each period. This criterion, known as “discounted utilitarianism”, is
used in most resource models. Our fictitious social planner is a discounted
utilitarian.
Dynamics and market failures are both important for many natural re-

sources. We begin by studying dynamics when there are no market failures
(except possibly monopoly). We then discuss market failures, ignoring dy-
namics. With these building blocks, we turn to the case of interest, where
there are both dynamics and market failures. We say that markets are “com-
plete” if there is a market for every type of transaction that people would
like to make. For example, if someone would like to buy water and someone
else is willing to sell water, then “complete markets” requires that there is
actually a water market that makes their exchange possible (Chapter 17).
An “unpriced externality” is a consequence of the market transaction not
fully reflected in the price of the good. For example, the price of fossil fuels
does not include the environmental damage (the unpriced externality) aris-
ing from extracting and using the fuels. The following result is the starting
point for welfare economics:

First Fundamental Welfare Theorem: If markets are complete,
there are no unpriced externalities, and agents are price-takers,
then any competitive equilibrium is Pareto effi cient.

A second theorem provides conditions under which a particular Pareto ef-
ficient outcome can result from a competitive equilibrium. We say that a set
of transfers and taxes “supports”a particular “outcome X”in a competitive
equilibrium if, in the presence of those transfers and taxes, the competitive
equilibrium has the same prices and quantities as “outcome X”. The second
theorem is

Second Fundamental Welfare Theorem: Provided that a technical
requirement (“convexity”) is satisfied, any Pareto effi cient.6

6Constant and decreasing returns to scale technologies are “convex” and increasing
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These two theorems form the basis for understanding the welfare proper-
ties of a competitive equilibrium. The first theorem gives conditions under
which the competitive equilibrium is effi cient. The second gives conditions
under which we can obtain any other effi cient outcome, as a competitive
equilibrium, by using appropriate taxes and transfers.

2.7 Summary

An example of arbitrage over space illustrates the meaning of arbitrage.
Many of the main ideas in this book are based on arbitrage over time: instead
of selling the commodity in one country rather than another, the firm sells it
at one point in time rather than another. Understanding spatial arbitrage
makes it easy to understand intertemporal arbitrage.
Economic models help to determine how a change in an exogenous pa-

rameter changes an endogenous variable. This kind of question is known
as a comparative statics question. Casual reasoning or graphical methods
suffi ce to answer easy comparative statics questions. In more complicated
cases, we use mathematics, beginning with an equilibrium condition (e.g.,
supply equals demand). One approach uses this condition to find an ex-
plicit expression for the endogenous variable, as a function of the exogenous
variables. An alternative uses the differential of the equilibrium condition.
We defined elasticities, and illustrated the definition using the elasticity

of demand with respect to price. It is important to be able to calculate an
elasticity, and to understand why it is unit free.
In order to compare perfect competition and monopoly, we want to “hold

everything else constant”, apart from the market structure. In this context,
we require that the demand and cost functions (not their levels) are the
same for both market structures. We can think of the industry consisting
of many factories. In the competitive environment, each firm owns one of
these factories, and in the monopoly, a single firm owns all factories.
Both the monopoly and the representative firm want to maximize profits.

For the price-taking competitive firms, the equilibrium condition is “price
equals marginal cost”. The monopoly understands that its sales affect the
price; the monopoly marginal revenue equals p (1− 1/η), where η is the elas-

returns to scale technologies are not. Decreasing/constant/increasing returns to scale
mean that doubling all inputs: less than doubles/ exactly doubles/ more than doubles
output.
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ticity of demand. Provided that η is finite, the monopoly sells less than the
competitive industry. As demand becomes more elastic, the monopoly has
less market power.
We use the discount factor to compare money (e.g. profits) received

in different periods. The discount factor is ρ = 1/ (1 + r), where r is the
discount rate, equal to the highest riskless return available to the agent. The
discount factor converts future values into present values.
An outcome, such as the allocation of a product across individuals, geo-

graphical regions, or time, is Pareto effi cient if there is no reallocation that
makes some agent better off without making any agent worse off. The two
fundamental welfare theorems describe the relation between a competitive
equilibrium and the outcome under a social planner. The first of these the-
orems provides conditions under which a competitive equilibrium is Pareto
effi cient. The second provides conditions under which any Pareto effi cient
equilibrium can be supported as a competitive equilibrium by means of taxes
or income transfers.

2.8 Terms, examples, study questions, and
exercises

Terms and concepts

Demand function, inverse demand function, arbitrage, no-arbitrage condi-
tion, interior equilibrium, iceberg transportation costs, endogenous and ex-
ogenous variable, law of one price, implicit function, explicit function, com-
parative statics, differential, first order condition, marginal revenue, order
of operations, discount function, discount factor, opportunity cost, com-
pounded, capital cost, operating cost, decommissioning cost, levelized cost,
partial equilibrium, externality, complete markets, effi cient, Pareto effi cient,
consumer and producer surplus, feasible, discounted utilitarianism, taxes and
transfers “supporting an outcome”.

Examples

These examples use a “constant elasticity of demand function”Q =
(
p
A

)−η
,

with the inverse demand p (Q) = AQ−
1
η ; here, the elasticity η is a constant

(a parameter), not a function of price.
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Example 1 This example shows how to write the maximization problem
for the competitive industry and solve for the equilibrium. Inverse demand
is p (Q) = AQ−

1
η and the industry cost is c (Q) = b

2
Q2. The objective,

first order condition, and industry equilibrium condition of the competitive
industry are

objective: max Q

[
pQ− b

2
Q2

]
first order condition : p− bQ set

= 0 (2.11)

equilibrium condition : AQ−
1
η − bQ set

= 0⇒ (2.12)

Q =

(
A

b

) η
1+η

⇒ p = A

(
A

b

) −1
1+η

.

The first order condition states that price equals marginal cost. We obtain
the equilibrium condition by replacing price with the inverse demand function.
The last line solves the equilibrium condition for both equilibrium quantity and
equilibrium price.

Example 2 This example uses the same inverse demand function and cost
function to describe the monopoly equilibrium. Here we assume that η > 1,
so that marginal revenue is positive. The objective and first order condition
for the monopoly is

objective : max
Q

[
AQ1− 1

η − b

2
Q2

]
first order/equilibrium condition :(

1− 1

η

)
AQ−

1
η − bQ =

(
1− 1

η

)
p− bQ set

= 0 (2.13)

Note that we can obtain equation 2.13 by replacing “price”in 2.12 with “mar-
ginal revenue”which equals

(
1− 1

η

)
p. Solving equation 2.13 gives

(
1− 1

η

)
AQ−

1
η = bQ⇒ Q =

A
(

1− 1
η

)
b


η
η+1

⇒

p = A

A
(

1− 1
η

)
b


−1
η+1
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Figure 2.4: Ratio of monopoly to competitive price

Example 3 This example shows how the demand elasticity, η, affects the
monopoly’s ability to exercise market power, as measured by the ratio of the
equilibrium monopoly to competitive price. The ratio of monopoly to com-
petitive price for this example is

ratio =

A

(
A(1− 1

η )
b

) −1
η+1

A
(
A
b

) −1
1+η

=

(
1
b

) 1
η+1(

1
bη

(η − 1)
) 1
η+1

= η
1
η+1 (η − 1)−

1
η+1

Figure 2.4 graphs the ratio (which is independent of the parameters A and b).
For low elasticity of demand (η close to 1) monopoly power is substantial,
and the monopoly price is much larger than the competitive price. (The ratio
of prices is large.) For large elasticity of demand, the monopoly has little
market power, and the monopoly and competitive prices are similar.

Study questions

1. You should be able to use the type of figure in Section 2.1 to illustrate
the effect of a change on demand in one country, or a change in available
supply, or in transportation costs, on the equilibrium allocation of sales
across country.

2. Given inverse demand functions in the two countries, available supply,
and the transport costs, you should be able to write down the equilib-
rium condition and to write a comparative statics expression showing
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the effect of a change in an exogenous variable on an endogenous vari-
able. You should be clear about the distinction between exogenous
and endogenous variables.

3. You should know what an elasticity is, how to calculate it, and what it
means to say that the elasticity is unit free.

4. Given an industry cost function and an inverse demand, you should
be able to write down the equilibrium conditions that determine sales
under competition and under monopoly.

5. You should know the relation between a discount rate and a discount
factor, and understand what they are used for. Given the formula
for the sum of a geometric series, you should be able to calculate the
present discounted stream of payoffs. You should be able to work
through an example like the first one in the text that compares the
cost of two methods of electricity generation.

6. You should understand the meaning and be able to describe the two
Fundamental Welfare theorems.

Exercises

1. When quantities are measured in pounds and prices in dollars, the
demand function is Q = 3− 5P . (a) What is the elasticity of demand,
evaluated at P = 0.5? (b) Express the same relation between demand
and price, using different units, q and p: q are in units of kilos, and p
in pesos. (Which equation is correct, q = 2.2Q of q = Q

2.2
?) There

are 3 pesos per dollar. (Which equation is correct, p = 3P or p = P
3
?)

(c) Using the new units, q and p, express the elasticity of demand with
respect to price, evaluated at the price of one dollar. (d) What is the
point of this exercise?

2. How does an increase in transportation costs affect the location of the
dotted line in Figure 2.1, and how does this change alter the equilibrium
price and the allocation of tea between the two countries?

3. How does an increase in the available supply (e.g. from 10 units to 12
units of tea) change the appearance of Figure 2.1, and how does this
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change in supply alter the equilibrium quantities and prices in the two
countries?

4. Calculate η (Q) for the demand function Q = a− hp and then for the
demand function Q = ap−h, where h is a positive number. Graph the
two elasticities as a function of Q.

5. Suppose that a monopoly owns the ten units of tea in China. There is
no transportation costs (b = 0). Using the inverse demand functions in
Section 2.1, find monopoly sales two markets. How does the monopoly
sales in China compare to sales by a competitive firm?

6. Consider the monopoly in the previous question. Suppose that ice-
berg transportation costs are b. Using the equilibrium condition for
the monopoly, find the comparative statics of the monopoly’s sales in
China, with respect to b. (Write down the equilibrium condition for
the monopoly, solve for sales in China, and take the derivative of this
expression with respect to b.)

7. Suppose that the industry has the cost function c (Q) = 2Q + 3
2
Q2.

This industry consists of n firms, each with cost function c (q). Find
c (q). Hint: “Guess”that the single firm’s cost function is of the form
c̃ (q) = aq + b

2
q2. Then use the requirement that c (Q) = nc̃

(
Q
n

)
, to

write

2Q+
3

2
Q2 = n

(
a
Q

n
+
b

2

(
Q

n

)2
)
.

This relation must hold for all Q (not just a particular Q), so we can
“equate coeffi cients”of Q and Q2 to find the values of a and b.

8. A plant that supplies 1 unit of electricity per year, costs $1 billion to
build, lasts 25 years, and has an annual operating cost of $0.2 billion; it
costs $0.1 billion to decommission the plant at the end of its lifetime (25
years). (Assume that the construction costs and the operating costs
are paid at the beginning of the period, and that the decommissioning
cost is paid at the end of the life of the plant.) The annual discount
rate is r, with discount factor ρ = 1

1+r
. Write the formula for the

present value of the cost of providing 1 unit of electricity for 100 years,
including the decommissioning costs. (Hint: First find the present
value of providing one unit of electricity for 25 years. Denote this
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magnitude as Z. Then find the present value of incurring this cost, Z,
4 times: in periods 0, 25, 50, and 75.)

9. A monopoly faces the demand function q = p−1.2 and has production
costs c (q) = b

2
q2. Find the comparative statics of equilibrium sales,

with respect to the cost parameter, b. (Hint: Write the monopoly’s
first order condition (marginal revenue equals marginal cost). Solve
this expression for q as a function of b, and take the derivative of q with
respect to b.)

10. A person plans to save $1 for 20 years. They can invest at an annual
rate of 10% (r = 0.1). This investment opportunity “compounds
annually”(meaning that they receive interest payments at the end of
each year). A second investment opportunity pays a return of r̃×100%,
compounded every decade. (After one decade, the investment of one
dollar yields 1 + r̃.) For what value of r̃ is the person indifferent
between these two investments? (Assume that there is no chance that
the person wants to cash in the investment before the 20 year period.)
Explain the rationale behind your calculation.

11. (*) This exercise illustrates the First Fundamental welfare theorem.
Inverse demand equals p (q) and total cost is 1

2
cq2. (a) Write the

condition for equilibrium in a competitive market. (b) For a linear
demand function, draw the graphs whose intersection determines the
competitive equilibrium. Using this graph, identify consumer and
producer surplus. (c) Explain in words why consumer surplus equals∫ q

0

p (w) dw − p (q) q.

(d) Write the expression for producer surplus, equal to revenue minus
costs. (e) Define social surplus, S (q), as the sum of consumer and
producer surplus. Write the expression for social surplus. Using
Leibniz’s rule (see math appendix) write the first order condition for
maximizing social surplus, by choice of q. (f) Compare this first order
condition with the equilibrium condition under competition. Explain
why this comparison implies that the competitive equilibrium and the
solution to the social planner’s problem (maximizing social surplus)
are identical. What does this have to do with the First Fundamental
Welfare Theorem?
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Sources

The U.S. Energy Information Administration (2014) presents and explains
estimates of the Levelized Cost of Electricity.
The Interagency Working Group (2013) presents estimates of the Social

Cost of Carbon.
Sen On Ethics and Economics (1987) New York, Blackwell provides a

background on welfare economics.
Aker (2010) provides evidence of the relation between cell phones and

agricultural markets.
Glaeser and Kohlhase (2004) provide estimates of transport costs, and

discuss their role in international trade.
Prominent estimates of market power in resource markets include: Hnyil-

icza and Pindyck (1976), Stollery (1985), Pindyck (1987), Ellis and Halvorsen
(2001), Cerda (2007).
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Chapter 3

Nonrenewable resources

Objectives

• Ability to analyze equilibria under competition and monopoly for the
two-period model of nonrenewable resources.

Information and skills

• Translate the techniques and intuition from the “trade in tea”model
to the nonrenewable resource setting.

• Understand the relation between transport costs in the trade model
and the discount factor in the resource setting.

• Derive and interpret an equilibrium condition and analyze it using
graphical methods, for both competition and monopoly.

• Do comparative statics with respect to extraction costs and the dis-
count factor.

A two-period model provides much of the intuition needed to understand
equilibrium in a nonrenewable resources market. We use graphical methods
to analyze the equilibrium under competition or monopoly when firms are
unable to save any resource beyond the second period. We emphasize the
case where the initial stock is small enough, relative to demand, that firms
want to exhaust the resource during this time.
Arbitrage provides the basis for the intuition in resource models, but here

we speak of arbitrage over time, instead of over space. A sales trajectory is

41
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the sequence of sales, and a price trajectory is the associated sequence of
prices. In the two-period setting, each of these sequences contains only two
elements. We describe the competitive and the monopoly models, and then
explain how to answer the following type of comparative statics question:
How does a change in a demand or a cost parameter affect the equilibrium
level of first-period sales?

3.1 The competitive equilibrium

Objectives and skills

• Write the objective and the constraints for a competitive firm.

• Obtain and interpret the “no-intertemporal arbitrage” (equilibrium)
condition under competition, and analyze it graphically.

• Understand the effect of constant average extraction costs on the equi-
librium sales and price trajectories.

Chapter 2.1 considered the allocation of a fixed quantity of tea over two
countries, in the presence of iceberg transportation costs. Here, a fixed stock
of the resource replaces tea, two periods replace the two countries, and the
discount factor replaces the iceberg transportation costs.
We require a bit of notation. The first period is denoted t = 0, and

the second period, t = 1. A price-taking firm has discount factor ρ, faces
prices p0 and p1 in periods 0 and 1, must pay extraction cost c for each unit
extracted, and has a fixed stock of the resource, x units. Apart from the
fact that the trade example did not include production costs, the trade and
the resource models are the same; we merely call things by different names.
The intuition for the equilibrium in the two models is also the same.
Let y be sales in period 0. Assuming that all of the resource is sold, x−y

equals period-1 sales. At an interior equilibrium, extraction is positive in
both periods: x > y > 0. The firm wants to maximize the sum of present
value profits in the two periods:

πcompetitive (y; p0, p1) = (p0 − c) y + ρ (p1 − c) (x− y) . (3.1)
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Multiplying period-1 profits by the discount factor, ρ, gives the present value
of period-1 profits. The derivative of π (y; p0, p1) with respect to y is

dπcompetitive

dy
= (p0 − c)− ρ (p1 − c) .

The firm prefers to sell all of its stock in period 0 if (p0 − c) > ρ (p1 − c).
It prefers to sell all of its stock in period 1 if (p0 − c) < ρ (p1 − c). In order
for the firm to sell a positive quantity in both periods, as we assume, it must
be indifferent about when to sell the stock. This indifference requires that
the present value of period t = 1 price minus marginal cost equals the value
of price minus marginal cost in period t = 0:

dπcompetitive

dy
= 0 if and only if (p0 − c) = ρ (p1 − c) . (3.2)

The second equation is a “no-intertemporal arbitrage” condition; it holds
in an interior competitive equilibrium. The equation states that the firm
cannot increase its profits by moving sales from one period to another.
The competitive resource owner, just like the competitive exporter in the

trade example, takes prices as given. These prices adjust in response to
the amount of supply brought to market. Actions of an individual resource
owner, just like the actions of an individual exporter, have negligible effect
on the price. However, all resource owners (in our model) have the same
costs and discount factor, so they have the same incentives. Therefore, we
can proceed as if there is a “representative firm”that takes price as given,
and owns all of the stock in the industry. The price responds to changes in
this representative firm’s supply.
Figure 3.1 shows the market when extraction costs are c = 0 and the

inverse demand in both periods is p = 20 − y. Sales in period 0 equal y.
With initial stock x = 10, period-1 sales equal 10− y. The solid line shows
the demand function in period 0: as y increases, the equilibrium price falls.
The dashed line shows the demand function in period 1: as y increases, period
1 sales, 10 − y, fall, so the price in that period rises. If the discount rate
is 0 (r = 0) then the discount factor, ρ = 1

1+r
, equals 1. In this scenario,

firms allocate the stock evenly between the two periods, and the price in each
period equals 15. With zero discount rate, the firm is indifferent between
selling in periods 0 or 1 if and only if the prices in the two periods are equal.
The dotted line shows the present value (in period 0) of the period-1 price

if the discount rate is r = 0.3, so ρ = 1
1.3

= 0.77. The equilibrium occurs
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Figure 3.1: Demand in period 0 (solid). Demand in period 1 (dashed).
Present value of period 1 price (dotted).

where the present value of price is the same in both periods, i.e. where
the solid and the dotted lines intersect. With our demand function and
discount factor, equilibrium sales in period 0 equal 6. 96 and the price is
13. 04. Period-1 sales equal 3.04 and the price is 16. 96. The equilibrium
period-1 price is a point on the dashed curve, above the intersection of the
solid and the dotted curve. Discounting the future makes future revenue less
valuable from the standpoint of the firm in period 0, inducing the firm to sell
more in period 0. As the firm reallocates sales in this manner, the period-0
price falls, and the period-1 price rises. Equilibrium is restored when the
present value of prices in the two periods are equal.
The price-taking representative firm does not shift sales from one period

to another with the intention of causing price to change. If, following an
increase of r from 0 to 0.3, the firm did not reallocate sales, then the present
value of a unit of sales in period 0 remains at p0 = 15 and the present value
of a unit of sales in period 1 is 15 1

1.3
= 11. 5 < 15. In this case, the firm has

an opportunity for intertemporal arbitrage. Prices adjust as the firm moves
sales from period 1 to period 0, until, at equilibrium, there are no further
opportunities for intertemporal arbitrage.
Figure 3.2 illustrates the model with constant average (= marginal) costs

c = 4 (instead of c = 0 as above). The solid and dashed lines show price
minus cost, instead of price, in the two periods. With zero discount rate,
sales are again allocated evenly between the two periods, and the price in
both periods is again p = 15, so price - costs = 11. In the absence of
discounting, the cost increase reduces the firm’s profits, but has no effect on



3.1. THE COMPETITIVE EQUILIBRIUM 45

0 1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

y

$

Figure 3.2: Demand - cost in period 0 (solid). Demand - cost in period 1
(dashed). Present value of period 1 price - cost (dotted).

consumers.
The dotted line in Figure 3.2 shows the present value of period-1 price

minus extraction costs, for a discount factor ρ = 0.77. In this case, the
equilibrium occurs where the present value of price minus extraction costs
are equal in the two periods, at the intersection of the solid and the dotted
lines. Here, period-0 sales equal 6. 43 and the period-0 price is 13. 57. With
discounting, higher extraction costs cause the firm to move production from
period 0 to the period 1. This reallocation causes period-0 price to rise and
period-1 price to fall. With discounting, the higher extraction costs lowers
consumer surplus in period 0, and increases consumer surplus in period 1.

ρ = 1 ρ = 0.77
c = 0 p0 = 15 p0 = 13.04
c = 4 p0 = 15 p0 = 13.57

Table 3.1: Period-0 price for different discount factors and cost

Table 1 summarizes the effects of discounting and extraction costs on
period-0 price. A higher extraction cost (raising costs from c = 0 to c = 4)
has no effect on period-0 price in the absence of discounting, but leads to
a reallocation of sales “from the present to the future” (i.e. from period 0
to period 1) under discounting. From the perspective of the firm in period
0, a one unit increase in costs increases the average and marginal extraction
cost today by one unit, and increases the present value of cost in the next
period costs by only ρ. Other things equal, higher extraction costs make it
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less attractive to extract the resource. However, discounting diminishes the
period-1 cost-driven disincentive to sell, relative to the period-0 disincentive.
Therefore, in the presence of discounting, firms respond to a higher cost by
reducing period-0 sales and increasing period-1 sales.

Contrast the nonrenewable resource and a “standard”commod-
ity A cost increase in a “standard”(i.e., static) supply and demand model
shifts in the supply curve, resulting in a lower equilibrium supply and a higher
equilibrium price. For nonrenewable resources, the effect of a cost increase
depends on the discount factor. With positive discounting (r > 0, so ρ < 1),
higher extraction costs cause a reallocation of supply across periods. The
equilibrium price rises in one period and falls in the other. Intuition based
on standard models may be misleading in nonrenewable resource markets.

3.2 Monopoly

Objectives and skills

• Write down the objective and constraints of a monopoly resource owner.

• Obtain and understand the equilibrium condition for the monopoly.

• Use graphical methods to illustrate the relation between exogenous
parameters and the monopoly equilibrium.

• Compare the monopoly and the competitive outcomes (e.g. period 0
sales and price in the two cases).

The monopoly, like the competitive firm, wants to maximize the present
discounted value of profits, given by expression 3.1. However, the monopoly
recognizes that its sales affect the price, whereas the competitive firm takes
price as given. The present discounted stream of monopoly profits equals

πmonopoly (y) = (p (y)− c) y + ρ (p (x− y0)− c) (x− y) . (3.3)

We can find the equilibrium condition for the monopoly by using the
first order condition to the problem of maximizing πmonopoly (y). A simpler
approach, discussed in Chapter 2.4, finds this equilibrium condition by be-
ginning with the equilibrium condition for the competitive industry (the last
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Figure 3.3: Solid curves show first and second period demand minus marginal
cost as a function of first period sales. Dashed curves show marginal revenue
minus marginal cost curves corresponding to these demand curves. ρ = 1.

part of equation 3.2), replacing price with marginal revenue. With sales y,
marginal revenue, MR, is

MR (y) = p (y)

(
1− 1

η (y)

)
, with η (y) ≡ −dy

dp

p

y
,

where η is the price elasticity of demand. The equilibrium condition for the
monopoly is

MR (y)− c = ρ [MR (x− y)− c] . (3.4)

Figure 3.3 shows the period-0 and period-1 demand functions, p0 = 20−y
and p1 = 20 − (10− y), minus marginal cost, c = 4, (the two solid lines) as
a function of period-0 sales, y. The dashed lines beneath those two demand
functions show the marginal profit (marginal revenue minus marginal cost)
corresponding to those two demand functions. In the absence of discounting
(ρ = 1) optimality for the monopoly requires that marginal profit in the two
periods are equal.
Absent discounting, the monopoly sells the same amount in both periods,

so y = 5, exactly as in the competitive equilibrium with no discounting. In
this market, moving from a competitive market to a monopoly has no effect
on the outcome. This result is due to the fact that the stock of resource is
fixed, together with the assumptions that the discount rate is 0 (ρ = 1) and
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Figure 3.4: The solid curves show the present value (with ρ = 0.5) inverse
demand functions in the two periods, minus c = 4, and the dashed lines show
the present value marginal revenue curves, minus c = 4. First period sales
in the competitive equilibrium = 8.67; first period sales under the monopoly
= 6. “The monopoly is the conservationist’s friend.”

that the world lasts only two periods. Here, neither the monopoly nor the
competitive firm has any incentive to save the resource beyond period 1.

The monopoly is the conservationists’friend Under our assumption
that both the monopoly and competitive industry extract the same cumula-
tive quantity over two periods, the two market structures lead to the same
allocation of the resource if there is no discounting and if extraction costs
are either 0 or constant: both sell half the aggregate quantity in each period.
With discounting (or with non-constant average extraction costs, studied in
Chapter 4), the allocations in the two equilibria are, in general, different.
For the demand and cost functions used in this book (but not for all pos-
sible demand and cost combinations), the monopoly sells less in period 0,
compared to the competitive industry. The monopoly therefore saves more
of the resource for the future, compared to the competitive industry: “the
monopoly is the conservationists’friend”.
Figure 3.4 modifies Figure 3.3, including discounting with ρ = 0.5, illus-

trating that the monopoly is the conservationist’s friend. Solid lines show
the present value of price minus marginal cost, and dashed lines show the
present value of marginal revenue minus marginal cost. The intersection of
the solid lines identifies period-0 sales under competition, y = 8.67. The
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Figure 3.5: Solid curves show first period sales as a function of ρ for c = 0
and c = 4 under competition. Dashed curves show first period sales under
monopoly.

intersection of the dashed lines identifies period-0 sales under the monopoly,
y = 6. A decrease in the discount factor from ρ = 1 to ρ = 0.5 increases
period-0 sales under both market structures, but the increase is greater in
the competitive market. (Compare Figures 3.3 and 3.4.) A decrease in ρ
shifts down and flattens both of the period-1 curves in Figure 3.4, but the
marginal revenue curve is steeper than the inverse demand function, causing
the point of intersection on the marginal revenue curves to move further to
the left.

Figure 3.5 uses the demand function p = 20 − Q and the equilibrium
conditions 3.2 (for competition) and 3.4 (for monopoly) to graph period-0
sales as a function of the discount factor, ρ, for costs c = 0 and c = 4. Raising
extraction costs from c = 0 to c = 4 lowers period-0 competitive sales, except
for two cases: (i) when the firm discounts the future so heavily that it wants
to extract everything in period 0 (ρ < 0.4) or (ii) when the firm does not
discount the future at all (ρ = 1), so that it extracts the same amount in
both periods. (Compare the two solid curves in Figure 3.5.) Extraction costs
also reduce period-0 sales for the monopoly. The monopoly sells less in
period 0 than competitive firms (for 0 < ρ < 1). A higher valuation of the
future (higher ρ, or lower r) decreases period-0 sales for both types of firm.
(Appendix D provides more discussion of the comparison of the monopoly
and the competitive firms.)
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3.3 Comparative statics

Objectives and skills

• Reinforce the distinction between exogenous and endogenous variables,
and the distinction between an explicit and implicit relation between
variables.

• Answer a comparative statics question using calculus.
This section provides more practice in working through the comparative

statics of a model. Following the procedure outlined in Chapter 2.2, we find
an explicit expression for the endogenous variable of interest (period-0 sales)
as a function of model parameters, and take derivatives to find comparative
static expressions. The endogenous variables in this model are the prices
and quantities in the two periods. The exogenous variables are c and ρ. A
slightly richer model replaces the numerical values in the demand function
with symbols, replacing p = 20− y with p = a− by, and replaces the initial
stock, 10, with a symbol, x. For that model, the equilibrium condition in
the competitive model is

(a− by − c) = ρ (a− b (x− y)− c) . (3.5)

Because of its linearity, we can solve this equation to obtain an explicit
expression for first period sales, as a function of the model parameters:

y =
1

b+ bρ
(a− c+ ρ (c− a+ bx)) .

We can answer comparative statics questions by differentiating this expres-
sion with respect to model parameters:

dy

dc
=

ρ− 1

b+ bρ
≤ 0 and

dy

db
=

1

b2

ρ− 1

ρ+ 1
(a− c) ≤ 0. (3.6)

The “choke price”, defined as the price at which demand falls to 0, is a in
this model. In order for firms to extract the resource, it must be the case
that a > c. Therefore, the two comparative statics inequalities are “strict”
(< instead of =) for ρ < 1. We already showed graphically that when ρ < 1
an increase in extraction costs shifts extraction from the first to the second
period. A larger value of b makes the inverse demand function steeper, i.e.
it reduces demand at any price. The second comparative statics expression
shows that this decrease in demand also reduces first period sales. (Appendix
C shows how to conduct comparative statics using the implicit equation 3.5.)
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3.4 Summary

Equilibrium in a nonrenewable resource market has many of the characteris-
tics of the equilibrium in the trade example. In the two-period nonrenewable
resource setting, firms can reallocate sales from one period to another. In-
tertemporal reallocation here corresponds to movement across space in the
trade setting. An intertemporal no-arbitrage condition requires that the
present value of the marginal return from selling a good is the same in both
periods. The discount factor, used to convert a future receipt into its present
value equivalent, plays a role analogous to transportation costs in the trade
model. Transportation costs in the trade model cause prices to differ be-
tween the two locations. Positive discounting (r > 0, ρ < 1) causes prices
to differ across periods in the resource setting.
We obtained the equilibrium condition for a monopoly by taking the equi-

librium condition for a competitive firm, and replacing price with marginal
revenue, where marginal revenue = p (1− 1/η), and η is the price elasticity
of demand. With constant marginal extraction costs and no discounting
(r = 0, so ρ = 1), both types of firms sell the same amount, half of the
available stock, in period 0. Under discounting, (ρ < 1), the monopoly sells
less in the first period than the competitive firm. Here, the monopoly is the
conservationist’s friend.
Graphical methods show that for ρ < 1, higher extraction costs lower

period-0 sales under both competition or monopoly. Higher costs decrease
the sales incentive in both periods; but because of discounting, the incentive
for period-1 sales (= extraction) falls by less than does the incentive for
period-0 sales. We also used calculus to answer comparative statics questions.

3.5 Terms, study questions, and exercises

Terms and concepts Extraction costs, intertemporal arbitrage, trajec-
tory, “monopoly is the conservationist’s friend”, choke price.

Study questions For these questions, use the linear inverse demand func-
tion, p = 10− y.

1. In the two-period setting, with discount factor ρ < 1, use a figure to
describe the effect of an increase in extraction costs, from C = 0 to
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C = 2, on the equilibrium price and sales trajectory. Provide the
economic explanation for this change.

2. In a two period setting with linear demand and constant average extrac-
tion costs C use two figures to illustrate the equilibrium sales trajectory
under competition and under monopoly for the two cases where (a) the
discount factor is ρ = 1 and (b) the discount factor is less than 1.
Explain the effect of discounting.

3. Answer questions 1 and 2 algebraically, using the equilibrium conditions
under competition and monopoly.

Exercises

1. Find the first order condition to the problem of maximizing πmonopoly (y)
and show that this first order condition is identical to equation 3.4.

2. Assume that (for whatever reason) the resource can be extracted during
only two periods. (After the second period, any remaining stock is
worthless.) (a) Using the demand function p = 20 − y, constant
extraction costs c = 5, and a discount factor ρ, find the critical level
of the initial stock, xc (a number) such that a competitive equilibrium
exhausts the resource if and only if the initial stock, x, satisfies x ≤ xc.
(b) If x ≥ xc, what is true of price in the two periods? (c) Does the
critical value depend on ρ? Does it depend on c? Explain.

3. In the two-period model, suppose that p = 20 − q, c = 5, initial stock
x = 5. Find the critical value of ρ, call it ρcrit, such that period 1
extraction is 0 for ρ ≤ ρcrit. Provide an economic explanation for this
possibility.

4. Suppose that c = 0, the discount factor is ρ, and demand is con-
stant elasticity, y = p−η. (a) Write the equilibrium conditions for the
competitive firm and the monopoly in this case. (b) In order for the
monopoly equilibrium condition to be sensible, what restriction must
be imposed on η? Provide the economic explanation for this restric-
tion. (c) Compare the level of first period sales under competition and
under monopoly.



3.5. TERMS, STUDY QUESTIONS, AND EXERCISES 53

5. Consider the two-period model with inverse demand p = a − bq, con-
stant average extraction cost c, initial stock x, and discount factor ρ.
Period 0 extraction is y, the endogenous variable. Suppose that in the
competitive equilibrium extraction is positive in both periods, and the
resource constraint is binding. Find dy

dρ
and give the economic expla-

nation for the sign of this derivative (one or two sentences). (Hint:
Use Section 3.3 to find the expression for y as a function of ρ and other
model parameters. No need to re-derive this function. Take the deriv-
ative of this function with respect to ρ to find dy

dρ
. You will discover

that the sign of this derivative depends on the sign of (2c− 2a+ bx).
The trick is to determine the sign of this expression. Proceed as fol-
lows. Find the level of sales in both periods if the resource constraint
is not binding. The sum of these two sales levels gives a critical initial
stock level: the initial stock must be at least at this critical level, if
the resource constraint is not binding. Because you are told that the
resource constraint is binding, you know that the initial stock must be
below this critical level. This information enables you to determine
the sign of (2c− 2a+ bx) and thereby determine the sign of dy

dρ
.

6. The text assumes that extraction is positive in both periods. Using
the demand and cost assumptions in the example in Chapter 3.1, find
the critical discount factor, denoted ρ∗, such that second period sales
in the competitive equilibrium are 0 if ρ < ρ∗. Provide the economic
intuition.



54 CHAPTER 3. NONRENEWABLE RESOURCES



Chapter 4

Additional tools

Objectives

• Work with a stock-dependent cost function; use the “perturbation
method”to obtain equilibrium conditions; and express these conditions
using “rent”.

Information and skills

• Understand the rationale for using a stock-dependent extraction cost
function, and be able to work with a particular cost function.

• Write down a firm’s objective function and constraints.

• Derive and interpret the optimality condition to this problem, for the
two cases where the resource constraint is binding or is not binding.

• Understand the logic of the perturbation method, and apply it in the
two-period setting.

• Understand the meaning of “rent” in the resource setting, and use it
to express the optimality (equilibrium) condition.

• Understand the relation between rent in period 0 and in period 1.

We build on the previous chapter, introducing: (i) a more general cost
function, (ii) the “perturbation method”, and (iii) the concept of rent. The
constant-average-cost model in Chapter 3 provides intuition, but obscures

55
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important features of many resource settings. By considering a more general
cost function at the outset, we can present the subsequent material concisely,
without repeating steps for each important special case.
The “perturbation method”provides a quick way to obtain the equilib-

rium condition in resource models. The idea behind this method, if not the
term, will be familiar to many readers. Imagine the firm beginning with a
“candidate” for an optimal plan, e.g. selling 53% in period 0 and 47% in
period 1. The firm can test whether this candidate is optimal by “perturb-
ing”it, moving a small (infinitesimal) amount of sales from one period to the
other. If this perturbation increases the firm’s present discounted value of
profits, the original candidate was not optimal. It the perturbation decreases
the firm’s profits, then using the “opposite”perturbation, e.g. moving sales
from period 0 to period 1, instead of from period 1 to period 0, would in-
crease profits. Thus, if the perturbation either increases or decreases profits,
the candidate is not optimal. In order for the candidate to be optimal, an
infinitesimal perturbation must have “zero first order effect” on the payoff.
This statement means that the derivative of the payoff, with respect to the
perturbation, evaluated at a zero perturbation, is zero.
The concept of rent is important in resource economics. “Rent” is a

common word, but it has a particular meaning in economics, and a still more
particular meaning in resource economics. It provides a convenient way to
express the equilibrium conditions. This chapter considers only the compet-
itive equilibrium. Rather than duplicate the analysis for the monopoly, we
merely note that replacing “price”with “marginal revenue”in the compet-
itive condition, yields the equilibrium condition for monopoly. Numerical
examples, collected in Chapter 4.5, illustrate the methods.

4.1 A more general cost function

Objectives and skills

• Understand the reasons for allowing average extraction costs to depend
on the stock and the extraction level.

• Understand the relation between parameter values and the character-
istics of cost for an example.

The distinction between stock and flow variables is central to resource
economics. A stock variable is measured in units of quantity, e.g. billions



4.1. A MORE GENERAL COST FUNCTION 57

of barrels of oil, or tons of coal, or number of fish, or gigatons of carbon.
The units of measurement do not depend on units of time. The number of
tons of coal might, of course, change over time, but the statement that we
have x tons of coal today does not depend on whether we measure time in
months or years. In contrast, the units of measurement of flow variables do
depend on units of time. For example, the statement “This well produces
1000 barrels of oil” is meaningless unless we know whether it produces this
number of barrels per hour, day, or week. The variable xt denotes the stock
of a resource, with the subscript identifying time, or the period number. The
variable yt is a flow variable, denoting extraction during a period. If a period
lasts for one year, and quantity units are tons, then xt is in units of tons and
and yt is in units of tons per year.
The constant average cost function used in Chapter 3 assumes that mar-

ginal extraction costs do not depend on either the size of the remaining
resource stock or on the rate of extraction. We relax both of these assump-
tion. Marginal (and average) extraction costs typically increase as the size of
the remaining stock falls. This relation likely holds at both the level of the
individual mine or well, and at the economy-wide level. At the individual
level, shallow and relatively inexpensive wells are adequate to extract oil or
water when the stock of oil in a field or water in an aquifer is high. As the
stocks diminish, it becomes necessary to dig deeper and more expensive wells
to continue extraction. At the economy-wide level, different deposits have
different extraction costs. Because it is (generally) effi cient to extract from
the cheaper deposits first, extraction costs increase as the size of the remain-
ing economy-wide stock falls. People began mining coal from seams that lay
close to the ground; early oil deposits could be scooped up with little effort.
As society exhausted these cheap deposits, it became economical to remove
mountaintops to obtain coal and to exploit deep-water deposits to extract
oil. Extraction costs rose as remaining economy-wide resource stocks fell.1

If the rate of extraction does not affect average and marginal cost implies,
then total extraction costs double in a period if we double the amount ex-
tracted. In many circumstances, average and marginal costs increase with
the rate of extraction. For example, it might be necessary to pay workers
overtime or to hire less qualified workers in order to increase extraction in

1Many resource firms are vertically integrated, both extracting and processing natural
resources. Some of the empirical literature distinguishes between extraction and processing
costs.
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a period. In this situation average and marginal extraction costs increase
with the extraction rate.
It is important not to confuse stock-dependent extraction costs with in-

creasing average and marginal costs. The former causes average or marginal
costs to rise over time, as the stock falls; the latter causes higher extraction
within a period to increase these costs. Average and marginal extraction
costs might increase for either or both of these reasons, but the two types of
cost-related considerations are distinct. To accommodate both of these fea-
tures, we need a (total) cost function of the form c (x, y), with the following
characteristics

∂c (x, y)

∂x
≤ 0,

∂
[
c(x,y)
y

]
∂y

≥ 0,
∂2c (x, y)

∂y2
≥ 0.

The first inequality states that a higher stock either lowers costs or (in the
case of equality) leaves them unchanged. The second states that higher
extraction either increases average costs or leaves them unchanged. The
third states that higher extraction either increases marginal costs or leaves
them unchanged.
A parametric example makes this cost function concrete:

Parametric example: c (x, y) = C (σ + x)−α y1+β, (4.1)

where C, α, σ, and β are non-negative parameters. Table 1 shows the relation
between parameter values and marginal costs.

parameter values cost function marginal cost marginal extraction costs are:
C = 0 0 0 zero
C > 0, α > 0
and β > 0

C(x+ σ)−αy1+β C (1 + β)(x+ σ)−αyβ
increasing in extraction,
decreasing in stock

C > 0, α = 0
and β = 0

Cy C
independent of both
extraction and stock

C > 0, α = 0,
and β > 0

Cy1+β C (1 + β) yβ
increasing in extraction,
independent of stock

C > 0, α > 0,
and β = 0

C(x+ σ)−αy C(x+ σ)−α
independent of extraction,
decreasing in the stock

Table 4.1: Relation between parameter values and marginal extraction
costs.
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A caveat This model uses a single stock variable, x, and ignores the
discovery and development of new stocks. Here, the resource stock falls over
time, with extraction. In fact, new discoveries frequently occur, raising the
size of “proven reserves”(known stocks) (Chapter 6.3). Stocks with cheaper
extraction costs tend to be used first (Chapter 5.5), and newly discovered
stocks are often of lower quality, i.e., have higher extraction costs. If we
treated new discoveries as an increase in x, then our model of extraction
costs would suggest (incorrectly) that these discoveries tend to reduce ex-
traction costs. However, the discovery of new stocks, e.g. in the Aortic
region, obviously do not decrease the cost of extracting Saudi oil.

4.2 The perturbation method

Objectives and skills

• Write down the firm’s objectives and constraints, based on a statement
of the problem.

• Write down and interpret the first order condition (= optimality con-
dition) for this problem, both in the case where the resource constraint
is binding and where it is not binding (= “slack”).

• Review the “standard”method of obtaining the optimality condition,
and introduce the perturbation method.

This section uses two approaches to derive the necessary condition for
optimality (the “equilibrium condition”) in the two-period competitive mar-
ket. The standard approach begins by (i) eliminating the constraint by
substitution, (ii) then taking the derivative of the present discounted value
of profits with respect to period-0 sales, and (iii) finally, replacing the price
in each period (which the firm takes as exogenous) with the inverse demand
function. The second approach uses the perturbation method. The pertur-
bation method is useful for models with many periods, so we introduce it in
a setting where it is easier to understand.
The initial stock of the resource, at the beginning of period 0, is x0. A

candidate consists of feasible extraction levels in the two periods, y0 and y1.
These must satisfy the resource constraint and the non-negativity constraints:

0 ≤ y0 ≤ x0, 0 ≤ y1 ≤ x1 = x0 − y0 and x1 − y1 ≥ 0.
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Extraction cannot be negative, and cannot exceed available stock; the avail-
able stock in period 1 equals the initial stock minus the amount that was
extracted in period 0. The final inequality states that the ending stock,
after period-1 extraction, must be non-negative. If extraction is positive in
both periods, and all of the resource is used, the constraints imply

y1 = x1 = x0 − y0. (4.2)

There are some circumstances where it is not optimal to use all of the re-
source; in that case, y1 < x1 instead of y1 = x1.
To understand these two cases, it helps to consider the firm’s problem at

period 1, after it has already made the period-0 extraction decision. In period
1, the firm has the remaining stock x1 = x0 − y0. The firm can extract all
the stock or leave some in the ground. Equation 4.3 summarizes the second
period extraction rule:(

p1 −
∂c (x1, y1)

∂y1

)
|y1=x1

{
≥ 0⇔ y1 = x1

< 0⇔ y1 < x1
(4.3)

The first inequality states that if extracting everything (evaluation the deriv-
ative at y1 = x1) leads to a price greater than or equal to marginal cost, then
the firm does want to extract everything. The second inequality states that
if extracting everything leads to price less than marginal cost, then the firm
leaves some stock in the ground (so y1 < x1).

4.2.1 It is optimal to use all of the resource

Here we assume that in equilibrium y1 = x1; using the first line of equation
4.3, this assumption implies that marginal profit at period 1 is greater than
or equal to zero. The present discounted value of total profit for the price-
taking firm is

p0y0 − c (x0, y0) + ρ [p1y1 − c (x1, y1)] . (4.4)

The “standard”method of obtaining equilibrium condition. We
can substitute the constraints 4.2 into the objective, to write the present
discounted value of profits as

π (y0) = p0y0 − c (x0, y0) + ρ [p1 (x0 − y0)− c (x0 − y0, x0 − y0)] .
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The first order condition to the problem of maximizing π (y0) is

dπ (y0)

dy0

set
= 0.

This first order condition implies (Box 4.1 ):

p0 −
∂c (x0, y0)

∂y0

= ρ

(p1 −
∂c (x1, y1)

∂y1

)
−∂c (x1, y1)

∂x1︸ ︷︷ ︸
 (4.5)

The optimal decision balances the gain from additional extraction in period
0 (the left side of equation 4.5) with the loss from lower extraction and higher
costs in period 1 (the right side of the equation). The left side is the familiar
“price minus marginal cost”, the increase in period-0 profits from extracting
one more unit in that period. The right side is the present value of two
terms, the underlined and the “under-bracketed” terms. The underlined
term equals the reduction in period-1 profit, the loss arising from having
one less unit to sell. The under-bracketed term is the cost increase due to a
reduction in the stock at the beginning of period 1, resulting from the higher
period-0 extraction. If costs are independent of the stock, then ∂c(x1,y1)

∂x1
= 0;

in this special case, the under-bracketed term vanishes and equation 4.5 then
states that the present value of marginal profit is equal in periods 0 and 1.

Box 4.1 Derivation of equation 4.5 The first order condition for the
competitive firm’s maximization problem is

dπ(y0)
dy0

=
[
p0 − ∂c(x0,y0)

∂y0

]
+

ρ
[
p1

dy1

dy0
− ∂c(x1,y1)

∂x1

dx1

dy0
− ∂c(x1,y1)

∂y1

dy1

dy0

]
set
= 0.

The second line uses the chain rule. For example, period-1 costs
depend on the period-1 stock; ∂c(x1,y1)

∂x1
picks up this dependence. From

the first constraint in equation 4.2, the period-1 stock depends on
period-0 extraction, via dx1

dy0
= −1. Similarly, dy1

dy0
= −1.

We can use these two equalities to write the first order condition as

dπ (y0)

dy0

=

[
p0 −

∂c (x0, y0)

∂y0

]
+ρ

[
−p1 +

∂c (x1, y1)

∂x1

+
∂c (x1, y1)

∂y1

]
set
= 0.

Rearranging this condition gives equation 4.5.
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The alternative: perturbation method The approach used above
to derive equation 4.5 is cumbersome in the many-period problem. With
that problem in mind, we consider the method of perturbation: a different
route to the same goal. We begin with a candidate, y0 and y1, and the
associated period-1 stock, x1 = x0 − y0. The assumption that it is optimal
to consume all of the resource, means that any candidate worth considering
sets y1 = x1. Expression 4.4 shows the payoffassociated with this candidate.
We can “perturb” this candidate by changing period-0 extraction by a

small (positive or negative) amount, ε. Because, (by assumption) it is op-
timal to consume all of the resource, a change in period-0 extraction of ε
requires an offsetting change in period-1 extraction of −ε. The “gain”from
a perturbation, g (ε; y0, x1, y1), is

g (ε; ·) = p0 × (y0 + ε)− c (x0, y0 + ε) +

ρ [p1 × (y1 − ε)− c (x1 − ε, y1 − ε)] .
(4.6)

If the candidate is optimal, then a perturbation causes zero first order
change to the payoff: at an optimum

dg (ε; y0, x1, y1)

dε |ε=0
= 0. (4.7)

Evaluating this derivative (Box 4.2) produces the same first order condition
obtained above, equation 4.5.

4.2.2 It is optimal to leave some of the resource behind

Important resources, e.g. coal, are unlikely to be physically exhausted; at
some point, remaining deposits become too expensive to extract and are left
in the ground. Here we consider the situation where it is optimal to not
exhaust the resource: y1 < x1, i.e. the resource constraint is “slack”.
The firm stops extracting before marginal profits become negative. With

period-1 profits p1y1− c (x1, y1), marginal profits equal price minus marginal
cost, the underlined term on the right side of equation equation 4.5. The
firm does not want to exhaust the stock if doing so creates negative marginal
profits, as the second line of equation 4.3 states. If the marginal profit of
extracting the last unit is negative, then the firm extracts up to the point
where period-1 marginal profit is 0:

p1 −
∂c (x1, y1)

∂y1

= 0. (4.8)
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Using this equality in condition 4.5 (setting the underlined term equal to 0)
yields the equilibrium condition.

p0 −
∂c (x0, y0)

∂y0

= −ρ
[
∂c (x1, y1)

∂x1

]
. (4.9)

Box 4.2 Evaluating the derivative in equation 4.7. Because ε appears
in two places in the period-1 cost function, c (x1 − ε, y1 − ε), we use
the total derivative to evaluate the effect of ε on this function. Using
the chain rule and

d (x1 − ε)
dε

=
d (y1 − ε)

dε
= −1,

the total derivative of period-1 costs, with respect to ε, evaluated at
ε = 0 is:

dc (x1 − ε, y1 − ε)
dε |ε=0

= −
(
∂c (x1, y1)

∂x1

+
∂c (x1, y1)

∂y1

)
.

Using this equation, we have

dg(ε;y0,x1,y1)
dε |ε=0

=

p0 − ∂c(x0,y0)
∂y0

− ρ
[
p1 −

(
∂c(x1,y1)
∂x1

+ ∂c(x1,y1)
∂y1

)]
.

Set this derivative to 0 and rearrange to obtain condition 4.5.

4.3 Solving for the equilibrium

Objectives and skills

• Know how to use the optimality condition and the constraints to solve
for the equilibrium prices and sales levels.

Firms take prices as exogenous, but they are determined by equilibrium
behavior. (Prices are “endogenous to the model”—not to the firm.) Given
specific demand and cost functions, we have enough information to actually
solve for the equilibrium. This model contains three endogenous variables,



64 CHAPTER 4. ADDITIONAL TOOLS

y0, y1 and x1. We need three equations to find these three variables. The
trick is to identify these three equations and then know how to use them. We
describe the process here, and illustrate it in Chapter 4.5 using examples.
We have to consider three cases: (i) the resource might be exhausted in

period 0, leaving nothing to extract in period 1 (y0 = x0, so y1 = 0); (ii) the
resource might be exhausted in period 1, with positive extraction in both
periods (0 < y0 < x0 and y1 = x0 − y0); (iii) the resource might not be
exhausted (y0 + y1 < x0). We proceed as follows. First, solve the model
under the assumption that we are in case (ii). Second, determine whether
the assumption is correct.

• Step 1. In all of these cases, the constraint x1 = x0 − y0 provides one
of the three equations; we need two more equations. The assumption
that we are in Case (ii) implies y1 = x0 − y0; the necessary condition
4.5 is the third equation. We solve these to obtain y0, which gives x1

and y1.

• Step 2 If our solution from Step 1 gives y0 > x0, then x1 < 0, violating
the non-negativity constraint. In this situation, we conclude that the
non-negativity constraint is binding, so y0 = x0, implying that y1 = 0.
Here, all of the resource is used during period-0: we are in Case (i).

• Step 3 If our proposed solution from Step 1 satisfies y0 < x0, then
we check whether rent in period 1 is non-negative. If R1 ≥ 0, our
proposed solution is correct. If, however, the proposed solution from
Step 1 implies that R1 < 0, that solution is incorrect. We have now
ruled out both Cases (i) and (ii), so we conclude that Case (iii) is
correct. Our three equations consist of the constraint, x1 = x0 − y0,
the necessary condition 4.9, and equation 4.8. We solve these equations
to find y0 and y1.

4.4 Rent

Objectives and skills

• Know the meaning of rent; write the optimality condition using rent.

• Understand the relation between rent in the two periods.
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• Understand why period-0 rent depends on whether the resource is ex-
hausted, and on whether extraction costs depend on the stock.

“Rent”is the payment to a factor of production that exceeds the amount
necessary to make that factor available. The classic example is rent to
unimproved land used in production. Because the land is in limited supply,
it receives a payment. The payment is not needed in order to create the land
—it already exists, regardless of the payment. However, the limited supply
means that other potential users are willing to bid for the land; the highest
value use determines the rent in a competitive market. Natural resources,
like land, are limited, so they command rent.

Very little productive land is “unimproved”. Usually, a previous invest-
ment increased the land’s productivity by, for example, removing trees and
rocks. Once these improvements have been made, they are sunk, but they
still receive a payment because of their limited supply. The improvements
continue to exist regardless of whether the payment is actually made. Be-
cause the actual payments are not necessary for the continued existence of
the improvements, they resemble rent. However, the improvements were
made with the anticipation of the payments, so the payments are not pre-
cisely rent. For this reason, payments resulting from a sunk investment are
known as “quasi-rent”. Most natural resource stocks become available only
after significant investments in exploration and development. Thus, the pay-
ments in excess of extraction costs, arising from the sale of resources, are the
sum of rents and quasi-rents. Until Chapter 11 we ignore this distinction,
and refer the resource rent merely as “rent”.

In competitive markets (resource) rent is defined as the difference between
price and marginal extraction costs. Denoting rent in period t as Rt, we have

R0 = p0 −
∂c (x0, y0)

∂y0

and R1 = p1 −
∂c (x1, y1)

∂y1

.

We can use this definition to write the optimality conditions in the two cases
where the resource is exhausted or is not exhausted, using a single equation.
If the resource is exhausted, then R1 ≥ 0; except for knife-edge cases, the
inequality is strict. If the resource is not exhausted, then R1 = 0. We can
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write the equilibrium conditions 4.5 and 4.9 as2

R0 = ρ

(
R1 −

∂c (x1, y1)

∂x1

)
. (4.10)

Equation 4.10 states that period-0 rent equals the present value of the
sum of two terms: period-1 rent, plus the cost reduction due to having higher
period-1 stock. Either of the terms on the right side could be zero or positive
(but never negative). These two terms capture the two reasons that period-0
rent is (typically) positive:

1. Scarcity: we will run out of the resource. Extracting one more unit
today means that we have one less unit to extract in the future. That
extra unit of potential future extraction is valuable if and only ifR1 > 0.
If, instead, R1 = 0, then we will not run out of the resource (the
resource is not scarce), thus eliminating one of the reasons that period-
0 rent is positive.

2. Stock-dependent extraction costs: extraction of an extra unit today
makes future extraction more expensive. If, however −∂c(x1,y1)

∂x1
= 0

(extraction cost does not depend on stock) this reason for positive
period-0 rent also vanishes.

4.5 Examples

Four examples illustrate the methods developed above. Examples 1 and 2
illustrate the perturbation method in the two cases where the firm either does
or does not exhaust the resource. Examples 3 and 4 show how to solve the
equilibrium when marginal extraction costs are either constant or decreasing
in the stock.

Example 1 This example illustrates the perturbation method for in-
verse demand p = a − by, initial stock x0, discount factor ρ and extraction
cost function c (x, y) = y

10+x
, in the situation where the firm exhausts the

2Under monopoly, we define rent as marginal revenue (instead of price) minus marginal
cost. With this modification, equation 4.10 gives the monopoly equilibrium condition.
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resource (y1 = x1). The competitive firm’s objective and constraints are

maxy0,y1,x1 p0y0 − y0

10+x0
+ ρ

[
p1y1 − y1

10+x1

]
subject to: x1 = x0 − y0 and y0 ≥ 0, x1 ≥ 0, x1 − y1 ≥ 0.

(4.11)

We write the objective using the prices, p0 and p1, not the inverse demand
function, reflecting the fact that the competitive firm takes prices as given.
A “candidate”consists of values of y0, x1, and y1 that satisfy the constraints
(i.e. are feasible). A perturbation changes y0 to y0 + ε and changes x1 to
x1 − ε: if the firm extracts ε more units in period 0, the stock remaining at
period 1 is reduced (relative to the candidate) by ε. This example assumes
that the candidate exhausts the resource, so the perturbation changes y1

to y1 − ε. For example, if ε > 0, then the perturbation reduces x1 by a
small amount, making it necessary to reduce y1 by an equal amount in order
to satisfy the non-negativity constraint on end-of-period stock. The gain
function is

g (ε; ·) = p0 × (y0 + ε)− y0 + ε

10 + x0

+ ρ

[
p1 × (y1 − ε)−

y1 − ε
10 + x1 − ε

]
(4.12)

and the necessary condition is

dg (ε; y0, x1, y1)

dε |ε=0
=

[
p0 −

1

10 + x0

]
+ρ

[
−
(
p1 −

1

10 + x1

)
− y1

(10 + x1)2

]
set
= 0.

We can rearrange the last equation to write the necessary condition as

p0 −
1

10 + x0

= ρ

[(
p1 −

1

10 + x1

)
+

y1

(10 + x1)2

]
.

In order to find the equilibrium values, y0, y1, x1, we replace price by the
inverse demand function and use the constraints to obtain an equation for
the endogenous y0 as a function of the exogenous initial stock, x0.

a− by0 − 1
10+x0

=

ρ
[
a− b (x0 − y0)− 1

10+x0−y0
+ x0−y0

(10+x0−y0)2

]
.

(4.13)
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Example 2 This example illustrates the perturbation method when the
firm does not exhaust the resource: x1− y1 > 0. Here, a small increase in y0

(leading to a decrease in x1) does not require a reduction in y1. We use the
demand and cost functions from Example 1. Equation 4.11 shows the firm’s
objectives and constraints. The gain function is

g (ε; ·) = p0 × (y0 + ε)− y0 + ε

10 + x0

+ ρ

[
p1 × y1 −

y1

10 + x1 − ε

]
. (4.14)

The gain functions in equations 4.12 and 4.14 differ only in the term in
square brackets. The former involves y1 − ε (reflecting the fact that the
changed extraction in period 0 requires an offsetting change in period 1) and
the latter involves y1 (reflecting the fact that a change in period-0 extraction
does not require an offsetting change in period 1). The necessary condition
for optimality is

dg (ε; y0, x1, y1)

dε |ε=0
=

[
p0 −

1

10 + x0

]
− ρ

[
y1

(10 + x1)2

]
set
= 0.

In order to find the equilibrium values, we replace the price by the inverse
demand function and use the constraints to obtain an equation for y0:

a− by0 −
1

10 + x0

= ρ

[
y1

(10 + x0 − y0)2

]
. (4.15)

Example 3 This example uses the definition of rent and the explanation
in Chapter 4.3 to show how to obtain the equilibrium in the case of linear
demand and constant marginal extraction costs, Cy, using C = 4, ρ = 0.77
and x0 = 10. When extraction costs do not depend on the stock, equation
4.10 simplifies to R0 = ρR1: the present value of rent is the same in both
periods. In the interest of brevity, we ignore the possibility that all of
the resource is consumed in period 0, leaving two remaining possibilities:
the resource is exhausted over two periods, or the resource is not exhausted
(Cases ii and iii from Chapter 4.3). We consider a high demand (p = 20−y)
and a low demand (p = 7 − y) scenario, in order to illustrate these two
possibilities, and also to show how to compute the equilibrium.
We begin by using the equilibrium condition 4.10 under the assumption

that the resource is exhausted. Our three equations are: the optimality
condition R0 = ρR1; the constraint x1 = x0 − y0; and the assumption that
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we exhaust the resource, y1 = x1. We use the last two equations to write
y1 = x0 − y0. Substituting this equation into R0 = ρR1 gives, for the high-
demand scenario

20− y0 − 4 = 0.77 (20− (10− y0)− 4)⇒
y0 = 6.4⇒ R0 = 20− 6.4− 4 = 9.6 > 0.

Because the present value of rent is the same in both periods, we know that
R1 > 0. Thus, y0 = 6.4 and y1 = 10− 6.4 = 3. 6 is the equilibrium for this
problem.
In the low demand scenario, R0 = ρR1 implies

7− y0 − 4 = 0.77 (7− (10− y0)− 4)⇒
y0 = 4. 74⇒ R0 = 7− 4. 74− 4 = −1.74 < 0.

Here, the assumption that the resource is exhausted implies that rent is
negative. Firms do not loose money, so the assumption must be false. In
this case, we know that the firm does not exhaust the resource, so its period-1
rent is zero. With stock-independent extraction costs, the present value of
rent is the same in both periods. Therefore, we know that period-0 rent is
also 0. Thus, equilibrium requires 7− y − 4 = 0, or y = 3 in both periods.
Figure 4.1 illustrates these two possibilities; review Figure 3.1 if Figure

4.1 is unclear. The solid lines in this figure show the present discounted
value of price minus marginal cost with high demand and the dashed lines
show these relations with low demand. Under the assumption that the
resource is exhausted, the equilibrium occurs at the intersection of the (solid
or dashed) curves. This intersection lies above the y axis, i.e. it corresponds
to positive rent = price —marginal cost in the high demand scenario. There,
the intersection gives the equilibrium. The intersection lies below the y axis,
i.e. it corresponds to negative rent in the low demand scenario. There, the
intersection does not give the equilibrium (because rent is never negative).
Consequently, the equilibrium occurs where the dashed lines intersect the y
axis: extraction is 3 in both periods.

Example 4 Here we consider the more complex situation, where ex-
traction costs depend on the resource stock. We are not able to obtain
the equilibrium in closed form. However, deriving the equilibrium condi-
tions provides practice in working with this model, and makes it possible to
obtain a numerical solution.
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Figure 4.1: Solid lines shows price minus marginal cost with high demand
p = 20 − y, where the resource is exhausted. Dashed lines show price
minus marginal cost with low demand p = 7 − y, where the resource is not
exhausted.

We use the cost function in Example 1, and set inverse demand to p =
10 − y, with ρ = 0.77. We leave x0 as a free parameter, in order to show
how the solution depends on the initial stock. Following Step 1 from Chapter
4.3, we first solve for the equilibrium under the assumption that extraction
is positive in both periods and it is optimal to exhaust the stock. Our three
equations are: the optimality condition 4.13; the constraint, x1 = x0 − y0;
and the assumption that we exhaust the resource, y1 = x1. Using the second
two equations, we can write the optimality condition as

10− y0−
1

10 + x0

= 0.77

[
10− (x0 − y0)− 1

10 + x0 − y0

+
x0 − y0

(10 + x0 − y0)2

]
.

The solid graph in Figure 4.2 shows the solution to this equation, y0 as a
function of x0 ∈ [0, 12].
We now proceed to Step 2. The dashed graph shows the 45o line. Com-

parison of the solid and the dashed graph shows that our assumption implies
y0 > x0, i.e. the non-negativity constraint is violated, whenever x0 is less
than 2.3. Thus, we know that for x0 ≤ 2.3 it is optimal to extract all of the
resource in period 0 (Case (i)). For x0 > 2.3 we are either in Case (ii) (as
our assumption claims) or Case (iii).
We now proceed to Step 3. If the initial stock is extremely large, it is

not optimal to exhaust the stock (in our two-period setting). We can solve
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Figure 4.2: The solid graph shows y0 as a function of the initial stock, x0,
under the assumption that extraction is positive in both periods, and all of
the resource is extracted.. The dashed line shows the graph of y0 = x0 and
the dotted line shows the graph of y0 = 0.5x0.

R0 = R1 = 0 to find that these equalities hold at x0 = 19.916. There is a
narrow range of initial stocks, x0 ∈ (19. 897, 19.916) for which R0 > R1 = 0.
For initial stocks in this range, period 1 rent is zero, but period 0 rent is
(slightly) positive, because a larger stock reduces period-1 extraction costs.
The dotted line shows the graph of y0 = 0.5x0, where period-0 extraction

equals half the initial stock. Because the solid graph lies above the dotted
line, the figure implies that period-0 extraction always exceeds period-1 sales;
thus for this example, the price rises over time.

4.6 Summary

Extraction costs may depend on the remaining resource stock, and the mar-
ginal extraction costs might increase with the level of extraction. We in-
troduced a parametric cost function that has these features. We used both
the standard method and the perturbation method to obtain the necessary
condition for optimality in a two-period nonrenewable resource problem.
If demand is low relative to extraction costs, it might be optimal not

to exhaust the resource. We therefore have to consider both possibilities,
that the resource is or is not exhausted. If the resource is exhausted, then
the resource constraint means that extraction of an additional unit at t = 0
requires an offsetting reduction in extraction at t = 1. If the resource
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constraint is slack, it is not necessary to make this offsetting change at t = 1.
In competitive resource markets, rent is defined as price minus marginal

cost. Under monopoly, rent is defined as marginal revenue minus marginal
cost. Recognizing this difference in the definition of rent under a competitive
firm and under a monopoly, we can express the equilibrium condition for both
markets in the same manner:

Rent in period 0 (R0) equals the present value of the rent in
period 1 (R1) plus the cost increase due to a marginal reduction
in period-1 stock:

R0 = ρ

(
R1 −

∂c (x1, y1)

∂x1

)
.

The firm never extracts where rent is negative; rent is either strictly
positive or it is zero. We can use this fact, together with the equilibrium
condition, to solve for the equilibrium, given specific functional forms and
parameter values for costs and demand. To do this, we first solve the problem
under the assumption that the resource is exhausted in two periods. If this
solution implies y0 > x0 (so that x1 = x0 − y0 < 0), our assumption is
incorrect (because it violates a nonnegativity constraint). In that case, we
know that all of the resource is extracted in period 0 (y0 = x0). If the solution
satisfies the nonnegativity constraint, we then determine whether it satisfies
the condition R1 ≥ 0. If “yes”, then we have the correct solution. If “no”,
then we know that the resource is not exhausted; in this case, the condition
R1 = 0 provides the third equation needed to solve the model.

4.7 Terms, study questions, and exercises

Terms and concepts

Binding constraint, slack constraint, stock-dependent and stock-independent
costs, perturbation, rent, quasi-rent.

Study questions

1. Given an inverse demand function p(y), an extraction cost function
c (x, y), a discount factor ρ, and an initial stock x0: (i) Write down
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the competitive firm’s objective (= payoff) and constraints for the two-
period problem. (ii) What assumption does this firm make regarding
price in the two periods? (iii) Write down and interpret the optimality
condition (= first order condition) for the firm. (Explain what the
various terms in the equation mean.) (iv) Write down the definition
of rent, and then restate the optimality condition in terms of rent in
the two periods.

2. (i) In this two-period problem, what does it mean to say that the
resource constraint is not binding? (ii) If the resource constraint is
not binding, what is the value of period-1 rent? (iii) If the resource
constraint is not binding, what is the value of period-0 rent? (iv) What
does your answer to part (iii) tell you about the components of period-
0 rent? (In answering parts iii and iv of this question you need to
discuss the two situations where extraction costs are independent of,
or depend on, the stock.)

3. Using the objective (= payoff) for the firm in question 1, and the as-
sumption that the resource constraint is binding, describe how you
can derive the optimality condition, first by eliminating the constraint,
and second by the perturbation method. It is not necessary to take
derivatives or do any calculation; just describe the steps.

4. Using the information provided in Chapter 2.4 and the competitive op-
timality condition, equation 4.5, write down and interpret the monopoly’s
optimality condition.

Exercises

1. This chapter considers only the competitive equilibrium. (a) For a gen-
eral inverse demand function, and the parametric cost function, write
down the monopoly’s optimization problem in the two-period setting.
(b) Under the assumption that the monopoly exhausts the resource,
write down the equilibrium condition for the monopoly. (Hint: Re-
view Chapter 2.4, especially the last subsection. (c) Say in words
(“interpret”) this equilibrium condition.

2. Figure 4.3 graphs two cost functions of the form C (σ + x)−α y1+β, with
C > 0 and σ > 0; the graphs hold x > 0 fixed. (a) What can you
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Figure 4.3: Graphs of two cost functions

conclude about β in these two functions? (b) What can you conclude
from these graphs about the parameter α? Explain your answers.

3. (a) For the parametric cost function c (x, y) = C (σ + x)−α yβ+1, write
the four partial derivatives:

∂c (x, y)

∂C
,
∂c (x, y)

∂σ
,
∂c (x, y)

∂α
,
∂c (x, y)

∂β
.

(Readers may want to consult Appendix B to review a particular rule
of derivatives.) (b) Say in words what each of these partial derivatives
mean. (This is a one-liner.)

4. Replace the general cost function used in the first order condition equa-
tion 4.5 with the parametric example given in equation 4.1. Next,
rewrite the equation, specializing by setting β = 0. Explain in words
the meaning of this equation.

5. Section 4.2.2 claims that the firm never extracts to a level at which
marginal profit is negative. Explain, in a way that a non-economist
will understand, why this claim is true.

6. In our two-period setting, the gain function for a candidate at which
the resource is exhausted is

g (ε; y0, x1, y1) = p0·(y0 + ε)−c (x0, y0 + ε)+ρ [p1 · (y1 − ε)− c (x1 − ε, y1 − ε)] ,
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and the gain function for a candidate at which the resource is not
exhausted (y1 < x1) is

g (ε; y0, x1, y1) = p0 · (y0 + ε)− c (x0, y0 + ε) +ρ [p1 · y1 − c (x1 − ε, y1)] .

Identify the difference between these two functions, and provide the
economic explanation for this difference, using a couple of sentences.

7. (a) Explain why period-1 rent must be zero if it is not optimal to
exhaust the resource (so that the constraint x1 ≥ 0 is not binding).
(b) With stock-dependent resource costs, explain why period-0 rent is
positive even if it is not optimal to exhaust the resource. (c) With
stock-dependent extraction costs, when it is not optimal to exhaust
the resource, does rent rise, fall, or remain constant over time? Give
a one sentence explanation.

8. Consider a two-period problem. Demand in a period is a − by and
extraction costs are c (y, x) = y

10+x
. A competitive firm has initial

stock x0 and the discount factor ρ. (a) Identify the endogenous vari-
ables. Assuming that it is optimal to extract all of the stock, write
down the equations you would solve in order to obtain the values of
these endogenous variables. (b) Use these equations to obtain a single
equation giving y0 as an implicit function of x0. (c) Now suppose that
it is optimal NOT to exhaust the stock. Write the single equation that
gives y0 as an implicit function of x0 in this case. (Hint: What must be
true if it is optimal not to exhaust the stock in period 1? The answer
to this question gives you y1 as an explicit function of x0 and y0. Use
this function and your answer to part (b) to answer (c).) (d) Is there a
finite stock size above which period 0 equilibrium extraction sets price
equal to marginal cost? Explain your answer in one or two sentences.
(Hint: what are the two potential sources of period 0 rent?)

9. Under the assumption that the monopoly exhausts the resource in
this two-period setting, write down the equilibrium condition for the
monopoly that faces inverse demand p = 20− y.

10. (Rent and quasi-rent for agricultural land.) Suppose that there is a
fixed stock of unimproved land, L = 10. The value of marginal product
of this land per year is 20 − q, where q is the amount of land that is
rented. (a) What is the equilibrium annual rental rate for land? (b)
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How much would someone with an annual discount rate of r be willing
to pay for this land? Recall equation 2.8. (The price of land is the
amount that someone pays to buy the land; the rent is the amount
they pay to use it for a period of time, e.g. one year.) (c) Suppose
that if the land is improved, its value of marginal product increases by
2, to 22 − q. What is the equilibrium annual rental rate if all land is
improved? (d) What is the equilibrium price of improved land? (e)
Suppose that the cost of this improvement is a one-time expense of 10.
Assuming that the improvement (like the land) lasts forever, what is
the critical value of r at which the landowner is indifferent between
leaving (all of) the land in its unimproved state, and improving it?

Sources

Pindyck (1978) develops a model of extraction costs linear in extraction and
decreasing in stocks.
Livernois and Uhler (1987) develop the point raised in the “Caveat” in

Chapter 4.1, showing empirically that extraction costs rise with aggregate
stock; for individual wells, they find that costs fall with the remaining stock.
Livernois (1987) estimates the extraction cost function for oil, finding

that marginal cost is constant in extraction, and that the cost functions for
different wells cannot be aggregated into an industry cost function
Chermak and Patrick (1995) estimate cost functions for natural gas, find-

ing that costs fall with remaining reserves, but marginal costs fall with ex-
traction.
Ellis and Halvorsen (2002), and Stollery (1983) provide empirical esti-

mates of extraction costs.



Chapter 5

The Hotelling model

Objectives

• Interpret and use the optimality condition for the T -period problem.

Information and skills

• Understand the relation between the two-period and the T -period prob-
lems, and between their optimality conditions.

• Write down the objective, the constraints, and the Euler equation for
the competitive firm in the T -period problem.

• Understand the relation between rent (and price) in any two periods.

• Understand the meaning of the “shadow value”of a resource.

• Understand the meaning of a Lagrange multiplier in a constrained op-
timization problem.

• Show that firms exhaust cheaper deposits before beginning to extract
from more expensive deposits.

The intuition developed in the two-period setting survives when the re-
source can be used an arbitrary number of periods, T ≥ 1. The perturbation
method produces the optimality condition, known as the Euler equation in
general settings, and the Hotelling rule in the resource setting. The definition
of rent leads to a concise statement of this rule. Rent can be interpreted as

77
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the “shadow value”of the resource, the amount that a competitive resource
owner would pay for one more unit of the resource in the ground. It can
also be interpreted as the opportunity cost of extracting the resource.
After discussing the basics of the model, we consider distinct issues. We

use an example to show that (in some circumstances) it is optimal to exhaust
mines with low extraction costs, before beginning to extract from more ex-
pensive mines. We also discuss the parallel between the Hotelling rule and
an asset pricing equation used in investment models. Finally, we obtain the
necessary conditions for the monopoly by replacing “price”with “marginal
revenue”in the equilibrium conditions.
For some resources (e.g. low cost Saudi oil) extraction will continue un-

til the resource stock is physically exhausted. For other resources, stock-
dependent extraction costs make it uneconomical to physically exhaust the
stock. At some point, coal will become more expensive than other energy
sources; coal deposits are unlikely ever to be exhausted. (Keeping the at-
mospheric temperature change below 2oC, considered by some to be the
maximum safe threshold, will require leaving over 50% of known fossil fuel
stocks below the ground.) In general, there are two sources of rent (in our
models): limited supply and stock-dependent costs. However, if it is optimal
to stop extracting while some stock remains in the ground, the supply is not
limited; in these cases, stock-dependent are the only source of rent.
Chapter 5.4 uses an example to illustrate the role of the non-negativity

constraint on stocks. There we show how we to find the equilibrium value
of T ,and then find the equilibrium trajectory of extraction levels and cor-
responding prices. Elsewhere, we take T as given and we do not explicitly
consider the non-negativity constraint on the stock.

5.1 The Euler equation (Hotelling rule)

Objectives and skills

• Write the competitive firm’s objective and constraints.

• Write and interpret the necessary condition (the Euler equation).

• Understand how the perturbation method produces this condition.

We discuss the necessary condition for a fixed length of the program,
T + 1, leaving the determination of T to Chapter 5.4. The competitive
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firm wants to maximize the present discounted sum of profits, subject to the
resource constraint. The firm’s optimization problem is:

max[(p0y0 − c (x0, y0)) + ρ (p1y1 − c (x1, y1)) + ...

ρt (ptyt − c (xt, yt)) + ....ρT (pTyT − c (xT , yT ))]

= max
∑T

t=0 ρ
t (ptyt − c (xt, yt)) subject to

xt+1 = xt − yt, with x0 given, xt ≥ 0 and yt ≥ 0 for all t.

(5.1)

The first order (necessary) condition for this problem is known as the
Euler equation; in the nonrenewable resource setting, it is also called the
Hotelling rule.1 The equation is2

pt −
∂c (xt, yt)

∂yt
= ρ

pt+1 −
∂c (xt+1, y+1)

∂yt+1

−∂c (xt+1, yt+1)

∂xt+1︸ ︷︷ ︸
 . (5.2)

Equations 4.5 (for the two-period problem, where T = 1) and 5.2 (for general
T ), are identical, except for the time subscripts. Equation 5.2 must hold for
all pairs of adjacent periods when extraction is positive: t = 0, 1, 2...T − 1.
Equations 4.5 and 5.2 have the same interpretation. If the firm sells

one more unit in period t and makes an offsetting reduction of one unit in
period t + 1, it receives a marginal gain in period t and incurs a marginal
loss in period t+ 1. The marginal gain in period t (the left side of equation
5.2) equals the increased profit, price minus marginal cost, due to the one
unit increase in sales. The marginal loss in period t + 1 is the sum of the
two terms on the right side of equation 5.2. The underlined term equals
the reduced profit due to reduced sales, price minus marginal cost in period
t+ 1; the under-bracketed term equals increased cost due to the lower stock
in period t+ 1. Appendix E derives equation 5.2.

1The terms “Hotelling model”and the “Hotelling rule”are sometimes reserved for the
case of constant marginal extraction costs, but we use the terms for general extraction
costs.

2We sometimes show all subsbripts, as in the derivative ∂c(xt,yt)∂yt
. Where there is no pos-

sibility of ambiguity, to conserve notationwe sometimes drop subscripts, writing ∂c(xt,yt)
∂y\

or ∂c(xt,y)
∂yt

.
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5.2 Rent and Hotelling

Skills and objectives

• Rewrite the Euler equation using the definition of rent.

• Explain the relation between rent in period t and in any other period,
and understand how this relation depends on extraction cost.

In the competitive resource market, rent is defined as price minus mar-
ginal cost:

Rt = pt −
∂c (xt, yt)

∂yt
, (5.3)

We will be interested in the equilibrium value of rent, it’s value when the
firm correctly solves its optimization problem. For brevity, we usually refer
to this value merely as “rent”. This (equilibrium), rent can be interpreted as
the opportunity cost of extracting the resource: the loss from extracting the
marginal unit now rather than at some other time. Current extraction re-
duces future profits, creating an opportunity cost. Rearranging the definition
of rent, we have

pt =
∂c (xt, yt)

∂yt
+Rt.

This equation states that in a competitive equilibrium, price equals “full”
marginal extraction cost, where “full”means the sum of the standard mar-
ginal cost and the opportunity cost (= rent). We use the definition of rent
to write the Euler equation (Hotelling rule) more compactly, as

Rt = ρ

[
Rt+1 −

∂c (xt+1, yt+1)

∂xt+1

]
. (5.4)

Constant marginal costs If marginal costs are constant (i.e. if c (x, y) =
Cy), the Hotelling rule simplifies to

Rt = ρRt+1 or pt − C = ρ (pt+1 − C) . (5.5)

The first equation states that the present value of rent is the same in any two
adjacent periods with positive extraction. The constant cost model produces
several important results.
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• The present value of rent is the same in any two periods where extraction
is positive:

Rt = ρjRt+j. (5.6)

The Hotelling rule states that the firm cannot increase its payoff by
moving a unit of extraction between adjacent periods, t and t + 1;
this is a “no-intertemporal arbitrage condition”. Equation 5.6 is more
general: it states that the firm cannot increase its payoff by moving
extraction between any two periods where extraction is positive (not
merely between any two adjacent periods). The intuition for this
relation is that a firm can sell the marginal unit in period t, invest the
marginal profit (Rt) for j periods and obtain the return (1 + r)j Rt;
alternatively, the firm can delay extraction of this marginal unit until
period t+ j, at which time it earns Rt+j. If there are no opportunities
for intertemporal arbitrage, the firm must be indifferent between these
two options, i.e.

(1 + r)j Rt = Rt+j ⇒ Rt =
1

(1 + r)j
Rt+j = ρjRt+j. (5.7)

• With constant marginal = average extraction cost, rent has a partic-
ularly simple interpretation. The value of the mine equals the initial
rent times the initial stock:

Value of mine =
T∑
t=0

ρt (pt − C) yt =
T∑
t=0

ρtRtyt = R0

T∑
t=0

yt = R0x0.

(5.8)
The first equality is a definition: the value of the mine equals the
present discounted stream of profits from extraction. The second
equality uses the definition of rent, equation 5.3. The third equal-
ity uses equation 5.6 to replace ρtRt with R0. The fourth equality uses
the stock constraint: aggregate extraction (

∑T
t=0 yt) equals the initial

stock (x0).

• We can determine the rate of change of price or rent by (i) multiplying
both sides of the two equations 5.5 by 1 + r, (ii) using ρ = (1 + r)−1,
and (iii) rearranging, to obtain

Rt+1 −Rt

Rt

= r or
pt+1 − pt

pt
= r − rC

pt
. (5.9)
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The first of these two equations says that rent rises at the rate of
interest. The second says that price rises the rate of interest minus
rC
pt
, i.e. price rises at less than the rate of interest if C > 0. For C = 0,

the second equation simplifies to

pt+1 − pt
pt

= r, (5.10)

which states that in a competitive equilibrium where extraction is cost-
less, price rises at the rate of interest: the competitive firm is indifferent
between selling in any two periods if and only if the present value of
the price is the same in the two periods. For C > 0, equilibrium
price rises more slowly than the interest rate. In Chapter 3, we noted
that constant extraction costs cause the firm to delay extraction, caus-
ing the initial price to be higher, and the later price to be lower than
would have been the case for C = 0. Thus, C > 0 reduces p1−p0

p0
in the

two-period setting. Equation 5.10 shows that in the T -period setting,
a positive C lowers the rate of change of price at every point in time.

Stock dependent extraction costs With stock-dependent extraction
costs, (−∂c(xt,yt)

∂xt
> 0), the relation between (equilibrium) rent in periods

t and t+ j is

Rt = ρjRt+j −
j∑
i=1

ρi
∂c (xt+i, yt+i)

∂xt+i︸ ︷︷ ︸ . (5.11)

This equation shows that rent depends on two features, scarcity (the under-
lined term) and higher future extraction costs (the under-bracketed term).
If the firm extracts an extra unit today and makes an offsetting reduction
j periods in the future, the present value of the future loss in profit equals
the underlined term. The under-bracketed term equals the present value
of the higher pumping costs from periods t + 1 to t + j. The equilibrium
value of current rent depends on rent and extraction costs in future periods.
In equilibrium, rent is a “forward-looking variable”, because it depends on
prices and costs in the future.
The left sides of equations 5.3 and 5.11 are the same, but the right sides

differ. This difference arises because the two equations have different mean-
ings. Equation 5.3 is true merely because we decide it is true: it expresses
a definition. (We are at liberty to define objects any way that we want,
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provided that we are internally consistent.) Equation 5.11, in contrast, is an
equilibrium result that holds when the firm maximizes the present discount
stream of profits.

5.3 Shadow prices and Lagrange multipliers

Objectives and skills

• Understand the meaning of the “shadow value”of a resource.

• Know that the perturbation method used above yields the same opti-
mality condition as the Method of Lagrange.

How much would a resource owner be willing to pay to buy an additional
unit of stock in the ground (“in situ”)? The answer is known as the “shadow
price”of the resource; the modifier “shadow”recognizes that the actual mar-
ket for such a transaction could be hypothetical. The shadow price at time
t equals the equilibrium rent at that time, Rt. This is a general relation, but
it is particularly obvious in the case of constant marginal extraction costs.
Here, equation 5.8 shows that the value of the mine is R0x0. The increase
in this value, due to the increase in the stock, x0, is the rent, R0. The mine
owner would be willing to pay R0 for one more unit of the resource at time
0.
We used the perturbation method to obtain the equilibrium condition

in the competitive resource market. The method of Lagrange provides an
alternative. The firm’s problem contains the T constraints xt+1 = xt − yt
for t = 0, 1...T − 1. To each of these constraints we assign a variable knows
as the Lagrange multiplier. Having one more unit of the stock “relaxes”
the constraint, i.e. makes it less severe. The Lagrange multiplier associated
with a particular constraint equals the amount by which a “relaxation” in
that constraint would increase the present discounted stream of profits. In
the resource setting, the Lagrange multiplier associated with the constraint
in a particular period equals the amount that the resource owner would pay
for a marginal increase in the stock of the resource in that period; it equals
the shadow price of the resource, which equals the rent.
A resource owner would be willing to pay exactly Rt (= the rent = the

shadow value = the Lagrange multiplier) for an additional unit of the stock
in situ at time t. This claim is not self-evident, because it might seem
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that an owner who receives one more unit of the resource would not simply
extract that unit in the current period, and thus earn Rt. Instead, the owner
could extract some of the extra unit in the current period, and some of it
later. With that reasoning, it appears that the amount the owner would
pay for the marginal unit might be greater than Rt. This conjecture is false
because of the no-intertemporal-arbitrage condition: the owner has no desire
to reallocate extraction over time. An owner who acquires one extra unit is
indifferent between extracting it now, and earning Rt, or extracting it later.
In either case, the present value of the owner’s additional profit is Rt. The
owner would therefore pay Rt for a marginal unit of the resource in situ.

5.4 Completing the solution (*)

Objectives and skills

• Understand the “transversality condition” and its role in solving for
the equilibrium trajectories of price and extraction when T is either
unconstrained or constrained.

If we are given a demand and cost function and the model parameters, we
can use the Euler equation to solve for the equilibrium, much as in Chapter
4.3. If the owner is allowed to decide when to stop extracting, T is uncon-
strained. In this case, we have to solve for the optimal T along with the
optimal trajectory of sales. An owner who is not able to extract beyond T
(e.g. because a lease expires) faces the constraint T ≤ T . To explain the
ideas as simply as possible, we restrict attention to the case of constant mar-
ginal extraction costs, C, and linear inverse demand function, p = a − by,
with a > C. The parameter a is the choke price, the price above which
demand equals zero.

5.4.1 T is unconstrained

For times t < T , where extraction is positive at both time t and at t + 1,
it is possible to make a small increase or decrease in time t extraction, and
make an offsetting change in the subsequent period (t + 1). In contrast, at
time T , current extraction is positive and extraction in the next period is
0: yT > 0 = yT+1. It is possible to make a small decrease in yT and an
offsetting increase in yT+1, but (because negative extraction and a negative
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stock are infeasible) it is not possible to make a small increase in yT and an
offsetting decrease in yT+1. Therefore, to test optimality of the candidate
at time T , we need to consider only perturbations that decrease yT . The
optimality condition at time T , known as the transversality condition, is

[pT − C] ≥ ρ [a− C]⇒ pT ≥ ρ [a− C]− C. (5.12)

The second part of inequality 5.12 merely rearranges the first part, which has
a straightforward interpretation. Under the candidate trajectory, period T is
the last date at which extraction is positive. Therefore, under this candidate,
the price in period T + 1 is a − b × 0 = a. A feasible perturbation reduces
period T extraction, moving the marginal unit to period T + 1. The cost to
the firm of this perturbation is the marginal loss in profit at time T , the left
side of (the first part of) inequality 5.12. The present value of the increased
T + 1 profits is ρ [a− C]. Inequality 5.12 states that the loss exceeds the
gain. The firm does not want to delay extracting the final unit: it prefers to
extract the final unit at time T . If this inequality did not hold, then T is not
the optimal date to exhaust the mine. Thus, the transversality condition
is a necessary condition for the candidate trajectory to maximize the mine
owner’s payoff.
Using equation 5.6, we also have

p0 − C = ρt (pt − C)⇒ pt = (1 + r)t (p0 − C) + C. (5.13)

Our goal is to find p0. Once we know the value of this variable, the second
part of equation 5.13 gives us the value of pt. With this price, the demand
function yt = a−pt

b
gives us period t extraction. How do we find p0? For a

given p0, we use the second parts of equations 5.12 and 5.13 to write

(1 + r)T (p0 − C) + C ≥ ρ [a− C] + C ⇒

T ≥ −
ln
(
ρ a−C

(p0−C)

)
ln ρ

.
(5.14)

Because sales are positive in period T , we also know that pT < a. This
inequality implies

a− C > (1 + r)T (p0 − C)⇒

−
ln
(

a−C
(p0−C)

)
ln ρ

> T.
(5.15)
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Given p0, T is the unique integer that satisfies equations 5.14 and 5.15; denote
this integer as T (p0).3

Next, we use the stock constraint, which states that the sum of extraction,
during periods when extraction is positive, must equal the initial stock:

T (p0)∑
t=0

a−
(
(1 + r)t (p0 − C) + C

)
b

= x0. (5.16)

Although we cannot find p0 as a closed form expression of the model pa-
rameters, it is easy to solve equation 5.16 using numerical methods. One
algorithm uses an initial guess of p0 to evaluate the left side of this equation.
If this calculation returns a value greater than x0 we increase our guess of
p0, and if it returns a value less than x0 we reduce the guess. Proceeding in
this way, we improve the guess, until the left side is suffi ciently close to x0,
giving an approximate solution. We use the approximation of p0 to calculate
T and then to calculate p and y in every period.

5.4.2 T is constrained

Here we consider the case where the owner is not able to extract beyond
period T ; we have the constraint T ≤ T . Denote the unconstrained value of
T that we obtained above as TEndog (endogenous T ). If T endog ≤ T , then the
constraint is not binding, and the solution is as above. If, however, T endog >
T , then the constraint is binding; here, the owner continues extracting until
T . In this case, we again find p0 by solving equation 5.16, except that now
instead of having the function T (p0) as the upper limit of the sum, we have
the exogenous T . If the solution to this equation is an initial price greater

3There is a unique integer that satisfies both of these inequalities because

−
ln
(

a−C
(p0−C)

)
ln ρ

+
ln
(
ρ a−C
(p0−C)

)
ln ρ

= 1.

In discrete time models, the terminal time must be an integer. For example, we might
exhaust the resource in period t = 18 or t = 19, but we cannot exhaust it at t = 18.3.
This “integer constraint”makes solving the discrete time model slightly more cumbersome
than the continuous time mode, where we have no integer constraint. Therefore, many of
the figures in subsequent chapters are constructed using the continuous time analog of the
discrete time model presented in the text. Chapter 13.3 discusses the relation between the
discrete and continuous time models.
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than or equal to the extraction cost, C, we have the correct equilibrium. If
the solution is an initial price less than C, we conclude that exhaustion of
the resource is not an equilibrium: T is so small relative to the initial stock
that exhaustion does not occur. In this case, the equilibrium price is C in
every period, and rent is zero in every period.

5.5 The order of extraction of deposits

Objectives and skills

• Use the Euler equation to demonstrate that it is optimal to exhaust a
cheaper deposit before beginning to use a more expensive deposit.

We have assumed that there is a single deposit, with extraction costs
c (x, y). We can think of this model as approximating a more realistic situa-
tion where there are many different deposits with different extraction costs.
When marginal costs do not depend on either the stock of the level of ex-
traction, a competitive equilibrium exhausts the cheaper deposits before be-
ginning to extract from more expensive deposits.
Suppose, for example, that there are three different deposits, with stock

size xa = 3, xb = 7, and xd = 2, having associated constant average (=
marginal) extraction costs Ca = 4, Cb = 5.5, Cd = 7. Figure 5.1 shows
the average cost function for this example, as a function of remaining stock.
The graph is a step function, because the extraction costs are constant while
a particular deposit is being mined. Costs jump up once that deposit is ex-
hausted, and it becomes necessary to begin mining a more expensive deposit.
If instead of there being only three mines, with significantly different costs,
there were many mines, with only small cost differences between the most
similar mines, then the figure would approach a smooth curve, showing costs
decreasing in remaining stock.
In order to show that, in a competitive equilibrium, cheaper deposits

are exhausted before firms begin to extract from more expensive deposits, it
is suffi cient to consider the case where there are two mines, with constant
extraction costs Ca < Cb. For exposition, we assume that one competitive
firm owns the low-cost mine and another firm owns the high-cost mine.
The Euler equation must hold for both firms. In particular, for any two

adjacent periods, t and t + 1, during which a firm is extracting, equation
5.9 must hold, with C replaced by Ca or Cb (depending on which firm is
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Figure 5.1: Extraction costs as a function of remaining stock, when there are
three deposits, with individual stocks 3, 7 and 2, and corresponding constant
marginal extraction costs, 4, 5.5., and 7

extracting). There might be a single period when extraction from both
deposits occurs. For example, during the last period when the low cost
firm extracts, its remaining stock may be insuffi cient to satisfy demand at
the equilibrium price. In this case, there is a single period when both firms
extract a positive amount. Extraction of high-cost deposits begins only after
or during the last period when extraction from the low-cost deposit occurs.
To verify this claim, consider any two adjacent periods, t and t+1, during

which the low-cost firm is extracting. We need to show that the high-cost
firm does not want to extract in t, the first of these two periods. If the
high-cost firm did want to extract in period t, then the claim would not be
true, because in that case extraction of high-cost deposits occurs in a period
prior to the period when the low-cost deposits are exhausted.
Because the low-cost firm extracts in both t and t+1, equation 5.9 implies

(pt − Ca) = ρ (pt+1 − Ca) . (5.17)

Some manipulations (Box 5.1) show that equation 5.17 implies

pt − Cb < ρ
(
pt+1 − Cb

)
. (5.18)

This inequality implies that the high-cost firm strictly prefers to extract
nothing in period t. If this firm were to extract a unit in period t, it would
earn pt−Cb. It could earn strictly higher present value profits by holding on
to this unit and then selling it in period t + 1. Therefore, it is not optimal
for the high-cost firm to sell anything in period t.
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Box 5.1 Derivation of inequality 5.18. Adding Ca−Cb to both sides
of equation 5.17 produces(

pt − Cb
)

= ρ (pt+1 − Ca) + Ca − Cb.

Add and subtract ρCb to the right side of this equation and then
simplify the result to obtain(

pt − Cb
)

= ρ
(
pt+1 − Cb

)
+ (1− ρ)

(
Ca − Cb

)
. (5.19)

Because 1− ρ = r
1+r

> 0 and Ca − Cb < 0, we have

(1− ρ)
(
Ca − Cb

)
< 0.

This inequality and equality 5.19 establish inequality 5.18.

Caveat The analysis above assumes constant marginal extraction cost
in each mine. With more general cost functions, the relative costs of two
mines might depend on the level of the stock or the rate of extraction in
both, and it maybe effi cient to extract from both simultaneously for many
periods. For example, if mine i has costs Ci

2
y2
i and mine j has costs Cjyj,

with Ci < Cj, marginal cost in mine i is lower than in mine j for low levels
of extraction (where Cjyj < Cj) but higher at high levels of extraction. If
the Euler equations for both mines are satisfied at times t and t + 1, then
subtracting one equation from the other implies

yi,t − ρyi,t+1 = ρ
Cj
Ci

(1− ρ)

This equation determines the change over time in extraction from mine i,
required for simultaneous extraction from both mines to be effi cient.

5.6 Resources and asset prices

Objectives and skills

• Understand the relation between the basic asset pricing equation and
the Hotelling rule.
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Competitive equilibria eliminate opportunities for intertemporal arbi-
trage, both for natural resources and for other types of assets such as shares
in companies. To illustrate that intertemporal arbitrage is important in
many disparate contexts, we discuss the relation between the Hotelling rule
and an asset pricing equation from financial economics.
By multiplying both sides of equation 5.4 by ρ−1 = 1 + r and rearranging

the result, we can write the Hotelling rule as

rRt = Rt+1 −Rt −
∂c (xt+1, yt+1)

∂xt+1

. (5.20)

Now consider the equilibrium price of an asset, such as shares in a company.
There is no risk in our model, and a person can borrow a dollar for one year
at the interest rate r. In this perfect information world, people know that
next period, t + 1, the price of the asset will be Pt+1, and they know that
there will be a dividend on the stock of Dt+1. What is the equilibrium price
of this asset today, in period t?
If the price of the stock at the beginning of period t is Pt, a person who

can borrow at annual rate r can borrow Pt at the beginning of the period
and buy a unit of the stock. They must repay (1 + r)Pt at the beginning of
the next period. If they collect the dividend paid at the beginning of period
t + 1, and sell the stock, they collect Pt+1 + Dt+1. Because the person has
not used their own money to carry out this transaction (and thus incurred
no opportunity cost), they must make 0 profits, which implies

Pt+1 +Dt+1 − (1 + r)Pt︸ ︷︷ ︸ = 0.

revenue costs

Rearranging this equality gives:

rPt = Pt+1 − Pt +Dt+1. (5.21)

Equation 5.21 is a no-arbitrage condition: it means that a person cannot
earn profits by making riskless purchases and sales. The left side is the
yearly cost of borrowing enough money to buy one unit of the stock. The
right side is the sum of capital gains (the change in the price) and the div-
idend. To compare equations 5.20 and 5.21, recall that −∂c(yt+1,xt+1)

∂x
≥ 0,

because a higher stock decreases or leaves unchanged extraction costs; this
term equals the benefit that the resource owner obtains from lower future
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costs. It corresponds to the dividend, Dt in equation 5.21. The asset price,
P , corresponds to R, the resource rent.
In the asset price equation, if the dividend is 0, then the price of the stock

must rise at the rate of interest in equilibrium: the capital gain due to the
change in the asset price must equal the opportunity cost of holding the stock,
rPt. A positive dividend makes investors willing to hold the stock at lower
capital gains. The same reasoning explains why, in the resource setting,
stock dependent extraction costs cause the equilibrium rent to increase at
less than the rate of interest. The stock-dependent extraction costs play
the same role in the resource setting as the dividend does in the asset price
equation.

5.7 Monopoly

Objectives and skills

• Use previous results to write down and interpret the optimality condi-
tion for the monopoly.

We obtain the optimality condition under monopoly by using equation 5.2
and replacing price with marginal revenue, MRt = pt (1− 1/η (pt)), where
η (pt) is the elasticity of demand evaluated at price pt. The Euler equation
for the monopoly is

pt

(
1− 1

η(pt)

)
− ∂c(xt,yt)

∂yt
=

ρ
[
pt+1

(
1− 1

η(pt+1)

)
− ∂c(xt+1,yt+1)

∂yt+1
− ∂c(xt+1,yt+1)

∂xt+1

]
.

(5.22)

For the special case where extraction is costless and the elasticity of demand
is constant (inverse demand is p = y−

1
η , and η is a constant), equation 5.22

simplifies to equation 5.10. In this special case, the monopoly and the
competitive industry have the same price and sales path.
More generally, the monopoly and competitive outcomes differ. If ex-

traction is costless but demand becomes more elastic with higher prices (as
occurs for the linear demand function and many others) then monopoly price
rises more slowly than the rate of interest. In this situation, the initial
monopoly price exceeds the initial competitive price, so monopoly sales are
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initially lower than competitive sales. Here again, “the monopoly is the
conservationist’s friend”.
Defining rent for the monopoly as marginal revenue minus marginal cost

(instead of price minus marginal cost, as under competition), we can write
the monopoly’s optimality condition as in equation 5.4. The interpretation
of this equation is the same as under competition, provided that we keep in
mind that the definition of rent under monopoly differs from the definition
under competition.

5.8 Summary

The perturbation method is as easy to use for the T -period problem as for
the two-period problem. It leads to a necessary condition for optimality
(equivalently, an equilibrium condition) that expresses current price and costs
as a function of next-period price and costs. This equation is known as the
Euler equation; in the resource setting, it is also known as the Hotelling rule.
We can express this equilibrium condition in terms of rent.
The equilibrium market price and the rent in a period depend on future

prices (or rent) and costs. Rent is a forward-looking variable. The Hotelling
rule states that (equilibrium) rent in an arbitrary period equals the present
value of rent in the next period, plus the cost increase due to a marginal
reduction in stock. For the special case where extraction costs are indepen-
dent of the stock, the Hotelling rule states that the present value of rent is
equal in any two periods where extraction is positive. If extraction costs are
zero, the Hotelling rule states that price rises at the rate of interest. For
positive constant average extraction costs, price rises more slowly than the
rate of interest. We showed how to solve the model numerically when the
planning horizon, T , is either endogenous or exogenous.
The Hotelling rule has a close analog in investment theory, where the

asset pricing equation states that the opportunity cost of buying an asset
must equal the capital gains plus the dividend from owning the asset. By
re-labelling the resource rent as the asset price, and the cost increase due to
a lower stock as the dividend, the Hotelling rule becomes identical to this
asset pricing equation.
We also discussed the following two points:

• Equilibrium rent in a period equals the amount that the resource owner
would pay in that period for an extra unit of resource in the ground.
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Rent equals the shadow price for this hypothetical transaction, which
equals the Lagrange multiplier associated with the resource constraint
in this period.

• It is optimal to exhaust cheaper deposits before beginning to use more
expensive deposits. We confirmed this result for the case of mines with
different constant extraction costs.

5.9 Terms, study questions, and exercises

Terms and concepts

Euler equation, Hotelling rule, transversality condition, asset price, capital
gains, dividend, Lagrange multiplier, shadow value, in situ.

Study questions

1. (a) For a general inverse demand function p (y) and the parametric cost
function in equation 4.1, write down the competitive firm’s objective
and constraints. (b) Write down and interpret the Euler equation for
this problem. (c) Without actually performing calculations, describe
the steps of the perturbation method used to obtain this necessary
condition.

2. (a) What is the definition of “rent”in the renewable resource problem
for the competitive firm? (b) Use this definition to rewrite the Euler
equation for the problem described in question #1. (c) Write down
the relation between rent in period t and in period t + j (j ≥ 1), and
interpret this equation. In particular explain the difference between the
case where extraction costs depend on the stock and where extraction
cost does not depend on the stock.

Exercises

1. Write the Euler equation for a monopoly facing the demand function
p = 20− 7y with the cost function c (x, y) and discount factor ρ.

Questions 2 and 4 require that you understand how an inductive proof
works. Here is the context and the logic of this type of proof. You
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want to show that “something that depends on an integer j” is true
for any positive integer j. In our context, the “something” is an
equation. Inductive proofs use two steps. The first step shows that
the “something”is true for j = 1. The second step shows that if the
“something”is true for j−1, then it is also true for j. These two steps
taken together mean that the “something”is true for j = 1; therefore
it is true for j = 2; therefore it is true for j = 3...and so on.

2. (a) Use an inductive proof and the Hotelling rule (equation 5.4) to
establish equation 5.6. (Note that this equation concerns the situation
where extraction costs do not depend on stock.) In step 1, confirm
(using equation 5.4) that equation 5.6 is true for j = 1. The second
step requires that you show that if equation 5.6 is true for j − 1, then
it is also true for j. To accomplish this step, you assume that equation
5.6 is correct when you replace j by j − 1. Using this assumption and
equation 5.4, show that equation 5.6 must therefore be true for j. (b)
provide a one- or two-sentence explanation of equation 5.6.

3. Fill in the missing algebraic steps that lead from equation 5.4 to 5.9
when extraction costs are constant.

4. (a) Use an inductive proof and the Hotelling rule (equation 5.4) to
establish equation 5.11. (See question 2 above.) (b) Provide the
economic explanation of equation 5.11 in a couple of sentences.

Sources

Hotelling (1931) is the classic paper in the economics of nonrenewable re-
sources.
Solow (1974) and Gaudet (2007) provide time-lapse views of the role of

the Hotelling model in resource economics.
Pindyck (1978 and 1980) made important contributions to analysis of the

Hotelling model, including extensions to uncertainty.
Weitzman (1976) studied the optimal order of extraction from mines with

different costs.
Dasgupta and Heal (1979), Fisher (1981) and Conrad (2010) provide

graduate-level treatment of the nonrenewable resource model.
Berck and Helfand (2010), Hartwick and Olewiler (1986), and Tietenberg

(2006), provide undergraduate-level treatment of this material.



Chapter 6

Empirics and Hotelling

Objectives

• Understand what it means to test the Hotelling model, and the practical
diffi culties of performing such a test.

Information and skills

• Summarize the main empirical implications of the Hotelling model.

• Have an overview of historical price patterns for several natural re-
sources.

• Understand why data limitations complicate testing the Hotelling model.

• Understand whymarkets respond differently to anticipated versus unan-
ticipated change, and the empirical implications of this difference..

Theories, in order to be useful, must generate hypotheses that can, at
least in principle, be falsified (proven wrong). Models provide a means of
stating a theory formally; like maps, they involve a trade-off between realism
and tractability. A map of the world that consists of a circle is too abstract
to be of any use. A map of the world containing all of the details of the world
is equally useless.1 Economic models help in identifying testable hypotheses
and they can be useful in studying policy questions.

1Jorge Luis Borges’ (very) short story “On Exactitude in Science" tells the tale of
an empire in which cartography becomes so precise that the empire creates a map of its
territory on a 1—1 scale. Later generations decide that this map is useless, except as a
source of clothing for beggars.

95
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The theory of the firm in neoclassical economics rests on the premise
that rational firms attempt to maximize profits. (“Rational”does not mean
“omniscient”.) In a trade context, this theory means that firms care about
the sum of profits across all markets, not merely profits in a single country.
Exchange rates make it possible to express profits in different countries in
a common unit of currency (e.g. dollars); transportation costs determine
the importance of a commodity’s physical location. In the natural resource
context, the theory of the firm implies that firms care about profits in cur-
rent and future periods, not merely in a single period. Discounting makes
it possible to add up the profits in different periods, playing a role in the
resource setting similar to exchange rates and transportation costs in the
trade context.
The Hotelling model formalizes the theory of the firm in the natural

resource setting. This model adopts the profit-maximizing premise and
recognizes that resource stocks are finite, causing extraction costs to even-
tually rise, regardless of whether the resource is ever physically exhausted.
This model has had little success in generating testable hypotheses, but can
nevertheless be useful for policy analysis. The one hypothesis that is easily
tested, based on constant extraction costs, is also easily rejected. Other
hypotheses are testable in principle, but because of lack of data they cannot
be tested directly.
A theory that generates no testable hypotheses cannot be corrected or re-

jected. At best, it provides a starting point for thinking about issues. Testing
requires confronting a hypothesis with data, often using statistical methods.
We avoid saying that a statistical test either accepts or rejects a hypothesis,
and instead say that it either “fails to reject”or rejects a hypothesis. For ex-
ample, a theory might imply that a particular elasticity is equal to 1. Using
data and econometric techniques, we might obtain a 95% confidence interval
of (0.98, 1.12) for the elasticity estimate. Because the hypothesized value lies
in this confidence interval, we would (for the 95% level of confidence) fail to
reject the hypothesis that the elasticity equals 1. But we would also fail to
reject the hypothesis that the elasticity equals (for example) 1.05. Because
the elasticity cannot equal two different numbers, we can only say that the
test fails to reject our hypothesis, not that it accepts the hypothesis. If
the confidence interval did not include our hypothesized value, we say that
the test rejects the hypothesis. In that case, we question (and perhaps im-
prove) the theory that generated this hypothesis, or we question the data
and econometric assumptions used to generate the test result.
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The validity of the Hotelling model affects how we should think about
resource markets and evaluate policy changes. Resource-pessimists worry
that we will run out of essential resources. Resource-optimists think that
prices respond to impending shortages, causing markets to create alterna-
tives. This optimism rests on the belief that market outcomes are determined
by rational profit-maximizing agents, i.e. that the Hotelling model describes
resource markets. If the theory is correct (and markets are competitive),
then the First Fundamental Theorem of Welfare Economics (Chapter 2.6)
implies that the competitive equilibrium is effi cient. In this case, the fact
that nonrenewable natural resources are finite does not, in itself, create a
basis for government intervention. There may, of course, be distinct moti-
vations for intervention, e.g. concerns about equity or market failures, just
as arise in many other markets. If, however, nonrenewable resource mar-
kets are inconsistent with even sophisticated versions of the Hotelling model,
then resource markets are unlikely to be effi cient and prices would provide
little warning of impending scarcity, thus undercutting the basis for resource-
optimism. Therefore, it is worth knowing whether the theory underlying the
Hotelling model is a useful description of resource markets.
Given the uncertain empirical foundation of the Hotelling model, why

do resource economists rely so heavily on it for policy analysis? The most
persuasive answer is that the assumption of rational profit-maximizing firms
is as plausible for natural resources as for other types of capital, where em-
pirical testing has been more persuasive. It would be absurd to take literally
the deterministic Hotelling model studied above, in which agents perfectly
forecast future prices. But it is unlikely that resource owners —or owners of
other types of capital —ignore the future in deciding how to use their asset.
Investors make mistakes, but investors who systematically make mistakes are
likely to be culled from the herd.2

Economists can rarely conduct the type of experiments that laboratory
scientists perform. We seldom have one group of economies that serve as
the “control group”and another that serve as the “treated group”.3 There-

2The lack of a better alternative is another reason for using the Hotelling model. Al-
ternatives matter. How can you tell if someone is an economist? Ask them how their
husband/wife/partner is. An economist will answer “Compared to what?”

3To test the effi cacy of a new drug, researchers compare the outcome of people who
receive the drug (the treated group) with those who receive a placebo (the control group).
If we could conduct experiments with economies, the economies subject to the policy of
interest would be in the treated group, and those without the policy would be in the
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fore, economists use mathematical models, an alternative to bonafide (and
infeasible) experiments to assess the likely effect of policy. For applications
involving fossil fuels, the Hotelling model is key. By comparing a model
outcome in the absence of a policy, and second outcome under a particular
policy, we have at least some basis for evaluating that policy. Chapter 8
illustrates this procedure. If the underlying model is fundamentally wrong,
then this kind of experiment is not informative. Therefore, the validity of
the Hotelling theory is important.

6.1 Hotelling and prices

Objectives and skills

• Have an overview of the time trajectories of prices for major resources.

The simplest version of the Hotelling model, with zero extraction costs,
implies that price rises at the rate of interest. With constant average extrac-
tion cost, C > 0, prices rise more slowly than the rate of interest. Figure
6.1 shows the profiles of real prices (nominal prices adjusted for inflation)
for nine commodities. The dotted lines show the time trends fitted to this
price data. The points of discontinuity in the dotted lines capture abrupt
changes in the price trajectory. For most of these commodities there are
long periods during which the price falls, and at least one abrupt change the
price trajectory.
We need only price data to test the Hotelling model under the assumption

of constant costs. In light of Figure 6.1, it is not surprising that research
finds that this version of the Hotelling model is not consistent with data. We
therefore consider versions of the model with non-constant costs, and then we
consider more fundamental changes to the model or the testing procedure.

6.2 Non-constant costs

Objectives and skills

• Understand why it is diffi cult to test the Hotelling model with non-
constant marginal extraction costs.

control group. An increasing number of such experiments have been conducted during
the last fifteen years, but not at the macro-economy scale.
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Figure 6.1: Real commodity prices. (Lee, List, and Strazicich, 2005)

Lack of data makes it diffi cult to test the Hotelling model with non-
constant costs. The case where costs depend on extraction level, but not on
remaining stocks, illustrates the problem. Here, the Hotelling rule is

pt −
dc (yt)

dy
= ρ

(
pt+1 −

dc (yt+1)

dy

)
. (6.1)

The problem is that we do not observe marginal costs. If we assume (for
example) that marginal costs equal a + hy, then we can write equation 6.1
as a function of prices and quantities and estimate the parameters ρ, a, h. If
the parameter estimates are implausible, the researcher concludes that the
model does not fit the data. This procedure involves a joint hypothesis
that equation 6.1 is a reasonable description of behavior, and the marginal
cost function a + hy (or some alternative) is a reasonable description of the
marginal cost. If the statistical tests reject our joint hypothesis, we do not
know whether the rejection was due to the failure of one or both parts of the
hypothesis.
If we had good data on costs (in addition to prices and quantities), then

we could estimate a flexible cost function and have a reasonable degree of
confidence in the resulting estimate of marginal cost. We would then be closer
to testing the hypothesis involving behavior. Low quality cost data limits
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many fields of empirical economics, not just resource economics. A common
procedure in other fields uses a firm’s optimality condition, together with
information about factor prices, to estimate marginal costs. Here, however,
the empirical objective is to determine whether the optimality condition, the
Hotelling rule, describes firms’behavior. It is not possible to both assume
that the Hotelling rule holds and also to test whether it holds.

6.3 Testing extensions of the model

Objectives and skills

• Recognize that extensions of the model lead to a better fit with data,
but increased diffi culty of empirical testing.

• Understand the different equilibrium effects (e.g. on prices) of antici-
pated versus unanticipated changes, and the consequences for estima-
tion.

• Understand the use of proxies in estimation.

The theory presented in Chapter 5 omits many real-world features, includ-
ing: (i) the discovery of new stocks; (ii) changes in demand due to changing
macro-economic conditions or the discovery of alternatives to the resource;
(iii) changes in extraction costs due to changes in technology or regulation,
(iv) and general uncertainty. We consider the empirical implications of these,
and also explain consequences, for empirical testing, of the distinction be-
tween anticipated and unanticipated changes.
Owners of stock in a company have a claim on future profits of the com-

pany; owners of a resource stock have a claim on future profits from selling
the resource. Asset prices in general, and resource prices in particular, are
“forward-looking”. Equilibrium asset prices (and resource rent) depend on
expectations of future profits. Many firms (e.g. Amazon) had high stock
valuations long before earning profits. The price of a company’s stock de-
pends on the market’s perception of the company’s future profitability. The
equilibrium resource rent, and thus the current equilibrium resource price,
depends on the resource firm’s expectations of future prices and costs.
These expected future prices or events are “capitalized” into the asset

price, meaning that the current asset price incorporates beliefs about them.
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Asset prices change in response to surprises. For example, if the market has
been expecting the Federal Reserve to increase interest rates, stock prices
will not change much following the Fed’s announcement of a rate increase,
simply because the prices already take the likely rate increase into account.
In contrast, if the market had expected the Fed to maintain low interest rates,
the announcement of a rate increase comes as a surprise, and may have a
significant effect on the market.
Changes in demand, technology (costs), resource stocks, and policy (e.g.

taxes) all affect incentives to extract, and thus potentially change equilibrium
prices. If resource owners care about future profits and are forward-looking,
anticipated and unanticipated changes have different equilibrium effects; in
addition, anticipated effects alter equilibrium outcomes even before they oc-
cur (Chapter 11.3.5). These features complicate the problem of estimating a
model. In order to know whether an observed outcome is consistent with the-
ory, it might be necessary to know (or estimate) the extent to which markets
anticipated key events.

Stock changes We took the level of the resource stock in the initial
period as fixed, and assumed that the stock falls over time, with extrac-
tion. In reality, firms invest in finding and developing new resource stocks,
with uncertain success. Firms’attitude toward risk influence their decisions
about extracting known reserves and about investing in the search to find
undiscovered reserves. The theory presented above ignores the discovery and
development of new reserves, and all risk.
Some extensions of the Hotelling model recognize that the exploration

decision is endogenous. A simpler model takes the exploration decision as
given, and treats the timing and the magnitude of new reserves as random
variables. Rational firms factor this randomness into their extraction de-
cisions. Large new discoveries create competition for previously existing
deposits, lowering the value of those deposits, thus lowering resource rent.
The large new discovery therefore causes rent on existing deposits to fall.
Because the new stocks do not alter extraction costs of previously existing
deposits, the fall in rent requires a fall in price. Thus, in a model with random
discoveries, price rises between discoveries, but falls at the time of a large
new discovery. In this scenario, the price path is saw-toothed, rising for a
time and then falling at the times of new discoveries.
Royal Dutch Shell’s experience with Arctic drilling illustrates the com-
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plexity of oil exploration. In 2005 Shell announced that it had previously
overstated its proven reserves (known stocks) by more than 20%. This “sur-
prise”(to the market) resulted in an overnight drop of 10% in the value of
company. In an effort to increase proven reserves, Shell ramped up its Arctic
exploration, buying drilling leases and drilling equipment, including a large
rig named the Kulluck. In 2012 it received permission to begin exploration
and towed the Kulluck into position. By the end of the year and a $6 billion
investment, the Kulluck was destroyed in a storm, without having succeeded
in drilling a well. Shell paused its exploration efforts in 2013; after receiving
permits, it resumed exploration, but announced in September 2015 that it
was abandoning these efforts. In August 2014, oil was $100/barrel, but it
had fallen to $27/barrel by early 2016. “Unconventional”sources of oil, such
as in the Arctic, require a price of about $70/barrel to be economical.

Changes in demand Unanticipated and long-lasting changes in de-
mand can also change the price path. The Great Recession beginning in
2008 saw a reduction in aggregate demand, including a reduction in demand
for many resources. Strong developing country growth from 1990 —2010
increased resource demand. If a change in the economic environment causes
firms to expect that future demand will be weaker than they had previously
believed, then they revise downward their estimate of the value of their re-
source stock. This downward revision in rent requires a reduction in price,
just as occurs following discovery of a large new deposit. Thus, over a period
when firms are revising downward their projections of future demand, and
thus revising downward their belief about the current value of a marginal unit
of the stock, the equilibrium price rises more slowly than the (simple) theory
predicts, and might even be falling. The deterministic (perfect information,
no surprises) model ignores unanticipated changes in demand, although those
random events are an important feature of the real world and could explain
observed price falls.

Cost changes The simple Hotelling model ignores changes in costs,
apart from those associated with changes in stock or extraction rates. In
fact, the extraction cost function might shift up or down over time. Down-
ward shifts are associated with declines in price, or with smaller price in-
creases than the standard model predicts. Upward shifts lead to faster price
rises than the model predicts. Technological advances lowered the cost of
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horizontal drilling and made hydraulic fracturing more effective, making it
possible to develop previously inaccessible deposits. These cost reductions
and the discovery of new deposits have similar equilibrium effects. Other
changes, such as stricter environmental or labor rules, increase extraction
costs. For example, in projecting extraction costs for new reserves, Royal
Dutch Shell in 2014 included a (still nonexistent) carbon tax of $40/Mt C02,
or approximately $17/barrel.
An example shows illustrates the effect of anticipated exogenously falling

extraction costs. We replace the constant average cost C with

C (t) = C0 +
a

1 + ft
, (6.2)

where C0, a, and f are positive. As in equation 5.6, the no-arbitrage condi-
tion (the Euler equation) requires that the present value of rent is constant:

pt −
(
C0 +

a

1 + ft

)
= ρ

[
pt+1 −

(
C0 +

a

1 + f (t+ 1)

)]
. (6.3)

Figure 6.2 shows the graphs of price (solid), rent (dashed), and marginal
cost (dotted) under the cost function in equation 6.2.4 Falling costs put
downward pressure on the equilibrium price, just as with a standard good.
Discounting promotes an increasing price trajectory, as in the model with
constant costs, C. Initially, the cost effect is more powerful, so the equi-
librium price falls. However, the cost decreases diminish over time, and
costs never fall below C0. Eventually, the effect of discounting becomes
more powerful, and the equilibrium price rises. Rent (price minus marginal
cost) rises at the constant rate, r, and marginal costs steadily decline to
C0. Adding frequent small shocks and occasional large discoveries causes
the graph in Figure 6.2 to become saw-toothed and bumpy, making it more
closely resemble the graphs of actual time series shown in Figure 6.1.

General uncertainty A rich literature studies the role of uncertainty
about new discoveries, changes in demand and extraction costs, and other
features of nonrenewable resource markets. Uncertainty alters the expected

4Figure 6.2 corresponds to the continuous time version of the discrete time, with a = 30,
Co = 10, f = 0.5, and r = 0.03. The discrete time model leads to simpler derivations and
more accessible intuition, but graphs in the continuous time model are easier to construct
and interpret, simply because they are smooth, instead of step functions.
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Figure 6.2: Equilibrium price (solid), rent (dashed) and marginal cost (dot-
ted).

time path of rents, and thus of prices, even during periods when a large
shock does not occur. Uncertainty complicates the already formidable prob-
lem of testing the Hotelling model, so researchers use proxies, observable
variables closely related to the unobserved variable of interest: resource rent.
In forestry the “stumpage price”is the price paid to a landowner for the right
to harvest timber. Old-growth timber is a nonrenewable resource, and the
stumpage price of this timber is a good proxy for rent. Researchers using
this proxy find moderate support for the Hotelling model.
The stock price of a mining company is a proxy for the rent associated

with the resource that the company mines. Both the observable stock price
and the unobservable resource rent are forward-looking variables that reflect
the expected value of the stream of future profits from owning one more
unit of an asset. For rent, the asset consists of the resource. For the
company, the asset is a composite of the resource, the mining equipment
that the company owns, and many other factors, including intangibles such
as reputation. These two assets are not exactly the same, so the company
stock price is not a perfect measure of the resource rent. However, because
the resource is a large part of the company assets, the two are closely related.
The 2005 fall in Shell’s stock price, mentioned above, following the downward
revision in its proven reserves illustrates this relation.
Chapter 5.6 describes the change in asset prices under certainty. Un-

der uncertainty, the Capital Asset Pricing Model (Box 6.1) shows that the
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equilibrium expected change in an asset price depends on the correlation
between the price of the company and the price of a diversified portfolio of
stocks (a “market portfolio”). If the two are negatively correlated, then the
company tends to do well when the market does poorly, so owning stock in
the company provides a hedge against market risk. (A hedge offsets the risk
associated with a particular activity, e.g. investment in the market.) This
hedge provides a benefit of owning the stock, and is analogous to the divi-
dend discussed in Chapter 5.6: it lowers the expected capital gains needed
to make investors willing to hold buy stock in the mining company./

Box 6.1 The Capital Asset Pricing Model (CAPM) Investors can
buy: (i) a risk-free asset (e.g. government bonds) that pays a safe
return rf ; or (ii) a risky market portfolio with random return r̃m
having expectation Er̃m = rm; or (iii) stock in a company that owns
a nonrenewable resource, with a risky return of r̃c and an expected
return rc. The opportunity cost of investing in the stock market is
the riskless rate rf , and the “market premium”from investing in the
stock market is rm − rf > 0. The “beta”of the mining company is

β =
covariance (r̃m, r̃c)

variance (r̃m)
.

If all investors are rational and risk averse and have the same infor-
mation and no borrowing or lending constraints, the CAPM shows
that the equilibrium expected return to the mining asset must be
rc = rf +β (rm − rf ). If the mining asset is negatively correlated with
the market (its beta is negative), then investors are willing to pur-
chase the mining asset at an expected return below the risk free rate,
because the mining asset provides a hedge against market uncertainty.

The stock price of companies owning copper mines is negatively correlated
with the return on a market portfolio. This negative correlation provides a
hedge against market risk, thereby lowering the equilibrium rate of increase
of the mining company’s stock price. If the observed stock price is a good
proxy for the unobserved rent, then evidence that one variable is consistent
with theory provides some evidence that the other is as well. Using data on
copper mining companies, this research “fails to reject”the Hotelling model.
In general, the market return might have positive, negative, or zero cor-

relation with resource prices. A disruption in oil supply due to war and
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political turmoil, as in the 1970s, can increase oil prices and lower the return
to the market, leading to negative correlation between oil prices and market
returns. Strong economic growth can increase both oil prices and market re-
turns, leading to positive correlation. Certain kinds of shocks are associated
with positive correlation, and other kinds with negative correlation. Empiri-
cal evidence finds zero correlation between oil prices and the market return,
but also finds that oil prices are negatively correlated with future economic
growth. Large increases in oil prices preceded most of the post-World War
II economic downturns.

6.4 Summary

Models are potentially useful for deriving testable hypotheses and for study-
ing the effect of policy changes. The Hotelling model has not been successful
in producing testable hypotheses; future chapters consider its role in analyz-
ing policy. The Hotelling model can produce any number of hypotheses that
can be tested in principle. The lack of reliable cost data makes it diffi cult
to test most of these hypotheses.
With constant marginal and average extraction costs, the Hotelling model

implies that price rises at less than the rate of interest. This statement about
price increases is a joint hypothesis; it is based on a theory of firm behavior
(profit maximization) and an assumption about costs. Statistical tests reject
this joint hypothesis. Because the cost assumption is implausible, rejection of
the hypothesis provides little information about the validity of the behavioral
theory. For purposes of policy analysis, the behavioral theory is essential;
assumptions about costs may be convenient, but not essential.
Adding real-world features, including non-constant marginal extraction

costs, exploration, random shocks to stock, demand or cost, or systematic
time-varying changes to costs, can generate simulated price paths that re-
semble observed price paths. Lack of data makes it diffi cult to directly test
models that incorporate these kinds of realistic features. Because we can-
not observe rents, they have to be constructed using estimates of marginal
costs. Empirical tests of the Hotelling model using such constructed data
thus involve a joint hypothesis, concerning the theory of profit maximization
and assumptions about marginal costs. A few studies use proxies, such as
stumpage fees for timber or the stock price of companies that mine resources,
to indirectly test the Hotelling model. Those indirect tests provide mod-
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est support for the behavioral theory underlying the Hotelling model. The
Hotelling model implies that the effect on resource prices of changes, e.g. in
technology, policy, or demand, depends on the extent to which markets an-
ticipated those changes. It is diffi cult to measure the degree of anticipation.
The Hotelling model has limited ability to generate testable hypotheses

and it is not useful for predicting short or medium run changes in resource
prices. The Hotelling model is nevertheless useful for studying the effect of
policy changes, where we rely on the assumption of profit maximization, a
hypothesis supported by other fields of economics.

6.5 Terms, study questions and exercises

Terms and concepts

Real versus nominal prices, joint hypothesis, control group, treated group,
maintained hypothesis, anticipated versus unanticipated changes, proven re-
serves, proxies, hedge, market portfolio, market return, CAPM, stumpage,
Occam’s razor

Study questions

1. (a) Describe the simplest version of the Hotelling model’s predictions
about change in prices over time. (b) Describe important features
of price series for actual nonrenewable resources, and contrast these
to the predictions of the simplest Hotelling model. (c) What does it
mean to empirically “test”the Hotelling model? Discuss some of the
diffi culties in conducting such a test. (Your answer should develop the
idea that there are many versions of the Hotelling model, not just the
simplest one. Your answer should also discuss the fact that a test of
the Hotelling model is almost certainly a test of a “joint hypothesis”,
and explain why this matters.)

Exercises

1. Use the definition

p (y)− ∂c (x, y)

∂y
= R.
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Suppose that extraction costs are convex in extraction (∂
2c(x,y)
∂y2 > 0).

(a) Give two examples of “news”about future events that would plau-
sibly lead to a reduction in R. (b) Using economic logic (not math)
explain briefly the effect of this type of news on the equilibrium values
of y and p. (c) Use mathematics to confirm your answer to part (b).
(Hint: recognize that y is an endogenous variable that depends on R;
write y = y (R) to reflect this dependence. Then take derivatives,
with respect to R, of both sides of the definition of rent, to obtain an
expression for the sign of dy

dR
. Use the sign of this derivative to confirm

your answer to part (b).

2. Extraction costs are C (t) y with

C (t) = C0 +
a

1 + ft
,

and a > 0 and f > 0. This cost function is non-stationary. (a) State in
words what this cost function states in symbols. (b) Choose parameter
values C0, a, and f and graph C (t). (c) Explain how to derive the
Euler equation 6.3. (It is not necessary to perform calculations.)

3. Suppose that average extraction cost is constant, C, and the period t
inverse demand function is

pt =
a

a0 + a1t
− yt,

where a0, a1, and a are positive known parameters. (This type of
model is called “non-stationary”because there is an exogenous time-
dependent change —here, a change in the demand function.) (a) State
in words what this demand function states in symbols. (b) Consider
a competitive firm facing this demand function. Refer to Chapter
5 to write the Euler equation for this model (no derivation needed).
(c) Explain what this equilibrium condition implies about the rate of
change in prices. Provide an economic explanation. (d) This problem
and the previous one show that nonstationary costs and nonstationary
demand have different effects on the appearance of the Euler equation.
Identify this difference, and provide an economic explanation for it. (e)
The text discusses the effect, on the evolution of rent, of unanticipated
changes in demand. Parts (b) and (c) of this question ask you to
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consider the effect of anticipated changes in demand. Summarize in a
sentence of two the difference in the effect, on the evolution of rent, of
unanticipated versus anticipated changes in demand. (f) Provide an
economic explanation for this difference.

4. Using the parametric example in equation 4.1, discuss the equilibrium
price effect of unanticipated cost reductions. To answer this question,
you have to consider the various ways in which costs might fall; review
your answer to Exercise 2 in Chapter 4.

5. Suppose that the return from investing in an index fund (a particular
type of mutual fund) is a random variable r̃m with expectation Er̃m =
rm and variance σ2

m; the return from investing in a copper mining
company is a random variable r̃c and an expected return rc and variance
σ2
c . Assume that rm > rc. The correlation coeffi cient between the
two assets is ρ < 0. A person buys one unit of stock in the index fund
and a units in the copper company. The return on this portfolio is
the random variable rm + arc. (a) What is the mean and variance of
the return on this portfolio? [Hint: Use Google or consult a statistics
textbook to find the formula for the mean and variance of the weighted
sum of random variables, and also the formula that shows the relation
between the correlation coeffi cient and the covariance of two random
variables.] (b) Write the formula for ac, the value of a that drives
the variance on the portfolio to zero. (c) Would a risk-averse investor
(one who dislikes risk) ever want to buy a portfolio that has more than
ac shares of the copper company for each share of the mutual fund?
Explain in one sentence.

Sources

This chapter relies heavily on the surveys by Livernois (2009) and Slade
and Thille (2009). Kronenberg (2008) and Krautkraemer (1998) also provide
useful surveys.
Heal and Barrow (1980), Berck and Roberts (1996), Pindyck (1999), and

Lee, List and Strazicich (2006) test the Hotelling model using price data.
Miller and Upton (1985) for oil and gas, Slade and Thille (1997) for

copper, and Livernois, Thille, and Zhang (2006) for old-growth timber use
proxies to test the Hotelling model.
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Halvorsen and Smith (1991) use a restricted cost function to estimate
shadow prices in the Canadian metal mining industry, rejecting the implica-
tions of the Hotelling model.
Chermak and Patrick (2001) use a model similar to Halvorsen and Smith,

and fail to reject the Hotelling model. Chermak and Patrick (2002) subject
the same data to four specifications, two of which reject and two of which
fail to reject the Hotelling model.
Lin and Wagner (2007) find support for the Hotelling model for 8 of 14

minerals.
Malischek and Tole (2015), using uranium mining data, reject an exten-

sion of the Hotelling model that includes market power and exploration.
Pindyck (1980) pioneered the large literature on uncertainty and nonre-

newable resources.
Farzin (1995) discusses the impact of technological change on resource

scarcity.
Hamilton (2011) studies the relation between oil prices and economic

activity.
Kilian (2009) discusses the distinction between oil demand and supply

shocks.
Fama and French (2004) explain the Capital Asset Pricing Model and

discuss its empirical significance.
Reuters (2014) reports Shell’s assumption of carbon tax in projecting

future extraction costs.
Funk (2014) describes Shell’s experience with the Kulluck.



Chapter 7

Backstop technology

Objectives

• Apply the methods developed above to examine a backstop technol-
ogy’s effect on natural resource extraction.

Information and skills

• Know the meaning of and the empirical importance of backstop tech-
nologies.

• Understand why the existence of the backstop affects equilibrium ex-
traction even before the backstop is used.

• Understand the effect of resource extraction costs on the timing of
backstop use.

A “backstop”technology provides an alternative to the nonrenewable re-
source. Solar and wind power, and other methods of generating electricity,
are backstop technologies for fossil fuels. We assume that the backstop is
a perfect substitute for the resource, can be produced at a constant aver-
age cost, b, and can be supplied without limit. In contrast, the natural
resource has a finite potential supply, given by the stock level. The backstop
is available to the economy at large; any firm can use it.
The eventual use the backstop affects the equilibrium price and resource

extraction paths, even during periods when the backstop is not actually used.
The equilibrium level of resource extraction, and thus the resource price, in a
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period depend on firm’s expectations of future prices. The backstop directly
effect the market price in periods when it is used. Via expectations, the
backstop also effects price and resource extraction even before it is used.
This insight is true generally. Anything that changes future resource

prices —or, in an uncertain world, people’s beliefs about these future prices
— changes current extraction decisions. In the static model, competitive
supply in a period depends on the price in that period. In the nonrenew-
able resource setting, however, current supply depends on current and future
prices. The inter-relationship of markets across periods, in the resource set-
ting, is analogous to the inter-relation of markets in the trade setting. In
the trade example from Chapter 2, demand for tea in one country affects the
equilibrium price and sales in the other country.

7.1 The backstop model

Objectives and skills

• Understand the simplest model of a backstop technology.

As above, we use yt to denote resource use in period t. We need two
new pieces of notation. Denote zt as the amount of the alternative produced
using the backstop technology in period t, and wt = yt + zt as supply of the
resource plus the backstop good. In some settings, e.g. with fossil fuels
and renewable power, it is natural to think of z as energy. Fossil fuels and
renewable power are physically different, but can be expressed in common
units of energy.
The assumption that the resource (e.g. oil) and the alternative produced

using the backstop technology (e.g., solar power) are perfect substitutes
means that the price in any period depends only on the sum of the resource
and the backstop good brought to market, wt. If both the resource and the
backstop good are produced during a period, they must have the same price.
This model of the backstop technology misses important real-world features.
Just as coal is not a perfect substitute for oil, a low-carbon alternative such as
solar power is not a perfect substitute for a fossil fuel. Solar power creates
an “intermittency” problem: the power goes off when the sun goes down.
Natural gas and coal do not suffer from this problem. Many machines that
can run on fossil fuels have not been adapted to run on solar or wind power.
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Taking into account the products’imperfect substitutability requires a more
complicated model, having different prices for each product.
We assume a constant marginal cost for the backstop, but actual costs

might either rise of fall with production levels or with cumulative production.
Costs rise with output under decreasing returns to scale. Producing solar
power uses land, and the most economical locations are likely to be used
first. Therefore, subsequent solar farms may be more expensive than earlier
units, leading to decreasing returns to scale. There may also be economies
of scale, learning-by-doing, and technological advances that offset those cost
increases. The unit cost of producing solar power in large scale solar farms
might be lower than the unit costs of producing this power on houses and
buildings, resulting in economies of scale. The history of new technologies
shows that learning-by-doing and technological progress cause costs to fall
over time. The cost of solar power is estimated to have fallen by a factor of 50
between 1976 and 2010. We overlook the products’imperfect substitutabil-
ity and many of the complications associated with backstop costs in order
to illuminate some of the significant features arising from the interaction of
backstop and nonrenewable resource markets.
When society uses the backstop, price = marginal cost (= b), so

z > 0⇒ p = b. (7.1)

The inverse demand function, p (w), equals the price consumers pay for the
quantity w = y + z.
Chapter 5 provides the tools needed to analyze the model of a backstop

technology. The Euler equation establishes the relation between rent (prices
minus marginal cost) in periods when extraction is positive. The transversal-
ity condition provides information about the final date of extraction, which
we use to solve for the competitive equilibrium. We first use the constant
marginal cost model, c (x, y) = Cy, to show how the presence of a back-
stop affects equilibrium resource extraction. We then consider more general
extraction costs.

7.2 Constant extraction costs

Objectives and skills

• Identify and interpret the transversality condition in the backstop model
with constant average extraction costs.
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• Explain how and why the presence of the backstop changes the equi-
librium price and extraction trajectories.

Here we assume constant average extraction costs, c (x, y) = Cy, with
C < b (otherwise, the resource is worthless) and b is less than the choke price
(otherwise, the backstop is worthless). Apart from one minor difference,
and different notation, this problem is the same as the problem discussed in
Chapter 5.5, where mines have different extraction costs. There we denoted
the extraction costs as Ca and Cb, and here we denote them as C and b. The
minor difference is that here, the “expensive mine” is actually a backstop
that, by assumption, can produce unlimited quantities at constant costs, b.
In Chapter 5.5, the two mines have finite stocks.
Chapter 5.5 shows that it is never optimal to begin to extract from the

more expensive mine while there remains available stock in the cheaper mine.
Either the cheaper mine is exhausted before extraction begins from the more
expensive mine, or there is a single transitional period during which extrac-
tion occurs from both mines. The same pattern occurs here, if we replace
“the more expensive mine”with “the backstop technology”. The trajectory
consists of two intervals: only the resource is used during the first inter-
val, and only the backstop is used during the second; there may be a single
transitional period during which both are used.
Denote T as the last period during which resource extraction is positive.

For t < T , resource extraction is positive in adjacent periods. The mine
owner’s objective and the optimality condition (Hotelling rule) are

objective: max
∑T

t=0 ρ
t [ptyt − Cyt] ,

Hotelling: pt − C = ρ (pt+1 − C) for t = 0, 1, 2..T − 1.
(7.2)

Now consider the mine owner’s problem at time T , the last date at which
(under the candidate solution) extraction is positive. If, in period T , the
remaining resource stock is not suffi cient to supply the entire market, then
the backstop is also used in that period; in this case, the price in period T is
b. If, in period T , the remaining resource stock leads to a price below b, then
the resource supplies the entire market, and the backstop is not used until
the next period, T + 1.
We consider both of these possibilities, using the firm’s optimality condi-

tion at time T , the “transversality condition”:

pT − C ≥ ρ [b− C] . (7.3)
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Figure 7.1: Solid curve shows the equilibrium price under the backstop.
Dashed curve shows the equilibrium price without the backstop. Demand is
y = 10p−2, C = 2, b = 5, x0 = 42, r = 0.05

In period T+1, when the backstop is being used, the price equals the backstop
cost, b. The resource firm has the option, at time T , to reduce extraction by
one unit, and to sell that unit in period T + 1. This perturbation reduces
period T profits by pT −C, and increases period T + 1 profits by b−C. The
present value, at time T , of the higher T + 1 profit is ρ [b− C]. Inequality
7.3 states that the profit reduction from lowering period-T sales is at least as
great as the present value of the profit gain from increasing T+1 sales. If this
inequality did not hold, then perturbing the candidate increases the present
discounted sum of profits, implying that candidate is not an equilibrium.
Inequality 7.3 is a necessary condition for optimality.
Given a demand function and parameter values, we can use the Euler

equation and the transversality condition to find the equilibrium price and
sales trajectories. Figures 7.1 and 7.2 graph these trajectories with the
backstop (solid) and without the backstop (dashed).1 These figures illustrate
the general point that the backstop affects the equilibrium sales and price path,
even during periods when the backstop is not being used. The future use of
the backstop affects future prices, and these affect the current price, thus
affecting current sales.

1Figures 7.1 and 7.2 show the graphs for the continuous time analog of the discrete time
model. The continuous and the discrete time models are qualitatively similar, except that
the transitional period, when the backstop and resource are used simultaneously, vanishes
in the continuous time setting; there, the length of every period, including a transitional
period, is infinitesimal.
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Figure 7.2: Solid curve: the equilibrium quantity of resource sales under the
backstop. Dashed curve: the equilibrium quantity without the backstop.

Figure 7.1 is based on three facts: (i) During periods when the resource
is being extracted, the no-intertemporal arbitrage condition (the Euler equa-
tion, or the Hotelling Rule) requires that price minus marginal cost rise at the
rate of interest (the second line of equation 7.2). (ii) The resource is even-
tually exhausted, with or without the backstop (because marginal extraction
costs is constant and less than the choke price). (iii) The price equals b when
the backstop is being used (because the potential supply of the backstop is
infinite, so price equals marginal cost in a competitive equilibrium).
Absent the backstop, we use Facts (i) and (ii) to determine the dashed

curve in Figure 7.1. Given any value of the initial price, Fact (i) enables
us to determine all subsequent prices, and thus to determine all subsequent
sales levels. We identify the correct initial price using Fact (ii), requiring
the sum, over time, of all of these sales levels to equal the initial stock. At
times during which the price continues to rise, the resource has not yet been
exhausted. In particular, at time t = 35 (when the vertical coordinate
of the dashed graph in Figure 7.1 equals b), the resource has not yet been
exhausted.
Now consider the solid curve, showing the price trajectory under the

backstop. We might begin with the guess that the initial price, under the
backstop, is the same as without the backstop. If that guess were correct,
then the price (in the with-backstop scenario) follows the dashed curve until
that curve reaches the backstop cost, b, at t = 35. We noted that at this time,
the resource has not been exhausted (under the dashed price trajectory).
Therefore, resource sales must continue after t = 35. By Fact (iii), in the
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with-backstop scenario, the price is constant at b after t = 35. Therefore,
we conclude that during a period when the resource is being sold, the price is
constant. However, this conclusion contradicts Fact (i) (the Hotelling Rule).
Therefore, we know that our guess that the initial price under the backstop
equals the initial price without the backstop, is incorrect.
Consequently, the initial price under the backstop must be either greater

than or less than the initial price absent the backstop. If the initial backstop
price were greater, then the price trajectory reaches the backstop cost, b,
even before t = 35. Because the previous prices are higher than under our
original guess, the previous sales are lower, so again the resource stock is
positive when the price hits b, and again the resource is being sold while
price is constant at b, again contradicting Fact (i).
Consequently, we know that the initial price under the backstop must be

less than the price absent the backstop. The price reaches b at about t = 40
(instead of t = 35). During this longer period with lower prices, all of the
resource stock has been sold, so that once the backstop begins to be used
(and price remains at b) there is no more resource to sell; then, the Hotelling
Rule does not apply.

7.3 More general cost functions

Objectives and skills

• Understand how the backstop changes the price and extraction tra-
jectory when average extraction costs depend on either the level of
extraction or on the resource stock.

The constant average (= marginal) cost function in the previous section
is adequate for explaining the basic features of the backstop model, but it
has two empirically false implications. (i) The model implies that, with
the exception of a single transitional period, the resource and the backstop
are never used in same period. However, when marginal costs increase with
extraction rates, the resource and the backstop might be used simultaneously
in many periods. (ii) The constant-cost model implies that the resource is
physically exhausted before the backstop starts being used. However, when
costs increase as the stock of resource falls, it may not be economical to
physically exhaust the resource. We consider these two features separately.
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7.3.1 Costs depend on extraction but not stock

Here we assume that marginal costs depend on the rate of extraction, but
not the stock: c = c (y), with c′ (y) > 0 and c′′ (y) > 0; for example, c (y) =
Cy1+β. Both the resource firm and the “backstop firm”are price-takers.
Due to this fact, we can think of the energy industry as consisting of a single
representative firm that is able to use either or both the natural resource and
the backstop. This firm’s objective is:

∞∑
t=0

ρt [pt (yt + zt)− c (yt)− bzt] .

There may be many periods when both the resource and the backstop are
used (y > 0 and z > 0). It is no longer true, in general, that society uses
the backstop only when the resource is about to be, or has been, exhausted.
When marginal extraction costs increase with the extraction level, there

can be either one or two distinct phases of resource extraction. In early
periods, provided that the initial stock is suffi ciently large, it is optimal to
extract only the resource. During this phase, the Euler equation holds:

When the resource is being sold:
pt − c′ (yt) = ρ (pt+1 − c′ (yt)) .

(7.4)

Along this part of the trajectory, rent (price - marginal cost) rises to main-
tain a constant present value of rent. Rent can rise because price rises, or
marginal cost falls, or a combination of the two.
Whenever the backstop is sold (z > 0) the condition that price equals

marginal cost implies pt = b. At some time, say T1, firms begin to use the
backstop, while continuing to extract the resource. During this phase, the
price remains constant at p = b, but extraction falls (so c′ falls). Price minus
marginal cost rises, maintaining a constant present value of rent.

When both the resource and backstop are being sold:
b− c′ (yt) = ρ [b− c′ (yt+1)] .

(7.5)

At a later time, T2 ≥ T1 the resource is exhausted and the backstop is the
sole source of supply. The trajectory might consist of two phases of resource
extraction (only the resource followed by both the resource and the backstop),
or it might consist of a single phase (the resource and the backstop are used
simultaneously).
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Equation 7.5 is a no-arbitrage condition. Because the backstop is being
used in both periods t and t + 1, the price in both periods equals b. To
interpret equation equation 7.5, consider a particular perturbation in which
the firm extracts one more unit of the resource in period t, and makes an
offsetting reduction in extraction in period t+1. This perturbation increases
period t extraction cost by c′ (yt). However, because the price remains at
b, the perturbation does not alter total (resource + backstop) sales or rev-
enue. Therefore, a unit increase in extraction requires a one unit reduction
of backstop production in the same period. The reduction in period t total
(backstop + extraction) costs due to this perturbation is therefore b− c′ (yt),
the left side of equation 7.5. The offsetting period t+1 decrease in extraction
reduces costs by c′ (yt+1). However, because price remains constant, there
must be a one unit increase in backstop sales, costing b. The net increase in
future cost, associated with the perturbation, is therefore b − c′ (yt+1), and
the present value of that additional cost equals the right side of equation 7.5.
Along an optimal extraction path, the firm has no desire to reallocate the
resource use: there are no opportunities for intertemporal arbitrage.

7.3.2 Stock-dependent costs

We now consider the case where the firm’s extraction cost is c (x, y) =
C (σ + x)−α y, i.e. average extraction cost depends on the resource stock,
but not on the rate of extraction: costs are lower when the resource stock is
higher. We assume that b < C (σ + 0)−α, which implies that it is not opti-
mal to physically exhaust the resource. This assumption implies that there
is a critical threshold of x, denoted xmin, that solves C (σ + xmin)

−α = b. It
is never optimal to extract when the stock is below this level: there, the
backstop is cheaper than the resource. If the initial stock of the resource is
x0, then the “economically viable”stock, i.e. the amount that will eventually
be extracted, is approximately x0 − xmin.2

Here, the resource is not physically exhausted, but for low stocks it is

2Why “approximately”instead of “exactly”? We assumed that extraction costs depend
on the stock at the beginning of the period. Thus, for example, if the stock is slightly
above xmin, it might be optimal to extract to a level slightly below xmin. However, if the
current stock is below xmin, further extraction is uneconomical. This complication does not
arise in a continous time model, where the economically viable stock is exactly x0 − xmin.
Provided that the length of each period is reasonably small, say a year or so, the discrete
time model and the continuous time model are similar.
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Figure 7.3: A lower backstop cost, b, increases the minimum economically
viable stock.

not economically viable to extract more. Coal is one of the many examples
of such a resource. Even apart from issues related to climate change, we
will not use all of the coal on the planet, simply because at some point
extraction costs exceed the cost of an alternative. Figure 7.3 shows a graph
of stock-dependent average costs, the solid curve, and a backstop cost of 2
at the dashed line. In this example, extraction does not occur if the stock
is below xmin ≈ 13. The cost of extracting stocks below this level exceeds
the backstop cost. It is always optimal to drive the resource at least to
the critical level xmin. A trajectory that ceases extraction when the stock
is above this critical level “leaves money on the table”(valuable resource in
the ground). If the backstop cost falls from b = 2 to b = 1, the dashed line
shifts to the dotted line, leading to an increase in the intersection, xmin, and
a decrease in the economically viable stock, x0 − xmin.
As with constant average extraction cost, there is an initial phase during

which the backstop is not used, and an infinitely long phase during which
only the backstop is used. There is at most a single period when both the
resource and the backstop are used.

7.4 Summary

The backstop substitute affects the entire trajectory of the resource price,
even before the backstop is used. This dependence reflects the fact that
a firm’s resource extraction decision is an investment problem. Extraction
in a period depends on the relation between price in that period and in all
subsequent periods. The backstop model drives home an important point:
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the resource supply in a period depends on the entire trajectory of anticipated
future prices. In the familiar static model, it is often reasonable to model
the supply as a function current but not future prices.
Where average extraction cost is independent of the extraction level, there

is at most a single transitional period during which both the resource and
the backstop are used. In all other periods, only one energy source is used.
If the marginal extraction cost increases with extraction, society might use
both sources of energy simultaneously over many periods.
Variations of this model include the possibility that: the resource and the

backstop are imperfect substitutes; the marginal backstop production costs
rises with output (decreasing returns to scale) or falls with output (increasing
returns to scale); and that the backstop cost falls with cumulative output
(learning by doing). In these cases, the backstop and the resource might
also be used simultaneously for many periods.

7.5 Terms, study questions and exercises

Terms and concepts

Backstop technology, transitional period, decreasing and increasing returns
to scale, learning by doing.

Study questions

1. Explain why the presence of the backstop technology affects the com-
petitive equilibrium even in periods before the backstop is actually
used.

2. Different assumptions about extraction costs have different implica-
tions concerning the simultaneous use of the natural resource and the
backstop. (a) Suppose that average (and marginal) extraction costs
are constant. Describe the extraction profile of the resource, in relation
to the production profile of the backstop. In particular, under what if
any conditions are the two used in the same period? (b) Suppose that
extraction costs are increasing in the rate of extraction; these costs do
not depend on the remaining stock. Describe the extraction profile of
the resource, in relation to the production profile of the backstop. In
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particular, under what if any conditions are the two used in the same
period? (c) Explain the source of the difference in parts (a) and (b).

3. Suppose that average (and marginal) extraction costs depend on the
remaining resource stock, but not on the level of extraction. How does
the magnitude of the backstop cost affect cumulative extraction?

Exercises

1. Use a proof by contradiction to establish equation 7.1. [Hint: To use
this type of proof, write the hypothesis that states the “opposite”of
what we want to prove, and derive a contradiction. Here, the hy-
pothesis is “in some period when z > 0, p 6= b.” This hypothesis is the
“opposite”of equation 7.1, the statement that we want to verify. Then
show that the hypothesis must be false, by considering individually the
two possibilities, (i) “z > 0 and p < b”and then (ii) “z > 0 and p > b”.
The proof must explain why neither of these two statements can be
true in a competitive equilibrium. Consequently, equation 7.1 must be
true.]

2. In the constant cost model, explain why the resource is worthless if
C ≥ b. What is the resource rent in this case?

3. (a) In Chapter 7.3.1, why do we assume that c′ (0) < b? (b) Explain
why the assumption c′ (0) < b implies that it is optimal to exhaust the
resource.

4. Chapter 7.3.1 claims that once firms begin using the backstop, they do
not stop using it. Verify this claim, using a proof by contradiction.
See the hint for problem 1 above.

5. Assume that average = marginal extraction costs are constant and
independent of the remaining resource stock. Our model assumes that
the backstop average = marginal cost is constant. Explain how the
following modifications alter the equilibrium described in Chapter 7.2:
(a) The backstop marginal cost is constant at a point in time, but
falls exogenously over time (e.g. due to technological progress): the
function b(t), with b′(t) < 0 replaces the constant b. (b) the backstop
marginal cost increases with the level of production; for example, total
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backstop costs equal 1
2
bz2
t , instead of bzt as in the text. (zt equals time

t production of the backstop.)

Sources

Timilsina et al. (2011) review the evolution and the current status of solar
power.
Heal (1974) is an early paper on natural resources and a backstop.
Dasgupta and Heal (1974) study the case where the backstop becomes

available at an uncertain time.
Tsur and Zemel (2003) consider R&D investment that lowers the cost of

the backstop.
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Chapter 8

The Green Paradox

Objectives

• Use the Hotelling model to study the effects, on climate, of a policy
that promotes a low-carbon fuel.

Information and skills

• Understand how a lower backstop cost affects cumulative extraction
and/or the extraction profile.

• Explain why both of these changes might have climate-related conse-
quences.

• Be able to synthesize this information to describe and then evaluate
the “Green Paradox”.

We discuss the “Green Paradox” for three reasons. First, the topic is
intrinsically important because of its relevance to climate policy. Second,
it provides an example of a situation where well-intentioned policies can
backfire, a possibility that arises in many other contexts. Chapter 9 provides
a more general perspective on this issue; the current chapter sets the stage for
the general discussion by considering a specific example in detail. Third, the
material shows how the Hotelling model can be used to illuminate a policy
question. The Hotelling model makes the policy conclusions almost obvious,
but without that model they would seem counter-intuitive. Formal models
make it easier to understand real-world concerns.

125
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Burning fossil fuels increases atmospheric stocks of greenhouse gasses.
Scientific evidence shows that these higher stocks will affect the world’s cli-
mate, possibly leading to serious environmental and economic consequences.
The potential social costs of climate change include more serious epidemics,
rising sea level, and increased frequency and severity of storms and droughts.
Climate change may also lead to rapid and large-scale extinction of species,
with unpredictable ecological, and ultimately social, consequences; temper-
ature and precipitation changes might decrease agricultural productivity,
worsening food insecurity; these changes may also induce massive human
migration, worsening social conflict. Higher extraction, leading to higher at-
mospheric stocks of greenhouse gasses, worsens the climate problem. These
risks have spurred interest in the development of “green”alternative energy
sources, such as solar and wind power, which emit little or no carbon. Much
of the political discussion concerns the use of public policy to reduce the cost
of providing these alternatives.
We consider a particular policy, a subsidy that encourages firms to under-

take research that decreases the cost, b, of a green backstop energy source. A
cheaper backstop provides economic benefits during periods when it is used.
The cheaper backstop also reduces the fossil fuel price trajectory before the
backstop is used, benefitting energy consumers. However, if fossil fuel con-
sumption was already socially excessive, the lower price of fossil fuels can
lower aggregate welfare by further increasing carbon emissions. The possi-
bility that an apparently beneficial change (the lower-cost backstop) harms
society is known as the Green Paradox.
Other forms of this paradox build on the same general idea that resource

owners anticipate a change that directly effects the market in the future.
Possible changes include future carbon taxes or the future availability of
substitutes to fossil fuels. Those future changes reduce future consumption
of fossil fuels, benefitting the climate. But they induce changes in current be-
havior that might harm the climate. When these kinds of offsetting changes
occur, their net effect on the climate may be ambiguous.
In an economy without market failures, cheaper energy increases social

welfare. Although the lower backstop cost benefits society in this perfect
world, the Fundamental Welfare Theorems imply that there is no need to
subsidize green alternatives here. We do not provide public subsidies to
competitive computer manufacturers, even though their innovations benefit
consumers. In this perfect world, the market rewards the innovators by the
amount needed to induce them to undertake the socially optimal level of
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innovation.
We are interested in public policy where market failures are important,

e.g. due to the pollution externality associated with fossil fuels. Greenhouse
gasses such as carbon dioxide are a classic example of a public bad. In the
absence of “win-win opportunities”(Box 8.1) it is expensive for a country to
reduce emissions. Those reductions lower future greenhouse gas stocks, re-
ducing climate-related damages and creating global benefits. The individual
country making the sacrifice to reduce emissions obtains only a small share of
these global benefits. Due to this market failure, countries have inadequate
incentive to reduce emissions, creating scope for global public policy.

Box 8.1 Win-win opportunities With “win-win” opportunities, the
unilateral reduction of CO2 emissions can benefit a country. Re-
ducing C02 tends to also reduce local pollutants such as SO2 and
Total Suspended Particles (TSP), generating local health benefits.
These kinds of “co-benefits” have been documented for China, and
the Obama administration used these benefits as an additional jus-
tification for environmental rules announced in the summer of 2014.
If the co-benefits are large relative to the cost of C02 reductions, the
country can gain from the reductions even without taking into account
the global benefit of lower atmospheric carbon stocks: a “win-win”.
Using sequestered carbon to improve soil or to reduce oil extraction
costs create other win-win possibilities.

8.1 The approach

Objectives and skills

• Understand the distinction between the climate effect of changes in
cumulative extraction and in the shape of the extraction profile.

Does a seemingly beneficial policy, such as a subsidy that lowers the cost
of the backstop, actually help to correct the climate externality, or does it
make things worse? The subsidy has two types of effects on the externality.
First, the subsidy tends to reduce cumulative extraction of fossil fuels over
the life of the resource, improving the climate problem. Second, the subsidy
alters the extraction path, increasing extraction early on and decreasing ex-
traction later. This “tilting”of the extraction path can worsen the climate
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problem. Either of these effects might dominate, so we cannot presume that
the lower backstop price benefits the climate. We consider the two effects
separately because a model that combines them is more complex, but not
more insightful. Rather than speak generally of improvements in green tech-
nology, we use the backstop model from Chapter 7 with constant costs, b.
An improvement in technology corresponds to a reduction in b, to b′ < b.
The factors of production, e.g. scientists and lab space used to improve

the technology, are costly. Proponents of green subsidies argue that the
social benefits, arising from reduced climate-related damages, justify these
investment costs. To focus on the Green Paradox, we ignore the investment
costs. That is, we ask, “Even in the absence of investment costs, does society
want the lower backstop costs?”A large literature discusses the merits of
“Industrial Policy”, governmental attempts to promote specific industries.
All of the arguments for and against this type of government intervention
also apply to green industrial policy.1 The Green Paradox applies uniquely
to green industrial policy, raising the possibility that society might not want
the better technology even if it were free.

8.2 Cumulative extraction

Objectives and skills

• Recognize that with stock-dependent costs, lowering the backstop low-
ers cumulative extraction, making the Green Paradox less likely.

Chapter 7.3.2 considers extraction costs = C (σ + x)−α y, which increase
as the remaining stock of the resource falls. There, zero extraction is op-
timal for stocks less than or equal to the threshold xmin, the solution to
C (σ + xmin)−α = b; cumulative extraction, over the life of the resource, is
x0 − xmin. A lower backstop price, b < b, increases the threshold, lowering
cumulative extraction (Figure 7.3).
By choice of units, we can set one unit of extraction equal to one unit

of emissions, so reducing cumulative extraction creates an equal reduction of
cumulative emissions. One short ton of subbituminous coal contains about

1An important criticism of industrial policy is that the government does a poor job
of picking winners. Subsidies to Solyndra, a manufacturer of components to solar panels
that went bankrupt in 2011, cost U.S. taxpayers $500 million.
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Figure 8.1: Extraction profiles under high and low backstop costs

3700 pounds of C02. Defining a “unit of coal” to equal a short ton and a
“unit of C02”to equal 3700 pounds, one unit of coal equals one unit of C02.
With stock-dependent extraction costs, a lower backstop cost reduces cu-

mulative emissions over the life of the resource. Insofar as climate-related
damages arise because of cumulative emissions, the lower backstop cost re-
duces climate-related damages. Stock-dependent extraction costs therefore
militate against the Green Paradox. If extraction costs are independent
of the stock, the reduction in backstop costs has no effect on cumulative
extraction and thus no effect on cumulative emissions.

8.3 Extraction profile

Objectives and skills

• Understand the effect of the backstop cost on the extraction profile.

A reduction in the backstop cost reduces future resource prices, thereby
reducing the rent in earlier periods. This reduction in rent decreases the
firm’s opportunity cost of selling the resource. A reduction in the opportu-
nity cost, like the reduction in any kind of (marginal) cost, increases equi-
librium sales. Therefore, a reduction in the backstop costs leads to higher
sales during periods that sales are positive. Because the resource stock is
finite, it is not possible to increase sales at every point in time, so the lower
backstop costs lead to earlier exhaustion of the resource.
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Figure 8.1 shows extraction profiles under high and low backstop costs.2

The important features of the figure are: (i) early in the program (t < 41
for this example) extraction is higher under the low backstop cost, and (ii)
exhaustion occurs earlier under the low backstop costs. At t = 41, the
resource is exhausted under the low backstop cost; exhaustion occurs at
t = 100 under the high backstop cost. The arrival of an improved technology
lowers the backstop cost (from b to b′ < b). The lower backstop cost “tilts
the extraction trajectory toward the present”(small t). Provided that the
lower backstop cost does not make the resource stock worthless (b′ > C), the
arrival time of the new technology may be unimportant. In the example
above, it does not matter whether the improved technology is available right
away, at t = 0, or at t = 40; in either case, it is not used until t = 41.
Chapter 7.2 explains why a backstop lowers the price trajectory relative

to the no-backstop case (before the backstop is actually used). Exactly the
same reasoning implies that a reduction in the backstop cost, from b to b′ < b,
leads to a further reduction in the price trajectory. This reduction in the
price trajectory corresponds to an increase in the sales trajectory. Given that
there is a finite stock of the resource, the higher sales trajectory (during the
period when extraction is positive) implies that the resource is exhausted
sooner. Thus, a lower backstop cost implies that the sales trajectory is
higher, during the period of positive sales, but the resource is exhausted
sooner, as Figure 8.1 illustrates.

8.4 Why does the extraction profile matter?

Objectives and skills

• Understand three reasons why a tilt in extraction profile might increase
climate-related damages.

2Figure 7.2 can be interpreted as comparing extraction profiles under an infinitely costly
backstop and a backstop with a finite cost. Figure 8.1 compares extraction profiles under
backstops with a high and a low cost. The two figures have the same message: lowering
the cost of the backstop increases resource production before the backstop is used.
Figure 8.1 uses a continuous time model with constant average extraction costs, C = 5,

ρ = 0.95 (a discount rate of 5%), demand D = 10p−1.3, and an initial stock of x0 = 46. The
high backstop cost, b = 100, leads to the solid curve of extraction, and the low backstop
cost, b′ = 6, leads to the dashed extraction trajectory. In both cases it is optimal to
exhaust the resource; rent is positive (b > b′ > C). The continuous time curves are
smooth, except for the points of discontinuity.



8.4. WHY DOES THE EXTRACTION PROFILE MATTER? 131

This section considers three reasons why a policy “tilts” the extraction
profile to the present potentially worsens climate change: the tilt might make
it more likely that we cross a threshold that triggers a catastrophe, such as
rapid melting of the Antarctic ice sheet; the tilt might speed the rate of
climate change, and society is worse off when change occurs more quickly;
the tilt potentially creates a higher maximum stock level, and costs may be
nonlinear in the stock. Figures 8.2 —8.4 use the same assumptions as Figure
8.1.

8.4.1 Catastrophic changes

Figure 8.2 illustrates the possibility of crossing a threshold that triggers a
catastrophe. The two extraction profiles in Figure 8.1 have different effects
on the stock of atmospheric carbon. The distinction between stock and
flow variables is critical. Here, emissions (equal to resource extraction, by
choice of units) is a flow variable, measured in tons of carbon per year.
The stock variable, the amount of atmospheric carbon, is measured in tons
of carbon. The flow variable is measured in units of quantity per unit of
time, whereas the stock variable is measured in units of quantity. Historical
emissions, prior to the beginning of program (t = 0) determine the initial
stock of atmospheric carbon. Some of the carbon entering the atmosphere
migrates to other reservoirs, including the ocean and biomass. Although not
literally correct, climate economists sometimes describe this migration using
a constant decay rate for the stock. Fossil fuel emissions increase the stock
of atmospheric carbon, and decay reduces the stock.
Because the initial stock level is historically determined, it is the same for

both extraction paths at time t = 0. Later, for t > 0, the stock trajectory
depends on the extraction (= emissions) trajectory. Because extraction is
initially higher under the low-cost backstop, the stock grows more quickly
in that scenario, relative to the high cost backstop scenario. Figure 8.2
shows the stock trajectories corresponding to the two extraction profiles taken
from Figure 8.1. For approximately the first 70 years, the (dashed) stock
trajectory under the extraction path corresponding to the low backstop cost
lies above the (solid) trajectory corresponding to the high backstop cost.
Figure 8.2 also shows the flat dotted line at a stock of 38. If, for example,

a stock above 38 triggers a catastrophe, then that catastrophe occurs in about
40 years under the low-backstop-cost trajectory, but never occurs under the
high-backstop-cost trajectory. If the catastrophe is suffi ciently severe, then
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Figure 8.2: Atmospheric carbon stocks corresponding to the two extraction
trajectories. Solid curve corresponds to high-cost backstop and dashed
curve corresponds to low-cost backstop.

the future economic benefits arising from eventual availability of the low-cost
backstop do not compensate society for the fact that this low-cost backstop
“causes”the catastrophe. The lower cost backstop does not literally cause
the catastrophe: the accumulation of stocks does that. But the lower cost
backstop changes the competitive equilibrium extraction trajectory, thereby
changing the stock trajectory, thereby triggering the catastrophe.

The model of the “carbon cycle” Figure 8.2 uses the assumption that
the stock of carbon decays at a constant rate: the time derivative of the
stock, S(t), for this figure is

dS (t)

dt
= y (t)− δS (t) , (8.1)

where y (t) is emissions (= extraction) at time t and δ > 0 is the constant
decay rate. For this model, the stock rises (dS(t)

dt
> 0) when y (t) > δS (t)

and the stock falls when this inequality is reversed.
This climate model is simple to work with, and therefore often used in pol-

icy models where the goal is to obtain insight, instead of making quantitative
policy recommendations. The process that governs changes in atmospheric
carbon (or more generally, greenhouse gas) stocks is much more complicated.
In particular, a constant decay rate does not accurately describe the effect
of emissions on the stock. In addition, GHG stocks likely cause damages in-
directly, via the effect of the stocks on temperature or precipitation, instead
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of directly. The inertia in the climate system causes global average temper-
ature and other climate variables to respond to changed GHG stocks with
a delay. Therefore, the climate-impact of current emissions might increase
over decades, before eventually diminishing.3

In addition to this delay, climate scientists have identified a number of
positive feedback effects that might cause stocks to increase even if anthro-
pogenic emissions were close to zero. For example, higher temperatures
caused by higher stocks of greenhouse gasses might melt permafrost, releas-
ing additional greenhouse gasses. Our model of catastrophes provides a
simple way to think about this possibility. There may be a threshold level
of atmospheric stocks that triggers such an event. However, the actual
dynamics are much more complicated.
Figure 8.2 illustrates a possibility, but it does not establish that a partic-

ular outcome is likely. The figure does not show the unit of measurement
of the stock variable, partly to defuse the danger that readers give it undue
weight. Its key feature is that the maximum stock level under the low-cost
backstop (the dashed trajectory) is above the maximum stock level under
the high-cost backstop (the solid trajectory). Provided that the probability
of catastrophe increases with the maximum stock level, this model (together
with parameter assumptions) implies that the lower backstop cost increases
the probability of catastrophe. This result is due to the fact that the initial
emissions profile is higher under the low-cost backstop.

Box 8.2 The half life of the stock The half life of the stock equals
the amount of time it takes half of a given stock to decay. With
constant decay rate δ, e−δt of a unit emitted at time 0 remains at time
t. Setting e−δt = 0.5 and solving for t, produces the half life of the
stock, − ln 0.5

δ
. If the half life is between 100 and 200 years, and if we

pick the unit of time to equal one year, then 0.0035 < δ < 0.007.

8.4.2 Rapid changes

Even in the absence of catastrophic events, tilting the extraction trajectory
toward the present may harm society. If change occurs suffi ciently slowly,

3Prominent climate-economics models, e.g. DICE, due to Nordhaus (2008), use climate
components in which the major effect on temperature occurs five or six decades after the
release of emissions. Recent evidence by Ricke and Caldeira (2014) suggests that the
major effect occurs within the decade of emissions release.
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Figure 8.3: Damages are related to the stock and the speed of change in
the stock. Solid curve corresponds to high-cost backstop and dashed curve
corresponds to low-cost backstop.

society may be able to adapt to it with moderate costs. Over the very long
run, society replaces most infrastructure. Climate-related change alters the
speed at which this replacement must occur. If we know, for example, that
rising sea levels will make some highways and bridges obsolete in 150 years,
then we can divert investment away from maintaining these highways and
bridges, and toward building more resilient substitutes. If we have to replace
this infrastructure within the next 50 years, then we may be forced to write
off much of the current infrastructure that would, absent rising sea levels,
still be useful for decades.
As a simple way of modeling this dependence of climate-related costs

on the speed of change, denote the stock at time t as S (t) and the speed
of change in the stock, the time derivative, as dS(t)

dt
. Suppose that total

damages depend linearly on the stock, and are convex increasing in the speed
of change:

Damages = S (t) + 10

(
dS (t)

dt

)2

.

With this formulation, marginal damages increase with the speed of change
of the stock. From Figure 8.2, it is evident that the stock initially increases
more rapidly in the dashed trajectory: its slope —the time derivative — is
greater. The (historically determined) stock levels (under the two backstop
costs) are exactly the same at the initial time. During the early part of the
program, the stock levels are similar, so the damages related directly to the
stock are also similar in the two scenarios. However, because the stock rises
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Figure 8.4: Damages are convex (quadratic) in the stock. Solid curve cor-
responds to high-cost backstop and dashed curve corresponds to low-cost
backstop.

much more quickly in the low backstop cost scenario, the damages related
to the speed of change of stocks is higher there. Therefore, early in the
program, total damages are higher under low backstop costs. Figure 8.3
graphs of damages under the two backstops. Damages corresponding to the
low-cost backstop (dashed curve) are higher early in the program.

8.4.3 Convex damages

In the previous example, damage is linear in the stock of atmospheric carbon:
doubling S (t)− S (0) doubles damage. If damages are convex in the stock,
marginal damages are higher, the higher is the stock. The relation between
atmospheric stocks and temperature change (e.g. feedbacks) or the relation
between temperature change and damages, might create convex damages.

Figure 8.4 graphs convex damages equal to S (t)+ 1
2
S (t)2 under the high-

cost (solid) and the low-cost (dashed) backstops. At the beginning of the
program, damages in the two scenarios are the same, because the initial
stock (determined by historical emissions) is the same. However, as Fig-
ure 8.2 shows, the stock becomes higher in the low-cost backstop scenario;
with convex damages, the cost trajectory is higher in the low-cost backstop
scenario.
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8.5 Assessment of the Paradox

Objectives and skills

• Understand some of the nuances of the Green Paradox.

We explained the Green Paradox in the context of industrial policies that
lower backstop costs. The same logic applies to carbon taxes that begin
low and rise over time. Both of these policies lower future producer prices
of fossil fuels, and therefore tend to lower current prices, increasing current
extraction. Green subsidies and future carbon taxes are politically more
palatable than policies that discourage current fossil fuel use. Because of
their greater political appeal, and the resulting higher likelihood that they
will be implemented, it is worth asking whether such policies have unintended
consequences. Firms’current sales decisions, and thus the current equilib-
rium resource price, depend expectations of future prices. A lower expected
future producer price decreases the scarcity rent, making it less attractive
to store the resource rather than sell it today. Thus, lower expected future
prices lower current price, increasing current consumption.
The Green Paradox exemplifies the constructive role that theory can play

in informing policy, and also illustrates how easy it is to hijack theory to
promote a particular agenda. Theory works best when it is simple enough
to communicate easily. That simplification almost always requires focusing
on a small set of issues to the exclusion of others. Once the theory has been
understood in the simple setting, it is important to recognize its limitations.

8.5.1 Other investment decisions

The Green Paradox is usually studied in the Hotelling setting where fossil
fuel extraction is the only investment decision. That treatment often ignores
other investment decisions, including those related to the development of
substitutes for fossil fuels or adaptations to anticipated policy, and those re-
lated to the discovery and development of new stocks of fossil fuels. When
we recognize that businesses solve a host of investment problems, of which
resource extraction is only one, the Paradox appears in a different light. In-
stead of providing a strong basis for rejecting green industrial policy, it merely
reminds us that green industrial policy might have unintended consequences.
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Changing the consumption portfolio

The immediate elimination of carbon emissions would be prohibitively ex-
pensive, but we are uncertain about the cost of moderate reductions. Re-
solving that uncertainty requires research and development in green alterna-
tives, which likely require a combination of current R&D subsidies and future
carbon taxes. Current subsidies reduce current investment costs, and the
anticipation of future carbon taxes increases the expectation of the future
profitability of current investment. Current carbon taxes increase the cur-
rent profitability of low-carbon alternatives, but not their future profitability.
Investment incentives depend on the anticipation of future profitability, be-
cause the fruits of current investment are available only in the future.
The Green Paradox focuses on the current response of resource owners to

future changes in the market. However, resource users also have an incentive
to adapt early to future changes. Consequently, anticipated future policy
affects both demand as well as current supply. For example, the U.S. Acid
Rain program was phased in over a decade, so coal producers and consumers
were aware of future sulfur emissions constraints. This notification reduced
the rent on high-sulfur coal, inducing owners to increase sales prior to the
restrictions coming in to force; this is the supply effect examined by the
Green Paradox. Power plants, the major consumers, recognized that the
policy would make future emissions expensive. Businesses replace capital as
it wears out; their replacement decisions depend on their expectation of future
market conditions. The future implementation of the sulfur emissions policy
gave power plants an incentive to replace aging capital stock with cleaner
technology. Thus, the announcement of the future constraints increased
current supply of dirty coal, but reduced near-term demand for that coal,
leading to statistically insignificant effect on equilibrium consumption.

New sources of fossil fuels

The discovery and development of new deposits, such as tar sands deposits in
Canada and oil off the coast of Brazil, involve substantial investment costs,
including the costs of infrastructure needed to bring the oil to market. A
fundamental rule of economic logic is to ignore sunk costs. The decision
whether to develop the new deposits depends on the magnitude of the in-
vestment costs relative to potential profits. A green policy that lowers future
expected resource prices, lowering future profits, can change the investment
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calculation. However, once firms have incurred the investment costs, the
subsequent extraction profile does not depend on the now-sunk costs.
The Keystone pipeline would bring oil from the Canadian tar sands

to U.S. refineries, and thence to world markets. Extracting and refining
these deposits creates higher carbon emissions per unit of energy produced,
compared to other petroleum deposits. Climate-change activists devoted
substantial effort to influence U.S. policymakers to reject permits for this
pipeline. Some of this opposition was due to concern about local environ-
mental affects arising from possible leaks in the pipeline. Some of the oppo-
sition was for symbolic reasons, to show that the danger of climate change is
great enough to justify derailing a project of national importance to Canada.
Delaying tactics can sometimes achieve a strategic goal. In 2012, with

high oil prices, the pipeline looked like a solid business proposition. The
economic viability of the project is less certain after the more than 50%
drop in oil prices. Green industrial policy can increase uncertainty about
the value of major new exploration and development efforts, delaying and
possibly stopping these efforts. However, oil prices have historically been
volatile (Figure 6.1) even before green industrial policy. Oil producers are
accustomed to this volatility; the uncertainty about future green industrial
policy (regulatory risk) is just one additional source of risk. As noted in
Chapter 6.3, Shell already (in 2014) builds in a carbon tax to the cost of
production, in anticipation that this tax will eventually be imposed.

Divestment from fossil fuel companies

The Green Paradox provides insight into possible effects of divestment from
fossil fuel companies. Climate change activists encourage universities and
pension and other investment funds to divest from fossil fuel companies,
largely on the grounds of social responsibility. These activists draw par-
allels with the divestment from South Africa during the apartheid regime.
By 2015, several universities (including Stanford) and cities (including Seat-
tle, San Francisco and Portland) had begun to divest from coal companies.
Proponents recognize that the divestment by a single fund, no matter how
large, will have negligible effect on markets, but they hope that the publicity
surrounding divestment debates will raise climate awareness.
There are economic, in addition to social-responsibility rationales for di-

vestment. In 2015, Norway’s parliament instructed the Government Pen-
sion Fund Global (GPFG), the world’s largest sovereign fund, to divest from
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114 companies, including 32 coal companies and several oil sands produc-
ers. (Ironically, shortly after the divestment decision, Norway’s parliament
voted to subsidize a national coal producer.) The economic rationale for
the decision was that fossil fuel companies are overvalued (and therefore are
poor investments) because the market does not account for the regulatory
risk (e.g. future carbon taxes). This economic argument raises the question
why Norway’s parliament is better than the market at assessing a company’s
value.
If the divestment movement became powerful enough to lower the value

of fossil fuel companies, it could have the perverse effect of increasing current
emissions. The mechanism is the same as described in the Green Paradox. In
the simplest Hotelling model with constant costs, we saw (equation 5.8) that
the value of the firm equals the initial rent times the initial resource stock.
In this setting, a decrease in the firm’s value requires that the resource rent
fall. The Green Paradox reminds us that a fall in resource rent —whatever
its cause — increases current supply of fossil fuels. Possibly offsetting this
effect, the fall in resource rent lowers incentives to find and develop new
stocks, thus reducing cumulative supply. These two effects, greater current
extraction but lower cumulative extraction, mirror the two effects studied in
Chapters 8.4 and 8.2.

8.5.2 The importance of rent

The Paradox is relevant only for resources that have a substantial component
of rent in their price. Chapter 6, notes that rent is a significant component of
the price of oil, but a much smaller component of the price of coal. Resource-
based commodities with low rent are similar to standard commodities. The
Green Paradox has only slight relevance for such commodities, but so does
the theory of nonrenewable resources.
The Green Paradox concerns policies that directly affect markets in the

future, and only indirectly affect current markets. Some green policies have
direct effects on current markets. For example, renewable fuel portfolio
standards require a minimum fraction of energy produced using fossil fuel
substitutes. Current solar and wind subsidies increase the demand for green
energy sources today, not merely in the future. These sources are substitutes
for fossil fuels, so the portfolio standards and the subsidies decrease the
current consumption of fossil fuels, and do not lead to a Green Paradox.
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8.5.3 The importance of elasticities

The significance of the Green Paradox depends on the price elasticities of
supply and demand for fossil fuels. At least in the short run, demand
is quite inelastic. With a low elasticity of demand, a lower current price
transfers income from fossil fuel owners to fuel consumers, having modest
effects on current consumption.
The Green Paradox is based on the assumption that a downward revision

of beliefs about future energy prices would lead to a significant increase in
current supply. Technical constraints may limit the supply response, at least
in the short run. Many resource firms operate at or near capacity, and
therefore have limited ability to quickly increase their supply. It may also
be costly for them to shut down operations, lowering their flexibility to reduce
supply. These considerations tend to reduce short run supply elasticities,
reducing the significance of the Green Paradox.

8.5.4 Strategic behavior

The Paradox depends on the behavior of oil exporters, in particular OPEC,
the oil cartel. OPEC is less powerful than a monopoly, because it faces a
competitive fringe, but it is more sophisticated than the textbook monopoly
because it understands that the demand function is not exogenous. The
demand function in any period is predetermined by past events. Some past
investments in infrastructure (e.g. highways) increase the current demand for
fossil fuels, and other investments (e.g. development of the ethanol industry)
decrease that demand. Because these investments have already occurred,
the demand function (not the quantity demanded) at a point in time is
predetermined.
OPEC observed that its oil embargo of the early 1970s changed behavior

in importing countries, increasing conservation and the development of alter-
native supplies. OPEC wants to increase its rents, but it understands that
the best way of doing that is not to extract every cent of consumer surplus
available in the near term. OPEC’s long-term strategy includes maintaining
a reliable and reasonably priced source of petroleum, to discourage changes
in behavior or the development of alternative sources that would reduce its
future demand.
Green policies that reduce future demand can have ambiguous effects

on current OPEC strategic behavior. One possibility is that the presence
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of these policies makes OPEC redouble its efforts to create a reliable and
reasonably priced source of oil, in order to counteract the effect of the policies.
The green policies encourage the development of green technologies, and
OPEC may decide to try to offset that encouragement. How might OPEC
go about achieving this goal?

• OPEC might think that the developers of the green technologies base
their beliefs about future energy prices chiefly on current energy prices.
With this view, OPEC could offset the subsidies to green technologies,
discouraging their development, by reducing current price. In that
case, OPEC’s strategic response causes an even larger reduction in
current prices, and thus a larger increase in current consumption than
the standard Green Paradox suggests.

• Alternatively, OPEC might think that the developers of green tech-
nologies understand that future energy prices will depend on future
stocks. With that view, OPEC could save more of its resource stock,
in order to make credible its commitment to relatively low future prices.
This commitment to low future prices requires a reduction in current
extraction, thus working against the Green Paradox.

• A third possibility is that OPEC decides that efforts to discourage green
substitutes for fossil fuel are doomed, thus diminishing its incentive to
maintain stable and reasonable prices. If those efforts contributed
to relatively low fossil fuel prices, then the reduction in those efforts
increases current fossil fuel prices, working against the Green Paradox.
That is, OPEC might decide that it is rational to exercise market power
to the full extent possible, without worrying about the effect that high
current prices have on the future demand function.

8.6 Summary

The Green Paradox illustrates the possibility that well-intentioned policies
can backfire. The paradox potentially applies to policies that directly affect
future energy markets, e.g. carbon taxes that begin in the future, or subsidy-
induced reductions in the costs of backstop technologies that will be used
in the future. These policies directly affect future demand for fossil fuels.
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Because of the dynamic linkages in resource markets, those future prices
affect resource owners’current supply decisions.
Policies that reduce future demand, makes it less attractive for resource

owners to hold on to their stock, tilting the extraction trajectory toward the
present, increasing current extraction and reducing extraction in some future
periods. If extraction costs depend on the remaining resource stock, these
policies also reduce cumulative extraction. Lower cumulative extraction, and
the associated reduction in cumulative carbon emissions, benefit the climate.
Tilting the extraction profile toward the present is likely to harm the climate.
The higher earlier extraction likely increases the peak stock of atmospheric
carbon, increasing the probability of a “catastrophe”. The tilted extraction
profile also increases the speed of change of atmospheric stock. Society may
be worse off, the more rapid this change occurs. Finally, if marginal damages
are increasing in the level of the stock, the tilted extraction profile is likely
to increase damages. The net effect of policies that lower future demand
for fossil fuels therefore depends on the balance between the effects of lower
cumulative extraction and of higher earlier extraction.
The Green Paradox is valuable as a caution to policymakers, but practical

considerations may limit its importance. The Green Paradox emphasizes the
resource owners’incentives. Consideration of investment in resource explo-
ration and development, and taking into account the externalities associated
with investment in green alternatives, can overturn the paradoxical result.

8.7 Terms, study questions, and exercises

Terms and concepts

Research spillovers, business as usual, green industrial policy, green paradox,
win-win opportunities, climate threshold, catastrophic change, stock and flow
variables, decay rate, half-life of a stock, convex damages, predetermined
versus exogenous.

Study questions

1. (a) State the meaning of the Green Paradox in the context considered
in this chapter (where green industrial policy reduces the cost of a
low fossil renewable alternative to fossil fuels). (b) Discuss some of
the reasons that the paradox might occur in the case where fossil fuel
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marginal extraction costs are constant. Your answer should include
both a description of how, and an explanation of why, the industrial
policy changes the extraction profile. It should also include a discussion
of how and why this change in extraction profile might change climate-
related damage. (c) Suppose now that extraction costs increase as
the remaining resource stock falls. How and why does this different
assumption about extraction costs affect the likelihood that the green
paradox occurs?

2. Explain why the consideration of investment decisions other than the
resource extraction decision might make the Green Paradox less likely.

Exercises

1. Suppose that a stock decays at a constant rate, δ, and that the “quarter-
life”(defined as the amount of time it takes for 25% of an initial stock
to decay) is 34 years. What is the numerical value of δ?

2. In Scenario A the damage caused by a stock S is fS (with f > 0 a
constant). In Scenario B, the damage caused by a stock is FS2 (with
F > 0 a constant). (a) Graph damage and marginal damage in these
two scenarios. (b) In which scenario are damages convex? (c) Explain
in a sentence or two the meaning of convex damages.

3. Scenarios A and B are identical in every respect (e.g. demand func-
tion, initial resource stock, and extraction cost function), except for
the following: in Scenario A, a backstop with cost b is available at
time t = 0; in Scenario B it is known at time t = 0 that the backstop
will not become available until t = 49. (a) Suppose that in Scenario
A, the backstop begins to be used at time t = 50. What, if any, is
the difference in extraction trajectories in the two scenarios? Explain
your answer briefly. (b) In Scenario C, the time at which the backstop
will become available is a random variable with expected value t = 49.
Compare the equilibrium in Scenario C with those in Scenarios A and
B and justify your conjectures. (Hint: You have all of the information
needed for a complete answer to part (a), but not for part (b). The
best you can do for part (b) is to make —and try to justify —intelligent
conjectures.)
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Sources

The DICE model due to Nordhaus (2008) is probably the most widely used
model that “integrates”the economy and a climate cycle
Ricke and Caldeira (2014) provide evidence showing that major effect of

emissions occurs within the first decade of emissions release.
Sinn (2008) (elaborated in Sinn 2012) is an early study of the Green

Paradox.
Hoel (2008 and 2012) studies the role of extraction costs and demand

characteristics.
Gerlagh (2011) distinguishes between a “weak”and “strong”paradox.
van der Ploeg and Withagen (2012) provide an in-depth analysis of the

paradox.
van der Werf and Di Maria (2012) survey the literature.
Pittel, van der Ploeg and Withagen’s (2014) edited volume brings to-

gether recent contributions.
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backs.
Ellerman and Montero (1998) examine the effect of future emissions con-

straints on earlier sulfur emissions.
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electricity.
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Karp and Stevenson (2012) discuss green industrial policy.
Lemoine (2016) empirically tests the responsiveness of current coal price

to expectations of future policy.
Schwartz (2015) describes Norway’s divestment decision.



Chapter 9

Policy in a second best world

Objectives

• Understand the basics of designing policy under multiple market fail-
ures.

Information and skills

• Understand the Theory of the Second Best and the Principle of Tar-
geting.

• Calculate and graphically illustrate the Pigouvian tax.

• Compare the optimal tax under monopoly and competition.

• Understand policy complements and substitutes.

• Understand how policies’interactions alters their welfare consequences.

Economists use the term “distortion” to mean any departure from an
effi cient allocation, or anything that causes such a departure. Examples in-
clude: (i) the gap between price and marginal cost arising from the exercise
of market power; (ii) a gap between the private and social marginal pro-
duction costs arising from a pollution externality; (iii) the gap (created by
an income tax) between workers’ incentive to supply labor (their after-tax
wage) and firms’cost of labor. We usually emphasize effi cient competitive
markets, without distortions (Chapter 2.6), relegating market imperfections
such as monopoly and externalities to a second tier of importance. We can
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make general statements about perfectly competitive markets, but not about
markets with imperfections. To paraphrase Tolstoy: Perfect markets are all
alike; every imperfect market is imperfect in its own way.
The focus on perfect markets yields valuable insights. For example, the

theory of comparative advantage explains why trade potentially makes all
participants better off, even if they have very different levels of development.
The Hotelling model explains why scarcity per se is not a rationale for gov-
ernment intervention. For many markets, the perfectly competitive paradigm
is also reasonably accurate. However, the emphasis on perfectly competitive
markets sometimes seems like an elaborate justification of Dr. Pangloss’
claim that “Everything is for the best in this best of all possible worlds.” In
fact, market failures are important, especially in natural resource settings.
The real world has multiple market failures, or distortions. We begin the

study of these by introducing the “theory of the second best” (TOSB). A
“first best”policy corrects a distortion or achieves an objective (e.g. raises
government revenue) as effi ciently as possible. It is diffi cult to rank all poli-
cies; we might not even know which to include. We may be able to say that
a particular policy is not first best, but be unable to say whether it is 4’th
or 17’th best. A policy is “second best”whenever it is not first best. The
TOSB warns us against applying, in a second best world, the intuition ob-
tained from the theory of perfect markets. A policy intervention that seems
likely to improve welfare might make matters worse. In less extreme cir-
cumstances, a policy intervention might merely create unnecessary collateral
damage. We also discuss a closely related idea: the Principle of Targeting.
Examples help in developing intuition:

• Chapter 9.1 describes the TOSB and illustrates it using a trade example
and the Green Paradox.

• Chapter 9.2 discusses the interaction of monopoly power and a pollu-
tion externality. The policy that corrects the externality under perfect
competition is inappropriate under monopoly.

• Chapter 9.3 explains why political considerations often lead to ineffi -
cient policies.

• Chapter 9.4 compares pollution taxes and abatement subsidies, and
explains the effect of extraneous distortions on optimal pollution policy.
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• Chapter 9.5 considers the situation where an agricultural price subsidy
magnifies the welfare cost arising from under-pricing a natural resource
input.

• Chapter 9.6 shows that common sense may err in suggesting that one
policy is an alternative (or substitute) for a second policy.

9.1 Second best policies and targeting

Objectives and skills

• Have an intuitive understanding of the Theory of the Second Best and
the Principle of Targeting.

Different types of policies might alleviate a particular social, economic, or
environmental problem. The choice of policy depends on political and social
considerations. In democracies, and under most other types of governance,
no single planner makes the policy decision. The benevolent “social planner”
is a fiction, but one that provides a benchmark against which to compare the
policies we observe.
In the partial equilibrium setting without market failures and without

taxes, we take social welfare to be the present discounted stream of the sum
of producer and consumer surplus. A competitive equilibrium maximizes
this measure of welfare; it leads to the same outcome as the fictitious social
planner. Here we are interested in market failures, so we need a broader
definition of welfare. If, for example, the market failure arises from an
unpriced externality such as pollution, we have to include the social cost of
pollution and the fiscal cost or benefit of policies that attempt to remedy
it. The first best policy maximizes social welfare; second best policies might
increase social welfare, but they do so imperfectly, creating collateral damage
or unnecessary costs.

Examples and the Principle of Targeting Some activists promote
trade restrictions as ways of achieving environmental or resource objectives.
Trade may increase environmentally destructive production, as occurred with
shrimp harvesting that kills turtles. In the 1990s the U.S. imposed a trade
restriction to redirect U.S. shrimp imports, hoping to decrease turtle mor-
tality. A trade restriction might benefit the environment, but is seldom
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the optimal policy to achieve this goals. Turtle mortality was a consequence
but not the goal of shrimp harvesting. The policy objective was to de-
crease turtle mortality, not to decrease trade. An effi cient policy “targets”
the environmental/resource objective. The U.S. trade restriction led to an
international dispute that was resolved by the World Trade Organization
(WTO). Although the WTO accepted that the U.S. had the right to use
policies for the purpose of protecting international resources such as turtles,
it also found that the U.S. policy contravened WTO law because it restricted
trade unnecessarily. The dispute was resolved when the U.S. dropped its
trade restriction but required exporting countries to use nets with “turtle
excluding devices”that protected the turtles.
The Green Paradox provides another example of a policy that may be

poorly targeted to an objective. The policy goal is to reduce carbon emis-
sions. Low carbon alternatives to fossil fuels might help to achieve that
goal, but green industrial policy that promotes these alternatives potentially
changes the extraction profile in a way that harms the climate system. The
net effect of green industrial policy might be positive, but is unlikely to be
first best. First best policies, such as emissions taxes or cap and trade,
directly target the environmental objective of reducing carbon emissions.
These examples illustrate the Principle of Targeting (POT). This prin-

ciple states that a market failure (i.e., a “distortion” such as an unpriced
externality), should be “targeted” as closely as possible. Many policies in-
flict collateral damage in correcting a distortion. The POT reminds us to
be aware of this collateral damage or ineffi ciency, and to try to avoid it. In
many cases, the application of the POT is straightforward. It is necessary
to clearly identify the objective or the problem, and to distinguish between
features that cause the problem and those that are associated with it. In
the trade example, the problem is not trade, but that turtles are killed in
catching shrimp. In the Green Paradox example, the problem is carbon
emissions, not an excessively high backstop cost. The POT tells us that
the effi cient policy alters fishers’harvesting techniques in the first case, and
reduces carbon emissions in the second.

9.2 Monopoly + pollution

Objectives and skills

• Use graphs and algebra to compare output under a social planner, a
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Figure 9.1: A: the competitive equilibrium with no pollution tax. B: the
competitive equilibrium with the optimal (Pigouvian) tax t = 6. C: the
monopoly equilibrium with no pollution tax. D: the monopoly equilibrium
with the non-optimal tax t = 6

competitive firm, and a monopoly, in the presence of an externality.

• Show how a tax alters output under competition and monopoly.

An policy intended to alleviate one problem, might make another problem
worse. A famous example of this possibility arises in a monopoly setting
where production creates a negative externality, pollution. Figure 9.1 shows
the inverse demand function p = 20−3q, the solid line, and the corresponding
marginal revenue curve, MR = 20 − 6q, the dashed line. Average and
marginal costs are constant at 2. Each unit of production (or consumption)
creates $6 of environmental damages; pollution is proportional to output, and
social costs are proportional to pollution. The private cost of production here
is 2 and the social cost of production, which includes environmental damages,
is 2 + 6 = 8.
An untaxed competitive industry produces where price equals marginal

cost at point A. The monopoly sets marginal revenue equal to marginal cost,
at point C. The symbol ν represents a unit tax; if ν < 0, the policy is a
subsidy: a negative tax is a subsidy. The optimal tax for the competitive
industry, known as the Pigouvian tax, is ν = 6. The socially optimal level
of production and the price occur at point B. The tax ν = 6 “supports”
(or “induces”) the socially optimal outcome: competitive firms facing this
tax produce at the socially optimal level. The optimal tax causes firms to
face the social cost of production, inducing them to “internalize” the cost
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of pollution. If the monopoly where charged the same tax, ν = 6, it’s tax-
inclusive cost of production also equals the social cost. The monopoly facing
ν = 6 produces at point D. Absent the tax, the monopoly produces too
little, relative to the socially optimal level: point C lies to the left of point B.
The tax causes the monopoly to reduce output even more, lowering social
welfare: the tax that is optimal in a competitive setting (ν = 6) lowers social
welfare if imposed on the monopoly.
This example illustrates the TOSB: a policy that improves matters in

one circumstance might make things worse in another. In the competitive
setting, there is a single distortion, arising from pollution. In the monopoly
setting, there are two distortions, one arising from pollution and the second
arising from the exercise of market power. A tax that fixes the first distortion
makes the second one worse. For our example (but not in general), the net
effect of the policy that is optimal under competition, lowers welfare under
monopoly; the optimal policy under a monopoly is a subsidy (a negative
tax). In general, the optimal pollution tax is lower under the monopoly
than under competition, simply because the monopoly produces less than
the competitive level.

The algebra The socially optimal level of production equates the mar-
ginal benefit of consumption (the market price) to the full social cost of
production (the private cost plus the externality: 20 − 3q = 2 + 6). The
socially optimal level of production is q∗ = 4. A competitive firm facing
the tax ν produces where price equals private marginal cost plus the tax,
20−3q = 2+ν, implying the production level qcompet = 6− 1

3
ν. The optimal

tax for the competitive firm causes the competitive level of production to
equal the socially optimal level (qcompet = q∗), which requires the tax ν = 6,
equal to the externality.
The monopoly facing a tax ν produces where marginal revenue equals

production cost plus the tax, 20−6q = 2+ν, implying qmonop = 3− 1
6
ν. The

monopoly produces at the socially optimal level if qmonop = q∗, or 3− 1
6
ν = 4,

implying that ν = −6, a subsidy.

A caveat Our example assumes: (i) a fixed relation between output and
pollution, and (ii) constant social marginal cost of pollution. Assumption (i)
means that the only way to reduce pollution is to reduce output. In reality,
it is often possible to reduce pollution without reducing output, by using
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a more costly production method. Assumption (ii) also makes the message
simple to deliver, but it can easily be dropped.

9.3 Collective action and lobbying

Objective and skills

• Use a payoff matrix to identify a noncooperative Nash equilibrium.

• Illustrate the collective action problem that arises with lobbying.

Understanding the collective action problem helps in making sense of po-
litical outcomes. A collective action is a costly action taken by a group, for
the benefit of the group. People prefer other members of their group to incur
the costs, while they share the benefits. Society may impose a solution to this
problem by forcing group members to contribute, provided that a suffi ciently
large fraction of the group has voted to do so. U.S. marketing orders and
union laws illustrate these kinds of imposed solutions. The U.S. Agricultural
Marketing Agreement Act of 1937 obliges producers to participate in market-
ing orders; these might require minimal quality levels or limited production
(in order to maintain high prices), or fees (to support generic advertising).
About half of U.S. states have laws requiring workers to pay union dues to a
legally recognized union, on the ground that all workers benefit from union
representation in their workplace. The constitutionality of both marketing
orders and of mandatory union dues has been challenged, with some success,
in U.S. courts during the past quarter century. Plaintiffs object, for exam-
ple, that they do not share the goals of the marketing order or the union,
and that their enforced participation deprives them of their property or their
right of self expression. What seems to one person a solution to the problem
of collective action, appears to another as an infringement on liberty.
Real-world policies emerge from a political process, not as the dictate of

a benevolent social planner. Political lobbying or naked corruption affects
these outcomes. The Sunlight Foundation estimates that in the U.S. between
2007 —2012, 200 companies spent $5.8 billion in lobbying and campaign con-
tributions, and received $4.4 trillion in federal support or contracts: $760 for
each dollar contributed. Changes in U.S. law, notably the Supreme Court
ruling in “Citizens United”, make it easier to use money to influence out-
comes. In 2014, Transparency International (www.transparency.org) ranked
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the U.S. as the 17th least corrupt out of 175 countries. Not all lobbying is
corruption, but lobbying uses money and connections to influence outcomes.
An example illustrates lobbying and the collective action problem. Pollu-

tion reductions may impose costs on some groups, while benefitting society
at large. We take the extreme case where all the costs of a policy fall on
a group of firms, and all the benefits accrue to consumers. Both groups
can lobby to influence the probability that this policy is implemented, and
both groups face a collective action problem in financing their lobbying. The
policy increases consumer welfare by 100 units and reduces firm welfare by
50 units, yielding a net benefit to society of 50 units. Absent lobbying, the
policy is implemented with probability 0.5, so the expected benefit to society
(the probability that the benefit occurs times the level of the benefit if it
does occur) is 25. If only one group spends 10 units on lobbying, that group
has its preferred outcome with certainty. If both groups spend 10 units on
lobbying, their efforts cancel each other, leaving unchanged the probability
that the policy is implemented, but wasting 20 units of welfare.
Table 1 shows the payoff matrix if each group is represented by a sin-

gle agent who decides whether to lobby. The first element of each ordered
pair shows consumers’ expected payoff for a combination of actions, and
the second element shows producers’ payoff. If both groups lobby, con-
sumers’expected payoff is 0.5 (100)− 10 = 40, and firms’expected payoff is
−0.5 (50)− 10 = −35, for a net social benefit of 5. This game illustrates the
Prisoners’Dilemma. Each group is better off lobbying, regardless of what
the other group does; lobbying is a “dominant strategy”, and the only (Nash)
equilibrium in this game is for both groups to lobby. However, both groups
are better off (relative to the Nash equilibrium) if they forswear lobbying.

consumers\ firms firms lobby firms do not lobby
consumers lobby (40,−35) (90,−50)
consumers do not lobby (0,−10) (50,−25)

Table 91: Payoff matrix for the lobbying game. First element in an ordered pair
shows consumers’expected payoff, second element shows firms’expected payoff.

This payoffmatrix assumes that each group has solved its collective action
problem, acting as a unified agent, i.e. the group has delegated authority to a
single agent who decides, on the group’s behalf, whether to lobby. However,
the benefits of lobbying tend to be dispersed for consumers and concentrated
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for producers. Producer groups are legal for the purpose of representing
the industry’s interests to legislators; these groups can coordinate the indi-
vidual firm’s lobbying contributions. Firms are therefore more likely than
consumers to solve their collective action problem.
For this example, society’s expected payoff is 25 if neither group solves

the collective action problem, so that neither lobbies. It is 5 if both groups
solve their collective action problem, so that both lobby. Society’s payoff is
-10 if only firms solve the collective action problem. Here, society’s payoff
is highest if only consumers solve their collective action problem, and it is
lowest if only producers solve their collection action problem; but consumers
are less likely than producers to solve their collective action problem. A
group’s ability to solve its collective action problem need not benefit society.

Renewable Fuel Standard: an example of lobbying In 2005 the U.S.
introduced a Renewable Fuel Standard (RFS), requiring annual minimum
consumption levels of different biofuels; 2007 legislation increased these lev-
els. The Environmental Protection Agency (EPA) implements the policy
by estimating gasoline demand in the next year and dividing annual targets
of the different biofuels by the estimated gasoline consumption, to obtain
a ratio σi for biofuel i. Gasoline producers are required to use σi gallons
of biofuel i for each gallon of gasoline they produce. These producers face
a “blending constraint”that increases their cost of production, because the
biofuels are more expensive than gasoline.
Proponents of the RFS justify it using an “infant industry” argument,

claiming that biofuels will eventually be important both as low carbon al-
ternatives to fossil fuels, and as alternatives to foreign sources of petroleum.
Because the current state of technology and infrastructure would not en-
able this industry to survive under market conditions, government policy is
needed to protect this “infant”until it grows into a mature industry. Infant
industry arguments go back at least to the early 1800s, when they were used
to justify trade restrictions. Many opponents of the RFS begin as skeptics
of the infant industry argument, because of experiences where infants fail to
mature. In addition, the applicability of the infant industry argument is
questionable in this case, because the RFS has promoted the production of
corn-based ethanol, for which the technology was already mature.1

1After 2015, ethanol produced using cellulosic material, including the inedible part of
corn and special crops such as switchgrass, is scheduled to become more important in
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The RFS emphasis on corn-based ethanol has three major disadvantages,
in addition to having low potential to encourage new technology. First, it
leads to a small, and by some estimates non-existent reduction in carbon
emissions. Second, it diverts a major food crop from food to fuel, increasing
food prices and worsening food insecurity in some parts of the world. Third,
the policy has encouraged farmers to cultivate marginal land that would
otherwise have been left fallow under a conservation program.
Recent evidence estimates that carbon reductions achieved using the RFS

are about three times as costly as the reduction that could have been achieved
under an effi cient policy such as an emissions tax or cap and trade. An
important consequence of the RFS was to provide large transfers from the
general public (in the form of higher fuel prices) to corn growers, likely with
little environmental or technological benefit. The RFS was estimated to
increase U.S. fuel costs by $10 billion per year. Why did the U.S. government
implement an ineffi cient policy instead of an effi cient policy?
The (never-passed) Waxman-Markey bill (2009) would have imposed a

cap on carbon emissions, and required that fuels eligible for the RFS pro-
duce greater carbon reduction than achieved at the time. Thus, Waxman-
Markey would have reduced the transfers that corn producers receive under
the RFS. Representatives tend to vote their constituents’interest. Represen-
tatives from districts that benefit under the RFS were more likely to oppose
Waxman-Markey, and they also received greater campaign contributions from
groups opposing the bill. The cap and trade policy under Waxman-Markey
reduces emissions more effi ciently than the RFS, but the gains from the latter
are concentrated in a small number of districts, whereas the benefits of the
former are widely dispersed. Lobbying opposed toWaxman-Markey received
more financial support than lobbying favoring the bill.

9.4 Subsidies and the double dividend

Objectives and skills

• Understand why a tax and a subsidy have the same effect on a polluter’s
incentives.

the RFS. Cellulosic biofuels rely on an immature technology, where government support
can potentially lead to large improvements. However, the RFS’s support for corn-based
ethanol is unlikely to promote the development of cellulosic biofuels.
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• Understand the political and the economic disadvantages of a subsidy,
compared to a tax.

• Know the outline of the double dividend hypothesis.

We consider the situation where a pollution externality creates a market
failure, and some group is able to block a policy that would be socially bene-
ficial. Here it makes sense to consider more costly, but politically acceptable,
alternatives. An abatement subsidy is a plausible alternative to a pollution
tax, but the cost of financing the abatement subsidy creates obstacles. This
fiscal cost relates to the “double dividend hypothesis”, an idea that appears
to strengthen the argument for a pollution tax.

Subsidizing abatement

Instead of taxing firms for creating pollution, society can subsidize them for
abatement (= reducing pollution). A firm has the same incentive to reduce
pollution if it is taxed $1 for each unit of pollution, or given a subsidy of $1 for
each unit that it abates. Facing the tax, a unit of pollution creates a direct
cost to firms; facing the subsidy, a unit of pollution creates an opportunity
cost to firms. These two costs have the same effect on the firm’s incentives,
so (in principle) the two policies achieve the same level of pollution.2

There are both political and economic obstacles to using the subsidy
instead of the tax. The subsidy imposes a cost on taxpayers, requiring a
transfer from general tax revenue to a specific group of firms. Even if the
pollution reduction is worth this cost, it may be politically hard to convince
voters to tax themselves to pay firms stop a socially harmful practice.
Raising revenue to finance subsidies creates a deadweight cost in addi-

tion to the direct distributional effect of taking income away from a group
(Chapter 10). The distinction between a transfer and a deadweight cost is
important. Taking $1 from Mary to give to Jiangfeng is a transfer, not a
cost to the economy. However, if the government has to take $1.25 from

2Behavioral economics studies show that people’s reservation price for selling an item
(their “willingness to accept”) frequently exceeds their reservation price for buying the
same item (their “willingness to pay”). This asymmetry presents a type of “loss aversion”,
which is diffi cult to reconcile with perfect rationality. People who run firms may exhibit
similar failures of rationality, causing them to respond differently to pollution taxes and
abatement subsidies. However, the discipline of the marketplace encourages rationality.
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Mary in order to give $1 to Jiangfeng, there is a $0.25 deadweight cost to
the economy. The government makes transfers using a “leaky bucket”.
The assumed fixed relation between pollution and output means that the

only way to reduce one is to reduce the other; here, there is no deadweight
cost in taxing the polluting sector. However, taxing other sectors to finance
a subsidy for the polluting sector typically does create a deadweight cost. If
the deadweight cost associated with general taxes is 25% of revenue raised
by a tax, then financing a $1 subsidy to this polluting industry creates a
deadweight cost of $0.25. If, instead, the polluting industry is taxed $1,
and that tax revenue transferred to general funds, then other taxes can be
reduced by $1.00, saving society the deadweight cost $0.25. Replacing a $1
pollution tax with a $1 abatement subsidy increases social costs by $0.50.
Taxing pollution is likely more effi cient than subsidizing abatement.

The double dividend

The TOSB alerts us to the possibility that a policy, such as the Pigouvian
tax, that is optimal in the presence of a single distortion, may not be optimal
when there are multiple considerations. The theory does not tell us whether
considerations outside the polluting sector cause the optimal pollution tax
to be above or below the Pigouvian level. The numerical example in the last
paragraph illustrates the “double dividend hypothesis”, an idea that implies
that the optimal pollution tax exceeds the Pigouvian level. The tax lowers
pollution (the first dividend) and by raising revenue it make it possible to
reduce taxes in other sectors, lowering deadweight costs there (the second
dividend). The Pigouvian tax addresses the goal of lowering pollution, but
not the second dividend. The second dividend provides a reason to increase
the pollution tax above the Pigouvian level.
An example outside economics illuminates the TOSB, and the double

dividend in particular. A person who wants to get stronger may “target”
an exercise regimen to this goal. Getting stronger corresponds to reducing
pollution, and the targeted exercise regimen corresponds to the Pigouvian
tax. If the person discovers that exercise also affects the diffi culty of weight
control, they might rethink their exercise regimen. The optimal change in
this regimen depends on whether exercise makes it harder or easier to control
weight. The general point is that once we take into account considerations
other than our main objective (pollution reduction or getting stronger), we
have to modify our policy/exercise plan.
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Moving back to the economic context, suppose that the government re-
quires a fixed amount of revenue, which it can raise using a combination of
an income tax and a tax on the polluting sector. The double dividend hy-
pothesis implies that the optimal pollution tax exceeds the Pigouvian level
(equal to the marginal social cost of pollution). To test this hypothesis, we
begin with a tax equal to the Pigouvian level; now consider the welfare effect
of a perturbation that slightly increases this tax, making an offsetting change
in the income tax to keep total tax revenue at the required level. Under rea-
sonable (but not all) parameter values, analysis shows that this perturbation
lowers welfare, thus rejecting the double dividend hypothesis.
The explanation for this counter-intuitive result begins with the fact that

an income tax is more effi cient than a commodity tax at raising government
revenue.3 Both taxes create deadweight losses, transferring money from pri-
vate agents to the government using leaky buckets; but the commodity tax—
bucket leaks more. The income tax drives a wedge between the price that
workers receive, and the price that firms pay, for an hour of work. The tax
reduces incentives to supply labor, causing firms to face a higher price of
labor. That higher price discourages production across all (or most) sectors.
The income tax therefore falls more broadly and evenly across the differ-
ent sectors of the economy, creating a smaller effect on any individual sector,
compared to a commodity tax. Absent the pollution externality, it is optimal
to raise all of the necessary revenue using the income tax.4

Under the pollution externality, a perturbation that slightly reduces the
pollution tax below the Pigouvian level creates only a small (“second order”)
welfare cost arising from increased pollution. Moving toward a more effi cient
tax structure (income instead of commodity taxes) creates a large (“first
order”) welfare gain. On balance, the perturbation increases welfare, “dis-
proving”the double dividend hypothesis. The pollution tax creates a larger
disincentive to supply labor, compared to the income tax. This analysis il-

3Under the assumption of a fixed relation between pollution and output of the dirty
good, a commodity tax and a pollution tax are equivalent. Under more general assump-
tions, the two taxes differ, and the explanation offered here becomes more complicated.

4This claim assumes that the government is unable to use (non-distortionay) lump sum
taxes. In the 1980s the British Prime Minister Margaret Thatcher attempted to reduce
(distortionary) income and commodity taxes by introducing a poll tax (a particular lump
sum tax). The effort was abandoned after sparking huge opposition; the poll tax was
perceived as inequitable, falling most heavily on low income people. Economists emphasize
effi ciency over equity. Politicians have to be sensitive to equity.
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lustrates “general equilibrium” relations: the pollution tax directly affects
the polluting sector, and indirectly affects the labor market.
Why does the double dividend hypothesis fail here, when it seems so rea-

sonable in the numerical example in the previous subsection? There are two
parts to the answer. First, the analysis here assumes that the government
can raise revenue using a (relatively) effi cient income tax. Our numerical
example assumed that the alternative means of raising revenue is a distor-
tionary commodity tax. Second, the analysis here recognizes the general
equilibrium effect of the pollution tax on the labor market; our numerical
example uses a partial equilibrium framework, implicitly assuming that the
pollution tax does not alter the distortion in the other sector, except to the
extent that it decreases that distortion by decreasing the tax there. The first
part of this answer is especially important in trying to reach a conclusion
about the plausibility of the double dividend hypothesis. If the revenue from
a pollution tax is used to decrease ineffi cient taxes, the double dividend hy-
pothesis is plausible. If the revenue is used to offset relatively effi cient taxes,
the hypothesis is implausible.

9.5 Output and input subsidies

The welfare cost of distortions that reinforce each other can be much greater
than the sum of the welfare costs of the distortions in isolation. Many agricul-
tural markets involve both output and input subsidies. Both of those policies
encourage excessive use of (some) inputs; the policies reinforce each other,
leading to a combined welfare cost greater than their individual costs. Out-
put and input subsidies can be explicit or implicit. Producers likely prefer
implicit subsidies, because their lower visibility makes them easier to defend
in the political arena. Explicit output or input subsidies pay producers a
subsidy per unit of output produced or input purchased, creating transfers
from taxpayers to producers. A trade restriction raises domestic price by
limiting cheaper imports, providing an implicit output subsidy, creating a
transfer from consumers and/or taxpayers to domestic producers. Implicit
input subsidies arise, for example, if farmers’water price is less than the
full social marginal cost of water, equal to the cost of extracting and trans-
porting the water plus its opportunity cost (the resource rent). This type of
subsidy creates a transfer from taxpayers and future water users to farmers.
U.S. sugar producers receive implicit output subsidies in the form of trade



9.5. OUTPUT AND INPUT SUBSIDIES 159

restrictions, and implicit input subsidies in the form of underpriced water (or
unpriced pollution related to their water use).
These policies create transfers and distortions. The transfers have equity

implications, but only the distortions matter from the standpoint of effi -
ciency. Using the leaky bucket metaphor, the distortion corresponds to leaks
in the bucket, the distortionary cost is the amount of water that leaks out,
and the transfer is the amount of water that reaches the recipient.
An example illustrates the interaction between output and input subsi-

dies. Under free trade a country can buy sugar at the world price, 1, and
it can produce sugar, S, using labor, L, water, W , and a fixed input land,
F (having no other uses); the production function is S = F 1−α−βLαW β. A
trade restriction increases the domestic price of sugar to 1 + s; s is the trade-
induced implicit subsidy to producers. The market for labor is effi cient, with
the price of labor equal to ω, its opportunity cost. The effi cient price of water
is p, but producers receive a subsidy, φ, so their cost for a unit of water is
p− φ. Water subsidies are often combinations of direct subsidies for the in-
frastructure required to extract and transport water, and an implicit subsidy
caused by not charging users the effi cient resource rent (Chapter 17).
Price-taking farmers hire labor and buy water to maximize profits,

π (s, φ) ≡ max
L,W

[
(1 + s)F 1−α1βLαW β − ωL− (p− φ)W

]
. (9.1)

The difference between revenue and the payment to labor and water equals
the rent (or profit), π (s, φ), earned by the owners of the fixed factor, F . The
output and input prices (1, ω, p), are exogenous. For this experiment, we
also fix the consumer price at 1 + s, thus fixing in consumer welfare.5 In this
setting, social welfare equals producer surplus (returns to the fixed factor,
land), excluding transfers arising from the subsidies. The transfer increases
producer welfare but creates an exactly offsetting welfare loss to agents who
pay for it. Transfers are a wash from the standpoint of welfare.
The subsidy-induced misallocation of inputs creates a welfare loss. The

(implicit) output subsidy, s, encourages farmers to produce too much sugar,
causing them to buy too much labor and water, relative to the socially opti-
mal level. The water subsidy, φ, causes farmers to buy too much water (and

5For example, Policy 1 allows free trade (so domestic producers face the world price)
and taxes consumption at rate s, and Policy 2 imposes a unit tariff of s. These two policies
have the same effect on consumers (causing them to face price 1 + s). Moving from Policy
1 to Policy 2 does not change consumer welfare, but raises producer prices from 1 to 1+s.
The second policy provides a production subsidy and the first does not.
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Figure 9.2: The solid graph shows the percent loss in welfare, as a function of
the water subsidy, when the output subsidy is 0 (s = 0). The dashed curve
shows the percent welfare loss when the output subsidy is 20% (s = 0.2).

hire too little labor, conditional on their output level). The two subsidies
reinforce each other: the distortion caused by the water subsidy is worse,
the larger is the output subsidy. Figure 9.2 shows the percent loss in welfare
due to the water subsidy, for two values of the output subsidy. The figure
illustrates:

• With s = 0, the welfare cost of the water rises slowly with the water
subsidy, φ: small subsidies create small losses.

• The welfare cost of φ for s = 0.2 (and for any s > 0) rises rapidly with
the water subsidy. With s > 0, even a small water subsidy creates a
large additional welfare loss.

• A suffi ciently high water subsidy causes the welfare loss to exceed 100%.
There, sugar production has negative value added.

The return to land (the farmer’s profit) is always positive in this setting.
Some of that profit derives from the transfers discussed above. When the
welfare cost exceeds 100%, the social value of labor and water exceeds the
social value of sugar production; all of the farmer’s profits derives from the
transfers. In this case, sugar production lowers social welfare; shutting down
the industry would raise social welfare, even though it means idling cropland.
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Calculating subsidies’welfare cost Denote W (s, φ), S (s, φ), and
π (s, φ) as, respectively, the water purchases, sugar production, and farmer
profit, all functions of the subsidies. We find these by (numerically) solving
the first order condition to the problem in equation 9.1. Zero subsidies lead
to effi cient production and the maximum level of social welfare, π (0, 0).
Under non-zero subsidies, producer surplus equals π (s, φ), and the trans-

fer equals T (s, φ) ≡ sS (s, φ) + φW (s, φ). The social value of each unit of
sugar production equals the world price of sugar, 1. (An extra unit of domes-
tic production saves society the cost of importing one unit, which costs $1 of
foreign exchange.) The farmer who receives the price 1 + s and produces S
units of sugar receives a transfer sS. This amount equals farmer revenue in
excess of the social value of production. The social cost of each unit of water
equals p. The farmer who buys W units of water at price p − φ receives a
transfer of φW . Both parts of the transfer increase farmer profit, but they
cause an exactly offsetting loss in welfare to other agents, e.g. taxpayers.
Therefore, in calculating social welfare under subsidies, we have to “net out”
the transfers created by the subsidies. Social welfare under the subsidies
equals π (s, φ)−T (s, φ). The social cost of the subsidies, as a percent of the
optimal level of welfare, equals

π (0, 0)− [π (s, φ)− T (s, φ)]

π (0, 0)
100.

Figure 9.2 graphs this ratio as a function of φ for s = 0 and s = 0.2, using
the parameter values α = 0.6, β = 0.2, ω = 1 = p.

9.6 Policy complements

• Examine two market failures through the lens of the TOSB.

• Determine the socially optimal pollution tax when marginal costs in-
crease with the level of pollution.

• Determine whether two policies are complements or substitutes.

Positive research spillovers, where research conducted by one firm helps
other firms, create a rationale for green industrial policy. Green subsidies
are also often supported as a second best alternative to politically infeasible
policies. The American Enterprise Institute and the Brookings Institute, a
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conservative and a liberal think tank, respectively, both endorsed R&D sub-
sidies for green technology as an alternative to carbon taxes. These green
policies subsidize firms for doing something socially useful (developing new
technologies) instead of for refraining from doing something socially harmful
(polluting), and therefore encounter less political resistance than an abate-
ment subsidy.

Policy substitutes or complements

Is Green industrial policy really an alternative to, i.e. a substitute for emis-
sions taxes (as they appear to be), or are they complements to emissions
taxes? The terms complements and substitutes are familiar from demand
analysis. Two policies are said to be substitutes if the implementation of
one makes the other less valuable to society; they are complements if the
implementation of one makes the other more valuable.
Chapter 8 shows that green industrial policies might aggravate the pollu-

tion problem. Here we develop the closely related idea, that instead of being
a substitute for a carbon tax, green industrial policy might make the carbon
tax more, not less, vital to society: the policies may be complements.
In a competitive resource (e.g. fossil fuel) sector,

pt −
∂c (xt, yt)

∂y
= Rt, or pt =

∂c (xt, yt)

∂y
+Rt, (9.2)

where marginal extraction cost equals ∂c(xt,yt)
∂y

; Rt equals the firms’period-t

rent, the opportunity cost of extraction in period t. Thus, ∂c(xt,yt)
∂y

+Rt is the
“combined”marginal extraction cost, including both the standard marginal
cost and the opportunity cost. Chapter 5.2 shows that Rt equals the firms’
present discounted value of future rents, plus any cost reduction due to a
higher stock. Chapter 8 explains why green industrial policy might reduce
future rents, thus reducing the firms’period-t rent, Rt.

Increasing marginal costs of pollution

As with the example in Chapter 9.2, we assume that one unit of production
(here, extraction) creates one unit of pollution: reducing pollution requires
a corresponding reduction in output. In the previous example, we took
the marginal damage resulting from pollution to be a constant, but here we
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assume that marginal damage increases with the level of extraction. Ex-
traction (= emissions, by choice of units) of y creates damages equal to y2,
so marginal damages equal 2y. Where marginal damage are constant, the
Pigouvian tax equals that constant. Here, however, where marginal damages
depend on the level of extraction, the Pigouvian tax also depends on the level
of extraction. We find the Pigouvian tax by:

1. Identifying the socially optimal level of extraction, equating price to
social marginal costs (= marginal extraction costs, plus the opportunity
cost, Rt, plus marginal damage, 2yt.)

2. Once we have found the socially optimal level of output, denoted y∗t ,
we set the Pigouvian tax equal to the marginal external cost, 2y∗t (for
this example).

The effect of rent on the Pigouvian tax

Figure 9.3 illustrates the case where the firm has constant marginal extraction
costs, ∂c(xt,yt)

∂y
= C. Suppose that at a point in time the private combined

marginal cost is C +Rt = 10, shown by the solid flat line in the figure. For
our example, the social marginal cost equals the private marginal cost plus
the (external) environmental marginal damage, 10+2y. If a green industrial
policy lowers resource rent by five units, the private combined marginal cost,
and also the social marginal cost, falls by 5 units.
The upwardly sloping solid curve in Figure 9.3 is the graph of 2y+C+Rt,

the full social marginal cost, equal to marginal damage plus the private
cost. A five-unit reduction in rent causes this combined social marginal
cost to shift from the positively sloped solid line to the dashed line. This
reduction in social cost increases the socially optimal level of production from
the intersection shown at point A, to the intersection shown at point B.
The reduction in rent decreases the combined social cost of extraction,

thereby increasing the socially optimal level of extraction⇒ increasing mar-
ginal damages ⇒ increasing the optimal tax. This result is general: where
marginal damages increase with the level of extraction (or production), a de-
crease in firms’marginal cost leads to an increase in the optimal tax. When
firms’marginal cost falls, they tend to produce more, and the higher produc-
tion leads to higher marginal damages and a higher optimal tax.
The Pigouvian tax induces the firm to face the social cost of production,

giving firms the correct incentive to produce at the socially optimal level. If
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Figure 9.3: External marginal costs = 2y (or 2q). Solid positively sloped
curve shows social marginal costs when private marginal cost C + Rt = 10.
Socially optimal production occurs at A. If private marginal costs fall to
C + R′t = 5, socially optimal production occurs at B. When private costs
fall, the optimal tax increases.

the firm faces a constant tax ν and has private costs (inclusive of opportunity
cost, its rent) equal to 10, its private cost equals social costs if and only if the
tax equals the vertical distance from point A to 10. The Pigouvian tax thus
equals this distance, which we denote νA. If the firm’s rent falls so that its
rent-inclusive private cost now equals 5, the Pigouvian tax equals the vertical
distance from point B to the flat dashed line; we denote this tax as νB. It
is apparent from the figure that νB > νA. The decrease in rent increases
the optimal tax. In this case, an emissions tax and a green industrial policy
that reduces rent are complements, not substitutes.

The algebra Figure 9.3 uses the inverse demand (equal to the marginal
benefit of consumption) p = 20−y. The socially optimal level of production,
y∗, equates the marginal benefit of consumption (the market price) to the
full social cost of production, equal to the private cost, C + R (= 10), plus
the externality cost, 2y. This equality requires 20 − y = C + R + 2y, or
y∗ = 20−R−C

3
. A competitive firm facing the tax ν produces where the

price equals its private cost plus the tax, implying 20 − y = C + R + ν, or
ycompet = 20 − R − ν − C. The Pigouvian tax causes the competitive firm
to produce at the socially optimal level, requiring ycompet = y∗, or 20−R−C

3
=
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20 − R − ν − C, implying νPigouvian = 40
3
− 2

3
R − 2

3
C. A reduction in rent

(leading to an outward shift in the firm’s supply function), increases the
Pigouvian tax. In this example, green industrial policy lowers the resource
rent, increasing the Pigouvian tax: the green industrial policy and the carbon
tax are policy complements.

Relation between this example and the TOSB

This tax example illustrates the possibility that policies that appear to be ei-
ther unrelated or substitutes might be, on closer examination, complements.
The TOSB reminds us that connections that are not apparent may neverthe-
less be important. Green industrial policy might make carbon taxes more,
not less important. The TOSB warns that in the presence of two or more
distortions, or market failures, correcting only one of those distortions might
exacerbate the other distortion to such an extent that welfare falls.

9.7 Summary

This chapter introduces the notion of a second-best policy or outcome: one
that is not optimal, or “first best”. The Principle of Targeting recognizes
the importance of carefully matching policies and objectives. A Pigouvian
tax causes competitive firms to internalize an externality. For example, a
Pigouvian tax causes firms to take into account the social cost of pollution
when making production decisions. Two policies are said to be substitutes
if the implementation of one policy makes the other policy less important, or
decreases the optimal level of the other policy; they are complements if the
implementation of one policy makes the other more important, or increases
the optimal level of the other policy.
The theory of the second best (TOSB) and the Principle of Targeting

(POT) are deceptively simple ideas, with important economic implications.
The TOSB reminds us that in economies, “the hip bone is connected to the
shoulder bone”, although perhaps not directly. Because markets connect
apparently unconnected outcomes, a policy that reduces one market failure
may, in the presence of a second market failure, actually lower welfare. We
illustrated this result using an example of a monopoly that produces pollu-
tion; moving from the zero emissions tax to the Pigouvian tax might decrease
social welfare. A policy that is optimal under perfect competition might be
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harmful under monopoly. The POT reminds us to beware of collateral dam-
age in setting policy, and to attempt to select policies that do not inflict such
damage.

We defined the collective action problem, and used the Renewable Fuel
Standard to illustrate political reasons for the adoption of ineffi cient policies.
The deadweight costs associated with raising government revenue tend to
make pollution taxes more effi cient than abatement subsidies. The double
dividend hypothesis claims that the pollution tax permits a reduction in other
taxes, causing the optimal pollution tax to exceed the Pigouvian level. This
hypothesis is likely true if the taxes being replaced are relatively ineffi cient,
and likely false if those taxes are effi cient.

Taxes and subsidies “distort”equilibrium allocations. Two policies might
either reinforce or offset each other; in the former case, the welfare cost of the
policies taken together exceeds the sum of their costs in isolation. An example
showed that multiple distortions might cause a sector to have negative value
added, making the social value of the sector’s output less than the social
value of the inputs used in the sector.

The TOSB makes us careful about the application of economic intuition.
Common sense might suggest that a politically palatable policy (e.g. a green
subsidy) is a substitute for, or alternative to, a politically diffi cult policy (e.g.
a carbon tax). More careful analysis may reveal that such policies are com-
plements: the green subsidy makes the carbon tax more, not less, important.
Much of our economic intuition is developed from studying simple models
with a single distortion. The real world is more complicated. Economic
analysis is closer to chess than to checkers.

9.8 Terms, study questions and exercises

Terms and concepts

Theory of the second best, Principle of Targeting, Pigouvian tax, a tax “sup-
ports” or “induces” an outcome, internalize an externality, collective ac-
tion problem, payoff matrix, Nash equilibrium, Prisoners Dilemma, Renew-
able Fuels Standard, deadweight loss, abatement, double-dividend, increasing
marginal pollution costs, policy complements and substitutes.



9.8. TERMS, STUDY QUESTIONS AND EXERCISES 167

Study questions

1. Use a graphical example (and a static model) to show that the Pigou-
vian tax that corrects a production-related externality (e.g. pollu-
tion) in a competitive setting might lower social welfare if applied to a
monopoly.

2. (a) Consider a static model. Suppose that inverse demand is 10 − q,
firms are competitive with constant average = marginal costs C, and
pollution-related damages (arising from output) are q + 1

2
βq2, with

β > 0 What is marginal damage? (b) What is the socially optimal
level of production and consumer price, and what is the Pigouvian
tax? (c) How does the Pigouvian tax change with β? (d) Provide the
economic explanation of this relation.

3. (a) Continue with the model in question #2. Suppose that there is a
policy that reduces C, e.g. by making production more effi cient. How
does this reduction in C alter the Pigouvian tax that you identified in
question #2b? (b) Are the two policies (the pollution tax and the
policy that reduces C) complements are substitutes? (c) How would
the answer to part (b) have changed if β = 0? Explain.

4. You are in a conversation with someone who correctly states that, in
a particular market, international trade increases production in poorer
countries with weaker environmental standards, thereby increasing a
global pollutant (i.e. a pollutant that causes worldwide damage, not
just damage in the location where production occurs). The person
claims that a trade ban is a good remedy for this problem. Regardless
of your actual views, use concepts from this chapter to argue against
this person’s proposal.

5. (a) Explain why, in principle, a tax on pollution and a subsidy to
abatement have the same consequences for society. (b) Summarize
the political and the economic reasons why in practice, an abatement
subsidy and a pollution tax are likely to have different consequences
for society.

6. Describe (in a few sentences) the “double dividend hypothesis”and the
rationale for the hypothesis.
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Exercises

1. Suppose that consumers of the product bear the cost of pollution. The
model then contains three types of agents: the firm, consumers, and
taxpayers. Taxpayers benefit from tax revenue and they do not like
having to pay the cost of subsidies. Inverse demand is p = 20 − 3q,
private average = marginal cost is 2, and environmental damage per
unit of output is 6. A monopoly chooses the level of sales. Using
a figure like Figure 9.1 identify graphically (by shading in appropriate
areas) the change in welfare of the three types of agent when a regulator
imposes a unit tax of ν = 6.

2. For this example, identify (graphically) the socially optimal tax/subsidy
under the monopoly. That is, identify the tax/subsidy that induces
the monopoly to produce at the socially optimal level.

3. Change the example in Exercise 1 to p = 20−0.4q. (Replace the slope
3 by 0.4) Other parameter values are unchanged. (a) Does this change
make demand more or less elastic? (b) Find the optimal pollution tax
for the competitive firm. (c) Find the optimal pollution tax under
the monopoly. (d) Provide an economic explanation for the relation
between the optimal tax and the slope of the inverse demand function,
under both a competitive firm and a monopoly.

4. Suppose that (private) constant marginal costs is c, each unit of pol-
lution creates d dollars of social cost (external to the firm), and the
demand function is demand = Q (p). (a) What is the optimal pollu-
tion tax for the competitive industry? (Here you do not have a specific
functional form for demand, so your answer involves the function Q (p),
not a number.) (b) Use the formula for marginal revenue (a function of
price and elasticity of demand) to find the equation for the optimal tax
(or subsidy) under a monopoly. (c) Now suppose that Q = p−η with
η > 1. Use your formula from part (b) to find the optimal tax/subsidy
under the monopoly. (d) Provide an economic explanation for the
relation between the optimal tax/subsidy under the monopoly and η.

5. Suppose that demand is p = 20− q, private constant marginal produc-
tion cost equals 10, and marginal environmental damages equal 2 +αq,
where the parameter α ≥ 0. Firms are competitive. (a) Discuss the
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economic interpretation of the parameter α. In particular, explain the
difference in the model with α = 0 and with α > 0. (b) Find the
socially optimal level of production when private costs equal 10. Find
the optimal (Pigouvian) tax in this case. (Both of these are functions
of α.) (c) Now suppose that private costs fall to 5; find the socially op-
timal production level and the Pigouvian tax with these lower private
costs. (d) Write the difference in the Pigouvian tax under the high and
the low private cost, as a function of α. (e) Describe and explain the
effect of α on the change in the Pigouvian tax arising from the change
in private costs.

6. Description of setting. Inverse demand in the polluting sector is p =
20−3q, private average =marginal cost is 2, and environmental damage
per unit of output is 6. In Scenario A the government is able to raise
revenue without creating any distortion (e.g. by means of a lump-sum
tax). In Scenario B, the economy-wide average of deadweight loss
from taxes is 10% of the tax revenue. This assumption means that
an extra $1 in government revenue raised using a non-distortionary tax
(one with zero deadweight loss) is worth $1.10, because that revenue
makes it possible to maintain the same level of public expenditure while
reducing tax from the distortionary source. Here, the social value of
tax revenue $TR raised from a non-distortionary source is $1.1TR. In
both scenarios, raising revenue by taxing the polluting sector creates
no deadweight cost. The question: What is the optimal Pigouvian tax
for a competitive industry in Scenario A and what is the optimal tax in
Scenario B? Explain their relative magnitudes. (If you are unable to
answer this question using mathematics, use the discussion in Chapter
9.4 to provide a qualitative answer.)

7. Does the positive social value of government revenue (10% here) in-
crease or decrease the optimal tax in the polluting sector? (Explain
the qualitative effect, on the optimal tax under competition, of the pos-
itive social value of tax revenue (10% in our example). (You should use
economic logic —not math —to figure out whether the policy under each
market structure gets larger or smaller (in absolute value) when there
is a cost to public funds. There is nothing tricky about this question;
you just have to use "common (economic) sense".
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Sources

Lipsey and Lancaster (1956) is the classic article on TOSB.
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Tritch (2015) discusses the statistics on U.S. lobbying provided by the

Sunlight Foundation.
Auerbach and Hines (2002) survey the literature on taxation and effi -
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(1999) discuss the double-dividend hypothesis.
Winter (2014) shows that carbon taxes and green industrial policy are

likely to be policy complements.
Leonhardt 2010 describes the political popularity of green industrial pol-
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the RFS and the Waxman - Markey bill.
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describes US sugar policy.



Chapter 10

Taxes: an introduction

Objectives

• Understand taxes’ effect on market outcomes, and the principles of
taxation.

Information and skills

• Understand the definition of tax incidence and be able to explain why a
tax on consumers or on producers are “equivalent”in a closed economy.

• Understand the relation between tax incidence and supply and demand
elasticities.

• Identify tax-induced changes in consumer and producer surplus, and
identify the deadweight cost of a tax.

• Understand the relation between “cap and trade”and a pollution tax;
apply intuition about taxes to study cap and trade.

Understanding the effect of taxes in the familiar static model of a compet-
itive firm is worthwhile for its own sake, and also necessary for understanding
the effect of taxes applied to natural resources, studied in Chapter 11. We
emphasize competitive closed markets: one without international trade in
the taxed commodity. This assumption means that domestic supply equals
domestic demand.1

1Appendix F contains technical material including: algebraic verification of tax equiv-
alence in the closed economy; an example showing that tax equivalence does not hold in
an open economy; details on the approximation of tax incidence, deadweight loss, and tax
revenue, and details related to the material on cap and trade.
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Taxes raise revenue, making it possible to reduce other taxes while funding
the same level of government expenditure. Taxes alter consumer and pro-
ducer behavior, changing the equilibrium price and quantity, and producer
and consumer surplus. There are three types of agents in our model, con-
sumers, producers, and taxpayers; many people belong to two or all three of
these groups. Consumer surplus, producer surplus, and tax revenue measure
these agents’surplus. Social welfare equals the sum of the three measures.

10.1 Tax incidence and equivalence

Objectives and skills

• Introduce and define a unit tax and an ad valorem tax.

• Understand the meaning of tax incidence and tax equivalence.

• Explain tax equivalence in a closed economy.

If the government imposes a “unit tax”of ν = $6, and producers receive
$p per unit sold, then consumers must pay $p + 6 per unit. The difference
between the consumer and producer prices equals the unit tax. An ad
valorem tax, denoted τ , is measured as a rate. If the tax rate is τ and
producers receive $p per unit sold, then consumers pay $(1 + τ) p per unit.
There is a simple relation between the unit and the ad valorem tax. If
producers receive the price p and one group of consumers pays a unit tax ν
and another group of consumers pays an ad valorem tax τ , the two groups
pay the same price if p + ν = (1 + τ) p. Thus, two taxes yield the same
consumer price if and only if ν = τp. We can work with whichever type of
tax we want, and easily translate one type of tax into another.
We assume that people are “rational”, in the sense that their willingness

to buy a commodity depends on the price they pay, not the precise manner
in which the price is calculated. For example, a rational consumer is just as
likely to buy a commodity priced at $1.10 “out the door”as a commodity
marked at $1.00 that requires payment of a 10% sales tax at the cash register.
In both cases, the final price equals $1.10. Behavioral economics shows that
people sometimes react differently in these two settings.
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Tax incidence and tax equivalence It might seem that it matters
whether a tax is levied on consumers or producers (on which group has the
“statutory obligation”to pay the tax). However, in a closed economy, the
equilibrium price and quantity, and thus the consumer and producer surplus
and the tax revenue, are the same regardless of whether the tax is levied
on consumers or producers: consumer and producer taxes are “equivalent”.
Suppose that in the absence of a tax, the equilibrium price is $12 and the
equilibrium supply = demand is 100 units. Now consider a tax of $2 per
unit imposed on consumers. Does the imposition of this tax mean that the
price consumers pay rises to $12+$2=$14? In general, the answer is “no”.
The tax does increase the price that consumers pay, but (in general) this
higher price decreases the amount that they demand. In order for producers
to want to decrease the amount that they supply, the price that producers
receive must fall. The increase in consumer price, as a percent (or fraction)
of the tax is called the consumer incidence of the tax, and the decrease in
producer price, as a percent (or fraction) of the tax is the producer incidence.
If the $2 tax causes the tax-inclusive price that consumers face to rise from

$12 to an equilibrium of $13.50, then the price that producers receive equals
13.5−2 = 11. 5, because the difference between consumer and producer price
always equals the unit tax. Consumers “effectively”pay the share

13.5− 12

tax
=

1.5

2
= 0.75,

or 75% of the tax, and producers “effectively” pay the remaining 25% of
the tax. The tax incidence on consumers is 75% and the tax incidence on
producers is 25%. The tax incidence depends on the elasticities of supply
and demand, but not on which agent has the statutory obligation to pay
the tax. This equivalence between the producer and consumer taxes arises
because, in a closed economy (no international trade) domestic production
(supply) equals domestic consumption (demand).

Taxing polluters or “pollutees” The equivalence of producer and
consumer taxes (in a closed economy) implies that it may not matter whether
an externality is corrected using a tax on production or on consumption.
That equivalence undercuts the advice that polluters (instead of those who
suffer from pollution, the “pollutees”) pay the cost of pollution: the “Polluter
Pays Principle”. If consumers are a proxy for the agent that suffers from the
pollution, the principle implies that it matter whether the tax is levied on
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consumption or production. However, the equivalence between these two
taxes implies that it is immaterial which tax is used. In this sense, the
Polluter Pays Principle sets up a meaningless distinction. The larger point
is that an environmental policy that raises production costs, affects both
consumers and producers.
Consider the case where each unit of production creates $2 worth of en-

vironmental damage, external to the firm. We also assume that the environ-
mental damage is an inevitable consequence of production. Production and
pollution are equivalent: society cannot have one without the other. (See
the Caveat at the end of Chapter 9.2.) The optimal policy causes firms to
internalize this environmental cost, just as they internalize costs associated
with hiring capital and labor. A $2 per unit producer tax achieves this goal,
but in view of the equivalence of a producer and consumer tax, so does a
$2 consumer tax. The incidence of the two taxes is the same and they have
the same effects on: the level of environmental damage, tax revenue, and
consumer and producer surplus. It does not matter whether polluters (pro-
ducers) or “pollutees”(consumers, as proxies for society) face the statutory
obligation to pay the tax.
It also does not matter which agent is responsible for the environmen-

tal damage. Driving, a major source of environmental damage arises from
consumption of the good (cars) rather than production. Suppose that pro-
duction causes no pollution, but that each unit of consumption causes $2
worth of environmental damage and, as in the previous example, there are
no opportunities for abatement apart from reducing consumption. The opti-
mal policy charges consumers a consumption tax equal to the marginal cost
of pollution. In view of the equivalence between producer and consumer
taxes for non-traded goods, we obtain the same outcome by imposing the
statutory tax obligation on producers.

10.2 Tax incidence and equivalence (formal)

Objectives and skills

• Use graphs to show how a tax causes a shift in demand or supply,
thereby identifying the effect of a tax on price and output.

• Use graphs and algebra to show the equivalence of consumer and pro-
ducer taxes.
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Figure 10.1: Solid curves show supply and demand absent the tax. Dotted
curve shows supply curve as a function of consumer price (the producer has
statutory obligation to pay tax). Dashed curve shows demand curve as a
function of producer price (the consumer has statutory obligation to pay tax)

For “rational” agents, consumer and producer taxes are equivalent in
a closed economy. Figure 10.1 shows supply and demand curves (heavy
lines) without taxes; the equilibrium price and quantity is at point c, where
consumers and producers face the same price. Once we introduce a tax, the
consumer and producer prices are different, so we can no longer use the same
axis to measure both prices. We have to be clear about what the vertical
axis now measures. Suppose that we introduce a consumer unit tax of ν.
We continue to let the vertical axis be the price that producers receive and
we continue to denote the producer price by p. Therefore, the tax does not
alter the location of the supply curve. The tax causes the consumer price to
be p + ν. The original demand function, the solid downward sloping line,
shows the relation between quantity demanded and the price that consumers
pay. However, under the tax we decided to use the vertical axis to represent
the price that producers receive. Since the price that consumers pay and
the price that producers receive are not the same when a tax is imposed, we
cannot use the original demand function to read off the quantity demanded
for an arbitrary producer price. The diffi culty is that supply is a function
of p and demand is a function of p+ ν, and we cannot let one axis represent
both of these values. This diffi culty is easily resolved.
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The demand function for consumer tax ν equals the original demand
function, shifted down by the magnitude ν, leading to the dashed demand
function in Figure 10.1 The vertical distance between the original demand
function and the demand function under the tax, is ν. This “new”demand
function shows demand as a function of the producer price rather than the
consumer price.
The intersection of the original supply function and the new demand

function occurs at point b, showing the equilibrium quantity and producer
price under the tax. The equilibrium consumer price (at point d), equals the
producer price plus ν. Denote the distance between any two points x and y
as ‖xy‖. The tax increases the consumer price by ‖gd‖ and decreases the
producer price by ‖bg‖. The sum of these two changes is ‖bd‖ = ν. The
consumer and producer taxes incidences are ‖gd‖

τ
100% and ‖bg‖

τ
100, which

sum to 100%.
The paragraphs above assume that consumers bear the statutory oblig-

ation of paying the tax, so the tax shifts the demand function. If instead,
producers bear the statutory obligation of paying the tax, then we let the
vertical axis represent the price consumers pay. In this situation, the tax
does not change the demand function, but it causes the supply function to
shift up by ν units, as shown by the dotted supply function. It is appar-
ent from Figure 10.1 the equilibrium quantity and the tax-inclusive consumer
and producer prices are the same, regardless of which agent has the statutory
obligation to pay the tax: consumer and producer taxes are equivalent

Algebraic example Suppose that inverse demand is p = 10 − Q and
marginal cost (= inverse supply) is MC = S = 2 + 3Q. In the absence of
a tax, setting supply equal to demand implies the equilibrium price p∗ = 8
and the equilibrium quantity Q∗ = 2. If consumers have the statutory
obligation to pay a unit tax ν = 3, inverse demand, written as a function
of the producer price, p, shifts to 10 − Q − 3 (because consumers have to
pay p + 3); the supply function is unchanged, so equilibrium occurs where
10−Q−3 = 2+3Q, implying the equilibrium quantityQ = 1.25, the producer
price 2 + 3 (1.25) = 5. 75 and the consumer tax-inclusive price 10 − 1.25 =
8. 75. The consumer tax incidence is 8.75−8

3
100 = 25% and the producer tax

incidence is 8−5.75
3

100 = 75%.
If producers have the statutory obligation to pay the tax, inverse demand

(as a function of the consumer price) remains at p = 10−Q, but the supply
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curve shifts to S = 2 + 3Q + 3 (because producers deduct the tax from the
payment they receive from consumers). Setting the demand equal to supply
gives 10 − Q = 2 + 3Q + 3, or Q = 1.25, as above. The consumer and
producer prices, and therefore the tax incidences, are also the same.

10.3 Tax incidence and deadweight cost

Objectives and skills

• Determine how supply and demand elasticities affect tax incidence.

• Identify graphically the deadweight cost of a tax and show its depen-
dence on supply and demand elasticities.

• Understand the difference between short and long run elasticities, and
the resulting “time-consistency”problem.

Calculating the exact tax incidence requires that we find the equilibrium
price in the absence of the tax, and the equilibrium consumer (or producer
price) under the tax, and compare the two. (Using the fact that the tax
incidences sum to 100%, we easily find one tax incidence by knowing the
other.) We can use supply and demand elasticities to approximate the tax
incidence for small taxes. The elasticities of supply and demand, evaluated
at the equilibrium price in the absence of a tax are

elasticity of supply θ = dS(p)
dp

p
S

elasticity of demand η = −dD(p)
dpc

p
D
.

(10.1)

The change in equilibrium price due to a change in the tax, starting from a
zero tax is

dp

dν
= − η

θ + η
. (10.2)

Equation 10.2 is a “comparative static expression”(Chapter 2.2). Equation
10.2 and the elasticity definitions produce approximations of producer and
consumer tax incidence:

producers’approx. tax incidence: η
θ+η

100

consumers’approx. tax incidence: θ
θ+η

100.
(10.3)
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Figure 10.2: A less elastic supply (the dotted instead of the solid supply
curve) increases the producer incidence of the tax

A lower elasticity of supply corresponds to a steeper supply function and
a larger producer tax incidence. Figure 10.2 reproduces Figure 10.1, show-
ing the original demand and supply functions, and the effect of a consumer
tax. The figure includes a steeper (less elastic) supply function, the dotted
line. Readers should identify the equilibrium quantity and the consumer and
producer prices under the tax, to show that the less elastic supply curve in-
creases the producer incidence of the tax. Similarly, smaller values of η mean
that demand is less elastic, implying a steeper inverse demand function and
a higher consumer tax incidence. By rotating the demand function around
point c, readers can visualize the effect of making demand less elastic.

The trapezoid fcde in Figure 10.1 measures the loss in consumer surplus
due to the tax, and the trapezoid abcf is the loss in producer surplus. Tax
revenue equals the rectangle abde. Social welfare is the sum of producer and
consumer surplus and tax revenues. The reduction in social welfare, due to
moving from a zero tax to a positive tax, equals the reduction in consumer
and producer surplus, minus the increase in the tax revenue. In Figure 10.1,
this net loss equals the triangle bcd, society’s deadweight loss (DWL) of the
tax. The distortionary cost of the tax is small relative to the size of the
transfer from consumers and producers to taxpayers. (“Triangles are small
relative to rectangles.”) In the case of linear supply and demand functions,
the DWL is literally a triangle (known as the “Harberger triangle”). For
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Figure 10.3: The graph of the approximation of deadweight loss.

general supply and demand functions, the approximate DWL is:

DWL ≈
(

1

2

θη

θ + η

q

p

)
ν2. (10.4)

The formula shows

Result (i): The DWL is approximately proportional to the square
of the tax. Result (ii): The deadweight cost is lower, the smaller
is the elasticity of supply or demand.

It is not surprising that the DWL is zero for a zero tax and increases with
the magnitude of the tax; the more important point is that it increases faster
than the tax (Result i). Figure 10.3 illustrates this relation, showing that
the DWL is a convex function of the tax. This fact implies that it is effi cient
to use a broad tax basis. For example, we may be able to raise the same
amount of revenue by using a tax ν

2
in each of two markets, instead of a tax of

ν in a single market. Denote the term in parenthesis in equation 10.4 as X.
IfX is the same for both markets in our example, then the deadweight cost of
using the tax ν in one market is approximately Xν2, whereas the deadweight
cost of using ν

2
in the two markets is approximately 2×X

(
ν
2

)2
= X

2
ν2. For

this example, doubling the tax base reduces the deadweight cost by 50%.
Result (ii) implies that, other things equal, a tax applied to a commodity
with low elasticity of supply or demand reduces the effi ciency cost of the tax.
For emphasis, we repeat the two “rules”of tax policy:

(1 ) It is better to have a broad tax base (i.e. tax many instead of
few goods). (2) It is better to tax goods that have lower elasticity
of supply or demand.
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A third “rule”is obvious: It is better to tax “bads”, such as pollution, rather
than “goods”, such as labor or investment. Many taxes ignore some or all
of these rules.

Product markets and general equilibrium analysis Many taxes are
designed to raise tax revenue, not to correct market failures. The deadweight
cost associated with these taxes might be a substantial fraction of the tax
revenue. Governments tax “factors of production”, such as land, labor and
capital, not only produced goods. Factor taxes, like commodity taxes, have
an incidence and a deadweight cost. An income tax potentially alters the
supply of labor, changing the equilibrium wage, affecting both people who
supply labor and those who purchase it, and creating a deadweight loss.
The partial equilibrium analysis examines a single market. There, tax

incidence and deadweight cost depend on the supply and demand elasticity
of the commodity or the factor. If the elasticity of supply is zero, then
producers or factor owners bear the entire incidence, and the deadweight
loss is zero. In this case, the tax shifts income from producers or factor
owners to taxpayers, but causes no effi ciency loss. Unimproved land is the
classic example of a factor with zero elasticity of supply. Henry George, a
19th century political economist, proposed a single tax on unimproved land;
this tax causes no economic loss, and falls entirely on landowners.
A general equilibrium setting recognizes that markets for different prod-

ucts or factors are interlinked, and that it is seldom possible to alter one
market without altering others. For example, if landowners are also farmers,
the land tax lowers their income and wealth. The tax-induced reduction in
income may cause farmers to work harder; collectively, the decisions change
the supply of labor, thus changing the level and equilibrium price of the
output. The tax-induced reduction in farmers’wealth might induce them
to rebuild their wealth by accumulating more capital. The higher stock of
capital increases the marginal productivity labor, increasing the equilibrium
wage and lowering the return to capital. The changes in these factor prices
shift the tax incidence to factor owners. If the revenue from the land tax is
given to workers, their higher income might cause them to supply less labor,
increasing the equilibrium wage.
These general equilibrium changes are too complicated to summarize in a

simple formula. They are sometimes studied using numerical “computable
general equilibrium”(CGE) models. Table 1 reports CGE-based estimates
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of the deadweight loss of various U.S. taxes. The property tax has the lowest
deadweight loss, consistent with the low elasticity of supply of land. The fact
that most taxes create a deadweight loss means that there is a social cost to
raising government revenue. Prominent estimates are that this social cost is
at least 20% of tax revenue. Opponents of expensive government programs
sometimes invoke this cost to explain that the actual cost of the program
exceeds the budgetary cost.

income
tax

payroll
tax

consumer
sales tax

property
tax

capital
tax

output
tax

50 38 26 18 66 21
Table 10.1 Estimates of percent deadweight loss of U.S. taxes

Time consistency Putting aside the general equilibrium complications,
the partial equilibrium analysis has a simple and powerful policy message:
the deadweight cost associated with taxes is lower, the lower is the elasticity
of supply or demand associated with the taxed product or factor. The
difference between short and long run elasticities complicates this message.
In order to make this point, suppose that the government wants to min-

imize the deadweight loss, subject to the constraint that it raise a certain
amount of tax revenue in each period. The government has two policy
instruments, a tax on capital and a tax on labor. Investment takes time;
the current stock of capital depends on previous, not on current investment.
This fact causes the supply of capital to be quite inelastic in the short run,
so current capital taxes create little deadweight loss. This observation im-
plies that most of the revenue in the current period should be raised using a
capital tax. However, the future stock of capital depends on current invest-
ment, which depends on beliefs about future capital taxes. This fact causes
the future stock of capital to be quite elastic, militating against the use of a
capital tax in the future.
If the policymaker today can make a binding commitment to the time

profile of taxes, she would like to raise most of current revenue using a capital
tax, but promise to use a low future capital tax. The current labor tax can
therefore be low, but the future labor tax must be high, in order to raise the
required amount of revenue in each period.
The time consistency problem is that “once the future arrives, it has be-

come the present”. The policymaker in the future has the same incentives
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as the policymaker today. She has the temptation to renege on her prede-
cessor’s commitment to use a low capital tax, in order to raise the required
amount of revenue with little deadweight cost. The planner in the future
does not want to implement the program that her predecessor would like to
see used, giving rise to a “time consistency problem”. If today’s planner
cannot bind her successors to carry out the program that she wants them
to use, that program is not time-consistent. Investors would not believe
that they will in fact face low capital taxes in the future; this understanding
reduces their incentive to invest, creating an additional distortion.

10.4 Taxes and cap & trade

Objectives and skills

• Understand the basic ingredients of a cap and trade policy.

• Understand how to use tax incidence to estimate the fraction of permits
that have to be “grand-fathered” in order for a cap and trade policy
not to reduce industry profits.

Emissions taxes and cap & trade are market-based environmental policies.
“Command and control”policies, in contrast, reduce emissions by mandating
certain types of technology or production methods. Market-based policies
likely reduce emissions more cheaply than command and control policies.
By the end of 2014 there were almost 50 carbon markets worldwide, the
largest being the European Union’s Emissions Trading Scheme (EU ETS).
Southern California’s trading scheme for NOx, RECLAIM, has operated since
1994. The (never passed) 2009 Waxman-Markey bill envisioned setting up a
U.S. market for carbon emissions. Environmental reform requires people to
change their behavior, usually imposing a cost.
Under cap and trade, the government announces a pollution ceiling, a

cap, and requires that firms have one “pollution permit” for each unit of
pollution that they create; the aggregate number of permits equals the cap.
The permits might be given (“grand-fathered”) to polluters, or firms might
be required to purchase them from the government.2 Firms are allowed to

2“Grandfathering”refers to the practice of exempting certain groups from a new rule
or law. The term originated during the late 19th century when Southern states created
voting obstacles (such as literacy tests) to disenfranchise black citizens. White voters
were exempt from these obstacles if their grandfather had voted.
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trade permits; this market establishes a price for permits.
Giving (instead of selling) firms pollution permits lowers their cost of com-

plying with the regulation. Firms facing the prospect of cap and trade want
to persuade legislators to grandfather a large share of permits. Politicians
may be generous, in order to mute firms’opposition to the environmental
regulation. The Waxman-Markey bill proposed giving businesses a declin-
ing (over time) share of the permit allowance; economists discussed whether
that plan would hand firms a windfall. Generous grand-fathering in the EU
ETS may have increased polluting firms’profits. When does grand-fathering
merely cushion businesses from a loss of profits, and when is it a windfall? To
answer this question, we first explain the sense in which cap and trade and
the pollution tax are equivalent, and then apply this insight. Our discussion
uses the special case where one unit of output creates one unit of pollution.
Here, a unit tax on pollution is equivalent to the same unit tax on output,
so we can use the concept of tax incidence developed above.
Taxes and cap and trade are equivalent the following sense. A cap estab-

lishes a particular limit on pollution; trade in permits leads to a particular
price for permits. As a pollution tax increases from zero, the equilibrium
level of pollution falls. There is a “quota-equivalent” tax that results in
the same level of pollution as does the particular cap. The magnitude of
this quota-equivalent tax equals the equilibrium price of permits under cap
and trade. Thus, the value of quota rents (= number of quotas × price per
quota) equals the value of tax revenue (= amount of pollution × tax level).
Grand-fathering the (arbitrary) fraction s of permits is equivalent to giving
firms the fraction s of quota rents, which is equivalent to giving them the
fraction s of tax revenue under the “quota-equivalent tax”. Under cap and
trade, rational firms’emissions decision depends on the price of an emissions
permit, but not on the the number of permits they are grandfathered (Box
10.1 and Appendix F.5).
We set out to answer “What fraction of permits must be grand-fathered

in order that the cap and trade policy not reduce firm profits?”The logic
above shows that this question has the same answer as the question “What
fraction of tax revenue would we have to give firms, in order that the ‘quota-
equivalent tax’not reduce firm profits?”That question has a simple answer.
Suppose that the quota-equivalent tax equals the level shown in Figure

10.1. This tax lowers firm profits by the area abcf = abgf +bcg. Inspection
of the figure shows that the area abgf equals total tax revenue (abde) times
the producer tax incidence. Therefore, if we give firms the share of tax
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revenue equal to their tax incidence, plus a bit more to make up for the
triangle bcg, firm profits are the same as before the tax. Translating this
conclusion to the cap and trade context, we conclude that if firms are grand-
fathered a share of permits slightly greater than their tax incidence under the
quota-equivalent tax, the environmental policy does not reduce firm profits.

Box 10.1 Rational firms’ emissions decisions do not depend on the
number of permits they are grand-fathered. If this claim is correct,
and if in addition allowances were randomly assigned to firms, emis-
sions would be uncorrelated with allowances. However, allowances are
not randomly assigned: firms that emitted more in the past typically
receive higher allowances. Moreover, the characteristics (e.g. old tech-
nology) that caused firms to be high emitters in the past, tend to also
make them high emitters in the future. Therefore, the assignment
of allowances on the basis of historical emissions creates a positive
correlation between allowances and emissions. That correlation sheds
no light on whether the italicized claim, above, is correct. Califor-
nia’s RECLAIM emissions trading program randomly assigned firms
to different “permit allocation cycles”which allocated allowances at
different times during the year, and which tended to have different
size allocations. Similar firms randomly assigned to different groups
therefore tended to receive different levels of allowances. This (lim-
ited ) randomness in assignment of allowances made it possible to test
the italicized claim statistically; those tests support for the claim.

It is worth repeating two assumptions that underlie this conclusion. First,
the economy is closed. To the extent that the policy affects electricity gen-
erators, the closed economy assumption is reasonable, because there is little
international trade in electricity. However, if the policy affects producers of
carbon-intensive traded goods, the results described here do not hold. If an
open economy imposes cap and trade, the regulation may have little or no ef-
fect on the price at which the country can buy or sell carbon-intensive goods.
Here, producers face an infinitely elastic excess demand function, and they
bear the entire incidence of the regulation. These firms are worse off even if
they are given all of the permits. The second assumption is that pollution is
proportional to output. If changes in production methods change the ratio
of emissions to output (the “emissions intensity”) then the insights obtained
above are still relevant, but the analysis is more complex.
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10.5 Summary

The unit and ad valorem taxes are different ways of expressing a tax. For
each unit tax, there is an ad valorem tax that leads to exactly the same
outcome. These taxes change equilibrium price and quantity and they create
a deadweight cost to society. The deadweight cost of a tax equals the net loss
in social welfare arising from the tax: the reduction in the sum of consumer
and producer surplus, minus the tax revenue.
The consumer incidence of the tax equals the increase in the price that

consumers pay, as a percent of the tax. The producer incidence equals the
reduction in the price that producers receive, as a percent of the tax. In a
closed economy (no international trade) it does not matter whether the tax
is imposed on consumers or producers; the two taxes are equivalent. This
fact implies that in some settings, the Polluter Pays Principle is vacuous:
regardless of whether the polluter or the pollutee directly pays, their actual
cost is the same. The larger point is that producers and consumers typically
share the burden of a regulation that increases production costs.
Consumer and producer incidences depend on supply and demand elas-

ticities. The deadweight cost of a tax is approximately proportional to the
square of the tax. Therefore, reductions in small taxes typically lead to
small decreases in deadweight loss, but reductions in large taxes result in
large decreases in deadweight loss. The deadweight cost might be a sig-
nificant fraction of tax revenue, and can therefore significantly reduce the
potential social benefit arising from tax revenue.
Three “rules”of optimal taxation state that it is better to tax commodi-

ties or factors for which the elasticity of supply or demand is small (so that
the deadweight loss is small); it is better to have a broad tax base (so that a
given amount of revenue can be raised using small taxes in each sector; and
it is better to tax bads than goods. We are primarily interested in taxes as a
means of correcting externalities such as pollution, not as a means of raising
revenue. However, to the extent that taxes on bads can replace taxes on
goods, the former not only correct market failures, but also potentially reduce
the deadweight cost of revenue-raising taxes. General equilibrium relations
can shift the tax incidence in subtle ways. In a dynamic setting, involving
investment, the short run elasticities of supply and demand typically differ
from their long run analogs, complicating the problem of designing tax policy,
and potentially leading to a time inconsistency problem.
Under cap and trade, where firms can buy and sell emissions permits,
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the equilibrium price of permits depends on the level of the cap, but not on
the whether the permits are given or auctioned to firms. A pollution tax
equal to the equilibrium price of emissions permits leads to the same level
of emissions as under a cap. If firms are given (rather than having to buy)
the fraction of permits slightly greater than their tax incidence, the cap and
trade policy does not lower industry profits.

10.6 Terms, study questions and exercises

New terms or concepts

Unit tax, ad valorem tax, consumer and producer tax incidence, rational
buyers, behavioral economics, approximation of tax incidence, closed and
open economies, Polluter Pays Principle, tax equivalence, Harberger trian-
gle, deadweight loss (or cost) of taxes, approximation of deadweight loss,
approximation of tax revenue, factor prices, general equilibrium effects, com-
putable general equilibrium (CGE) model, time consistency, cap and trade,
equivalence of a cap and trade and a tax policy, grand-fathering.

Study questions

1. (a) What does it mean to say that a producer and a consumer tax
are “equivalent” in a closed economy? (Your answer should include
a definition of the term “incidence”. (b) Use either a graphical or a
numerical example to illustrate this equivalence in a closed economy.
(c) Using either a numerical or a graphical example, show that this
equivalence breaks down in an open economy.

2. (a) Use a graphical example to show how the consumer and producer
tax incidences (in a closed economy) depend on the relative steepness
of the supply and the demand functions at the equilibrium price. (b)
Using this example, explain how the approximation of consumer tax
incidence depends on the demand elasticity relative to the supply elas-
ticity (i.e. the ratio of the two elasticities) evaluated at the no-tax
equilibrium. [Begin by drawing a supply demand function, picking a
tax, and identifying the tax incidences. Then rotate one of the curves
around the no-tax equilibrium, making it much steeper (= less elas-
tic) or much flatter (= more elastic) and show graphically how the
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incidences change.]

3. An opponent of government programs might argue that the true eco-
nomic cost of financing these programs exceeds the nominal cost of
the programs. An advocate of some government programs might ar-
gue that they are necessary to correct market failures. Explain, using
concepts developed above, these two positions.

4. Suppose that a regulator imposes a producer tax in a closed economy.
(a) Use the concept of producer tax incidence to approximate the frac-
tion of the tax revenue that would have to be turned over to producers
to make them almost as well off under the tax + transfer as they were
before the tax. (b) Use the concept of consumer tax incidence to ap-
proximate the fraction of the tax revenue that would have to be turned
over to consumers to make them almost as well off under the tax +
transfer as they were before the tax. (c) Is it possible, by means of
transferring the tax revenue (associated only with this particular tax),
to make both producers and consumers exactly as well off under the
tax + transfer as they were before the tax? Explain

5. (a) Describe a cap and trade policy. (Explain how it works.) (b)
Explain what it means to auction permits. (c) Explain why firms’
equilibrium level of pollution does not depend on whether permits are
given to the firm or auctioned.

6. (a) Explain what is meant by the claim that a pollution tax and a cap
and trade policy are equivalent. (b) Explain why the claim is true (in
the particular setting we used). (c) Suppose that instead of using a cap
and trade, a regulator uses a “cap and no trade”policy, in which firms
are allocated pollution permits but not allowed to trade them. Is a
pollution tax equivalent to a “cap and no trade policy”? Explain. For
example, if you claim that the two policies are still equivalent, without
trade, you should justify that conclusion. If you claim that the two
policies are different, with respect to some significant outcome, you
should identify and explain the difference.

Exercises

Assume for all questions that the economy is closed.
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1. Consider a monopoly, in a static setting, with constant marginal cost
c. If the monopoly receives price p and consumers pay a unit tax
ν, consumers’ tax-inclusive prices is pc = p + ν; if instead they pay
the ad valorem tax τ , they pay the tax-inclusive price pc = p (1 + τ).
The demand function is q = a − pc. (a) Write down the monopoly’s
maximization problem and first order condition in the two scenarios,
with a unit and an ad valorem tax. (b) Solve these two first order
conditions to find the equilibrium consumer price in these two cases.
(In one case this price is a function of ν and in the other case it is a
function of τ .) (c) Use part b to find the relation between ν and τ
such that if the taxes satisfy this relation, the consumer price is the
same under either tax.

2. (a) Draw a linear demand function and a linear marginal cost func-
tion. Use this figure to identify (graphically) consumer and producer
incidence of a unit tax, ν, in a competitive equilibrium. (b) Repro-
duce the figure you drew from part (a), except now make the supply
function steeper at the zero-tax competitive equilibrium. Identify the
consumer and producer tax incidence and compare these to your an-
swer in part (a). (c) Explain the relation between your answer to part
(b) and equation 10.3. (d) Reproduce the figure that you drew from
part (a). A regulator uses a unit tax ν. Use this new figure to compare
the consumer tax incidence in a competitive equilibrium and under a
monopoly.

3. (a) Using the approximation of deadweight loss in equation 10.4, show
that deadweight cost increases with either the elasticity of demand or
the elasticity of supply. (Hint: take a derivative.) For this question,
you are holding the tax and the zero-tax equilibrium quantity and price
constant, and considering the effect of making either the demand or the
supply function flatter (more elastic) at this equilibrium. (b) Provide
an economic explanation for the relation you showed in part (a).

4. Using the assumption that the term in parenthesis in equation 10.4 is
the same for each sector, show that doubling the tax base leads to a
50% reduction in the total deadweight loss (defined as the sum over
the sectors of the deadweight loss in each sector).
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5. A profit tax is usually expressed in ad valorem terms. If firms have prof-
its py−c (y) and pay a profit tax φ, their after-tax profit is (1− φ) [py − c (y)].
(a) How, if at all, does a profits tax affect the equilibrium price in a
competitive equilibrium? (b) What, if anything, does a profit tax af-
fect in a competitive equilibrium? (Make a list of the features of the
competitive equilibrium that we care about, and ask which if any of
those features are altered by the profits tax.) (c) Now answer parts
(a) and (b), replacing the competitive firm with a monopoly.

6. A monopoly has constant costs, c. Consumers, facing price pc, demand
q = a− pc units of the good; so the inverse demand is pc = a− q. (a)
Write down the monopoly profits, as a function of its sales, q, in the two
cases where consumers pay the unit tax ν, and then when the monopoly
pays the unit tax ν. (b) Compare the profit function in these two cases.
Based on this comparison, does the monopoly equilibrium depend on
which agent (consumers or the monopoly) has the statutory obligation
to pay the tax?

Sources

Gentry (2007) reviews evidence that labor bears a significant share of the
incidence of corporate taxes.
Feldstein (1977) discusses the general equilibrium effects of a land tax.
Diewert et al. (1998) and Conover (2010) review estimates of tax inci-

dence; Table 11.1 is based on Conover.
Judd (1985) discusses the time path of capital taxes, and Karp and Lee

(2003) discuss the time-inconsistency of the optimal program.
The World Bank (2014) surveys carbon markets across the world.
Fowlie, Holland and Mansur (2012) document the success of the RE-

CLAIM market for NOx.
Fowlie and Perloff (2013) find support for the hypothesis that emissions

levels do not depend on permit allocations.
McAusland (2003 and 2008) compares environmental taxes in open and

closed economies.
Sijm et al. (2006) and Hintermann (2015) provide evidence that grand-

fathering in the EU ETS might have given firms windfall profits.
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Chapter 11

Taxes: nonrenewable resources

Objectives

• Study nonrenewable resource taxes by synthesizing the Hotelling model
and facts about static taxes.

Information and skills

• Have an overview of actual fossil fuel taxes.

• Understand the time consistency problem arising from quasi-rent.

• Understand how taxes alter a firm’s extraction incentives.

• Compare constant versus time-varying tax profiles.

• Map tax-induced price changes into trajectories of consumer and pro-
ducer tax incidence.

Current supply in static markets depends on the current price, but in nat-
ural resource markets it also depend on firms’expectations of future prices.
Some results from static tax analysis carry over to the dynamic setting: in
a closed economy the incidence of the tax is the same regardless of whether
it is levied on consumers or producers, and for every unit tax, there is an
equivalent ad valorem tax. Here, there is no loss in generality in assuming
that producers have the statutory obligation to pay a unit tax.
In other respects, taxes might have qualitatively different effects in a static

setting and in a dynamic setting with natural resources. In a static setting,
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taxes reduce equilibrium supply. In the resource setting, a tax reallocates
supply across periods, but possibly has no effect on cumulative supply. The
tax-induced change in the timing of sales can have important welfare effects.

11.1 Current fossil fuel policies

Objectives and skills

• Know the basics of fossil fuel policies and understand the rationale for
efforts to reform these policies.

Natural resources, particularly fossil fuels, are an important part of the
world economy, and governments derive substantial revenue from their taxa-
tion. Between 2005 —2010 the (mostly rich) 24 countries in the Organization
for Economic Cooperation and Development (OECD) raised about $850 bil-
lion per year in petroleum taxes, including goods and services taxes and value
added taxes. For large oil producing countries, government receipts from the
hydrocarbon sector were a large fraction of total government revenue (2000 -
2007 data): 72% for Saudi Arabia, 48% from Venezuela, and 22% for Russia.
In many rich countries, the oil sector also receives significant implicit

subsidies in the form of tax deductions. A tax on producers implicitly taxes
consumption (Chapter 10); similarly, a producer subsidy implicitly subsidizes
consumption. Middle income and developing fossil fuel exporters directly
subsidize domestic fuel consumption by maintaining a domestic price lower
than the world price. For both groups of countries, these policies subsidize
fuel consumption, creating significant distortions. The fossil fuel sector also
receives large implicit subsidies, because fossil fuel prices do not include the
cost of externalities.
In 2009, leaders of the G20 (a group of wealthy countries) committed

to “rationalize and phase out over the medium term ineffi cient fossil fuel
subsidies that encourage wasteful consumption”. A group of international
organizations, including the OECD and World Bank, estimated the scope
of energy subsidies and made suggestions for their reduction. Their report
identified 250 individual mechanisms that support fossil fuel production in
the OECD countries, having an aggregate value of USD $ 45 -75 billion per
year over 2005 - 2010; 54% of this subsidy went to petroleum, 24% to coal,
and 22% to natural gas. In the U.S., tax breaks provide fossil fuel subsidies of
about $4 billion per year. These tax breaks include: write-offs for intangible
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drilling costs, a domestic manufacturing tax deduction, and a percentage
depletion allowance for oil and gas wells. These subsidies transfer income
from taxpayers to resource owners. Underpriced leases for mines and wells
on federally owned land also transfers income from taxpayers to producers.
A group of 37 emerging and developing countries subsidize domestic fuel

consumption, maintaining domestic prices below international prices. This
group accounts for over half of world fossil fuel consumption in 2010. With
a domestic price of pd and a world price of pw, the per unit subsidy is pw−pd.
The nation loses pw − pd times the amount of subsidized consumption from
selling fuel at the low domestic price instead of the higher world price. Most
of the countries maintained a stable domestic price, while the world price
fluctuated, causing the per unit subsidy to also fluctuate. The cost of the
subsidies to their domestic treasuries amounted to $409 billion in 2010 and
$300 billion in 2009. Oil received 47% of total, and the average subsidy was
23% of the world price. The subsidy rates were highest among oil and gas
exporters in Middle East, North Africa and Central Asia.
A common justification for fuel subsidies is that they benefit the poor,

providing them with access to energy services. However, only 8% of the
$409 billion subsidy in 2010 went to poorest 20% of the population. If the
subsidy had been eliminated, and the fuel sold at world price, and each
person then given an equal share of the proceeds, the poorest 20% would
have received approximately twice as much as they did under the subsidy.
Fuel subsidies —like most commodity subsidies —are an ineffi cient way to help
the poor. These subsidies fell from about 1.8% of government budgets in 2004
to 1.3% in 2010. Absent reforms, 2011 estimates project that these fossil
fuel subsidies would reach $660 billion per year by 2020. The elimination
of consumption subsidies was estimated to reduce 2020 fuel demand by 4.1%
and CO2 emissions by 4.7%.
A 2015 International Monetary Fund (IMF) study updates estimates of

the magnitude and economic cost of fossil fuel subsidies, and also includes
unpriced externalities. For fossil fuels, the implicit subsidy arising from the
unpriced externality is larger than the direct subsidy. Local health effects,
not climate change, accounts for the bulk of this externality cost. The IMF
study estimates that global energy subsidies (including the externality cost)
amounted to about $5 trillion, or 6% of world Gross Domestic Product (GDP)
in 2013; removal of these explicit and implicit subsidies would have raised
almost $3 trillion in government revenue, and would have increased global
GDP by more than 2%. For comparison, estimates of the increase in welfare
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due to major trade liberalization are typically only a fraction of a percent
of GDP. A 2014 IMF book estimates that effi cient energy prices (eliminat-
ing explicit subsidies and imposing externality costs) would reduce carbon
emissions by 23% and reduce deaths related to fossil-fuel air pollution by
63%.
Fossil fuel subsidies are ineffi cient for at least four reasons. Most impor-

tantly, they subsidize a commodity that should, because of environmental
externalities, be taxed. The subsidies also violate the other two “rules”of
optimal taxation discussed in Chapter 10.3. The first rule states that gov-
ernments should have a broad tax base, so that taxes on each sector can be
low. Subsidizing rather than taxing the fossil fuel sector flies in the face of
this advice, requiring higher taxes in other sectors to finance the fossil fuel
subsidies. The second rule states that, for the purpose of raising government
revenue, goods with inelastic supply and/or demand should be the most
highly taxed. Fossil fuels have inelastic short run supply and demand, but
they are subsidized. Finally, commodity subsidies are an ineffi cient means of
making transfers to the poor. Political power, not economic logic, explains
the tax and subsidy policies used in a wide range of fossil fuel markets, for
both importers and exporters countries, and for rich and developing nations.
Renewable energy sources also receive significant subsidies. The dollar

value of these is much smaller than the value of “direct”fossil fuel subsidies
(i.e., excluding the unpriced externalities associated with fossil fuels). How-
ever, renewables account for a small part of the energy market. The (direct)
subsidy per unit of energy produced is 2 —3 times larger for renewables than
for fossil fuels. This ratio overstates renewables’ subsidy advantage, rela-
tive to fossil fuels, because the renewable subsidies have fluctuated over the
past decades, creating a risky investment climate; fossil fuel subsidies have
been maintained by political influence. Fossil fuels also rely on relatively
mature technologies, compared to renewables; positive externalities such as
learning-by-doing and research spillovers (standard rationales for subsidies)
are consequently more plausible for renewables than for fossil fuels.

11.2 The logic of resource taxes

Objectives and skills

• Understand the effect of taxes on the timing of extraction, and the
potential effect of taxes on cumulative extraction.
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• Understand how taxes affect incentives to develop resource stocks.

• Understand governments’temptation to raise resource taxes after firms
have made expensive investments, and the resulting “hold-up”problem.

In the static setting, taxes (and subsidies) drive a wedge between con-
sumer and producer prices, altering equilibrium quantity and creating dead-
weight loss. Natural resource taxes can alter both the timing of extraction
and cumulative extraction. We focus on the timing effect by studying a model
with constant average extraction cost C, where taxes do not alter cumulative
extraction. We then discuss the relation between taxes and investment.
The Euler equation provides the basis for understanding how taxes alter

sales and price trajectories. This equation requires the present value of rent
to be constant over time. Equation 5.6, repeated here, is

Rt = ρjRt+j. (11.1)

In the absence of tax, rent is Rt = pt − C. Under the tax ν (t), if the
consumer price is pt, producers’(after tax) price is pt − ν (t), so their rent is
Rt = pt−ν (t)−C. With this revised definition of rent, the firm’s optimality
condition is still equation 11.1, or

pt − ν (t)− C = ρj (pt+j − ν (t+ j)− C) . (11.2)

A thought experiment helps in understanding the effect of taxes on the
equilibrium price trajectory. Suppose that we begin with the no-tax equi-
librium where the (producer = consumer) prices, pNTt , (NT for “no-tax”)
satisfy the Euler equation:

pNTt − C = ρj
(
pNTt+j − C

)
. (11.3)

We now impose a tax sequence, ν (t), t = 0, 1, 2... and ask whether the
no-tax prices still constitute an equilibrium. We write this question as

pNTt − ν (t)− C ??
= ρj

(
pNTt+j − ν (t+ j)− C

)
. (11.4)

The symbol “??
=”indicates that we are asking whether the equality holds; if it

does not hold, we want to determine the change in the price trajectory that
makes it hold. Two examples show how the thought experiment provides
information about the effect of resource taxes. Here, unlike the static setting
(equation 10.3), we do not have simple formulae for measuring tax incidence.
However, the resource firm’s equilibrium condition tells provides information
about tax incidence without performing calculations.
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A tax that increases at the rate of interest

First consider ν (t) = ν0 (1 + r)t, a tax increases at the rate of interest. For
this tax,

ν (t+ j) = ν0 (1 + r)t+j = ν0 (1 + r)t (1 + r)j = ν (t) (1 + r)j

⇒ ρjν (t+ j) = ν (t) .

We obtain the second line by multiplying the first line through by ρj, and
using ρj (1 + r)j = 1. If the tax increases at the rate of interest, then the
present value of the tax is constant. Subtracting ν (t) from the left side of
equation 11.3 and the same quantity, ρjν (t+ j), from the right side, we

obtain equation 11.4 (replacing ??
= with =). We conclude that if the present

value of the tax is constant (as assumed here), it has no effect on equilibrium
consumer prices: the consumer incidence is 0%. Therefore, the producer
incidence must be 100% (because the two incidences sum to 100%). Because
the tax does not alter the equilibrium consumer price, it does not alter the
equilibrium sales trajectory, and it creates no deadweight loss.
The present value of the tax receipts is

T∑
t=0

ρt (1 + r)t ν0yt = ν0

T∑
t=0

yt = ν0x0

This tax transfers the rent ν0x0 from producers to taxpayers, without creating
a distortion. Equation 5.8 shows that under constant extraction costs and
zero tax, the value of the firm is RNT

0 x0, where RNT
0 is the No Tax initial

rent. Therefore, under the tax considered here, the after-tax value of the firm
is
(
RNT

0 − ν0

)
x0. By setting the initial tax, ν0, close to RNT

0 , the government
can extract nearly all of the rent from the resource owner.

A constant tax

Suppose now that firms face the constant unit tax, ν. In moving from
equation 11.3 to 11.4 (with constant ν), we subtracted ν from the left side
and ρjν from the right side. Because ν > ρjν, the “questioned equality”in
11.4 is false. In order for the equality to hold, we have to increase pt relative
to pt+j (because we are subtracting a larger quantity from the left than from
the right side). We can make this adjustment by transferring sales from
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period t to period t+ j, thereby increasing the price in period t and reducing
it in period t+ j.1

The conclusion is that the constant tax reduces sales and increases the
price early in the program, and has the opposite effect late in the program.
Therefore, the consumer incidence of the tax is positive early in the program
(when the tax leads to a higher consumer price), but it is negative late in
the program (when the tax leads to a lower consumer price). This example
shows that the consumer tax incidence need not lie between 0% and 100%
in the resource setting, unlike in the static setting.
The constant tax has the same qualitative effect as a higher cost, discussed

in Chapter 3.3. There, we saw that a higher extraction cost causes firms
to shift production from the current period to future periods. Discounting
reduces the present value of costs that are incurred in the future. From the
standpoint of the firm, increasing the tax from 0 to the positive constant ν
has exactly the same effect as increasing costs from C to C ′ = C + ν.
In a static model, competitive firms with constant marginal production

costs have infinite elasticity of supply. Here, the consumer tax incidence is
100% and the producer incidence is zero (equation 10.3). In the resource
setting, the consumer tax incidence is positive early in the program but
negative late in the program. What explains the difference (under constant
marginal costs) between the static and resource settings? In the resource
setting, total supply is finite; marginal extraction cost is constant before
exhaustion, but infinite once the resource is exhausted. The resource scarcity
creates rent. In contrast, in the static setting, producer surplus is zero.

Box 11.1 The profits tax Exercise 2 in Chapter 10 explores the effect
of a constant profits tax in a static model. That exercise shows that
a constant profits tax takes rent from producers, but has no effect
on equilibrium price or quantity. This result also holds for resource
markets. The constant profits tax reduces profits in each period
proportionally, and does not alter the firm’s incentives about when to
produce. A time varying profits tax alters the firm’s incentives, and
therefore affects consumers in addition to firms.

1It is worth repeating the warning made in Chapter 3.1. The firm does not respond
to an exogenous change, such as a new tax, in order to cause equation 11.2 to hold.
The exogenous change presents the price-taking resource owner with new opportunities
for intertemporal arbitrage. The firms’ response causes prices to change. Additional
opportunities for intertemporal arbitrage are exhausted only when equation 11.2 holds.
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Investment

Rent is the return to a factor of production in fixed supply; quasi-rent is
the return to a previous, now “sunk”, investment. Most natural resource
stocks require significant investment in exploration and development. Thus,
the difference between the price that a firm receives and its marginal cost
of extracting the resource, is actually the sum of rent and quasi-rent. We
referred to this sum as “rent”merely in the interest of simplicity. For the
purpose of studying tax policy, the distinction is important.
Suppose that the initial rent + quasi-rent for a mine with constant ex-

traction costs is R0 = 10 and the initial stock is x0 = 10, so the value of
this mine (using equation 5.8) is 100. Each mine costs 5 to develop, and on
average a firm must develop five mines to find one that is successful. The
firm can test many potential mines at the same time, understanding that on
average 20% of them will be successful. It is important to account for all
of the unsuccessful mines in estimating the development cost of a successful
mine. In this example, the expected investment cost for a successful mine is
25. Here, the rent on the mine is 75 and the quasi-rent is 25.
Prior to the exploration and development, the government might an-

nounce a tax that begins, at the time of initial extraction, at 7.5, and rises
at the rate of interest. With this tax, the government captures all of the
rent, but leaves firms with the quasi-rent. In this case, firms break even.
(As a practical matter, the tax should leave firms with some rent, in order to
induce them to undertake the risk; we ignore that complication, in assuming
that firms are risk neutral.) Once a successful mine is in operation, the
government might be tempted to renege on its announcement, and to impose
an initial tax of ν0 = 10, which increases at the rate of interest. This tax
transfers all of the rent + quasi-rent from the firm to taxpayers. The firm
in this case loses all of its sunk investment costs, and suffers a net loss of
25. This temptation to renege illustrates the potential time-inconsistency of
optimal plans. The situation where one agent (here the government) takes
advantage of a second agent’s (here the resource firm) sunk investment is
known as a “hold-up problem”.2

The real-world importance of the hold-up problem varies with the setting.
If there are many cycles of investment and extraction, then the government

2“Hold up”has two possible meanings here, either as a robbery or as a delay (because
the first agent’s incentive to take advantage causes the second agent to delay in undertaking
the investment).
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has an incentive to adhere to its promises in order to maintain its reputation.
By behaving opportunistically, this government obtains short run benefits,
in the form of higher tax revenue, but it discourages future investment. This
hold up therefore tends to be more important for a single large project, e.g.
a one-time development of offshore oil deposits. (These considerations also
apply to non-resource related infrastructure projects, e.g. building a harbor
or developing a transportation network.) The government’s temptation to
renege may be greater if the major investors are foreigners, because domestic
investors might be better able to defend their interests in the political arena.
For large one-off foreign-sourced investment projects, hold up can be a major
issue. Without some protection, foreign investors would be unwilling to
undertake the project, or would require a large risk premium for doing so.
The OECD and other international organizations attempted, during the

1980s and 1990s, to negotiate a Multilateral Agreement on Investment to
resolve this hold-up problem. This agreement was advertised as a means of
encouraging international investment, in much the same way that the World
Trade Organization promotes international trade. Facing resistance from
developing countries, the Multilateral Agreement on Investment was never
completed. However, there are currently thousands of Bilateral Investment
Treaties (BITs), most of which involve one rich and one developing country;
the U.S. is party to over 40 BITs.
The parties of these treaties are countries, not private firms, but many

of the treaties have an “investor-to-state”provision. This provision permits
a private investor originating in one signatory (usually the rich country) to
sue, in an international court, the government of the other signatory (usu-
ally the developing country) for violation of the treaty. A primary purpose
of the treaties is to protect an investor against confiscation of their invest-
ment, but many treaties also provide protection against measures that are
“tantamount to expropriation”, such as “confiscatory taxes” or even post-
investment changes to environmental rules. Business interests regard the
investor-to-state provision of these treaties as essential, because they are not
confident that their own government would act in their interests. For exam-
ple, foreign policy considerations might make the U.S. government reluctant
to invoke a treaty in protection of a U.S. investor. The investor, in contrast,
has no such qualms about exercising the treaty rights.
The treaties provide a self-enforcing mechanism, a credible commitment

against opportunistic behavior. However, they also limit a country’s ability
to exercise what are known as “police powers” (e.g. environmental regu-
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lation) and to respond to contingencies not foreseen at the time of invest-
ment (e.g. a major recession). Although business groups strongly support
these treaties, some NGOs think that they harm developing country interests.
Investor-to-state provisions were a major source of controversy in the North
American Free Trade Agreement (NAFTA) and they have been a reason that
some NGOs oppose the Trans-Pacific Partnership.

11.3 An example

Objectives and skills

• Based on a numerical example and graphs, understand: (a) the effect
of the “shape”of the tax trajectory on equilibrium price trajectories,
and the resulting trajectories of tax incidence; (b) the welfare changes
associated with a tax trajectory; (c) the difference between anticipated
and unanticipated taxes.

A numerical example illustrates the effect on resource markets of a time-
varying tax, ν (t) = (t+ 1)κ, with ν (0) = 1. Figure 11.1 shows that larger
values of κ imply a more rapid increase in the tax. The effect of the tax on
the incentive to extract is intuitive. If κ is close to 0, the tax grows slowly,
and the situation is similar to the constant tax case discussed above. Here,
the tax creates an incentive to delay extraction, as a means of decreasing the
present value of the tax liability. If κ is large, the tax grows quickly. Here,
the firm has an incentive to accelerate extraction so that more of its sales
incur the relatively low current taxes instead of high future taxes, reducing
the firm’s present value tax liability.

11.3.1 The price trajectories

We use the steps discussed in Chapter 5.4 to calculate the equilibrium con-
sumer and producer price trajectories under a particular tax trajectory, with
demand = 10−p, constant extraction costs C = 1, initial stock x0 = 20, and
discount rate r = 0.04. For the zero tax, ν = 0, the resource is exhausted
at T = 11.2. For the slowly growing tax, the terminal time is only slightly
greater, T = 11.5. The rapidly growing tax gives producers a strong incen-
tive to extract early, while the tax is still relatively low, leading to a much
earlier exhaustion time, T = 7.5. Figure 11.2 shows the equilibrium price
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Figure 11.1: The tax profile for κ = 0.05 (solid), κ = 0.5 (dotted) and κ = 0.8
(dashed).

trajectories under these three tax profiles. Each trajectory reaches the choke
price, p = 10, at the time of exhaustion.
The equilibrium price trajectories under the zero tax (dotted) and under

the slowly increasing tax (solid) are almost indistinguishable. The positive
tax encourages firms to delay extraction, increasing the initial price; the
increasing tax profile encourages firms to move extraction forward in time,
reducing the initial price. These two effects almost cancel. In contrast, the
steeply rising tax trajectory gives firms a much stronger incentive to extract
early, while the tax is still relatively low. The steeply rising tax therefore
leads to a substantially lower initial price and earlier exhaustion. (Compare
the dashed and the solid graphs.)

11.3.2 Tax incidence

As in Chapter 10.1, the consumer incidence is defined as the difference in the
consumer price with and without the tax, divided by the tax, times 100 (to
convert to a percent). We obtain the producer incidence by subtracting the
consumer incidence from 100. The tax causes a reallocation of supply over
time, but no change in cumulative supply (equal to the initial stock) over the
life of the resource. Thus, for some periods the tax lowers the equilibrium
consumer price, leading to negative consumer tax incidence and producer tax
incidence above 100%. In a static competitive model both the consumer and
producer tax incidences lie between 0 and 100%.
Figure 11.3 graphs the producer and the consumer tax incidences under

the slowly increasing tax. The consumer incidence begins at about 15% and
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Figure 11.2: The equilibrium consumer price trajectory under the tax ν =
(t+ 1)0.05 (solid); under the tax ν = (t+ 1)0.8 (dashed); and under zero tax,
ν = 0 (dotted).

becomes negative at the time when the dotted and solid curves in Figure
11.2 cross, t = 6.5. At later dates, the tax reduces the equilibrium consumer
price, so the consumer incidence is negative there, and the producer incidence
exceeds 100%. Figure 11.4 graphs the consumer and producer tax incidence
over time under the rapidly growing tax. This tax lowers the equilibrium
consumer price for t < 4.5, so over this region, the consumer incidence is
negative, and the producer incidence exceeds 100%; at later dates, the tax
incidence for both consumers and producers lies between 0 and 100%.

11.3.3 Welfare changes

Here we consider the resource tax’s welfare cost. If the consumer price in
period t is p, consumer surplus (CS (t)), producer profit (PS (t)), and tax
revenue (G (t), for “government”) in that period equal, respectively,

CS =
∫ 10

p
(10− q) dq = 50− 10p+ 1

2
p2

PS = (p− ν (t)− 1) (10− p) , and G = ν (t) (10− p) .
(11.5)

The equilibrium p changes over time, so the functions CS, PS,G also change
over time. We define an agent’s welfare as the present discounted value of
their stream of single period payoffs. Welfare for consumers, producers, and
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Figure 11.3: Consumer and producer tax incidence under the slowly increas-
ing tax
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Figure 11.4: Consumer and producer tax incidence under the rapidly increas-
ing tax
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taxpayers equal, respectively,∫ T

0

ρtCS (t) dt,
∫ T

0

ρtPS (t) dt,
∫ T

0

ρtG (t) dt. (11.6)

The sum of these three integrals equals social welfare. Table 11.1 shows
welfare for consumers, producers, and taxpayers, and the sum of these three
welfare measures (social welfare) under the zero tax and for both the slowly
and the rapidly growing tax. The table also shows the percent change in
welfare for consumers, producers, and society as a whole, in moving from the
0 tax to either of the two positive taxes.

consumer
welfare

producer
welfare

taxpayer
welfare

social
welfare

DWL
tax rev×100%

zero tax 20.2 114.4 0 134.6
“slow tax” 19 97.2 18.3 134.5 0.55%
% change -5.9% -15% NA -0.07%
“fast tax” 33.1 50.1 47 130.2 9. 4%
% change +64% -56.2% NA -3.3%
Table 11.1: Agents’welfare and % change in welfare under the zero tax,
the “slow tax”ν (t) = (t+ 1)0.05, and the “fast tax”ν (t) = (t+ 1)0.8. “%

change”is relative to ν = 0.

Just as in the static model, the slowly growing tax reduces consumer and
producer welfare, here by 6% and 15%, respectively. The increase in tax
revenue almost offsets those two reductions, so social welfare under this tax
falls by less than a tenth of 1%. Social welfare falls by over 3% under the
rapidly growing tax. In discussing Figure 10.3 for the static model, we noted
that taxes create deadweight loss that is proportional to the square of tax.
The deadweight loss is negligible at a small tax, but it increases faster than
the tax. The last column shows the social loss as a percent of tax revenue
(both expressed as present discounted sums); for the slowly growing tax, the
loss is about half a percent of tax revenue, and for the rapidly growing tax
it is about 9% of tax revenue.
In the static setting, the tax increases the equilibrium price that con-

sumers face, and thus lowers consumer welfare. In contrast, in the nonre-
newable resource setting, the tax increases price in some periods and lowers
prices in other periods. Depending on the magnitude and the timing of
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the changes, consumer welfare might either increase or decrease. Figure
11.2 shows that the rapidly growing tax reduces consumer price early in the
trajectory, and increases it late in the trajectory. The tax thus increases
consumer surplus early in the trajectory and lowers it late in the trajectory.
Because of discounting, the early increases count for more. Thus, the rapidly
growing tax increases the present discounted value of the stream of consumer
surplus. This tax benefits consumers and leads to a large increase in tax
revenue, but it also causes a large decrease in producer welfare, resulting in
a 3.3% fall in aggregate social welfare.

11.3.4 Welfare in a dynamic setting

We proceeded as if using the present discounted stream of surplus to measure
consumers’and producers’welfare is so obvious as not to require comment.
Although this procedure is standard in economics, it has a shortcoming that
we mention here, and take it up more carefully in Chapter 19. The resource
consumers alive today are not the same people who will live in 100 years.
What does it mean to say that “consumer welfare”increases, when one group
of consumers is better off and another worse off? The ethical objection to
our welfare measure is that it adds up the utility of people who are alive at
different points in time. Moreover, it does so in a way that privileges those
currently living, because the welfare measure discounts the surplus of future
generations of consumers.
Our measure of social surplus at a point in time also adds up the surplus

of possibly different people, consumers and producers. That aggregation is
ethically less questionable, for two reasons. First, consumers and producers
may or may not be different people, whereas individuals living today and in
100 years are certainly different people. Second, consumers and producers
currently living have at least the potential to influence current government
policy that affects their well-being. People living in the future have no direct
voice in the current political process.

11.3.5 Anticipated versus unanticipated taxes

The examples above consider scenarios when a tax is introduced at the be-
ginning of the problem, at time 0. Here we compare the no-tax case with two
scenarios where a constant tax, ν = 3, is introduced at a future time, t = 3.
When the tax is unanticipated, producers have made no provisions for it. In
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contrast, producers who anticipate the tax adjust their sales even before the
tax is imposed. Our example uses the demand function q = 10 − p, with
constant costs C = 1 and discount rate r = 0.03. Figure 11.5 shows the
trajectories of consumer (tax-inclusive) price in the three scenarios. Figure
11.6 shows the trajectories of rent (price —cost —tax) in the three scenarios.

By definition, an unanticipated tax cannot alter anything before the tax
begins. Therefore the price and rent trajectories, under the unanticipated
tax, are coincident with the 0-tax trajectories prior to t = 3. (The solid
curves cover the dashed curves for t < 3.) At t = 3, when producers discover
that they will begin to face the tax, the tax-inclusive cost of providing the
commodity suddenly increases, causing producers to lower sales relative to
the no-tax scenario. The equilibrium consumer price jumps up and the rent
jumps down.

In the case of an anticipated tax (dotted curves), producers have an in-
centive to sell a larger amount (relative to the no-tax scenario) early in the
program, before the tax begins. These high sales lead to a low initial price
trajectory. The price jumps up at t = 3, when the tax begins. The trajec-
tory for rent is continuous (dotted curve in Figure 11.6) under the anticipated
tax, rising at the rate r. In the absence of surprises, the equilibrium rent
takes into account (“capitalizes”) future changes (here, the change in the tax
from 0 to a positive level).

Denote the equilibrium price in the period (or instant) before the tax
increase as p− and the price immediately after the tax as p+, so the tax causes
the price to jump at t by ∆ ≡ p+ − p−. For two reasons, the jump, ∆, is
larger in the case of the anticipated tax compared to the unanticipated tax.
First, anticipation of the tax led to a lower pre-tax price: p− is lower under
the anticipated tax, as seen by comparing the dotted and the dashed/solid
curves in Figure 11.5 at t < 3. Second, the lower price under the anticipated
tax led to higher extraction, leaving less stock in that scenario (relative to the
unanticipated case). After time t = 3, producers in both scenarios expect to
face the tax. However, the producer in the anticipated tax scenario has (at
time t = 3) a smaller stock compared to the producer in the unanticipated
tax scenario. The lower t = 3 stock in the former case leads to higher prices;
compare the dotted and the dashed curves in Figure 11.5 for t > 3.
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Figure 11.5: Solid curve shows the trajectory of consumer price in the absence
of a tax. Dashed trajectory: consumer price when the tax imposed at t = 3
is unanticipated. Dotted trajectory: consumer price when the tax at t = 3 is
anticipated at t = 0.
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Figure 11.6: Solid curve shows the trajectory of rent in the absence of a tax.
Dashed trajectory: rent when the tax imposed at t = 3 is unanticipated.
Dotted trajectory: rent when the tax at t = 3 is anticipated at t = 0.
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11.4 Summary

The theory of optimal taxation suggests that fossil fuels should be relatively
heavily taxed, in order to offset the negative externality associated with their
consumption, and to take advantage of their relatively low elasticities of sup-
ply and demand. Both rich and developing nations, and both importers and
exporters, subsidize consumption of fossil fuels. Political constraints impede
international attempts to move toward more rational resource policies.
Although taxes have more complicated effects in nonrenewable resource

markets compared to static markets, the methods developed in earlier chap-
ters make the outline of the analysis straightforward. A constant tax on ex-
traction encourages firms to delay extraction, raising consumer prices early in
the program and lowering prices later in the program. A tax that increases
at the rate of interest has no effect on the extraction trajectory, because the
present value of this tax is constant. A tax that increases rapidly over time
increases firms’incentive to extract early, before the tax is high. This effect
tends to offset the incentive to delay extraction. If the tax increases very
slowly, then the “delay incentive”is the stronger of the two. However, if the
tax increases rapidly, producers respond to the tax by moving the extraction
profile forward in time. Thus, a rapidly increasing tax lowers price early in
the program and increases later prices.
In general, taxes lead to a reallocation of supply over time. Therefore,

there are some periods when the tax increases supply, relative to the no-
tax case; for those periods, the consumer incidence of the tax is negative,
and the producer incidence of the tax exceeds 100%. These periods of
negative consumer tax incidence tend to occur late in the program, if the
tax is constant or increases slowly; those periods tend to occur early in the
period if the tax increases rapidly.
The zero-tax competitive equilibrium maximizes social surplus, so in the

setting here a tax of any nature reduces social surplus. In the static com-
petitive setting, both consumers and producers bear some of the incidence
of the tax. The tax therefore decreases the welfare of both agents. In the
resource setting with stock-independent extraction costs, the tax shifts pro-
duction from one period to another, without altering cumulative production.
In this case, the tax must lower price and therefore increase consumer surplus
in some periods. The tax might either increase or decrease the present dis-
counted value of the stream of consumer surplus. However, the tax reduces
the producer price (equal to the price consumers pay minus the unit tax) in



11.5. TERMS, STUDY QUESTIONS, AND EXERCISES 209

every period. Therefore the producer incidence is positive in every period.
In addition, the tax lowers producer profit in every period. Therefore, the
tax necessarily lowers the present discounted stream of producer profit.
We compared the effect of anticipated versus unanticipated taxes. The

effect of an anticipated tax is capitalized into the resource price even before
the tax comes into effect. Therefore, the anticipated tax alters the equilib-
rium even before it starts. By definition, an unanticipated tax cannot affect
anything before it begins. Therefore, the implementation of an unanticipated
tax tends to create a larger change in equilibrium price, at the time it begins,
relative to an anticipated tax.
We emphasize the relation between taxes and extraction decisions, usually

keeping the investment decision in the background. However, investment
is important in resource markets, creating “quasi-rents”, the return to a
previous investment. Price minus marginal costs, which we usually refer to
as “resource rent”is in fact the sum of genuine rent and quasi-rent. The fact
that investment is sunk at the time of extraction creates a time consistency
or holdup problem for policy makers. This problem is likely most severe in
the case of large, one-off foreign investments. Bilateral investment treaties,
with an investor-to-state provision, attempt to solve this hold-up problem.

11.5 Terms, study questions, and exercises

Terms and concepts

Tax trajectories, hold-up problem, rate of change of a tax (or of anything
else), trajectories of producer and consumer tax incidence, intertemporal
welfare (the integral, or the sum, of the discounted stream of consumer or
producer welfare).

Study questions

For all these questions, assume that the average = marginal extraction cost
is constant with respect to extraction and independent of the stock of the
resource.

1. (a) Explain how a constant tax alters the competitive nonrenewable
resource owner’s incentives to extract, and thus how the tax affects
the equilibrium price trajectory. (b) Now explain how an increasing
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tax trajectory alters the competitive resource owner’s incentives, and
thereby alters the equilibrium price trajectory. (Your answer to both
parts should make clear how the taxes affect the relative advantage of
extracting at one point instead of another.) (c) Use your answers to
parts (a) and (b) to explain why the three tax profiles shown in Figure
11.1 give rise to the three price profiles shown in Figure 11.2.

2. Using Figure 11.2, sketch the consumer and producer tax incidence over
time, for the slowly growing and the rapidly growing tax. (Figures in
the text actually show those graphs. You should see whether you can
produce the sketches using only Figure 11.2 and then compare your
answers with the figures in the text. Your sketches will not get the
magnitudes correct, but they should correctly show the intervals of time
where an incidence is negative, positive and less than 100%, or greater
than 100%. If you do it carefully, you can also see where the incidences
are increasing or decreasing over time. The point of this question is
to see whether you REALLY know what tax incidence means.

3. (a) Explain why, in the static setting, a tax always reduces consumer
surplus. (b) Explain why, in the resource setting, the tax must in-
crease consumer surplus at some points in time. (c) Explain why your
answer to part (b) implies that a tax might either increase of decrease
the present discount stream of consumer surplus. (d) Is there any
objection to using the present discounted stream of consumer surplus
as a measure of consumer welfare?

Exercises

1. Suppose that the government uses a profits tax, φ (t), instead of a unit
tax. This profits tax equals φ (t) = 1 − exp (−κt) with κ > 0. (a)
Sketch two graphs of this tax, as function of time, on the same figure,
for a small and a large value of κ. (b) Following the logic in the text for
the increasing unit tax, briefly explain the effect of an increasing profits
tax on the equilibrium extraction profile. (You have to think about
how the increasing profits tax affects the firm’s incentive to extract the
resource. (c) Compare the equilibrium effect (on the extraction profile)
of a constant unit tax and a constant profits tax. What explains this
difference between the two types of constant taxes?
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2. You need functional forms and parameter values to calculate the tax-
incidence graphs shown in Figures 11.3 and 11.4, but you can infer their
general shape by inspection of Figure 11.2, and from the definition of
“tax incidence”. In a couple of sentences (using the definition of tax
incidence) explain how to make this inference.

3. The text considers the effect of a tax in a model with stock-independent
extraction costs. How might stock dependent extraction costs alter
the trajectories of tax incidence. (This question calls for intelligent
speculation, not calculation.)

4. Suppose that firms have constant extraction costs and face a time vary-
ing profits tax, φ (t) = (0.05) γt. Under this tax, if extraction in period
t is y, a firm’s after-tax profit is (1− φ (t)) (p (y) y − C). (a) On the
same figure, graph φ (t) (as a function of t) for γ < 1 and also for
γ > 1. (b) Using intelligent speculation (not calculation), explain how
these two profits tax affects the equilibrium price and extraction paths.
(Figures will make your explanations clearer.) Provide the economic
logic for your answer.

5. Justify the claim that the functions in equation 11.5 do indeed equal
consumer and producer welfare and tax revenue.

Sources

Sinclair (1992) points out the effect of a rising carbon tax on the incentive
to extract fossil fuels.
Boadway and Keen (2009) survey the theory of resource taxation.
Chapter 11.1 is based largely on the IEA, OPEC, OECD and World Bank

Joint Report (2011).
The IMF paper by Coady et al (2015) provides estimates of the cost

(including environmental costs) of resource subsidies.
Parry et al (2014) illustrates the design of effi cient energy taxes for 150

countries.
Aldy (2013) discusses the fiscal implications of eliminating U.S. fossil fuel

subsidies.
Daubanes and Andrade de Sa (2014) consider the role of resource taxation

when the discovery and development of new deposits is costly.
Lund (2009) reviews the literature on resource taxation under uncertainty.
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Bohn and Deacon (2000) discuss investment risk with natural resources.
Aisbett et al. (2010) discuss investment risk and bilateral investment

treaties.



Chapter 12

Property rights and regulation

Objectives

• Understand how property rights alter the problem of second-best reg-
ulation.

Information and skills

• Have an overview of the consequences of and the evolution of property
rights.

• Be familiar with the Coase Theorem, and understand its relevance to
policy in the presence of externalities.

• Have an overview of fishery regulation and subsides, and understand
how these can lead to overcapitalized fisheries.

• Understand effects of individual quotas on property rights and resource
outcomes.

We have emphasized competitive equilibria in nonrenewable resource mar-
kets (e.g., oil, coal) with perfect property rights. This chapter sets the stage
for a discussion of renewable resources (e.g. fish, groundwater, forests, the
climate), emphasizing the role of imperfect property rights. We begin with
a general discussion of property rights and then show that the emergence
of an effi cient outcome depends on the existence but not on the allocation
of property rights (i.e., who possesses the property rights). This result is
known as the Coase Theorem.

213
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We then discuss the role of property rights and regulation in fisheries.
Fisheries provide a natural focus for this discussion, because: they are eco-
nomically important; they are plagued by imperfect property rights; there
is a large body of research devoted to their study; and the insight gained
from studying fisheries is applicable to many other resource problems. Due
to overfishing, loss of habitat, and climate change, 30% of the world’s fish-
eries are at risk of population collapse. Fisheries support nations’well-being
through direct employment in fishing, processing, and services amounting to
hundreds of billions of dollars annually. Fish provide nearly 3 billion people
with 15 percent of their animal protein needs, helping support nearly 8% of
the world’s population.

12.1 Overview of property rights

Objectives and skills

• Know the characteristics of the three types of property rights.

A spectrum of social arrangements govern the use of natural resources.
The three leading modes are private property, common property, and open
access. With private property, an individual or a well-defined group of
individuals (e.g. a company) owns the asset and determines how it is used.
Under common property, use of the asset is limited to a certain group of
people, e.g. those living in a town or an area; community members pursuing
their individual self-interest, instead of a single agent, decide how to use the
asset. Anyone is free to use an open access resource. A farm owned by
a person or corporation is private property. A field on which anyone in the
village can graze their cows, but from which those outside the village are
excluded, is common property. A field that anyone can use is open access.
This taxonomy identifies different types of ownership structure, but in

practice the boundaries between them are often blurred. Labor, health, and
environmental laws govern working conditions and pesticide use on privately
owned land, limiting the exercise of private property rights. In Britain,
common law allows anyone to use paths across privately owned farmland,
provided that they do not create a nuisance, such as leaving gates open, fur-
ther limiting private property rights; in Norway, people are allowed to enter
uncultivated private property to pick berries. Common property dilutes
property rights, but social norms often limit community members’actions.
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Anyone in the village may be allowed to use the village common, but they
might be restricted to grazing one cow, not ten. Even for an asset that is
nominally open access, members of a group might exert pressure to restrict
outsiders. Local surfers at some California public beaches make it uncom-
fortable or dangerous for outsiders to surf.
There is a continuum of types of property rights, not three neat types.

De jure property rights describe the legal status of property, and de facto
property rights describe the actual property rights. In the surfing example,
the de jure property rights are open access, but to the extent that the local
surfers are successful in excluding outsiders, the de facto property rights more
closely resemble common property.
Property rights to a resource may change over time, often responding to

migration and increased trade, and often accompanied by social upheaval.

• The enclosure movement in the UK, converting village commons to
private property, began in the 13th century and was formalized by acts
of parliament in the 18th and 19th century. These enclosures increased
agricultural productivity, dispossessing rural populations.

• In the late 19th and early 20th century Igbo groups in Nigeria converted
palm trees from private to common property in response to increased
palm oil trade. Trade increased the value of the palm trees, increasing
the need to protect them from over-harvesting. In this case (but not
in general) monitoring and enforcement costs needed to protect the
resource were lower under common property.

• The 1924 White Act in Alaska, later incorporated into the state’s con-
stitution, abrogated aboriginal community rights to the salmon fishery.
The Act forbade private resource ownership, preventing non-residents
from controlling it. The Act was based on the claim that the state,
not indigenous communities, should own the resource. Open access
replaced effective common property management, leading to resource
degradation and requiring formal regulation.

• A long-running dispute in the U.S. tests the limits of private prop-
erty rights. The legal doctrine of “regulatory taking”seeks to define
zoning and environmental rules that diminish the value of property as
“takings”, requiring compensation under the Fifth Amendment to the
U.S. constitution. The doctrine’s objective is to weaken governments’



216 CHAPTER 12. PROPERTY RIGHTS AND REGULATION

police powers (e.g. environmental regulation), strengthening the rights
of private property owners.1 Periodic legal disputes in coastal states
test landowners’ability to impede access to beaches, or to insist on
public investment (e.g. sea walls) that maintains the value of private
property.

Private property diminishes or eliminates some common property or open
access externalities. Grazing an additional cow on a field creates benefits
for the cow’s owner. If the cow competes with other animals for fodder, it
creates a negative externality for other users, much as an additional driver
contributes to road congestion. The overgrazing also damages the field,
lowering its long run productivity, thus lowering both short and long run
community welfare. This outcome is known as the “tragedy of the com-
mons”. Private owners internalize the congestion created by the additional
cow, and are therefore less likely to overgraze the field. If private property
solves the tragedy of the commons, it improves resource management.
An emerging body of research shows that many societies have success-

fully managed common property natural resources, avoiding the tragedy of
the commons. Common property management requires widespread agree-
ment on the rules of use, and mechanisms for monitoring and enforcement
of the rules. Stable conditions and homogenous users increase the success
of common property management. A rapid change that increases the de-
mand for the resource, such as migration or opening to trade, can undermine
common property management. Both private and common property require
monitoring and enforcement.
Events during the final decade of the 20th century illustrate that pri-

vate property does not guarantee effi cient management. When the Soviet
Union collapsed in 1991, reformers and their western advisors (primarily
economists) debated the right pace of privatization of state owned property.
Those supporting rapid privatization hoped that it would lead to the effi cient
use of natural and man-made capital, and feared that a slower pace would
only perpetuate the ineffi ciencies and make it possible to reverse the reforms.
Privatization occurred rapidly, but instead of leading it effi ciency it created
a class of oligarchs and an entrenched system of corruption.

1Supreme Court rulings have largely reaffi rmed these police powers, undermining the
Doctrine of Regulatory Takings. Bilateral Investment Treaties (Chapter 11.2) requir-
ing compensation for regulation that is “tantamount to expropriation” strengthens the
Doctrine in the sphere of international, rather than US domestic law.



12.2. THE COASE THEOREM 217

Following political upheaval, local elites might capture resources, replac-
ing common property with private property, rendering the traditional moni-
toring and enforcement mechanisms irrelevant. In a politically unstable en-
vironment, the new owners recognize that the next political upheaval might
replace them with another group of elites, making their property rights in-
secure. The combination of current absolute but insecure property rights is
particularly likely to lead to overuse of the resource. The current owners
can use the resource to enrich themselves; the risk of losing control of the
resource causes them to attach little weight to its future uses.
In summary, actual property rights tend to exist on a continuum that

includes the three main types as special cases. Regulation is particularly
necessary under open access, which is especially vulnerable to the tragedy
of the commons. Common property management in small communities has
(often) avoided this tragedy. As communities integrate into wider markets,
the management practices frequently break down, requiring different kinds
of regulation. Private property solves some externality problems but creates
others, and also typically requires regulation. For example, converting the
village commons to a privately owned farm gives the farmer the incentive to
manage the land effi ciently (e.g. to avoid erosion), but not to correct off-farm
externalities (e.g. pollution run-off). Arguably, the problem here lies not
with private ownership of the land, but with the lack of property rights to the
waterways that absorb the pollution. With this view, the policy prescription
is to create property rights for the waterways. Creating those additional
rights may be too expensive or politically or ethically unacceptable, in which
case the policy prescription is to regulate pollution.

12.2 The Coase Theorem

Objectives and skills

• State and explain the Coase Theorem.

Transactions costs include the costs of reaching and enforcing an agree-
ment. The Coase Theorem states that if transactions costs are negligible,
and property rights are well-defined, agents can reach the effi cient outcome
regardless of the distribution (or allocation) of property rights. Rational
agents will not leave money on the table. Under the conditions of the theo-
rem, there is no need for a regulator, because private agents reach an effi cient
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outcome by bargaining. The government’s only role is to insure that agents
honor their contracts, and possibly to make transfers in order to promote fair-
ness; effi ciency does not require those transfers. In many situations where
we observe regulation instead of a bargained outcome, transactions costs are
large, making it impractical for agents, bargaining amongst themselves, to
achieve an effi cient outcome. In other situations, the property rights are
not well-defined, leaving agents uncertain about the payoffs of reaching a
bargain, making an agreement harder to reach.
To illustrate the Coase Theorem, suppose that the total profit of a fishery

depends on the number of boats operating there. With one boat, the profit
is 1, with two boats, the aggregate profit is 4, and with three boats, the
aggregate profit is 3. Initially, three boats, each with a separate owner,
operate in the fishery. The surplus obtained from inducing one boat to exit
equals 4 − 3 = 1. A person with exclusive property rights to the fishery
would insist that the other two fishers leave the sector, and would then buy
an additional boat, reaching the effi cient outcome. If all three fishers have
some property rights, and if the transactions costs are small, then they can
reach an agreement in which one of them sells her right to fish to the other
two and leaves the sector. There are many types of bargains that they might
strike, leading to different splits of the surplus.
For example, if the three fishers are equally productive, they can create

a lottery that determines who leaves the sector.2 The person who leaves
receives a payment of 1 + x, their initial profit plus the compensation x for
leaving. The two remaining fishers split the higher profit, each receiving
2, and share the cost of buying out the departing fisher, for a net benefit
of 2 − 1+x

2
. The expected payoff to an agent participating in a fair lottery

(where the chance of leaving the sector is 1/3) is 1
3

(1 + x) + 2
3

(
2− 1+x

2

)
=

4
3
, which is greater than their payoff under the status quo (1). If x > 1

3
, the

person who leaves is a winner, and if the inequality is reversed, this person
is a loser; setting x = 1

3
insures that there are no losers. Other procedures

(e.g. arm wrestling) could also be used to determine who leaves.
The Coase Theorem does not predict how the effi cient outcome is obtained

(a lottery or arm wrestling) or the compensation (x in the lottery example).
It merely says that if transactions costs are small and property rights well
defined, rational agents will bargain and achieve an effi cient outcome. Dif-

2If the fishers are not equally productive, then an effi cient procedure must choose the
two most productive to remain in the fishery.
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ferences in bargaining power, perhaps due to differences in outside options
(a fisher’s best alternative to remaining in the sector) or levels of bargain-
ing skill lead to different distributions but not different aggregate bargaining
surplus.

12.3 Regulation of fisheries

Objectives and skills

• Know the basics of the recent history of fishery regulation.

• Understand limitations of current regulations, and the effects of assign-
ing property rights.

Prior to the 20th century, the doctrine of “freedom of the seas”limited na-
tions’sovereignty to three miles from their coastline, permitting other nations
to operate outside that area. In the 20th century, countries began to claim
sovereignty over larger areas, often to protect their fisheries. The United
Nations Convention on the Law of the Sea, concluded in 1982, replaced ear-
lier agreements, giving nations an “exclusive economic zone”(EEZ), e.g. to
harvest fish or extract oil, 200 miles beyond their coastline.
The U.S. passed the Manguson-Stevens Fishery Conservation and Man-

agement Act in 1976 and amended it in 1996 and 2006, to manage fisheries
within its EEZ. The goals included: conserving fishery resources, enforcing
international fishing agreements, developing under-used fisheries, protect-
ing fish habitat, and limiting “bycatch” (fish caught unintentionally, while
in pursuit of other types of fish). The law established Regional Fishery
Management Councils, charged with developing Fishery Management Plans
(FMPs). These FMPs identify overfished stocks and propose plans to restore
and protect the stocks. The law requires management practices to be based
on science. For each fishery, a scientific panel determines the “acceptable
biological catch”, and the managers then set an “annual catch limit”(ACL),
not to exceed the acceptable biological catch. The Fishery Management
Councils can enforce the ACL by: limiting access to specific boats or op-
erators; restricting fishing to certain times of the year or certain locations;
regulating fishing gear; and requiring on-board observers to insure that boats
obey regulations. A 2009 National Marine Fisheries report states that of
the 192 stocks being monitored, the percent with excessive harvest fell from
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38% to 20% over the decade, and the percent with over-fished stocks fell from
48% to 22%.
Most of the world’s important fisheries are concentrated in countries’

EEZs and are regulated in some fashion. However, political constraints,
scientific limitations, and human frailty often results in over-fished stocks.
Identifying the actual stock is a diffi cult measurement problem. Random
stock changes, due to unforeseen ocean conditions and changes in stocks of
predators and prey make it diffi cult to determine safe stock levels. Managers
may decide to ignore scientific evidence if they distrust it or are swayed
by lobbying from fishers or processors. “Regulatory capture”occurs when
regulators substitute society’s goals with the narrower interests of the groups
that they are charged with regulating.

Box 12.1 The U.S. Northwest Atlantic scallop fishery: a success story.
Scallops are caught by dragging dredges along the seabed. In 1994
the U.S. government closed 3 large banks, causing scallopers to move
to and subsequently exhaust other areas of the fishery. Fisherman
hired University of Massachusetts biologists to conduct a stock sur-
vey, which concluded that the population in the closed areas had
rebounded. The industry began to commit a fraction of its profits
to conduct surveys. Using this data, the National Marine Fishery
Services (NMFS) closes overfished seabeds long enough to allow the
population to recover (about 3 - 5 years), a system resembling field ro-
tation in agriculture. The success of the program relies on good data
and cooperation between fishers and NMFS. Fishers have a common
interest in preserving the stock, and they trust the data because they
supply it.

The mismatch between “targets” (or “margins”) and “instruments” (or
policies) complicates fishery regulation (Chapter 9). A target is anything
that a regulator would, in an ideal world, like to control. The payoff from a
fishery involves many considerations in addition to the annual catch limit,
including specifics about nets, engine size, and other boat equipment. In
principle, the Regional Fishery Management Councils have the authority to
regulate most of these features, but regulation of every important business
decision is not practical. Most regulation involves fairly simple policies, e.g.
restricting the length of the season or limiting the number of boats.
When the regulator restricts one margin (e.g. by limiting the season

length), fishers respond on another margin, (e.g. by changing the gear they
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use). Regulators cannot control all margins, so regulation is second-best.
Fishers acting in their self-interest inflict externalities on others, leading to
ineffi cient outcomes. This ineffi ciency often manifests as over-capitalization:
too many boats, or too much gear, chasing too few fish. Over-capitalization
reduces industry profits, making a given annual catch limit more expensive
to harvest. Estimates of over-capacity range from 30% to over 200%, but
there is a consensus that it is severe.

12.3.1 A model of over-capitalization

We illustrate over-capitalization and the loss in industry profits using a model
with four targets: annual allowable catch, A; the number of boats, N ; the
number of days of the season, D, and the amount of “effort”per boat per
day, E. Effort is an amalgam of all of the decisions the fisher makes (boat
size, crew, gear characteristics). Each unit of effort costs w per day, and E
units of effort enable a boat to catch E0.5 fish per day.
In the first best setting, the regulator chooses the value of all four vari-

ables. To examine the forces at work in the real world, where regulators are
unable to control every margin, we consider a second best setting where the
regulator chooses the annual catch, A, and enforces that choice by selecting
the length of the season, D. Fishers choose effort, E, to maximize their
profits. We first consider the case where N is fixed, and then the case where
N is endogenous.

Exogenous N

Individual fishers, each with a boat, choose effort in order to maximize profit
(revenue minus cost). If the price of a unit of fish is p, the fisher chooses E
to maximize profits per day:

max
E

(
pE0.5 − wE

)
⇒ d (pE0.5 − wE)

dE
set
= 0⇒ E =

(
0.5

p

w

)2

. (12.1)

Given that the N fishers choose this level of effort, the manager who wants
to set annual catch equal to A must choose the number of days of the season,
D, so that the number of fishers (N) times the catch per day per fisher (E0.5)
times the number of days equals A:

NE0.5D = N

((
0.5

p

w

)2
)0.5

D
set
= A⇒ D = 2

Aw

Np
.
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The maximum feasible season length (e.g., due to weather conditions) is
S. We denote δ = D

S
, the fraction of the potential season that fishing is

allowed, and we assume that D
S
< 1 i.e.,

δ =
2Aw

NSp
< 1. (12.2)

This inequality implies that, given fishers’ individually optimal choice of
effort per day, the annual allowance, A, constrains the length of the season.
If inequality 12.2 were reversed, then fishers could work the entire season
without exceeding the ceiling, making regulation unnecessary.
In this second-best setting, total industry profit equals

profitsecond best = DN (pE0.5 − wE) =

2A
N
w
p
N

(
p
((

0.5 p
w

)2
)0.5

− w
(
0.5 p

w

)2
)

= Ap
2

In the first best setting, the regulator chooses both effort and the number
of days. The fixed harvest fixes revenue, so profit maximization requires
minimizing the cost of harvesting A. Cost minimization requires setting
D = S, the maximum feasible season. The increase in D relative to the
second best setting, requires a reduction in effort per day. The first best
level of effort is E =

(
A
NS

)2
and total profit in the industry is

profitfirst best = DN (pE0.5 − wE) =

SN
(
p
(
A
NS

)
− w

(
A
NS

)2
)

= pA− A2w
NS

.

The percent increase in profit in moving from the second best to the first
best regulation is

profitfirst best − profitsecond best

profitsecond best
100 =

1
2
Ap
(

1− 2Aw
NSp

)
Ap
2

100 = (1− δ) 100 > 0.

Fishers act in their self-interest in choosing effort, but they inflict a neg-
ative externality on the industry: as effort increases, catch per day also
increases, requiring that the regulator shorten the season in order to main-
tain the annual catch limit. This self-interested behavior leads to 1

δ2 times
the first best level of effort. This static model does not distinguish between
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a durable input, such as a boat, and a variable input, such as effort. In this
context, we take “over-capitalization”to mean that there are too many pro-
ductive assets in the sector. Over-capitalization decreases industry profits.
If second best regulation leads to a season only 20% as long as the first best
level, then industry profits are only 20% of the first best level.
This model illustrates an empirically important phenomenon: the race

to catch fish (and resulting over-capitalization) leads to shorter seasons and
lower industry profit in many fisheries. In the early 20th century, the North
Pacific halibut fishery operated throughout the year, leading to excessive
harvests. In 1930 the U.S. and Canada agreed to manage the fishery using
an annual quota. The initial management success increased profits, which
lead to a larger fleet. Managers responded by reducing the season length to
two months in the 1950s and to less than a week in the 1970s.

Endogenous N

If the number of boats, N is endogenous, it responds to conditions in the
fishery, and thus is another “target”, or “margin”. Higher profits encourage
entry. Suppose that initially the fishery is totally unregulated, leading to
depleted stocks, making it expensive to catch fish. The high costs lead to
low profits. In equilibrium, boats earn their opportunity cost; no boats want
to enter or leave the sector. Now suppose that a restriction on annual catch
succeeds in rebuilding the stock, making it cheaper to catch fish, and thus
increasing profits. In the absence of entry restrictions, more boats may enter,
creating another type of over-capitalization.
Suppose that each boat costs $F/year to own; F is the opportunity cost of

the money tied up in owning a boat for a year. Under second best regulation,
where the length of the season adjusts in order to maintain the catch limit,
we saw above that industry profit is Ap

2
. With N boats, the profit per boat

per year is Ap
2N
. Under free entry, boats would enter the industry until the

annual opportunity cost of being in the sector equals the profit of fishing
there, which requires Ap

2N
= F , or N = Ap

2F
. (This calculation ignores the

fact that the number of boats must be an integer.) For smaller values of N
additional boats have an incentive to enter the fishery (to obtain positive net
profits), and for larger values of N existing boats have an incentive to leave
the fishery (to avoid losses).
Consider the case where the number of boats is in a second best equilib-

rium (N = Ap
2F
). A change suddenly enables the regulator to control effort,
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determining the gear each boat uses. We showed above that this change,
at the initial level of N , increases industry profit by (1− δ) 100%, increasing
the profit per boat by (1−δ)100

N
% = (1−δ)2F100

Ap
% (using the expression for the

equilibrium level of N). This increase in profit encourages additional boats
to enter.
The second best equilibrium number of boats (N = Ap

2F
) is already ex-

cessive from the standpoint of society, but at least the regulator does not
have to discourage more boats from entering: they have no desire to do so.
However, successfully reducing effort per boat creates an incentive for new
boats to enter. Getting one margin right (reducing effort per boat) causes
another margin (the number of boats) to move further from the social op-
timum. This kind of problem is endemic to a second best setting: fixing
one problem can make another problem worse. In principle, the regulator
can determine the optimal number of boats and the optimal effort per boat,
and then either decree that fishers accept these levels, or impose taxes (e.g.
a tax per unit of effort and an entry tax) that “induce”these levels. That
level of regulation is seldom practical.

Box 12.2 The relation between N and effort. In the model here,
fishers’equilibrium choice of effort does not depend on the number of
boats (equation 12.1). That independence simplifies the calculations,
but it is a consequence of functional assumptions. More generally,
equilibrium effort depends on the number of boats. Regulating one
aspect of the industry affects other fishing decisions. Economic agents
who are constrained in one dimension (e.g. not being able to increase
the number of boats) respond by making changes in other dimensions
(e.g. increasing the speed of boats). Over-capacity can show up in
many ways: as too many boats, too much gear, or boats that are too
big or too fast.

12.3.2 Property rights and regulation

When individuals fishers pursue their self interest, their aggregate decisions
often lead to over-fishing, resulting in low stocks and low industry rent. Be-
cause individual fishers do not own the stocks, they have little incentive to
manage them for future users. Even if the over-fishing problem can be solved
by setting and enforcing an annual catch limit, history shows that other in-
effi ciencies remain, often leading to over-capitalization and low profits.
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Creating property rights is the obvious alternative to regulation such as
limiting the fishing season, restricting the number of boats, and regulating
fishing gear. Problems in fisheries arise largely from the lack of property
rights, so creating these rights is the most direct remedy; recall the Princi-
ple of Targeting from Chapter 9. Individual Quotas (IQs), or Individually
Transferable Quotas (ITQs) are the most significant form of property rights
in fisheries. These measures set an annual Total Allowable Catch (TAC) for
a species and give (or sell) individuals shares of that quota. An individual
with share s is entitled to harvest s times that year’s TAC of that species.
Under ITQs, owners can sell or lease (“transfer”) their shares.
Property rights-based regulation has been shown to decrease costs, in-

crease revenue, and protect fish stocks. However, less than 2% of the world’s
fisheries currently use property rights based regulation.

Reducing industry costs For a given TAC (or ACL), property rights
cause fishers to internalize the externalities that lead to overcapitalization.
Property rights reduce costs, increasing profits. Using the model above, a
fisher with the share s of a TAC A for a fishery with price p obtains the fixed
revenue sAp. With fixed revenue, the fisher maximizes profits by choosing
effort and days fished to minimize the cost of catching sA. This fisher’s cost
minimization problem is the same as that of the regulator who chooses both
effort and season length. Thus, the fisher with property rights chooses the
socially optimal amount of effort and days fished.
Transferable quotas (ITQs instead of IQs) provide two additional avenues

for cost saving. First, some of the fishers may be more effi cient. The average
fisher may catch E0.5 fish per day, but half may catch 10% more and half 10%
less with the same level of effort. Regulators are unlikely to know fishers’
relative effi ciency, or be able to act on that information even if they have it.
Fishers probably have a better idea of their relative effi ciency. Shares in the
quota are worth more to the effi cient fishers than to the ineffi cient fishers, so
there are opportunities for the former to buy the latter’s’licenses. If that
occurs, aggregate costs in the fishery falls by 10% in this example. Second,
even if all fishers are equally productive, there may be too many boats in the
sector: industry profits would be higher if some boats could be persuaded to
leave, as in the example in Chapter 12.2. If transactions costs are suffi ciently
low, and fishers manage to solve the Coasian bargain, some boats sell their
quotas and leave the sector. Profits under the smaller fleet are higher.
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The Mid-Atlantic surf clam fishery switched from restricted entry regu-
lation to ITQs in 1990. Prior to the switch, there were 128 vessels in the
fishery. Estimates at the time claimed that the optimal number of boats
for the industry was 21 —25, and that rationalization of effort could reduce
costs by 45%. By 1994, the fleet size had fallen to 50 vessels and costs had
fallen by 30%.

Increasing revenue For a fixed TAC, IQs and ITQs can increase rev-
enue, in addition to reducing harvest costs. Partial regulation leads to too
much gear and/or too many boats chasing a given number of fish, requiring
regulators to reduce the fishing season, sometimes to a period of a week or
less. Over-capitalization increases fishing costs, but it also makes the annual
harvest available during a short period of time, instead of being spread out
during the season.
If the market for fresh fish is inelastic, a sudden increase in harvest leads

to a much lower equilibrium price. There may also be capacity constraints
in transporting fresh fish to market. Fish processors may be able to wield
market power if fishers have to unload large catches during short periods of
time. For all of these reasons, the ex vessel price that fishers receive may be
lower when the annual catch is landed during a short interval. Moving from
regulation to IQs or ITQs eliminates or at least reduces the race to catch fish,
causing harvest to be spread out over the season, and increasing the average
price of landings.
Before the British Columbia halibut fishery switched to ITQs in 1993,

the fishing season lasted about five days, and most of the catch went to the
frozen fish market. With the more spread-out and thus steadier supply of
fish caused by the move to ITQs, wholesalers found it profitable to develop
marketing networks for transporting fresh fish. Prior to the ITQs, the price
of fresh fish fell rapidly if more than 100,000 pounds a week became available,
but with the development of the new marketing networks, the market could
absorb 800,000 pounds before prices dropped.
A 2003 study estimates the potential gains from introducing ITQs in

the Gulf of Mexico reef fish fishery, accounting for both cost reductions and
revenue increases. ITQs had the potential to increase revenue by almost
50% and to reduce costs by 75%. The study also estimates that under ITQs
the equilibrium fleet size contains 29 —70 vessels, compared to the actual
level of 387 vessels.
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Protecting fish stocks Standard regulation and IQs/ITQs both rely on
an annual limit (TAC) but they use different ways of enforcing that limit.
The mismatch between targets and instruments under standard regulation,
and the resulting ineffi ciencies, lead to high costs, low revenue, and finan-
cial diffi culties for fishers. Fishers have an incentive to pressure regulators
to increase the annual catch to provide short term financial relief. If this
pressure overrides scientific advice, it imperils fish stocks, making the longer
term problem worse. The creation of property rights potentially eases these
stresses. Fishers with property rights to the catch have an incentive to
protect the stock. Property rights-based regulation potentially changes the
political dynamics, helping to protect fish stocks.
The diffi culty of measuring stocks makes it hard to know which fisheries

are at risk. A common definition calls a fishery “collapsed”in a particular
year if the harvest in that year is less than 10% of the maximum previous
harvest. By this definition, 27% of the fisheries were collapsed in 2003. The
data shows that fisheries with IQ/ITQs were less likely to be collapsed, but
the “selection problem”makes it diffi cult to tell whether this negative cor-
relation between ITQ status and fishery collapse is spurious, or whether the
property rights-based mechanism really protects the fishery’s health. The
problem is that the econometrician does not observe the selection process
that determines whether a fishery is managed by IQ/ITQs or by some other
means. Suppose that political considerations make it easy to convert some
fisheries to property rights-based management, and diffi cult to convert oth-
ers; suppose also that the “politically easy”fisheries happen to be less prone
to collapse. These two circumstances tend to create a negative correlation be-
tween property rights-based management and collapse status, independently
of whether there is a causal relation between the two. Statistical methods
based on “matching”can alleviate this measurement problem. The idea is
that we would like to compare collapse status between pairs of fisheries that
are alike, except for their ITQ status.
A 2008 study based on 50 years of data and over 11,000 fisheries, taking

into account the selection problem, estimates that ITQs reduce the probabil-
ity of collapse in a year by about 50%. It also estimates that had there been
a general movement to ITQs in 1970, the percent of fisheries collapsed in
2003 would have been about 9% instead of the observed 27%. In contrast, a
2009 study based on 18 countries (with over 100 fish stocks and 249 species)
found that fish stocks continued to decline in eight of the 20 stocks regulated
using ITQs. ITQs are not a panacea.
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Remaining issues The property rights created by IQs and ITQs can im-
prove the financial and ecological health of a fishery, but they leave many
problems unsolved. They create particular property rights to a particular
species, but may leave important externalities. Increases in production costs
during the season due to the intra-seasonal decrease in stock, can still create
a race to catch fish, leading to overcapitalization. The IQs and ITQs do not
protect other species. They provide no incentive to reduce by-catch, the un-
intentional harvest of fish. Other regulations, or the creation of additional
property rights can reduce by-catch, but these may be costly to implement
and may have unintended consequences. A fairly new mechanism, Territorial
Use Rights Fisheries (TURFs) attempt to alleviate the cross-species problem
by giving groups of fishers (e.g. coops) exclusive rights to an area, instead of
to a species. TURFs are less effective if important species move in and out
of the territorial area.
ITQs likely lead to industry concentration, reducing the number of boats

and fishing jobs. Objecting to ITQs because they harm fishing communities
is unconvincing for two reasons. First, overcapitalization is a major prob-
lem in the fishing sector. There is no way to remedy this problem without
decreasing the size of the sector, which includes reducing employment. Sec-
ond, even though reducing the size of sector can create real and sometimes
long-lasting hardship, the recommendation to keep an industry ineffi ciently
large, in order to support local employment, is not persuasive in general. The
“local employment”argument is routinely used as a rationale for supporting
shrinking industries, including: steel production in the U.S. during the 1980s
and 90s; forestry in the U.S. during the 1990s and 2000s; and agriculture (e.g.
in the European Common Agricultural Policy). The Principle of Targeting
tells us that even though local unemployment may be a significant social
problem, maintaining an ineffi ciently large sector is unlikely to be the right
policy prescription. For natural resource-based industries, this employment
argument is particularly unpersuasive. Supporting employment in the sector
aggravates the decline in resource stocks. Unless something is done to pro-
tect the resource upon which the sector relies, employment in the sector will
certainly fall.
A second possible reason for being concerned about the increased con-

centration (caused by ITQs) is that it might make it easier for fishers to
form a cartel and exercise market power. However, even if a small number of
fishers account for a large fraction of catch in a particular fishery, they face
significant competition from other fisheries and other food products. Their
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ability to exercise market power is likely small. ITQs might also be criticized
because they transfer resource rents to individual fishers, instead of society
at large. However, this is an argument against the way in which ITQs are
distributed (as a gift rather than by auctioning), not against ITQs as a means
of protecting a resource stock.

12.4 Subsidies to fisheries

Policy failure harms natural resources by permitting and sometimes encour-
aging over-harvest, reducing stocks. This loss in natural capital threatens
future harvests, and the short run economic effects include over-capitalized
and financially stressed fisheries, and falling supplies of high-value catch. The
policy remedy requires reducing catch in order to allow stocks to recover, and
encouraging rationalization and consolidation of the industry. Reducing catch
and encouraging fishers to leave the industry are politically unpopular.
Subsidizing the industry is politically easier, but ultimately counterpro-

ductive. Subsidies disguise the economic costs, enabling fishers to remain
in an unprofitable activity, worsening both the problem of over-harvest and
over-capitalization. Both domestic and international agencies have docu-
mented the link between subsidies and over-fishing and over-capitalization.
A 2013 European Parliament study estimates annual global subsidies to the
fishing sector of $35 billion (2009 dollars). Over half of those subsidies
generate increased capacity; 22% come in the form of fuel subsidies, 20%
subsidize fishery management, and 10% subsidize ports and harbors (Table
12.1). Developed countries are responsible for most of the subsidies; 43%
originate in Asia, chiefly Japan and China. Between 1996 —2004, the U.S.
fishing industry received over $6.4 billion in subsidies.

type
of subsidy

fuel: 22 management: 20
ports and
harbors:10

capacity
increasing: 57

source
of subsidy

developed
countries: 65

Asia: 43
Japan: 20
China: 20

Europe: 25
North

America: 16

Table 12.1 Types and geographical sources of fishing subsidies, as a percent
of total. (Sumaila et al. 2013)

Subsidies transfer income from one group to another, here from tax payers
to fishers, and indirectly to consumers via lower prices; subsidies also create
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distortions by attracting mobile factors of production into a sector. In the
static setting with a single distortionary tax (or subsidy), Chapter 10.3 notes
that the economic cost of the policy (the deadweight loss) is typically much
smaller than the transfer. (“Triangles are small relative to rectangles.”) The
example in Chapter 9.5 shows, however, that mutually reinforcing distortions
can lead to much higher social losses, exceeding the magnitude of the transfer.
That example shows that a subsidized sector might contribute negative value
added to society: the social value of the mobile inputs used in the sector
exceeds the social value of production.
A 2009 study commissioned by the World Bank estimates the annual

global economic cost of fishery subsidies at $50 billion, which is larger than
the fiscal cost of the subsidies. This economic cost includes the costs of over-
capitalization and the cost due to reduced stock. In some fisheries, the value
of harvest is less than the true cost of harvest, as in the example in Chapter
9.5. Here, the industry operates at a “social loss”, disguised by government
subsidies.3 The same study estimates that half the current number of vessels
could achieve current catch. Subsidies account for approximately 20% of
fishing revenue.

Box 12.3 Subsidies in other sectors. Fisheries are not alone in re-
ceiving politically motivated but economically unproductive subsidies;
Chapter 11.1 discusses fossil fuel subsidies. Agriculture in many de-
veloped countries also receives large subsidies, often justified as help-
ing struggling farmers. However, endogenous changes induced by the
subsidies often undo whatever short term financial help the subsidies
provide. Agricultural subsidies are “capitalized”in the price of land:
the expectation that the subsidies will continue into the future make
people willing to pay more for land, raising its equilibrium price. Cur-
rent land owners who sell their land, not entering farmers who must
buy the land, capture these increased rents. Subsidies, and in partic-
ular the belief that they will continue into the future, increase young
farmers’ debt (via the increase in land prices), making them more
vulnerable to future financial diffi culties and more dependent on the
subsidies.

3This situation is reminiscent of many Russian and east European industries after the
collapse of the Soviet Union. These industries were not economically viable, and had been
kept alive by government subsidies; closing them down increased gross national product.
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12.5 Summary

Private property, common property, and open access are the three leading
modes of property rights. Property rights to most resources lie somewhere
on the continuum that includes these three modes. De facto property rights
sometimes differ from de jure rights. Common property can lead to overuse of
the resource, a result known as the tragedy of the commons. Many societies
developed mechanisms that effi ciently manage common property resources;
increased trade, migration, and population growth sometimes erode these
mechanisms. If transactions costs are small and property rights well defined,
agents can (plausibly) reach an effi cient outcome through bargaining. The
Coase theorem states that in this case, the effi ciency of the outcome does not
depend on agents’bargaining power, or more generally, on the assignment
of property rights. This result implies that regulation is unnecessary when
transactions costs are low and property rights are secure.
Most economically important fisheries fall within nations’Exclusive Eco-

nomic Zone, and are regulated. The impracticality of regulating every facet
of fishing leaves regulators in a second best setting. Many fisheries set
annual quotas, enforced using a variety of policies, notably early season clo-
sures. The race amongst fishers to catch fish leads to over-capitalization,
which results in high costs and, because much of the harvest is landed dur-
ing a short period of time, low revenue. Property rights-based regulation,
primarily ITQs, can lead to consolidation and rationalization of fisheries,
lowering costs, increasing revenue, and via a political dynamic, increasing
the prospect for fishery health (adequate stocks). However, only a small
percent of fisheries operate under ITQs. Subsidies, especially from devel-
oped nations, provide short run benefits to fisheries, but often exacerbate the
causes of low profits and over-fishing.

12.6 Terms, study questions and exercises

Terms and concepts

Open access, common property, de jure, de facto, congestion, tragedy of the
commons, Doctrine of Regulatory Taking, transactions costs, Coase Theo-
rem, fair lottery, outside option, Law of the Sea, exclusive economic zone,
Manguson-Stevens Fishery Act, by-catch, Regional FisheryManagement Coun-
cils, Fishery Management Plans, acceptable biological catch, annual catch
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limit, regulatory capture, overcapitalization, Individual (Transferable) Quo-
tas or I(T)Qs, Territorial Use Rights Fisheries (TURFs).

Study questions

1. Recently there have been a spate of disputes on airlines concerning
whether a person is entitled to recline their seat. These disputes are
essentially about who has the property rights to the several inches of
space between a seat and the one in front of it. Some airlines have
(either implicit or explicit) rules that assign property rights: a person
is entitled to recline her seat, except during meals (and of course during
landing and takeoff). Recently these rules seem to have become vaguer,
or less well understood. Discuss the increasing occurrence of these
disputes among passengers, in light of the Coase Theorem.

Exercises

1. This exercise takes the reader through one of the classic examples of
the Coase Theorem. A factory that emits e units of pollution obtains
the total benefit from emissions, 10e − 1

2
e2. A (very old fashioned)

downstream laundry dries clothes outside. The pollution makes it
more expensive for the laundry to return clean clothes to its customers,
and therefore increases the laundry’s costs by 2e2. (a) Find the socially
optimal level of pollution, i.e. the level that maximizes benefits minus
costs. (b) Find the emissions tax that supports this level of pollution
as a competitive equilibrium. (c) Assume that the factory has the right
to pollute as much as it wants. The laundry and the factory are able
to costlessly bargain to reduce pollution. Who pays and who gets paid
in the bargaining outcome? (d) Justify the Coasian conclusion, namely
that the outcome of an effi cient bargain leads to the socially optimal
level of pollution. One can establish this claim using the following proof
by contradiction: Suppose, contrary to the claim, that they reach a
bargain that entails an amount of pollution different than the socially
optimal level. (To avoid repetition, consider only the case where this
amount is greater than the socially optimal level.) Show that at such
a level, the laundry’s willingness to pay for a marginal reduction in
pollution is strictly more than the firm would have to receive in order
for it to be willing to reduce pollution by a marginal amount. Explain
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why this conclusion implies that if the agreement by the factory and
the laundry leads to more pollution than is socially optimal, then the
factory and the laundry have left money on the table. They should
resume bargaining and capture some of this waste.

2. Chapter 13.3.1 shows the representative firm’s optimization problem
and the equilibrium level of E. Parts (a) and (b) of this question pri-
marily involve copying, together with filling in a couple of details. Part
(c) requires following a series of instructions. Part (d) requires summa-
rizing the interpretation given in the text. (a) Copy the optimization
problem, write down the first order condition, and solve it to obtain
the value of E shown in equation 13.1. (b) Write down the manager’s
constraint and solve it to find the value of D. (Essentially, just copy
the equation shown below the numbered equation 13.1 and solve it to
obtain the expression for D. (c) Obtain the formula for effort under
“full regulation” (where the regulator is able to choose both D and
E), given in Chapter 12.3.1. Because harvest cannot exceed A, the
total revenue is fixed at pA. Therefore, the regulator’s objective is
to minimize costs, subject to the constraints that the limit is caught
(NE0.5D = A) and that D not exceed the maximum number of days,
S, during which (e.g. due to weather conditions) it is feasible to fish
(D ≤ S):

minE,D (wED) subject to NE0.5D = A and D ≤ S

Proceed as follows: (i) Use the constraint involving A to solve for E.
(ii) Substitute this value of E into the minimand (the thing being
minimized, here, costs). (iii) Note that the resulting minimand is
decreasing in D. Conclude that the value of D that minimizes costs
is therefore the maximum feasible value, S. (iv) Using D = S from
part (iii) in the expression you obtained from part (i), write the level
of effort under “full regulation”as a function of the model parameters.
(d) Explain why the values of E and D are different under “partial
regulation”(where fishers chooseE and the manager choosesD), versus
“full regulation”, where the manager chooses both variables.

3. Using the model in Chapter 12.3.1, and the formulae given there, show
that under partial regulation fishers choose 1

δ2 times as much effort per
day as the regulator chooses under full regulation.



234 CHAPTER 12. PROPERTY RIGHTS AND REGULATION

4. Use the model in Chapter 12.3.1. (a) What is the economic meaning
of the inequality 2Aw

Sp
< 1. (Hint, look at the formula for δ.) (b) The

text gives the formula for industry profits, (profitsecond best) (ignoring
the cost of boats), when fishers choose effort. Does this level of profit
depend explicitly on N? (c) Suppose that the inequality 2Aw

p
< S

holds, and suppose also that each boat costs $F per year. What is
the socially optimal number of boats when fishers choose the level of
effort? (d) Now suppose that the regulator chooses the the amount of
effort. Ignoring the cost of a boat, the text gives the expression for
industry profits in this case, profitfirst best. If each boat costs $F per
year and there are N boats, what is the industry profit, net of the cost
of the boats? (Just write down the payoff.) (e) What is the first order
condition (with respect to the choice of N) for maximizing industry
profit in this case? (f) What is the necessary and suffi cient condition
for the optimal number of boats to exceed 1? (g) Why does optimal
number of boats (typically) differ in the two cases (where fishers choose
effort, and where the regulator chooses effort)?

Sources

Dietz, Ostrom and Stern (2003) and Ostrom (1990 and 2007) discuss con-
ditions under which societies successfully manage common property without
formal regulation.
Hardin (1968) introduced the term “tragedy of the commons”.
Gordon (1954) provided the first well known analysis of fisheries as com-

mon property resources.
Kaffi ne (2009) documents California surfers’efforts to exercise de facto

property rights on some beaches.
The Millennium Ecosystem Assessment (United Nations, 2005), Sumaila

et al. (2011) and Dyck and Sumaila (2010) provide overviews of the state of
fisheries.
Johnson and Libecap (1982) describe the replacement of common prop-

erty with open access in the Alaska salmon fishery.
Fenske (2012) documents the case of property rights for rubber trees

among the Nigerian Igbo.
The 2009 National Marine Fisheries Service report to Congress summa-

rizes the change in regulated U.S. fisheries.
Wittenberg (2014) provides the information for Box 12.1.
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Smith (2012) surveys the problems of regulating fisheries when there more
“targets”(aka “margins”) than policy variables.
Homans and Wilen (1997) show how individually rational effort decisions,

and the resulting overcapitalization, lead to reductions in the length of a
fishing season.
Homans and Wilen (2005) document the effect of ITQs on revenue, and

provide the example of the British Columbia halibut fishery.
Weniger and Waters (2003) estimate potential revenue gains, cost reduc-

tions, and fleet consolidation due to using ITQs in the Gulf of Mexico reef
fish fishery.
Weninger (1999) provides the information in Chapter 12.3.2 on the Mid-

Atlantic surf clam.
Abbott and Wilen (2009 and 2011) examine fishers’response to quotas

on bycatch.
Costello, Gaines and Lynham (2008) estimate the effect of ITQs on fishery

collapse, reported in Chapter 12.3.2.
Deacon, Parker, and Costello (2013) study a situation where fishers had

the option of obtaining property rights by joining a coop.
The 2012 Symposium “Rights-based Fisheries Management”, edited by

Costello and with papers by Aranson, Deacon, and Uchida and Wilen, re-
views the literature on rights-based management.
Sharp and Sumaila (2009) quantify U.S. fishery subsidies.
Sumaila et al. (2013) quantify global fishery subsidies.
Aronson, Kelleher and Willman (2009) estimate the economic cost of

global fishery subsidies.
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Chapter 13

Renewable resources: tools

Objectives

• Introduce the building blocks of renewable resource models.

Skills

• Understand and be able to work with a growth function.

• Understand the meaning of a “harvest rule”.

• Know the meaning of a steady state, and understand the relation be-
tween a growth equation and a steady state.

• Understand the meaning of stability, and be able to test for it in a
continuous time model.

• Understand the meaning of “maximum sustainable yield”and be able
to identify it for simple growth functions.

A few basic tools make it possible analyze a range of renewable resources.
In subsequent chapters we use these tools to study the open access fishery
and the sole owner fishery. We then use the tools to study water economics,
where we also note their broad applicability. Resource models involve one
or more “stock variable(s)” that (potentially) change over time. In the
nonrenewable resource setting, the stock variable equals the amount of the
resource remaining in the mine; there, any extraction decreases the stock. In

237
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the renewable resource setting, growth might offset extraction, causing the
stock to either decrease or increase over time.
In water economics, we might measure the stock using the level of ground-

water or the amount of water in a reservoir. Consuming the water reduces
the stock, but a natural recharge (e.g. rain) can increase it. In forestry
economics, the stock might be measured using the biomass of forestry, the
number of tons of wood. Cutting down trees reduces the stock, but the
forest’s natural growth increases it. In climate economics, the stock might
be measured using the parts per million (ppm) of atmospheric CO2. Carbon
emissions increase the stock, but some of the stock is absorbed into other
carbon reservoirs, e.g. oceans. In all of these case, the stock might increase
or decrease over time, depending on the relation between society’s actions
and the natural growth/recharge/decay.

13.1 Growth dynamics

Objectives and skills

• Understand the meaning of biomass and the growth function.

• Graph the logistic growth function and interpret its parameters.

For the sake of specificity, we consider fishery economics, where we mea-
sure the stock of fish using biomass, e.g. the number of tons of fish. Biomass
does not capture the population age and size distribution: twenty half-pound
fish and ten one-pound fish both contribute ten pounds of biomass. The age
and size distributions are hard to measure and they increase model com-
plexity. For the purpose of explaining the basic renewable resource model, a
single stock variable, biomass, is adequate.
We denote the stock of fish in period t as xt, so the change in the stock

is xt+1 − xt. The growth function, F (x), describes the evolution of the fish
stock in the absence of harvest. Some fish die and new fish are born, so the
stock might increase or decrease over time. Growth depends on the stock:

xt+1 − xt = F (xt) .

Growth also depends on the possibly random stocks of predators and prey and
changes in pollution concentrations and ocean temperature. Even holding
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those features fixed, there may be intrinsic randomness of the growth of x.
These types of considerations lead to a more descriptive but more complicated
model, and we ignore them.
If a period equals one year, then F (x) equals the annual growth, F (x)

x

equals the annual growth rate and F (x)
x

100 equals the percent growth rate.
The most common functional form for the growth function is the Shaeffer,
or “logistic”model:

F (xt) = γxt

(
1− xt

K

)
. (13.1)

This model uses two parameters, γ > 0, and K > 0. The parameter K is
the “carrying capacity”, measuring the level of stock that can be sustained,
absent harvest. Growth is zero if xt = K or if xt = 0; the stock grows
if 0 < xt < K and it falls if xt > K. Congestion decreases the carrying
capacity, K. As the stock increases, the fish compete for prey, and/or they
become more vulnerable to predators. This congestion limits the potential
growth of the stock.
The growth rate of the stock with the logistic growth function is

xt+1 − xt
xt

=
F (xt)

xt
=
γxt
(
1− xt

K

)
xt

= γ
(

1− xt
K

)
. (13.2)

The parameter γ is the “intrinsic growth rate”. In the absence of congestion
(xt = 0 or K = ∞), the growth rate equals γ. A larger value of K implies
a higher growth rate (less congestion) for given x. For given γ and K,
the growth rate falls with x, so the growth rate (not growth) reaches the
maximum value, γ, at x = 0. The value γ = 0.07, for example, means that
in the absence of congestion, the stock grows at 7% per year. For x close to
0, congestion is relatively unimportant, and the growth rate is close to 7%.
However, as the stock gets larger, congestion becomes more important, until
growth ceases as x approaches the carrying capacity, K. Figure 13.1 shows
graphs of the logistic growth function for three different growth rates, and
K = 50. For positive stocks, a larger γ implies larger growth.

13.2 Harvest and steady states

Objectives and skills

• Understand the meaning of and be able to graph “harvest rules”.
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Figure 13.1: The logistic growth function for three values of γ.

• Understand the meaning of “steady states” and be able to identify
them.

The introduction of harvest, y > 0, changes the dynamics. The amount
harvested at a point in time might depend on the stock of biomass at that
point in time. A “harvest rule”gives the harvest level as a function of the
stock. Two examples illustrate harvest rules: y (x) = min (x, Y ), where Y
is a constant, and y (x) = µx, with µ > 0 a constant. For the first example,
harvest is constant at Y if this level is feasible, i.e. if x ≥ Y . If the stock
is less than Y , all of it is harvested. For the second example, harvest is a
constant fraction of the stock. For example, for µ = 0.01, annual harvest
equals one percent of the fish stock. It is not possible to take more than the
entire stock, so in the discrete time setting considered here, µ ≤ 1. Figure
13.2 shows the growth functions with the zero, constant, and the proportional
harvest with K = 50, γ = 0.03, Y = 0.1, and µ = 0.01. Under these two
harvest rules, the change in the stock is

constant harvest: xt+1 − xt = γxt
(
1− xt

K

)
−min (xt, Y )

harvest proportional to stock: xt+1 − xt = γxt
(
1− xt

K

)
− µxt.

(13.3)

A steady state is any level of the stock at which growth minus harvest
equals 0. A stock beginning at a steady state remains there. We have three
examples of harvest rules: zero harvest, and the two rules shown in equation
13.3. We obtain the steady states, denoted x∞, in these three cases by
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Figure 13.2: Growth with zero harvest (heavy solid curve), with harvest
proportional to the stock (dashed), and with the stock equal to Y for x ≥ Y
(light solid).

setting the growth minus harvest equal to 0 and solving for x:

y = 0: γx
(
1− x

K

)
= 0

⇒ x∞,∈ {0, 50}
y = min (x, 0.1) : γx

(
1− x

K

)
−min (x, 0.1) = 0

⇒ x∞ ∈ {0, 3.6, 46.4}
y = 0.01x: γx

(
1− x

K

)
− 0.01x = 0

⇒ x∞ ∈ {0, 33} .

(13.4)

13.3 Stability

Objectives and skills

• Understand the distinction between stable and unstable steady states.

• Using graphical methods and the continuous time model, identify steady
states and determine whether each is stable or unstable.

• Have an intuitive understanding of the relation between discrete and
continuous time models, and understand the advantages of each.

A steady state is “stable”if the stock trajectory approaches that steady
state when the stock begins suffi ciently close to it. A steady state is “un-
stable” if the stock trajectory beginning close to it, moves away from it.
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The stability or lack of stability of a steady state provides important infor-
mation about the dynamics of the fish stock, and is therefore important in
policy questions. Often there are multiple steady states, including x = 0. If
this steady state is stable, a small stock eventually becomes extinct; if it is
unstable, a small stock becomes larger over time.

13.3.1 Discrete time versus continuous time models

Discrete and continuous time models have different advantages. With the
discrete time model, we can derive the necessary condition for optimality
(the Euler equation) using only elementary calculus. The “no-intertemporal-
arbitrage”interpretation of the Euler equation is also more intuitive in the
discrete time setting. The continuous time model has three advantages. First,
as noted in previous chapters, the graphs of the continuous time equilibrium
trajectories are easier on the eye, because they are smooth instead of step
functions. Second, some computations are easier in the continuous time
setting. Third, the analysis of stability is much easier in the continuous time
setting. At the cost of mathematical rigor, we take advantage of both the
discrete and continuous time approaches. We use the discrete time setting
to present and interpret the models and the Euler equation, but we use the
continuous time analog to study stability. Here we explain the diffi culty
arising with discrete time stability analysis, and then discuss the relation
between the two models (cf Appendix G).
In the discrete time setting there is a non-negligible change in variables

(e.g. the stock of fish) from one period to the next, outside of a steady state.
The stock might jump from one interval to another where the behavior is
quite different. This possibility can lead to chaos, where paths (trajectories)
are very irregular (they do not repeat in a finite amount of time) and very
sensitive to the initial condition. It is possible to rule out chaotic behavior
by restricting parameter values, but that still leaves special cases. A steady
state might be stable (meaning that paths starting close to the steady state
approach it), but the approach path might be monotonic (steadily increasing
or decreasing over time) or cyclical (first increasing, then decreasing, then
increasing, and so on). These possibilities are tangential to our concerns.
Finally, in the discrete time setting we cannot determine the stability or
instability of a steady state merely by examining a graph; we require calcu-
lation.
For the purpose of considering stability, we consider “the continuous time
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analog” to the discrete time model. For our one-dimensional models, the
dynamics in continuous time are simple, and stability can be determined by
inspection of a graph, without calculation. We develop the continuous time
analog using the general growth function and harvest rule, F (x) and y(x),
replacing equation 13.3 with the more more general relation

xt+1 − xt = F (xt)− y (xt) . (13.5)

Instead of studying the stability of steady states of this equation, we study
the stability of steady states of the continuous time analog, the ordinary
differential equation1

dxt
dt

= F (xt)− y (xt) . (13.6)

These two equations have the same steady states, where F (x)− y (x) = 0.

Caveat One subtly arises in “moving”from discrete to continuous time.
Suppose that we pick a unit of time equal to a year, so that in the discrete
time setting y equals the amount harvested in a year. In this setting, we
have the constraint y ≤ x, because it is not possible to harvest more fish
than the level of biomass. This constraint does not apply in the continuous
time setting. An example helps to clarify this claim. We have a stock of
wealth, $1000, we cannot borrow, and we receive no interest on savings; our
unit of time is a year. In the discrete time setting, y equals the amount
spent in a year; because we cannot borrow, we cannot spend more than
$1000: y ≤ x = 1000. In the continuous time setting, y equals spending
per unit of time. Here, y can take any non-negative value. For example,
it is feasible to spend $1000 per year for the duration of a year. It is also
feasible to spend $5000 per year for the duration of one-fifth of a year. We
can spend at any rate —just not for very long. In the discrete time setting
we have to honor the constraint y ≤ x, but in the continuous time setting
we require only x ≥ 0.

1Equations 13.5 and 13.6 have the same steady states: xt+1 − xt = 0 if and only if
dxt
dt = 0. Provided that the length of a period in the discrete time setting is suffi ciently
small, the dynamics of the continuous and discrete systems are similar in the neighborhood
of a steady state.
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Figure 13.3: The graph of dx
dt

= F (x)− y (x). There are three steady states,
at x = 0.4, x = 1.4 and x = 5.2. The first and third are stable, and the
middle steady state is unstable

13.3.2 Stability in continuous time

It is simple to determine whether an interior steady state is stable in the
continuous time setting. First, we identify the steady state(s) by finding the
solution(s) to the equation F (x)− y (x) = 0, exactly as in the discrete time
setting. Figure 13.3 shows the graph of an arbitrary function F (x)− y (x)
(one without a specific resource interpretation). This function has three roots,
i.e. three steady states, where the graph crosses the x axis. Consider the
low steady state, x = 0.4. We see that for a value of x close to but slightly
below 0.4, dx

dt
= F (x) − y (x) > 0, i.e. x is becoming larger over time. For

a value of x close to but slightly above 0.4, dx
dt

= F (x)− y (x) < 0, i.e. x is
becoming smaller. Therefore, we conclude that x = 0.4 is a stable steady
state: a trajectory beginning close to, but not equal to x = 0.4 approaches
the level x = 0.4. A parallel argument shows that the middle steady state,
x = 1.4, is an unstable steady state, and the large steady state, x = 5.2, is a
stable steady state.

Noticing that the slope of F (x)−y (x) is negative at the two stable steady
states in Figure 13.3, and the slope is positive at the unstable steady state,
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Figure 13.4: Solid curve: the graph of the logistic curve, F (x). Dashed
curve: the graph of F (x)− 0.01x. Dotted curve: the graph of F (x)− 0.3.

we obtain the following rule for checking stability.2

x∞ is a stable steady state if and only if
d(F (x∞)−y(x∞))

dx
< 0

x∞ is an unstable steady state if and only if
d(F (x∞)−y(x∞))

dx
> 0.

(13.7)

We can determine the sign of these derivatives without calculation, merely
by inspection of the graph of F (x)− y (x).

13.3.3 Stability in the fishing model

Figure 13.4 shows the graphs of F (x)− y (x) (the growth function minus
the harvest function) using the logistic growth function F (x) and three har-
vest rules: y (x) = 0 (solid); y (x) = 0.01x (dashed); and y (x) = 0.3 (dotted)
The rule in equation 13.7 tells us whether various steady states are stable
or unstable. The points of intersection of the graphs in Figure 13.4 and the
x axis are steady states. Absent harvest, the solid curve shows that the
steady states are x = 0 and x = K = 50. Using the rule in equation 13.7,
we see that x = 0 is an unstable steady state and x = K is a stable steady
state. The dashed curve shows that under proportional harvest, y = 0.01x,

2If d(F (x∞)−y(x∞))
dx = 0, points on one side of the steady state approach the steady

state, and points on the other side move away from the steady state. We do not discuss
this knife-edge case.
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Figure 13.5: The logistic growth function, and two harvest rules: constant
harvest, y = 0.3 (dotted) and harvest proportional to stock, y = 0.01x
(dotted).

the two steady states are x = 0 and x = 33.33. Again, the low steady state
is unstable and the high steady state is stable.
The dotted curve, corresponding to constant harvest y = 0.3, has two

points of intersection with the x axis: x = 13.8 and x = 36.2. The low steady
state is unstable, and the high steady state is stable. Under constant harvest,
x = 0 is also a stable steady state, even though the graph of F (x)− 0.3 does
not intersect the x axis. Recall the “caveat”above. In the continuous time
model, y can take any finite value. For our example, y can remain at 0.3
as long as x > 0. If stock is small, here lower than 13.8, constant harvest
y = 0.3, exceeds natural growth, and the stock falls. As soon as the stock
hits x = 0, harvest must stop. The stock heads to extinction, x = 0.
Figure 13.4 illustrates an important possibility that we will encounter

again. Under zero harvest or harvest proportional to the stock, the stock
always approaches the high steady state (x = 50 and x = 33.33 in the two
examples), provided that the initial stock is positive. In contrast, under
constant harvest, beginning with a positive stock, the stock might eventually
approach either stable steady state, x = 0 or x = 36.2. The unstable steady
state, x = 13.8, is a critical stock level. For initial stocks above this critical
level, the stock approaches the high steady state, and for initial stocks below
this level, the stock approaches the low steady state, 0.

A different perspective Figure 13.5 shows graphs of the growth and
the harvest functions in the same figure, whereas Figure 13.4 shows their dif-
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ference. We can use either figure to identify steady states and their stability.
The reader should confirm that, as we move from left to right in Figure 13.5:

(i) If the harvest function cuts the growth function from above,
the associated steady state is unstable.

(ii) if the harvest function cuts the growth function from below,
the associated steady state is stable.

For example, under constant harvest y = 0.3, harvest exceeds growth for
x below the low (interior) steady state. At these stock levels, the stock is
falling: the stock moves away from the low steady state, so that steady state
is unstable. In contrast, for stocks between the two interior steady states,
growth exceeds harvest, so the stock moves toward the high steady state.
Similarly, for stocks above the high steady state, harvest exceeds growth, so
the stock declines, toward the high steady state.

13.4 Maximum sustainable yield

Objectives and skills

• Know the definition of Maximum Sustainable Yield (MSY) and be able
to calculate the MSY for the logistic growth function.

• Understand the economic factors that determine whether optimal steady
state harvest should be above or below MSY.

The maximum sustainable yield is the largest harvest that can be sus-
tained in perpetuity. Any point on the graph of the growth function is a
sustainable harvest. We can pick any point on this graph and draw a second
graph intersecting that point; this second graph is a particular harvest rule
for which the chosen point is a steady state, and thus a sustainable harvest.
The maximum sustainable harvest occurs at the highest point on the graph
of the growth function. We identify this highest point by solving dF (x)

dx
= 0,

the first order condition for the problem of maximizing F (x). For the logistic
growth function, this condition is

d
(
γx
(
1− x

K

))
dx

=
1

K
γ (K − 2x)

set
= 0.
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Solving this equation gives the steady state stock corresponding to maximum
sustainable yield

x =
K

2
.

Substituting this value into the growth function, γx
(
1− x

K

)
, gives the max-

imum sustainable yield

MSY: y =
1

4
Kγ.

(The maximum sustainable yield is a level of y, not a level of x.) An increase
in either the intrinsic growth rate, γ, or the carrying capacity, K increases
the maximum sustainable yield.

The socially optimal steady state

Chapter 15 examines the socially optimal steady state, but even at this stage
we can use economic logic to identify the factors that determine its level.
We need a criterion for comparing different outcomes. The most common
criterion (discounted utilitarianism) is the present discounted value of the
stream of consumer and producer surplus. What steady state is optimal
under this criterion? By definition, steady state output = consumption is
highest at the MSY, so consumer surplus is highest there. Producer surplus,
equal to revenue minus costs, depends on the cost of catching fish. If it is
cheaper to catch fish when there are many fish (the stock is large), increasing
x above K

2
reduces costs. With stock dependent harvest costs, the increase in

the stock and the consequent decrease in the costs might increase producer
surplus. At this level of generality we do not know whether the change
actually increases producer surplus, because the change also alters revenue.
Even if higher stocks lower harvest costs, we do not know (at this level of

generality) whether it is socially optimal to have a steady state stock above K
2
.

With a positive discount rate, a future benefit (e.g. a higher sum of consumer
and producer surplus) is less valuable than a current benefit. Therefore, a
positive discount rate encourages society to consume more today, leaving less
for the future, and reducing the stock below the MSY.
In summary, consideration only of the consumption benefit suggests that

the MSY is the optimal steady harvest. Recognition that harvest costs
(might) depend on stock size suggests that the optimal steady state stock
might lie above the level of MSY. Taking into account that the future is
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worth less than the present (due to discounting) suggests that society should
aim for a steady state stock below the level of MSY.

13.5 Summary

We measure the stock of fish as biomass, e.g. the number of tons of fish.
The growth equation determines the stock in the subsequent period as a
function of the current stock. The logistic growth function depends on two
parameters, the intrinsic growth rate γ and the carrying capacity K. A
harvest rule, a function of the stock of fish, determines the harvest in a
period. We emphasized two harvest rules, one equal to a constant, and the
other equal to a constant fraction of stock.

At a steady state, the fish stock remains constant over time. The steady
state depends on both the growth function and the harvest rule. There may
be multiple steady states. A steady state is stable if and only if stocks that
begin suffi ciently close to the steady state converge to that steady state. If
a trajectory beginning at any initial condition close to but not equal to the
steady state moves away from that steady state, the steady state is unstable.

We introduced the continuous time model, for the purpose of making it
easy to determine the stability or instability of a steady state. In order to
relate the discrete and the continuos time models, the reader should think
of the length of a period in our discrete time setting as being very small.
If the growth function is F (x) and the harvest function y (x), then dx

dt
=

F (x) − y (x). Any solution to F (x) − y (x) = 0 is a steady state. The
slope of F (x) − y (x) is negative at a stable steady state and positive at
an unstable steady state. We also need to consider levels of the state at
which an inequality constraint binds. In the fishing context, the biomass
cannot be negative, so x ≥ 0; x = 0 is a steady state, which might be either
stable or unstable, depending on the relation between the growth and harvest
functions.

The maximum sustainable yield equals the maximum point on the growth
function. For the logistic growth model, the maximum sustainable yield
occurs where the stock is half of its carrying capacity.
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13.6 Terms, study questions, and exercises

Terms and concepts

Biomass, stock variables, annual growth rate, logistic growth (or logistic
model), carrying capacity, intrinsic growth rate, harvest rule, steady state,
chaos, stability, monotonic path, cyclical path, Maximum Sustainable Yield.

Study questions

1. Given the graph of a growth function xt+1 − xt = F (x), you should
be able to identify the carrying capacity and the maximum sustainable
yield, and say in a few words what each of these mean.

2. For a differential equation dx
dt

= G (x), if you are shown a graph of G (x)
you should be able to identify the steady state(s) and say which, if any
of these are stable. You should be able to explain your answer in a
couple of sentences.

3. (a) Given a single figure that shows both the graph of the growth
function F (x) and the harvest function y (x), should be able to identify
the steady states and explain (in very few words) which is stable and
which is unstable. You should be able to sketch a graph of their
difference, dx

dt
= F (x) − y (x), and use the rule in equation 13.7 to

confirm that your answer to part (a) was correct.

Exercises

1. Using an argument that parallels the discussion of the low steady state
in Figure 13.3, explain why the middle steady state is unstable and
why the high steady state is stable.

2. For the logistic growth function, F (x) = γ
(
x− x

K

)
, identify the pro-

portional harvest rule (the value of µ in the rule y = µx) that supports
the maximum sustainable yield as a steady state. Is this steady state
stable?

3. The “skewed logistic”growth function is

F (xt) = γxt

(
1− xt

K

)φ
,



13.6. TERMS, STUDY QUESTIONS, AND EXERCISES 251

with φ > 0. For φ = 1 we have the logistic growth function in equation
13.1. (a) How does the magnitude of φ affect the growth rate? (b) The
maximum sustainable yield occurs at x = K

φ+1
. Derive this formula.

(c) Use a software package of your choice to draw this curve forK = 50,
γ = 0.03, and for both φ = 2 and φ = 0.5.

Sources

Clark (1996) is the classic text on renewable resource economics, and fishery
economics in particular.
Hartwick and Olewiler (1986) cover much of the material in this chapter.
Conrad (2010) presents the discrete time material.
Readers interested seeing how the deterministic models discussed in this

book can be extended to the stochastic setting should consult Mangel (1995).
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Chapter 14

The open access fishery

Objectives

• Analyze policy under open access.

Skills

• Use the zero-profit condition to obtain the open access “harvest rule”.

• Determine the evolution of biomass under open access.

• Understand how a tax affects harvest incentives and the evolution of
biomass.

A tax changes the level of harvest for a given level of the stock, and it
changes the evolution of the stock. If there are property rights, resource own-
ers take into account future costs and benefits in making current extraction
decisions. Absent property rights individuals have no reason to think about
the (negligible) effect their harvest has on future stocks. Here, agents choose
their current harvest to maximize their current profit.
Chapter 12.3.1 studies a static version of this scenario, where everything

happens in the same period. Dynamics are central to the fishery problem,
where the externality unfolds over time. Here we study a model in which
fishers’aggregate current harvest affects the subsequent stock, resulting in
a dynamic externality. Chapter 12.3 points out that the first best harvest
typically involves many types of decisions; regulators rarely have as many
instruments (policy variables) as there are targets. We show how a tax on
catch, known as a landing fee, influences the open access equilibrium.

253



254 CHAPTER 14. THE OPEN ACCESS FISHERY

14.1 Harvest rules

Objectives and skills

• Given an inverse demand function and harvest cost function, find the
open access harvest rule.

• Sketch the graphs corresponding to this harvest rule and the logistic
growth function.

• Determine the steady states and their stability, and answer a compar-
ative statics question.

We consider two cases, the first with constant stock-independent average
and marginal harvest costs, c (x, y) = Cy, and the second with stock depen-
dent average and marginal cost, c (x, y) = C y

x
. Due to free entry and exit,

there are zero profits at every point in time, so price equal average cost. If
profits were positive, new entrants would increase supply, lowering the price
and lowering profits; if profits were negative, current fishers would leave the
industry, lowering supply, increasing the price and increasing profits.

14.1.1 Stock-independent costs

With stock-independent constant harvest costs, c (x, y) = Cy, “price equals
average cost”requires pt = C. For the inverse demand function p = a− by,
this condition implies y = a−C

b
. For C < a, open access harvest is positive

whenever the stock is positive; the open access harvest rule is1

y (x) = min

(
x,
a− C
b

)
(14.1)

Chapter 13 examines the dynamics under this kind of harvest rule. Figure
14.1 reviews this material, showing the graph of a logistic growth function
and the graphs of two harvest rules, corresponding to a low and a high cost,
C (the dashed and dotted lines, respectively). For both of these costs, there
are three steady states. The zero steady state and the high steady state
(occurring to the right of the maximum sustainable yield) are both stable.
The middle steady state is unstable.

1Equation 14.1 is the harvest rule in the discrete time setting. In the continuous time
setting, were the rate y can be arbitrarily large, the harvest rule is y = a−C

b for x > 0 and
y = 0 for x = 0.
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Figure 14.1: The solid curve is the graph of the logistic growth function with
γ = 0.03 and K = 50. The dashed graph shows the open access harvest rule
for C = 1 and the dotted graph shows the harvest rule for C = 3. Inverse
demand is p = a = by with a = 3.5 and b = 10.

14.1.2 Stock-dependent costs

We provide a “micro-foundation” for the cost function c (x, y) = C y
x
, and

then derive the open access harvest rule.

Micro-foundation of the cost function Fishing “effort”, E, is an
amalgam of all of the inputs in the fishery sector. In a representative agent
model, Et is the aggregate effort in the fishery in period t. Greater effort
increases harvest. Fish are easier to catch when the stock is large, so for a
given amount of effort, a larger stock increases harvest. The fishery produc-
tion function shows how effort, E, and the stock, x, determine harvest, y.
The simplest production function assumes that the level of harvest per unit
of effort is proportional to the size of the stock, y

E
= qx, or

y = qEx⇒ E =
y

qx
. (14.2)

The parameter q > 0 is the “catchability coeffi cient”. A larger q means
that for a given stock size, fishers need less effort to obtain a given level of
harvest. The cost per unit of effort is the constant, w. If one “unit of effort”
equals one boat and 200 hours of labor and a particular net, then w equals
the cost of renting the boat, paying the crew, and buying or renting the net.
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The cost of harvesting y, given the stock x, is

harvest cost: c (x, y) = wE =
w

qx
y =

C

x
y, (14.3)

where C ≡ w
q
. Harvest costs fall as: the stock of fish (x) rises, the cost per

unit of effort (w) falls, and the catchability coeffi cient (q) increases.

The harvest rule If harvest is positive in the open access equilibrium,
then price equals average costs. With linear inverse demand, p (y) = a− by,
price equals average cost requires a−by = C

x
. If cost exceeds the choke price,

a, then harvest equals zero. These two facts imply the open access harvest
rule2

y (x) =

{
1
b

(
a− C

x

)
for 1

b

(
a− C

x

)
≥ 0

0 for 1
b

(
a− C

x

)
< 0.

(14.4)

Figure 14.2 shows the graph of the logistic growth function and the open
access harvesting rule in equation 14.4 for “low demand”, p = 3.5 − 10y
(dashed) and “high demand”, p = 4.2 − 10y (solid) with C = 5. The figure
identifies the three interior steady states (where x > 0), points A,B,D,
under low demand. In the high demand scenario, the only interior steady
state occurs at a low stock level, close to but slightly lower than point A.
Extinction, x = 0, is a steady state in both cases.
In the low demand scenario, moving from left to right, the dashed curve

cuts the growth function from below at points A and D, and it cuts the
growth function from above at point B. Thus, points A and D are stable
steady states, and point B is an unstable steady state (cf. the final para-
graph in Section 13.3.3). The point x = 0 is an unstable equilibrium. For
suffi ciently small but positive stock, a − C

x
< 0, so y = 0. Here, the stock

is so low, and the harvest costs so high, that the equilibrium harvest is 0.
Because growth is positive for small positive x, the fish stock is growing in
this region. Therefore, if the initial stock is positive and below point B, the
stock in the open access fishery converges to point A. If the initial stock is
above point B, the stock converges to point D.
In the high demand scenario (dotted curve), there are two steady states.

The stable steady state is slightly below point A; x = 0 is an unstable

2A necessary and suffi cient condition for y (x) < x for all x ≥ 0 is a < 2
√
bC. When

this inequality holds, 14.4 is the harvest rule for both the discrete and continuous time
setting.
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Figure 14.2: The solid curve shows the logistic growth function with γ = 0.03
and K = 50. Dashed curve: harvest rule for a = 3.5. Dotted curve: harvest
rule for a = 4.20.

steady state. Here, for any positive initial stock, the stock under open access
converges to a level slightly below point A.3

14.2 Policy applications

Objectives and skills

• Understand the effect of a constant tax on the evolution of the biomass
and on the steady states.

• Understand why the long run effect of the tax may depend on the level
of the stock at the time the tax is imposed.

Policy affects the equilibrium outcome by altering the equilibrium har-
vest rule. Gear restrictions increase C, shifting down the harvest rule (cf.
equations 14.1 and 14.4). Here we consider the effect of taxes when average
harvest costs depend on the stock.
Chapter 10 shows that (in a closed economy) a tax has the same effect

regardless of whether consumers or producers have statutory responsibility
for paying it. If consumers face price p and have inverse demand p = a− by,

3Appendix H provides a different way to visualize the equilibrium, using the concept
of a “bioeconomic equilibrium”.
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Figure 14.3: The logistic growth function (the solid graph) and harvest rules
for:: zero tax (highest graph); ν = 0.35 (middle graph); and ν = 0.7 (lowest
graph). Demand is p = 4.2− 10y.

producers facing the unit tax ν receive the net-of-tax price p−ν. Zero profits
requires that this price equals average cost, or a − by − ν = C

y
. Modifying

equation 14.4, the open access harvest rule under the tax is

y (x) =

{
1
b

(
a− ν − C

x

)
for a− ν − C

x
≥ 0

0 for a− ν − C
x
< 0.

(14.5)

A one unit decrease in a or a one unit increase in ν have the same effect on
a− ν, and thus have the same effect on the harvest rule. Figure 14.3 shows
harvest rules for a = 4.2, and three values of the tax: ν = 0; ν = 0.35 (so
a− ν = 3.85); and ν = 0.7 (so a− ν = 3.5).

The role of the initial condition The “initial condition”is the level of
the stock, x0, at the time the tax is first imposed. The long run (steady
state) effect of the tax might depend on the initial condition. The low steady
states for the three harvest rules (corresponding to the three tax levels) are
slightly different, but they all occur so close to point A, where xA = 1.7,
as to be indistinguishable in Figure 14.3. However, the intermediate and
the high steady states are appreciably different under the two positive taxes;
these steady states do not exist if ν = 0. The points B′ and D′ are steady
states under the tax ν = 0.35, and B and D are steady states under the tax
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ν = 0.7. The stocks at these points are

xA = 1.7, xB = 15.4, xB′ = 20, xD′ = 28.6, and xD = 33.2.

We do not distinguish between xA and xA′ because these are so close that
their difference is not interesting.
Figure 14.3 shows that the initial stock, —not just the policy level —can

have a significant effect on the steady state to which the stock converges. If
x0 < 15.4, neither tax has an appreciable effect on the steady state: the stock
converges to a point close to xA = 1.7 for ν ∈ {0, 0.35.0.7}. If 15.4 < x0 < 20,
the tax ν = 0.35 has a negligible effect on the steady state (close to xA = 1.7),
but the tax ν = 0.7 causes the stock to converge to 33.2. If x0 > 20, then
the stock converges to x = 28.6 for ν = 0.35 and to x = 32.2 for ν = 0.7.
In this example, if the initial stock is “moderately small”(15.4 < x0 < 20),
then ν = 0.35 has a negligible effect on the steady state, whereas the tax
ν = 0.7 leads to a large increase in the steady state. If the initial stock is
“moderately large”, (x0 > 20) then both taxes lead to qualitatively different
steady states, compared to ν = 0. Under the zero tax, the stock converges
to the low steady state stock, for any positive x0.

Steady state welfare effects of the tax Here we assume that x0 > 20.
The low tax leads to a lower steady state stock, but a higher steady state
harvest, compared to the high tax: point D′ is to the left and above point D.
A higher harvest corresponds to a lower consumer price, and higher consumer
surplus. In the high steady state under the high tax, xD = 33.2, so harvest
= consumption equals

y = γxD

(
1− xD

K

)
= 0.335.

Consumers are willing to purchase this amount if they face the tax-inclusive
price 4.2− 10× 0.335 = 0.853. At this price, consumer surplus is∫ 4.2

0.853

(
4.2− z

10

)
dz = 0.56

and tax revenue is νy = 0.7 (0.335) = 0.234 5. Profits are zero at every point,
so social welfare equals the sum of consumer surplus plus tax revenue, 0.794.
Table 1 collects these numbers at the high stable steady states under the two
taxes. It shows that steady state consumer surplus is higher, tax revenue is
lower, and their sum, social welfare, is higher under the smaller tax.
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tax (ν) stock harvest price
consumer
surplus

tax revenue
social
welfare

0.7 33.2 0.335 0.853 0.56 0.234 0.794
0.35 28.6 0.367 0.528 0.67 0.129 0.803

Table 14.1: High stable steady state stock, harvest, price, consumer surplus, tax
revenue, and social surplus for two taxes.

Policy implications Even if a tax has only a negligible effect on the steady
state to which the stock converges, it may nevertheless have a significant
effect on welfare, by slowing the decline of the fishery. For example, if x0

is slightly lower than 15.4, the tax ν = 0.35 causes a 9% reduction in the
initial harvest (relative to harvest under ν = 0) and the tax ν = 0.7 causes
an 18% reduction in the initial harvest. This reduction in harvest is not
large enough to keep the stock from converging to approximately the same
low level, but the higher tax slows the fishery’s decline. Therefore, for an
initial condition below 15.4, the present discounted stream of welfare is likely
higher under the larger tax.

The effect of the tax on the steady state depends on the initial condition
and on model parameters. This kind of model provides only a rough guide
for policy, because it only approximates the real world, and because data
limitations make it hard to estimate the model parameters and the current
stock level. The model does, however, reveal some trade-offs. In view of
the amount of uncertainty in going from the real world to the model, the
regulator might want to build in a margin of safety, choosing a tax that
exceeds the optimal level implied by the model. The larger tax protects
against the possibility that we over-estimated the initial biomass, or were
wrong about some other key parameter.

Thus far we have considered only a constant tax, a number. That single
number can be used to target (i.e., to select) a single endogenous variable.
We took the steady state stock, and corresponding payoff, as the target of
interest. However, it makes sense for the regulator to care about the payoff
along the trajectory en route to the steady state. A richer description of the
regulatory problem includes “state-contingent”taxes, defined as taxes that
vary with the level of the stock (cf. Chapter 15.2 ).
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14.3 Summary

In an open access equilibrium with costless entry and exit, profits are zero,
implying that price equals average harvest cost. We obtained a closed form
expression for the open access harvest rule under linear demand and two
types of cost function. Using these harvest rules and the logistic growth
function, we identified the steady states and their (in-)stability, and studied
the evolution of the stock of fish under open access. For the case of stock-
dependent harvest costs, there might be either a single interior (= positive)
steady state or three interior steady states. In the former case, the unique
interior steady state is stable. In the latter case, the low and the high interior
steady states are stable, and the middle steady state is unstable. The stock
x = 0 is an unstable steady state under stock-dependent harvest cost, and it
is a stable steady with constant average harvest costs.
A unit tax on harvest shifts down the open access harvest rule, reducing

harvest for any level of the stock. Under stock-dependent harvest cost, a
suffi ciently high unit tax moves the fishery from the situation where there is
a single interior steady state to the situation where there are three interior
steady states. Here, the tax creates a stable steady state with a high level
of the stock. The effect of a tax depends on both the magnitude of the tax
and on the level of the stock at the time the tax is first imposed (the initial
condition). We also used this example to determine the steady state level
of welfare (= consumer surplus plus tax revenue) under different taxes.

14.4 Terms, study questions, and exercises

Terms and concepts

Myopic, catchability coeffi cient, initial condition, steady state supply func-
tion.

Study questions

1. (a) For the case of constant average harvest cost, Cy, linear inverse
demand, p = a−by, and logistic growth, obtain the open access harvest
rule, and sketch it on the same figure as the growth function. Illustrate
how a change in C alters the steady state and the dynamics of the fish
stock. (b) Illustrate and explain the effect of a constant unit tax, ν,
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on the steady states. (c) Use a graph and short discussion to illustrate
the fact that the effect of a given tax depends both on its magnitude
and on the stock level at the time the tax is imposed.

2. Begin with the production function showing output (harvest) y = qEx,
where E is effort and x is biomass. Explain the meaning of E (perhaps
by using an example) and the meaning of the parameter q. What is
the name given to this parameter?

3. Suppose that a unit of effort costs w. Derive the cost function for the
example in the previous question. Explain your derivation. (It is not
enough to merely memorize this cost function.)

4. Using the cost function in the previous question and the inverse demand
curve p = a−by, derive the open access harvest rule. Be able to explain
each step. (Memorization is not suffi cient.)

5. Write down the logistic growth function. On the same figure, sketch
graphs of this growth function and the harvest rule obtained in the
previous question.

6. Using the figure from the previous question, show the effect of an in-
crease in the demand slope, b, or intercept, a, on harvest rule, and on
any steady state(s). Discuss the effect of this change (in a parameter
of the demand function) on the evolution of the stock. A complete
answer must explain how the parameter change can qualitatively alter
the evolution of the stock, depending on the initial condition.

7. Show how a constant tax affects the open access harvest rule.

8. By means of a graph, show how an increase in the tax can alter the
steady state(s).

9. Explain why the effect of the tax depends on both the magnitude of
the tax and on the initial condition of the biomass, at the time the tax
is first implemented.

Exercises

1. This exercise illustrates the fact that imposing restrictions typically
increases production costs. Suppose that effort depends on the size
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of the boat, B, and the amount of labor, L in the following manner:
E = B0.5L0.5. The cost of the boat, bB is proportional to its size, with
a “price per unit size b”. The wage is w, so the labor bill is wL. Thus,
the cost of providing one unit of effort is C, with

c = min
B,L

(bB + wL) subject to BβL1−β = 1.

(a) Find the optimal labor/boat size ratio,
(
L
B

)∗
and the cost of provid-

ing one unit of effort„c, as a function of prices b and w (b) Suppose
that regulation doubles the required labor/boat size ratio to 2

(
L
B

)∗
.

Denote as c̃, the cost of providing a unit of effort under this regulation,
a function of b and w. Compare c̃ and c.

2. (a) Consider an open access fishery with constant harvest costs, c (x, y) =
Cy. Use linear demand p = a − by and the logistic growth function.
Suppose that producers have the statutory obligation to pay a unit tax,
ν. Obtain the open access harvest rule in this case. (b) What is the
tax incidence in this model? (c) Does your answer to part b mean that
the tax makes consumers worse off? (d) Create a figure with graphs of
the logistic growth function and also showing two open access harvest
rules, for ν = 0 and for ν > 0. (The precise positive value is unim-
portant. The point is to understand the qualitative properties of this
figure.) Label the steady states under both harvest rules and identify
which of these (if any) are stable. (e) Suppose that the regulatory
regime switches from ν = 0 to ν > 0 when the stock of fish is between
the two middle steady states (i.e., the middle steady state under ν = 0
and the middle steady state under ν > 0.) Describe the evolution of
the fish stock under each regulatory regime.

3. Using Figure 14.2, show how a larger value of C alters the two harvest
rules (corresponding to low demand and high demand). Using this
information, describe the effect of a larger C on the steady state(s) in
the low and high demand scenarios.

4. Using equation 14.4, provide the economic explanation for the state-
ment that y (x) = 0 for a− C

x
< 0.

5. Suppose that inverse demand is p = a − a−1
0.2
y, with a > 1. (a) Show

that for this demand function, the elasticity of demand, evaluated at
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p = 1, is η = 1
a−1
. A larger value of a implies less elastic demand.

(b) Using Figure H.1, show how the set of steady states changes as
demand becomes more elastic (a decreases toward 1). Provide an
economic explanation for your observation.

6. (*) Suppose that the production function for harvest is y = (qEx)φ

with 0 < φ < 1. The cost of a unit of effort is c, a constant. (a) Write
the cost function (expressing cost of harvest as a function of harvest
and the stock). Sketch the cost function as a function of harvest (for
a given stock). (b) There is free entry, so that at each point in time,
profits equal 0. Use this equilibrium condition, and the linear inverse
demand function, p = a − by, to write an equation that gives harvest
as an implicit function of the stock. (c) Although it is not possible
to solve this equation to obtain harvest as an explicit function of the
stock, it is simple to solve it to obtain the stock as an explicit function
of the harvest. Using this approach, graph the relation between the
harvest and the stock. It helps to pick a particular value of φ, e.g.
φ = 0.5. On the same graph, sketch the graph of the harvest rule
when φ = 1 (shown in Figure 14.2). (d) Transfer these two graphs
onto a figure that also shows the growth function F , and use the result
to describe the qualitative effect on the dynamics, of a decrease in φ
(here, from 1 to 0.5). Provide an economic explanation. Hint, part a.
Mimic the procedure used to find the cost function in the text. Rewrite
the production function to find the level of effort needed to produce a
given harvest, y, at a particular stock, x. How much does this level of
effort cost? The answer is the cost function.

Sources In the model that we present, the size of the fishing fleet adjusts
instantaneously, so profits equal zero at every moment. Conrad (2010) dis-
cusses extensions in which the industry’s speed of adjustment depends on
current profits, so profits can be non-zero outside a steady state.
Berck and Perloff consider a model with costly adjustment and rational

expectations: firms’entry and exit decisions depend on their expectations of
future profits.



Chapter 15

The sole-owner fishery

Objectives

• Understand the equilibrium condition in a price-taking sole owner fish-
ery.

Skills

• Adapt the skills developed from the nonrenewable to the renewable
resource setting.

• Write the sole owner’s objective function and apply the perturbation
method.

• Understand the role of growth in the no-intertemporal-arbitrage con-
dition.

• Use the definition of rent to rewrite and re-interpret the Euler equation.

• Describe optimal policy in the presence of market failures.

• Identify the steady state for the optimally controlled fishery.

This chapter studies the price-taking sole-owner fishery, extending earlier
results on nonrenewable resources. Absent other market failures, the sole
owner harvests effi ciently. By maximizing the present discounted stream of
profits, she also maximizes the present discounted sum of producer and con-
sumer surplus. There are few if any important sole owner fisheries. However,

265
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the sole owner outcome provides a baseline for determining policy when prop-
erty rights are imperfect. We also consider the situation where the fishery
provides ecological services that the sole owner does not internalize.
The tools developed to study the sole owner fishery are useful in many

renewable resource settings For example, excessive greenhouse gas emissions
occur because of the absence of property rights for the atmosphere. For both
the open access fishery and the climate problem, the outcome under a social
planner (or sole owner), provides information on optimal regulation.
We state the sole owner’s optimization problem and then discuss the

optimality condition, the Euler equation. The definition of rent leads to a
more concise statement of this equation. We compare the sole owner and the
open access steady states.

15.1 The Euler equation for the sole owner

Objectives and skills:

• State the sole owner’s optimization problem.

• Write and interpret the Euler equation, and then express it using the
definition of rent.

We consider two specializations of the parametric cost function. In the
first, average harvest costs are constant in harvest and independent of the
stock, c (x, y) = Cy. In the second, average harvest costs are constant in
the harvest and decreasing in the stock c (x, y) = C

x
y, so ∂c(x,y)

∂x
= − C

x2y < 0.
The owner of the resource takes the sequence of prices, p0, p1, p2... as given;
these prices are “endogenous to the model”, via the inverse demand function,
pt = p (yt), but the resource owner takes them as exogenous.
For the constant average cost specification, the owner chooses the se-

quence of harvests, y0, y1, y2... to solve

max
∞∑
t=0

ρt (pt − C) yt (15.1)

For the stock dependent average cost specification, the owner solves

max

∞∑
t=0

ρt
(
pt −

C

xt

)
yt (15.2)
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In both cases, the owner faces the constraint xt+1 = xt + F (xt)− yt.
For the sole owner facing constant harvest costs, C, the Euler equation is

pt − C = ρ

[
(pt+1 − C)

(
1 +

dF (xt+1)

dxt+1

)]
. (15.3)

The Euler equation for stock dependent case is (Appendix I)

pt −
C

xt
= ρ

(pt+1 −
C

xt+1

)(
1 +

dF (xt+1)

dxt+1

)
+

C

x2
t+1

yt+1︸ ︷︷ ︸
 . (15.4)

15.1.1 Intuition for the Euler equation

We emphasize the case of stock dependent harvest costs, equation 15.4. With
one important difference, this necessary condition is identical to the Euler
equation 5.2 for the nonrenewable resource. The right side of equation 15.4
involves (

pt+1 −
C

xt+1

)(
1 +

dF (xt+1)

dxt+1

)
,

whereas the corresponding term with nonrenewable resources is(
pt+1 −

C

xt+1

)
(1 + 0) .

These two expressions differ unless dF (xt+1)
dxt+1

= 0, i.e. unless the stock has
no effect on growth. Stock-dependent growth is important in the renewable
resource setting.
A trajectory consists of a sequence of harvest and stock levels. Along

an optimal trajectory, a small change in harvest in some period, and an
“offsetting change” in some other period, must lead to a zero first order
change in the payoff: a perturbation does not improve the outcome. We
obtain the Euler equation by considering a perturbation that changes harvest
by a small amount in one period, and then makes an offsetting change in the
next period, to return the stock to the candidate trajectory. The left side
of equation 15.4 equals the marginal benefit of increasing harvest in period
t, and the right side equals the marginal cost of the offsetting change in the
subsequent period. Growth affects the change needed in period t+1 to offset
the change in period t.
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A savings example for intuition To provide intuition, we consider a
savings problem unrelated to resources. An investor earns a per period
return of r: investing a dollar at the beginning of a period produces 1 + r
dollars at the end of the period. This investor has a “candidate savings
plan”, a trajectory of savings and wealth. The savings decision corresponds
to harvest in the fishery setting, and wealth corresponds to biomass.

Suppose that the investor considers perturbing this candidate in period t
by saving one dollar less than the candidate prescribes. In order to put her
plan back on the candidate trajectory by period t + 2, she has to invest an
additional 1 + r dollars in period t+ 1, over and above the amount that her
original (“pre-perturbation”) plan calls for. The extra $1 makes up for the
dollar that she took out in period t, and the extra $r makes up for the interest
that she lost by taking out that dollar. The same consideration applies in
the fishery setting. In the savings problem growth in wealth (Wt) is a linear
function of wealth (with slope equal to 1 + r): Absent additional savings,
wealth in the next period is Wt+1 = (1 + r)Wt. In the fishery problem,
growth in biomass is a nonlinear function of biomass.

Using this intuition Harvesting an extra unit in period t generates pt
additional units of revenue, and C

xt
additional units of cost, for a net increase

in profits of pt − C
xt
, the left side of equation 15.4. This perturbation leads

to lower and more expensive harvest in t+ 1, reducing profits in that period.
Each unit of stock contributes dF (xt+1)

dxt+1
units of growth. To offset the direct

effect of the unit of increased harvest in period t, the owner must reduce
harvest in period t + 1 by one unit; in addition, the owner must reduce
harvest in period t + 1 by dF (xt+1)

dxt+1
to make up for the reduced growth in

period t + 1. The term dF (xt+1)
dxt+1

corresponds to the interest payment in the
savings example.

Each unit of reduced harvest in period t+1 reduces profits by
(
pt+1 − C

xt+1

)
.

Therefore, the reduction in period-t+ 1 profits, caused by the reduced t+ 1
harvest, is (

pt+1 −
C

xt+1

)(
1 +

dF (xt+1)

dxt+1

)
,

which equals the underlined term on the right side of equation 15.4. The
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lower t+ 1 stock (caused by the perturbation) increases harvest cost by

−
∂
(

C
xt+1

yt+1

)
∂xt+1

=
C

x2
t+1

yt+1,

the under-bracketed term. The time t present value cost of the perturbation
equals the right side of equation 15.4.

15.1.2 Rent

We use the definition of rent to write the Euler equation more concisely. As
in the nonrenewable resource setting, we define rent as the difference between
price and marginal cost. For our example (but not in general), marginal cost
equals average cost, so rent equals profit per unit of harvest.
For stock-independent average costs, rent is

Rt = pt − C.

Using this definition, we rewrite the Euler equation 15.3 as

Rt = ρRt+1

(
1 +

dF (xt+1)

dxt+1

)
. (15.5)

For stock-dependent harvest costs, rent is

Rt = pt −
C

xt
(15.6)

and the Euler equation 15.4 becomes

Rt = ρ

Rt+1

(
1 +

dF (xt+1)

dxt+1

)
+

C

x2
t+1

yt+1︸ ︷︷ ︸
 . (15.7)

The sole owner never sells where price is below marginal cost, so rent
is never negative, and often (but not always) is positive. The open access
fishery eliminates profits, driving rent to zero. Chapter 12.3.2 notes that
Individual Transferable Quotas (ITQs) create property rights, making an
open access or common property fishery more like a sole owner fishery. The
equilibrium annual lease price of an ITQ equals that amount of profit a fisher
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can expect to obtain for the volume of harvest covered by the quota licence.
The lease price thus provides an estimate of the rent associated with that
volume of fish. Most lease prices range from 50% to 80% of the ex vessel
fish price (the price fishers receive). Rent accounts for a substantial fraction
of the value of fisheries protected by ITQs.

15.2 Policy

Objectives and skills:

• Understand why the optimal stock-dependent tax under open access
equals the rent for the agent who harvests at the first best level.

Chapter 9.2 explains how to find an optimal tax in the presence of a
market failure (e.g. market power or pollution): we first find the socially
optimal level of output, and we then find a tax that “supports”this level of
output. We say a tax “supports outcome X”if the market equilibrium in the
presence of the tax is the same as “outcome X”. The construction of optimal
taxes in the dynamic setting follows the same logic. The First Fundamental
Welfare Theorem (Chapter 2.6) states that, absent market failures, the price-
taking sole owner harvests effi ciently. Therefore, by solving the sole owner’s
problem we obtain the socially optimal trajectory. Information about that
trajectory enables us to find the tax that supports the optimal trajectory
under a particular market failure, such as open access.
We consider two scenarios. In the first, there is a single market failure:

lack of property rights to the fishery. In order to find the tax that supports
socially optimal harvest, we first find rent under the sole owner. We then
note that if open access fishers are charged a tax, per unit of catch, equal to
this level of rent, open access fishers harvest at the optimal level.
In the second scenario, the biomass provides ecological services that fish-

ers ignore. For example, the stock being harvested might be important
(perhaps as a food source) to another valuable fish stock. An owner who
does not receive compensation for these services treats them as external to
her decision problem, leading to excessive harvest and driving the stock to
too low a level. This outcome leads to under-provision of the ecological ser-
vices, creating a role for regulation even under the sole owner. Under open
access, the optimal tax must correct the two market failures: the absence of
property rights and the ecological externality.
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We describe this policy problem in the fishery context, but the goal is for
readers to become accustomed to thinking about common features of resource
problems. Forests and fisheries give rise to similar market failures. There
may be imperfect property rights in both cases; regardless of property rights
to the physical resource, there may be unpriced benefits that are external
to harvesters. Forests contribute to biodiversity and they sequester carbon.
Absent policy intervention, foresters do not obtain these benefits. What is
the right policy response when these types of externalities are important?
How does that policy response depend on the nature of property rights?
This section helps readers develop the skills needed to think systematically
about these kinds of questions.

15.2.1 Optimal policy under a single market failure

Here we assume that there are no externalities, so the sole owner harvests
effi ciently. Under open access, there is a single market failure, arising from
the absence of property rights to the fish stock. Our goal is to find a
stock-dependent unit tax, a function ν (x), that induces open-access fishers
to harvest effi ciently. If open access fishers face the tax ν (x), they harvest
up to the point where their tax-inclusive profits equal zero:

p (yt)−
C

xt
− ν (xt) = 0. (15.8)

Comparing equations 15.6 and 15.8, we see that the levels of the price and
harvest are the same in the two cases if and only if the open-access tax equals
the sole owner’s rent:

ν (xt) = Rt. (15.9)

Unfortunately, in the open-access fishery we do not observe the sole owner
rent, so we have to estimate it. If we can estimate the demand and harvest
cost function, the growth function, and the initial stock, we can (numerically)
solve the sole owner problem, and calculate the stock-contingent optimal tax,
equal to the sole owner’s rent, R (x).

15.2.2 Optimal policy under two market failures

In this scenario, the stock of fish provides ecological services with per-period
value V (xt), external to the sole owner. Because of this externality, harvest
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under the sole owner is not effi cient (socially optimal). The effi cient level of
harvest maximizes

∞∑
t=0

ρt
[(
pt −

C

xt

)
yt + V (xt)

]
. (15.10)

The payoffs in equations 15.2 and 15.10 are identical, apart from the term
V (xt) in the latter. Harvest under the sole owner is effi cient if this owner
receives a state-contingent subsidy V (xt).
The Euler equation when the sole owner receives the subsidy V (xt) is

Rt = ρ

Rt+1

(
1 +

dF (xt+1)

dxt+1

)
+

C

x2
t+1

yt+1︸ ︷︷ ︸+
dV (xt+1)

dxt+1

 . (15.11)

The right sides of equations 15.7 and 15.11 are identical, except for the
double-underlined term in equation 15.11. The cost of a change, in period
t+ 1, that offsets an additional unit of harvest at t, equals the present value
of three terms. The single underlined term equals the loss in t + 1 profit
due to the reduced t+ 1 harvest; the under-bracketed term equals the higher
cost due to the lower stock; the double-underlined term equals the reduced
subsidy due to the lower stock.
Given estimates of the inverse demand function, the harvest cost function,

and growth function, and the external benefit (V (x)) we can numerically
solve the optimization problem and calculate rent in the presence of the
subsidy V (x). We denote this function as R̃ (x) instead of R (x) to recognize
that V (x) alters the solution. Using the same reasoning as in Chapter 15.2.1,
the stock contingent optimal tax for the open access fishery is R̃ (x).
In summary, the optimal tax for the open access fishery equals the rent

(a function of the stock of fish) in the scenario with no market failures. If
the only market failure under open access is the lack of property rights, we
“merely”have to find the rent function, R (x), under the sole owner. If there
is an additional market failure, e.g. arising from ecological services that are
external to the resource owner, then we have to find the rent function that
would arise if the sole owner were induced to internalize the externality.

15.2.3 Empirical challenges

Managers are unable to directly observe the growth function, the cost func-
tion, or the biological stock. The management tools described above require
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estimates of these functions and the stock. We discuss two approaches to
estimating these ingredients. The first relies on catch and effort data and
simple models; the second approach uses more data and more complicated
models.
To explain the first approach, consider the case where we have “panel

data”of effort and catch for many boats for many years. The effort data
consists of characteristics of the boats and expenditures; here, “effort” is a
vector, not a single number. In a particular year, all of the boats confront
(approximately) the same level of the stock. Using this fact and the panel
data, we can estimate parameters relating harvest to the effort characteristics,
and also estimate a “stock index”.1 This index involves both the physical
stock and economic parameters; we cannot separate these, so we have a stock
index, instead of an estimate of the actual stock.
The second approach is more complicated and requires more data, but

permits the estimation of more complex models involving different species
and different age or size categories within a species. Scientists collect samples
by dragging nets across fishing areas. By counting rings in the bones (e.g. in
the ear canal or the jaw), they estimate the age of individuals in the sample,
in much the same way that counting rings of tree identifies the tree’s age.
This data is used with a dynamic model and a measurement model. The

dynamic model consists of a system of equations that describe the evolution
of the stock(s) and age classes. Taking as given the equations’functional
form, the goal is to estimate the parameters of the functions. In the sim-
plest case, with a single stock variable, scientists might assume the logistic
growth function, and then estimate the two parameters of that function, the
natural growth rate and the carrying capacity. Actual applications tend to
be much more complicated. The measurement model relates the underlying
but unobservable variables of interest (e.g. stock size for different ages) to
the measured variables (e.g. age estimates of the sample).
Estimation of the unknown parameters and unknown stocks uses an it-

erative procedure. Beginning with a guess of the unknown values of the
parameters and the stocks, we can calculate what the measurements would
have been, had the guess been correct. Of course, the guess is not correct,
so the calculated values differ from the observed measurements. We then

1An “index” is a measurement related to the object of interest (here, the stock), not
the object itself. For example, the economy-wide price level is a theoretical construction,
not an observable price. We use the consumer price index to measure this price level, and
then to measure inflation.



274 CHAPTER 15. THE SOLE-OWNER FISHERY

change our guess (using numerical methods) of the unknown values, in an
effort to make the calculated values closer to the observed measurements.
We stop the iteration when we decide that it is not possible to get a closer fit
between the calculated values and the observed measures. The final iteration
yields estimates of the parameters and stock variables.

15.3 The steady state

Objectives and skills:

• Obtain and analyze the steady state under the sole owner.

• Compare steady states under the sole owner and under open access.

Comparison of the sole owner and the open access steady states provides
information about the relation between property rights and equilibrium out-
comes. Under what circumstances do open access and sole ownership lead
to the same (or almost the same) steady state? When are the steady states
significantly different?2

By definition, at a steady state the harvest, stock, and rent are unchang-
ing over time. We drop the time subscripts to indicate that these variables
are constant in a steady state. The equation of motion of the stock is
xt+1 − xt = F (xt) − yt. In a steady state, the left side of this equation is
zero; dropping the time subscripts, we write this equation, evaluated at the
steady state, as 0 = F (x) − y. We write the definition of the steady state
rent as R = p(y) − ∂c(x,y)

∂y
. We obtain a third equation by evaluating the

Euler equation at a steady state. We then have three algebraic equations in
three unknowns, the steady state stock, harvest, and rent. We can solve
these three equations to determine the steady state values. We consider the
cases of constant and stock-dependent average extraction costs separately.

2In Chapter 14 we obtained the harvest rule under open access by solving the zero-
profit condition, price = average cost. There, we could easily determine which of the
steady states is stable. In the sole owner setting, we only have an optimality condition
(the Euler equation), not an explicit harvest rule. We can still identify the steady states,
but determining their stability requires methods discussed in Chapter 16.
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15.3.1 Harvest costs independent of stock

We begin by evaluating equation 15.5 at a steady state (mechanically, drop-
ping the time subscripts), to obtain

R = ρR

(
1 +

dF (x)

dx

)
.

Using ρ = 1
1+r
, we multiply both sides of the equation by 1 + r to obtain

(1 + r)R = R

(
1 +

dF (x)

dx

)
⇒ rR = R

(
dF (x)

dx

)
⇒

0 = R

(
r − dF (x)

dx

)
. (15.12)

Equation 15.12 implies that at a steady state either R = 0 or

r =
dF (x)

dx
. (15.13)

Equation 15.13 (a special case of the “modified golden rule”) states that
at an interior steady state with R > 0, the sole owner is indifferent between
two investment opportunities. The owner can increase current harvest, and
invest the additional profit in an asset that earns the annual return r, or
she can keep the extra unit of stock in the fishery, where it contributes to
growth, thus contributing to future harvests and future profits. At an interior
optimum, the owner is indifferent between these two investments.
Provided that F is concave, there is a unique solution to equation 15.13,

denoted x∞, which depends only on the discount rate and the growth func-
tion. If x∞ < 0, we conclude that there is no interior steady state with positive
profits. If x∞ > 0 we perform one further test. The harvest that maintains
x∞ as a steady state is y∞ = F (x∞). The price at this level of harvest (using
the inverse demand function) is p (y∞) and the rent is R (y∞) = p (y∞)− C.
If x∞ > 0 and R (y∞) ≥ 0, then x∞ is a steady state. If either of these in-
equalities fail, x∞ has no significance, and there are no interior steady states
with positive profits. There might still be interior steady states with zero
profits.
In summary, the solution to equation 15.13, x∞, is a steady state if and

only if it satisfies both of the inequalities
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Figure 15.1: The derivative of the logistic growth F (x) = 0.04x
(
1− x

50

)
,

dF
dx

= 0.04x
(
1− 2x

50

)
and two values of r.

(i) x∞ > 0, and (ii) R (y∞) ≥ 0. (15.14)

We illustrate this procedure for determining interior steady states using the
logistic growth function, F (x) = γx

(
1− x

K

)
and Figures 15.1 and 15.2.

Figure 15.1 shows the graph of dF (x)
dx

= γ
(
1− 2x

K

)
for γ = 0.04 and

K = 50. The intercept of this graph is γ = 0.04, the intrinsic growth rate.
The figure also shows two horizontal lines labelled r = 0.05 and r = 0.03.
The intersection of each of these lines and the graph of dF

dx
is the solution

to equation 15.13 for the particular value of r. For r = 0.05, this solution
occurs where x∞ < 0. Because the stock cannot be negative, we conclude
that for r = 0.05 (or any value r ≥ γ) there is no interior steady state with
positive profits. For r = 0.03 (and also for any r < γ), the solution to
equation 15.13 occurs where x∞ > 0. There is a positive solution (x∞ > 0)
to equation 15.13 if and only if r < γ. This inequality implies that the value
of harvesting an additional fish is less than the value of allowing the fish to
remain alive and reproduce.
To find x∞, we use

dF (x)
dx

= γ
(
1− 2x

K

)
and solve r = γ

(
1− 2x

K

)
to obtain

x∞ =
K

2

(
1− r

γ

)
<
K

2
. (15.15)

As noted above x∞ > 0 if and only if r < γ. The candidate steady state
decreases with r

γ
: a higher discount rate (greater impatience) lowers the can-

didate, and faster growth increases the candidate. The inequality in equation
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Figure 15.2: For F = 0.04x
(
1− x

50

)
and r = 0.02 one candidate for a steady

state under the sole owner is point d, where x = 12.5 and y = .375. For
inverse demand = 5−10y, open access steady states (where rent and growth
are both zero) are points e and c for C = 0.4, points d and b for C = 1.25,
and points f and a for C = 3. These points are also steady states under the
sole owner for these levels of C.

15.15 states that the candidate steady state is less than K
2
, the stock level

that maximizes growth (leads to Maximum Sustainable Yield, MSY). Thus,
at a steady state with positive rent, harvest is less than MSY.

A numerical example We use the logistic growth function F (x) =
0.04x

(
1− x

50

)
and r = 0.02. Here, γ = 0.04 > r, so x∞ > 0. We find x∞ by

solving equation 15.15 to obtain x∞ = 12.5 and then obtain

y∞ = F (x∞) = 0.04 (12.5)

(
1− 12.5

50

)
= 0.375.

Figure 15.2 identifies the candidate steady state as point d, (x∞, y∞) =
(12.5, 0.375), the tangency between the graph of the growth function and
the line with slope r = 0.02. To determine whether the candidate is a
steady state, we check whether rent is positive at this value, i.e. whether the
candidate satisfies equation 15.14, part (ii). Here we use the inverse demand
function p (y) = 5 − 10y. With the choke price 5, the fish has value if and
only if C < 5, as we hereafter assume. Rent at the candidate steady state,
point d, is R = 5− 10(.375)− C: R ≥ 0, requires C ≤ 1.25.
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Figure 15.2 shows three horizontal lines, each of which gives the level
of harvest at which rent is 0, for a particular value of C. Rent is zero if
R = 5 − 10y − C = 0, implying y = 5−C

10
; for example, the intercept of the

horizontal line labelled C = 0.4 is 5−0.4
10

= 0.46. For a given value of C, rent
is positive below the R = 0 line, and rent is negative above this line.

We now have the information needed to determine whether R (y∞) ≥ 0.
Point d, our candidate steady state, lies below the R = 0 line for C = 0.4.
Thus, if C = 0.4 (harvest costs are low), rent is positive at point d; in this
case, point d is a steady state. In contrast, if C = 3 (harvest costs are high),
rent is negative at point d; for this level of costs, point d has no significance.
If C = 1.25, rent is 0 at point d; for these costs, point d is an interior steady
state at which rent is 0.

We also use Figure 15.2 to discuss the relation between the open access
and the sole owner fisheries. From Chapter 14.1.1 we know that under open
access there are three steady states: 0, an intermediate steady state (shown
as the values e, d, f for the three values of C) and a high steady state (c, b, a
for the three cases). Under open access the high steady state and x = 0 are
stable steady states, and the intermediate steady state is unstable.

Now consider the steady states under the sole owner. The open access
high steady states, (c, b, a) also satisfy the sole owner steady state conditions,
for the different levels of cost, C. At these points: (i) y = F (x), so the stock
is unchanging, (ii) R = 0, so the steady state Euler equation 15.12 is satisfied,
and (iii) the definition of rent is also satisfied. Exactly the same reasoning
holds at the open access intermediate steady states, and at x = 0. Thus,
for this problem, all of the steady states under open access are also steady
states under the sole owner. If C < 1.25, then point d is also a steady state
under the sole owner (but not under open access).

In summary, every point that is a steady state under open access is also
a steady state under the sole owner. (This conclusion holds for constant
average harvest costs, but not for general harvest costs.) At all of these
points, either rent or harvest is zero. For suffi ciently low costs (C < 1.25 in
our example) there is an additional steady state under the sole owner, that
does not exist under open access. At that steady state, the sole owner has
positive rent. The next chapter turns to the question of determining which
of the sole owner steady states is stable.
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A second numerical example Suppose that F = 10x
(
1− x

100

)
, r =

8, inverse demand is p = 60 − y and the constant extraction cost is C. To
obtain x∞, set the derivative dF

dx
= 10

(
1− x

50

)
equal to r = 8 and solve

for x: 10
(
1− 2x

50

)
= 8 ⇒ x∞ = (10− 8) 5

2
= 5. For this example, the

candidate steady state is positive, i.e. it passes the first of the two tests in
equation 15.14. We find harvest at the steady state by solving y∞ = F (x∞) =
10 (5)

(
1− 5

100

)
= 47. 5. Next we check whether rent is non-negative at this

candidate. Rent is R∞ = 60 − 47.5 − C = 12. 5 − C. We conclude that
rent is non-negative (so (x∞, y∞) = (5, 47.5) is a steady state) if and only if
C ≤ 12.5. If C > 12.5 the stock x = 12.5 has no significance.

Box 15.1 Sensitivity of the steady state to the discount rate The steady
state stock with positive rent tends to be more sensitive to the discount
rate, the more slowly the stock grows. Using equation 15.15, the
elasticity of the steady state stock, with respect to the discount rate
in the logistic model, is r

γ−r . For fast-growing Pacific halibut, γ is
estimated (with an annual time step and a continuous time model) at
0.71; for the slow-growing Antarctic Fin-whale the estimate is 0.08.
As r ranges from 2%-5%, the elasticity of the steady state for the
Fin-whale is 11—22 times greater than the elasticity for halibut: the
steady state of the more slowly growing stock is more sensitive to the
discount rate.

15.3.2 Harvest costs depend on the stock

When harvest costs depend on the stock we show that:

• For low harvest costs, the sole owner steady state stock is lower than
the stock that maximizes steady state yield; large harvest costs reverse
this relation.

• Higher harvest costs might either increase or decrease the owner’s
steady state rent, or the steady state consumer surplus.

We use equation 15.7 to write the steady state condition for rent (merely
by dropping the time subscripts):

R = ρ

[
R

(
1 +

dF (x)

dx

)
+
C

x2
y

]
.
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Using ρ = 1
1+r
, multiplying both sides by 1 + r and cancelling terms, we

simplify this equation to obtain(
r − dF (x)

dx

)
R =

C

x2
y.

We collect the steady state conditions in

F (x)− y = 0,
(
r − dF (x)

dx

)
R− C

x2
y = 0, and R = p (y)− C

x
. (15.16)

The first two equations repeat the steady state conditions for the stock and
the rent, and the third equation repeats the definition of rent.
System 15.16 comprises three equations in three unknowns, x, y, and R.

All three equations must hold if x > 0, i.e. at an interior solution; in addition,
R ≥ 0 must be satisfied.3 Figure 15.3 shows the graph of the growth
function and the graphs of the steady state Euler equation (the upward
sloping curves) corresponding to different values of C. (The figure uses
p = 10 − y, F = 0.04x

(
1− x

50

)
and r = 0.02.) At all points on the growth

function, harvest equals growth: the first equation in system 15.16 is satisfied.
At all points on an upward sloping curve (corresponding to a particular
value of C), the second two equations in the system are satisfied. Thus,
satisfaction of all three equations occurs (only) at a point of intersection.
That intersection is the sole owner steady state (with positive profits).
The figure shows that an increase in C causes the graph of the steady

state Euler equation to shift to the right, increasing the value of x∞: larger
values of the cost parameter lead to larger steady state fish stocks. Figure
15.3 also shows that the sole owner steady state might lie either to the left
or the right of the MSY stock level. Discounting gives the sole owner (and
the social planner) an incentive to harvest earlier rather than later, tending
to decrease the steady state stock. The responsiveness of harvest cost to
the stock gives the owner (and the planner) an incentive to build up the
stock in order to decrease future harvest cost, tending to increase the steady
state stock. The discounting incentive dominates for small C and the cost
incentive dominates for large C.

3For C > 0, the second equality in system 15.16 implies R =
(
C
x2 y
)
/
(
r − dF (x)

dx

)
> 0,

if and only if
(
r − dF (x)

dx

)
> 0. For C = 0, there are two candidate steady state, one

of which satisfies r − dF (x)
dx = 0; we have to confirm that this candidate is actually an

equilibrium, by checking that p (y∞) ≥ 0.
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Figure 15.3: Graphs of F and the steady state condition for rent, the upward
sloping curves (each labelled with the value of the cost parameter, C). The
sole owner steady state occurs at the intersection of the curves, (x∞, y∞).
An increase in C increases x∞ an has an ambiguous effect on y∞.

C xso∞ yso∞ Rso
∞ xoa∞ yoa∞

0 12.5 0.38 9. 6 0 0
50 18.6 0.47 1.7 5.1 0.18
300 38.2 0.36 1.8 31.47 0.47

Table 15.1 Steady state stock, harvest, and rent for the sole owner, and
stock and harvest under open access.

As C increases, moving (x∞, y∞) to the right, the harvest level, y∞, rises
and then falls: there is a non-monotonic relation between C and the steady
state harvest. Table 15.1 shows sole owner (superscript “so”) steady state
values of the stock, harvest, and rent, under three values of the cost parame-
ter, C. The last two columns of the table show the open access (superscript
“oa”) steady state stock and harvest for those values of C. Open access rent
is always zero. Steady state harvest, and thus consumer surplus, might be
either higher or lower under the sole owner, compared to open access.
The price - harvest combination always lies on the demand function.

Higher harvests therefore correspond to lower prices and higher consumer
welfare. Because sole owner steady state harvest is non-monotonic in C,
a higher C might make consumers either better or worse off in the steady
state. In the static competitive setting, in contrast, higher costs shift the



282 CHAPTER 15. THE SOLE-OWNER FISHERY

equilibrium supply function in and up, leading to a higher equilibrium price
and lower consumer surplus. Why do higher costs have different effects in
the (steady state) sole owner fishery, compared to the static market? The
answer rests on two facts. First, in the fishery context, a higher C reduces
the incentive to harvest, leading to a higher steady state stock. Second,
the higher steady state stock might correspond to either a higher or a lower
steady state harvest, depending on whether the stock lies below or above the
level corresponding to MSY.
Steady state rent (p (y)− C

x
) is also non-monotonic in the cost parameter.

For a given stock, a higher value of C increases costs, C
x
, lowering rent.

However, the steady state values of y and x both change with C. If the
steady state lies to the left of the MSY level, higher C increases harvest,
reducing the price, thus reducing rent; to the right of the MSY level, the
higher C reduces harvest, thus increasing the price. Table 15.1 shows that
steady state rent is lower at C = 50 compared to either C = 0 or C = 300.

15.3.3 Empirical evidence

Is the optimal steady state stock above or below the MSY stock? It is not
surprising that the empirical answers are inconclusive, because they depend
on extraction costs, the growth function, and the demand function; these
differ across fisheries, and are diffi cult to measure. The answer also depends
on the discount rate, r, about which there is disagreement.
A 2007 study of four fisheries, including slow-growing long-lived orange

roughy, finds that the socially optimal stock level exceeds the MSY stock level.
Therefore, the steady state harvest is below the MSY. The fact that the study
includes a slow-growing fish is important. Chapter 15.3.1 notes that a low
growth rate reduces the optimal steady state stock, and possibly leads to
extinction. Because other considerations (e.g. strongly stock-dependent
harvest costs) cause the steady state to increase, the optimal steady state
depends on a balance of conflicting forces. A 2013 study for North Pacific
albacore, concludes that the optimal steady state lies below the MSY level.
This study emphasizes the role of cost-reducing technology improvements.
As Figure 15.3 illustrates, lower harvest costs (smaller C) reduce the sole
owner steady state.
Many actual management practices try to keep the stock at the level of

MSY. There is a plausible and a dubious argument in favor of this practice.
The plausible argument is that, lacking a strong a priori basis for thinking
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Figure 15.4: Graphs of F and the steady state Euler equations. Parameter
values as in Figure 15.3 except that here r = 0.

that the stock should be to the right or the left of this level, and in view
of the measurement diffi culties, the MSY level is “neutral”. The dubious
argument, based on intergenerational ethics, is that a positive discount rate
is unfair to future generations, because it gives them less weight in the social
welfare function. Even it one accepts this view of ethics, it does not imply
that the ethically optimal steady state occurs at MSY. That level maximizes
consumer surplus, but when harvest cost depends on the stock it does not
maximize social welfare, the sum of consumer and producer surplus. With
stock dependent costs, low discount rates require a higher steady state stock
to take advantage of cost reductions. Because these stocks occur to the
right of the MSY level, they correspond to lower harvests and lower consumer
surplus, but higher producer surplus, and a higher social surplus.

Figure 15.4 illustrates this claim, reproducing the graphs in Figure 15.3,
but replacing r = 0.02 (a 2% per annum discount rate) with r = 0. For
stock-independent costs (C = 0), the optimal steady state (for r = 0) occurs
at the MSY. However, if harvest costs depend on the stock, the optimal
steady state stock always lies to right of the MSY. For any value of C, a
decrease in the discount rate increases the optimal steady state stock.
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15.4 Summary

We derived and interpreted the Euler equation for the price-taking sole-owner
fishery, emphasizing the difference between the renewable and nonrenewable
resources. For a renewable resource, we have to take growth into account.
The sole owner internalizes the effect of her current harvest decisions on
future stocks. Absent externalities, the First Fundamental Welfare Theorem
implies that the outcome under the sole owner is effi cient. In that case, there
is no effi ciency rationale for regulation. Moving from open access to the sole
owner solves the only market failure.
If it is not possible or politically desirable to privatize an open access

fishery (thus moving to the sole-owner scenario), the open access fishery can
be induced to harvest effi ciently by charging a tax per unit of harvest equal
to rent under the sole owner. We also considered the case where the stock
of fish provides ecological services that are external to the sole owner. A
subsidy or a tax can induce the sole owner to internalize that externality, in
which case the sole owner again harvests effi ciently. A tax equal to the sole
owner’s rent, when that owner harvests effi ciently, induces the open access
fishery to harvest effi ciently. Because this effi ciency-inducing tax varies with
the stock of fish, a constant tax is not first best.
For the nonrenewable resource, extraction eventually ceases as the re-

source is exhausted or as extraction becomes too costly to be economically
rational. For the renewable resource, the sole owner might drive the stock
to a positive steady state, where harvest and the stock remain constant for-
ever; or the owner might drive the fishery to extinction. A model with con-
stant (stock-independent) average harvest costs illustrates these possibilities.
Here, if the intrinsic growth rate is less than the rate of interest (γ < r),
there is no interior steady state with positive rent: either the owner drives
the stock to extinction, or she maintains the stock at a positive level with
zero rent. If the intrinsic growth rate exceeds the rate of interest (γ > r),
there is a candidate interior steady state at which the actual growth rate
equals the rate of interest. This candidate is a steady state for the sole
owner if and only if rent is greater than or equal to zero there. In this case,
the owner does not drive the stock to extinction. There is typically another
interior steady state at which rent is zero.
Stock dependent harvest costs give the sole owner an incentive to restrict

harvest in order to let the stock grow, thus reducing future harvest costs.
Thus, stock dependence tends to increase the sole owner steady state, while
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discounting tends to decrease it. The sole owner steady state might lie
above or below the MSY stock level. Lower discount rates increase the sole
owner steady state. In the limiting case with zero discounting, the sole
owner steady state equals the MSY level when harvest costs do not depend
on stocks; with stock dependent harvest costs, that steady state is above the
MSY stock level.

15.5 Terms, study questions, and exercises

Terms and concepts

stock-dependent effi ciency-inducing tax, ecological services

Study questions

1. Given a growth function F (x), a cost function c (x, y) and discount
factor ρ write down the sole owner’s objective function and constraints.
Without doing calculations, describe the steps needed to obtain the
Euler equation in this model.

2. If you are given the Euler equation for a particular model (with or with-
out stock dependent harvest costs) you should be prepared to provide
an economic interpretation of this equation.

3. (a) Consider the case where marginal harvest costs equal average har-
vest costs. Identify the stock-dependent tax that induces the open
access industry to harvest at the same rate as the untaxed sole owner.
(Compare the equilibrium conditions under the sole owner (price —mar-
ginal costs = rent) and under open access (price - average costs = 0).
(b) Suppose instead that harvest costs are convex in harvest (so that
marginal costs exceed average costs). In order to induce the open
access fishery to harvest at the same level as the untaxed sole owner,
would you have to increase or decrease the tax you identified in part
(a)? Explain.

4. For the model with constant (stock independent) average harvest costs,
C, and logistic growth F (x) = γx

(
1− x

K

)
, the Euler equation eval-

uated at the steady state is 0 = R
(
r − dF (x)

dx

)
. (a) What is the
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definition of steady state rent? (b) Under what conditions is there an
interior steady state with positive rent? Explain. (c) If the conditions
in part (b) are not satisfied, are there other interior steady states? If
so, describe these.

5. Consider the following two claims “(i) An open access fishery leads to
excessive harvest. (ii) It is never socially optimal to exhaust the stock.”
Discuss these two claims in light of the model described in Question 4.
State whether you agree or disagree with these claims and justify your
answer.

Exercises

1. (a) Derive the Euler equation for the sole owner price-taking fishery
when average costs are constant, independent of the stock. (b) Provide
an intuitive explanation for this equation. (Students can answer this
question by mimicking the derivation and the explanation in the text,
making changes to reflect the different cost function here.)

2. Write down and interpret the Euler equation for the monopoly owner of
a renewable resource facing inverse demand p (y) and constant average
harvest costs, Cy. (Hint: use the same methods that we applied to
the nonrenewable resource problem.)

3. Suppose that the sole owner receives a subsidy equal to V (xt) in each
period. the stock provides ecological services V (xt), and ; that subsidy
internalizes the externality. Provide the economic intuition for the
Euler equation 15.11. You need to understand the intuition for the
simpler case (where V is absent) and then explain why the presence of
payment for the ecological services changes the optimality condition.

4. Derive the formula for the elasticity of the steady state with respect to
the discount rate presented in Box 15.1.

5. Show that, provided that F (x) is concave, an interior steady state in
the case where costs do not depend on the stock, always lies below
the maximum sustainable yield. A price-taking sole owner has the
discount rate r = 0.03, implying the discount factor ρ = 1

1+0.03
≈ 0.97.

(a) Write down the sole owner’s optimization problem. (b) Write the
Euler equation, using the inverse demand function to replace pt, the
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growth function, and ρ = 0.97. (c) Write down the Euler equation
and the growth function evaluated at the steady state. (d) Write the
definition of steady state rent, and use this definition to write the steady
state Euler equation. (e) Follow the steps that produce equation 16.12,
using the functional forms and parameter values given above. (f) Now
set C = 4.5 and identify all interior steady states.

6. Consider the model with constant harvest costs C and logistic growth
F (x) = γx

(
1− x

K

)
. Suppose that γ < r. Are there circumstances

where the sole owner drives the stock to a positive steady state? Ex-
plain and justify your answer. (Hint: Is there any reason to suppose
that rent is positive in this model?)

7. Using equation 15.15 for the case of stock-independent harvest costs
with logistic growth, verify that if γ > r, then a larger value of K or γ
or a smaller value of r, all increase the interior steady state. Provide an
economic (not mathematical) explanation for these results. You need
to explain how changes in these parameters changes the owner’s incen-
tive to conserve the fish. Think about how an increase in r changes
the current valuation of future rents. Think about how increases in K
or γ alter the value of a larger fish stock.

Sources

Clark (1996) provides the estimates of growth rates used in Box 15.1.
Homans and Wilen (2005) provide the estimate of the annual lease prices

for fishing quotas, as a percent of ex vessel price of catch.
Fenechel and Abbott (2014) show how estimates of stock dynamics and

the production function can be used to estimate the gain from better man-
agement of fish stocks.
Zhang and Smith (2011) describe and implement, for Gulf Coast reef fish,

the first estimation approach discussed in Chapter 15.2.3.
http://www.nmfs.noaa.gov explains the second estimation approach in

Chapter 15.2.3.
The International Scientific Committee for Tuna (2011) illustrates the

second estimation approach, for the case of tuna stocks.
Grafton et al. (2007) provide evidence that the socially optimal stock

exceeds the MSY stock.
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Squires and Vestergaard (2013) provide evidence that increases in techni-
cal effi ciency cause socially optimal steady state stocks to be below the MSY
stock.



Chapter 16

Dynamic analysis

Objectives

• Use the sole owner optimality conditions to study resource dynamics
and resource policy.

Skills

• Use intuition and economic reasoning to analyze the case of constant
average harvest costs.

• Use phase portrait analysis to analyze dynamics under stock dependent
harvest cost.

• Compare harvest rules under the sole owner and under open access to
characterize the effi ciency-inducing tax for open access.

This chapter moves beyond steady state analysis to study the evolution of
the fish stock and harvest under the sole owner. We assume throughout the
chapter that the fishery provides no non-market (e.g. ecosystem) services,
so there are no market failures under the price taking sole owner. The sole
owner and the social planner make the same decisions. We compare the
optimally controlled stock with the stock trajectory under open access in
order to characterize the optimal open access tax.
The market failure under open access arises from the lack of property

rights. As Chapter 12.3.2 emphasizes, the first best remedy in this situation
(usually) involves institutional changes, e.g. the establishment of property

289
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rights. However, only a small fraction of fisheries are currently managed
using property rights-based regulation. It is worth understanding how other
types of regulation, such as taxes, can increase effi ciency under open access.
We emphasize graphical analysis, using a parametric model. This qual-

itative analysis provides information about the direction of change and the
relation between initial conditions and the ultimate steady state. Chapter
13.3.1 notes that the discrete time dynamics are complicated because the
stock can “jump” from one side to the other of a steady state. The con-
tinuous time limit of the discrete state model is much easier to study, so
we replace the (discrete time) difference equations with (continuous time)
differential equations.
We consider a first scenario in which average harvest costs are constant,

and a second in which harvest costs depend on the stock. The first scenario
makes it possible to obtain results using economic reasoning, without intro-
ducing additional mathematical tools. This approach is useful for intuition,
but it disguises many subtleties, and it does not suggest a method for an-
alyzing more general problems. The case of stock-dependent costs requires
additional tools, which are useful for a wide variety of dynamic problems.
It is important to keep in mind that the solution to the sole owner’s

problem is a “harvest rule”, giving optimal harvest as a function of the
stock; we represent a harvest rule by showing its graph. Chapter 13 uses
exogenous harvest rules, ones without any basis in theory. Chapter 14 derives
the endogenous harvest rule under open access, by finding the harvest, a
function of the fish stock, that drives rent to zero. We obtained those rules
merely by solving an equation (rent = 0). We denote the endogenous harvest
rule for the sole owner’s optimization problem as y(x) (harvest as a function
of the stock). Absent a closed form expression for this function, we rely on
either qualitative or numerical analysis.

16.1 The continuous time limit

Objectives and skills

• Provide an intuitive understanding of the continuous time analog of
the discrete time Euler equation.

We need one intermediate result: the continuous time version of the dis-
crete time Euler equation. In deriving that equation, we did not specify
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whether the length of a period is one year or one second. Here we assume
that the length of period in the discrete time setting is suffi ciently small that
the continuous time limit provides a reasonable approximation.
As in Chapter 13.3, the continuous limit of the discrete time equation of

motion for the stock is dx
dt

= F (x)− y. The missing piece is the continuous
time Euler equation. We begin with the discrete time equation 15.5 for
constant average harvest cost and equation 15.7 for stock dependent cost,
and take limits, letting the length each period become small. The continuous
time limits are, respectively1 (Appendix J)

dRt

dt
= Rt

(
r − dF (xt)

dxt

)
, (16.1)

dRt

dt
= Rt

(
r − dF (xt)

dxt

)
− C

x2
t

yt. (16.2)

16.2 Harvest rules for stock-independent costs

Objectives and skills

• Characterize the sole owner harvest rule under constant costs.

• Compare this rule and the open access harvest rule to describe the
optimal open access tax.

This section uses the example introduced in Chapter 15.3.1, with growth
function F (x) = 0.04x

(
1− x

50

)
, inverse demand p (y) = 5 − 10y, discount

rate r = 0.02, and constant average costs C, the only free parameter. By
varying C, we determine the relation between harvest costs and the sole-
owner equilibrium. The Euler equation 16.1 must hold at every point along
the sole-owner’s harvest path.

1These continuous time Euler equations can be obtained using the calculus of variations,
the Maximum Principle (employing Hamiltonians) or continuous time dynamic program-
ming. These methods require additional mathematics. The approach here is heuristic,
using only the discrete time perturbation method, and then taking a “formal limit”, but
without proving that this limit is mathematically valid. It does, however, give the correct
optimality condition.
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Figure 16.1: Open access and sole owner steady states for F = 0.04x
(
1− x

50

)
,

r = 0.02, and p = 5− 10y.

We reproduce Figure 15.2, here shown as Figure 16.1. First consider the
open-access equilibrium. The horizontal dashed lines in Figure 16.1 are the
open-access harvest rules corresponding to three values of C. (These dashed
lines show the open access harvest rules for x > 0; at x = 0, harvest is always
zero. You cannot get blood out of a turnip.) These (constant) values of y
satisfy the zero-profit open access condition, 5−10y = C, or y = 5−C

10
. Using

the analysis in Chapter 14, the points a, b and c are stable steady states, and
f , d and e are unstable steady states, for the three values of C. The origin,
x = 0 is a stable steady state in all three cases. For example, at C = 0.4, the
open-access stock approaches point c if the initial stock is greater than the
horizontal coordinate of point e; if the initial stock lies below this level, the
open-access stock approaches x = 0. The entries in Table 1 show the open
access steady state, x∞, corresponding to different values of C and different
initial conditions, x0. In writing x∞ = a, for example, we mean that x∞
equals the horizontal coordinate of point a.

x0 above unstable
steady state (e, d or f)

x0 below unstable
steady state (e, d or f)

C = 0.4 x∞ = c x∞ = 0
C = 1.25 x∞ = b x∞ = 0
C = 3 x∞ = a x∞ = 0

Table 16.1: Open-access steady state, x∞, for different initial conditions, x0
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We now consider the sole owner. Here we cannot find an explicit function
for the harvest rule for all values of x; however we know that rent is nonneg-
ative whenever extraction is positive: y > 0⇒ R ≥ 0. This fact, and some
reasoning discussed below, enable us to identify the steady state that the
stock approaches, as a function of the value of C and of the initial conditions
x0. Table 2 summarizes this information, and Section 16.2.2 explains how
we obtain it. First, we consider the policy implications of Tables 1 and 2.2

x0 above middle
steady state (e, d or f)

x0 below middle
steady state (e, d or f)

C = 0.4 x∞ = c x∞ = d
C = 1.25 x∞ = b x∞ = d
C = 3 x∞ = a x∞ = f

Table 16.2: Sole owner steady state, x∞, for different initial conditions, x0.

16.2.1 Tax policy implications of Tables 1 and 2

Tables 1 and 2 imply a simple and intuitive policy recommendation:

It is important to regulate an open access fishery when the stock
is small, but regulation may not be needed when the stock is
large.

We say that the initial stock is “large”if it exceeds the middle steady state,
points e, d or f (depending on the value of C); the initial stock is “small”
if it is below these levels. Thus, the precise meaning of “large”and “small”
depends on C. For all three values of C, if the initial stock is “large”, the
equilibrium is the same under open access and under the sole owner. In
these cases, the stock is large enough that the sole owner’s rent, along the
equilibrium trajectory, is 0, exactly as under open access. Here, the resource
is not scarce; there is no reason to tax open access harvest, because there is
no market failure in this circumstance.
In contrast, if the initial stock is “small”(but positive), open access drives

to the stock to extinction, whereas the sole owner drives the stock to the

2For C = 1.25 and C = 3, the sole owner middle steady states (d and f , respectively)
are “semi-stable”: for initial conditions to the left of these points the trajectory converges
to the point (d or f , depending on the value of C), and for initial conditions to the right,
the trajectory moves away from that point.
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socially optimal positive level. Here, the resource is scarce; there is a market
failure, and a need for regulation under open access. For C < 1.25, and small
x0, the sole owner drives the stock to point d. Rent is positive en route to,
and at the steady state.3 The open access drives the stock to extinction.
Here, it is important to tax (or otherwise regulate) open access harvest in
order to preserve the resource stock. The first best tax policy, for small
stocks, varies with the level of the stock. We previously noted (Chapter
15.2) that in a resource setting, the optimal tax is typically stock-dependent.
Optimality might be too much to ask for, but the analysis suggests second-
best alternatives. The manager can close down the open access fishery until
the stock recovers to point d, and then maintain a constant tax that supports
open-access harvest at point d. A less extreme alternative uses a high tax
to permit recovery of low stocks, reducing the tax as the stock increases.

Summary For this model, there is no need to regulate an open access
fishery with large stocks, but regulation is important when the stock is small.
Taxes can alter the steady state to which stock converges under open access,
and also alter the speed at which the stock changes. At low stocks, the
optimal open access tax depends on the stock. If it is impractical to use the
optimal tax, second best taxes can insure that the stock approaches the first
best steady state, even if the approach does not occur at the optimal speed.

16.2.2 Confirming Table 2 (*)

We use Figure 16.2 to examine the case C = 0.4, leaving the other two
cases as exercises. Figure 16.2 contains a vertical line at x = G, through the
unstable steady state; the initial stock is large if x0 > G and small if x0 < G.
For x ≥ G, the sole owner can harvest at the rate that drives profits to

zero (equal to the open access rate). Beginning with x > G, if the owner
harvests at this rate, the stock is driven to the higher steady state, point c.
Along that trajectory, R = 0, so the Euler equation 16.1 is satisfied. For
this problem, the necessary conditions for optimality are also suffi cient, so
for x > G the sole owner harvests at the open access level.

3If 5 > C > 1.25, rent is negative at point d. If x0 is small, the sole owner drives the
stock to a steady state to the left of and below d (e.g., point f for C = 3). In this case,
rent is positive en route to the steady state, but zero at the steady state. The open access
fishery drives the stock to extinction.
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Figure 16.2: The growth function F (x) and two hypothetical harvest rules
(dashed and dotted) for x < G.

The interesting situation arises for x < G. We established (Chapter
15.3.1) that there is a unique candidate steady state with positive rent, point
d. This point lies below the zero-profit (horizontal) line, so d satisfies both of
the conditions in equation 15.14; it is the unique steady state with positive
profit. The harvest rule must intersect the growth function at point d, but
it cannot intersect the growth function at any other points below G. If there
was such a point of intersection, that point would be a steady state with
positive rent; but we know that d is the only such point.
Therefore, to the left of point d the harvest rule is either above the growth

function, as the dashed curve through B, or it is below the growth function,
as the dotted curve through A. There is a similar choice for initial conditions
between d and G. In fact, the harvest rule is below the growth function to
the left of d and above the growth function to the right of d.
We confirm this claim for points to the left of d using a proof by contra-

diction. The proof for points to the right of d mirrors the argument provided
here. A proof by contradiction begins by hypothesizing the negation of the
claim we want to establish, and then shows that this negation implies a con-
tradiction; therefore the hypothesis is not correct. For example, if “Claim X”
is either true or false, one way to establish that it is true begins with the
hypothesis “Claim X is false.” If we can show that this hypothesis implies
something demonstrably false, then we conclude that the hypothesis is false;
therefore, Claim X must be true. Here we want to show that for points to the
left of d, the harvest rule lies below the growth function. Our hypothesis (the
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object we wish to falsify) states that for points to the left of d, the harvest
rule lies above the growth function. We falsify this hypothesis by showing
that it implies mutually contradictory results.

Under our hypothesis, the harvest rule intersects the origin, because har-
vest must be 0 if there are 0 fish. In addition, the harvest rule is continuous
in x; if the harvest rule were discontinuous, there would be a jump in harvest
at a point of discontinuity, and an associated jump in price. Such a jump
violates the Euler equation, our no-intertemporal-arbitrage condition. For
example, if there were a downward jump in harvest (e.g. harvest is bounded
away from 0 at x > 0 and equal to 0 at x = 0), then there would be an
upward jump in price; that could not be an equilibrium, because the owner
would want to harvest less before the jump in order to increase harvest after
the jump: there would be opportunity for intertemporal arbitrage. Clearly,
for stocks near the origin, where the harvest is low, rent is positive.

Any curve (to the left of d) laying above the growth function (as our hy-
pothesis states) and intersecting the origin (as we established in the previous
paragraph) must be increasing in x over an interval near the origin; call such
an interval J (merely to give it a name).4 For x ∈ J , the stock is decreas-
ing over time, because the harvest rule lies above the growth function. In
addition, for x ∈ J , the harvest is decreasing over time, because the harvest
changes in the same direction as the stock, which is decreasing over time.
Because rent = price minus C, for x ∈ J rent is increasing over time. In
addition, for x ∈ J , r < F ′ (x), because F ′ (x) falls with x.

The previous two paragraphs establish that for x ∈ J : (i) rent is positive
(ii) rent is rising over time, i.e. dR

dt
> 0 and (iii) r < F ′(x). However, parts (ii)

and (iii) and equation 16.1 imply that rent is falling over time, contradicting
part (i). We have seen that our hypothesis (“The harvest rule lies above the
growth function to the left of d”) implies a contradiction. The hypothesis is
therefore false. We conclude that the harvest rule must lie below the growth
function to the left of d.

4In the interest of simplicity, Figure 16.2 shows the dashed curve through point B as
increasing for all x. In this figure, the interval J equals (0, G). Our argument does not
require that the curve is monotonic over that entire interval, merely that there is a smaller
interval over which it is monotonic.
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16.3 Harvest rules for stock dependent costs

Objectives and skills

• Interpret graphs of the open access and the sole owner harvest rules.

• Use this figure to calculate the optimal open access tax.

• Introduce the phase portrait.

We carry out all of the analysis using the following parametric example5

c (x, y) = C
x
y with C = 5

F (x) = γx
(
1− x

K

)
with K = 50 and γ = 0.04

p = a− by, a = 3.5 and b = 10, and r = 0.03.

(16.3)

We begin by summarizing the policy implications based on this exam-
ple. Subsequent material develops the methods used to obtain those results.
There, we explain the meaning and the use of the “phase portrait”, the im-
portant new tool in this chapter. We then explain what a “full solution”
means in a model of this sort.

16.3.1 Tax policy

Here we explain how to interpret Figure 16.3, and draw out its policy impli-
cations. For the model in equation 16.3, there is a unique steady state under
the sole owner, x∞ = 39.35, y∞ = 0.335. We discuss only the behavior
of the fishery for x below the steady state. Figure 16.3 shows the growth
function, the heavy solid curve, for x ≤ 39.35. The dotted curve shows the
harvest rule under the sole owner for x below the steady state. Most of the
work involved with this analysis lies in identifying this harvest rule, i.e. in
constructing the dotted graph. For the time being, we put those diffi cul-
ties aside and discuss the meaning of this graph. (We do not use the thin

5An example with numerical values illustrates: (i) the insight that can be obtained
from phase portrait analysis, and (ii) the recipe one follows in carrying out this analysis.
The first item may encourage students to consult the texts listed at the end of this chapter
in order to learn how to conduct this analysis; the second item may make that process
easier, because students undertaking further study will have seen a motivating example.
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Figure 16.3: A part of the phase portrait, for stocks below the steady state
level. The higher solid curve is the graph of the growth function. For
combinations of stock and harvest, rent is zero on the dashed curve (the
open access harvest rule). The dotted curve shows the sole owner harvest
rule. The lower solid curve is used in the next section.

solid curve in the discussion here, although it plays an important role in the
derivation below.)

The dashed curve shows the harvest rule under open access, obtained (as
always) by setting rent = 0 and solving for harvest as a function of the stock.
There are three steady states under open access, the points of intersection
between the dashed and the heavy solid curve. The middle point (x = 8)
is unstable, and the higher (x = 39.3) and the lower (x = 2) points of
intersection are stable.

The harvest rule under the sole owner (the dotted curve) lies everywhere
below the harvest rule under open access (the dashed curve). The sole owner
always harvests less than the open access fishery. For stock levels close to
x = 39.35, the sole owner harvests only slightly less than under open access;
here it is not important to regulate the open access fishery. For stocks above
but close to the open access unstable steady state (x = 8), harvest under
open access is low enough to allow the fish stock to reach almost the optimal
steady state; here, regulation allows the fish stock to recover more quickly,
but it has no significant long term effect, because the steady states under open
access and under the sole owner are almost the same. For stocks 2 < x < 8,
the stock declines to x = 2 under open access, whereas under the sole owner,
it eventually recovers to 39.35. Over this range, regulation is important.
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Given the two harvest rules, it is simple to determine the optimal tax,
for any level of the stock. An example illustrates the procedure. Suppose
that x = 7 (an arbitrary choice, merely for illustration). Reading from the
harvest rules, we see that the open access harvest is approximately y = 0.29
and the sole owner harvest is approximately y = 0.2, yielding the equilibrium
open access price 3.5− 10 (0.29) = 0.6 and the equilibrium sole owner price
3.5 − 10 (0.2) = 1. 5. The tax τ |x=7 = 1.5 − 0.6 = 0.9 induces the open
access to reduce harvest y = 0.2; at that level, the market price minus the
tax equals the average harvest cost, and industry rent is zero. The tax
τ = 0.9 thus supports the effi cient level of harvest at x = 7. Because the
vertical distance between the two harvest functions changes with the level of
the stock, the optimal tax also changes with the stock. The optimal tax is
negligible for large stocks, but it is large at small stocks. For our example,
the optimal tax comprises 60% of the equilibrium consumer price at x = 7.
Recalling Chapter 15.2.1, the optimal tax under open access equals the rent
under the sole owner. For this example, rent under the sole owner comprises
about 60% of the market price when x = 7.
The tax implications of the models with constant and stock dependent

costs are quite similar. In both, it is unimportant to tax the open access
fishery at high stock levels. At high stock levels the optimal tax is zero under
constant harvest costs, and the optimal tax is close to zero in our example of
stock-dependent harvest costs. At low stocks, the tax is important in both
models; it avoids physical extinction in one case, and economic irrelevance
in the other. At intermediate stock levels, an open access tax can enable to
fishery to recover more quickly, but has little or no long run effect.

Box 16.1 Back to Huxley and Gould Box 1.2 contains quotes from two
19th century figures, one explaining why regulation is not needed, and
the other explaining why it is needed. The above analysis illustrates
the circumstances where one or the other is correct. If stocks are
above the unstable open access steady state, the open access outcome
is at least approximately socially optimal. Stock dependent costs
reinforce this tendency, by inducing fishers to reduce harvest as the
stock falls. These forces provide a kind of automatic protection,
as Huxley suggested, and there is little or no need for regulation.
However, at low stocks, neither the market (which limits demand)
nor technology (which limits supply by increasing costs) is adequate
to protect the stock: regulation is needed, as Gould stated.
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16.3.2 The phase portrait (*)

Equations 13.6 and 16.2 give the differential equations for the stock and for
the rent under the sole owner. We can use these two equations, together
with the definition of rent, R = p (y) − C

x
, to obtain a third differential

equation, for the harvest, dy
dt
. It helps to give this differential equation a

name, so we denote it as dy
dt

= H (x, y). (Appendix J.2 explains how we
find this function H.) The solution to these three differential equations (in
x,R, y) gives the optimal paths of the stock, rent, and harvest. Apart from
the simplest problems, we cannot solve these equations analytically. Our
first goal is to learn as much as possible about the solution without actually
solving the equations: we seek qualitative information about the solution.
The phase portrait is the key to achieving this.
The phase portrait contains two “isoclines”. An isocline is a curve along

which the time derivative of a variable is constant; here we set the constant
to zero. Consider the logistic growth function, dx

dt
= γx

(
1− x

K

)
−y. Setting

this derivative equal to 0 gives y = γx
(
1− x

K

)
; the graph of this function

is the x isocline (the curve where dx
dt

= 0). Thus, the x isocline is simply
the growth function; we are given that function as part of the statement of
the problem, so no work is required to obtain the x isocline. We can also
obtain the y isocline, the curve where dy

dt
= H (x, y) = 0. Figure 16.4 shows

the graphs of the two isoclines for our example. The intersection of these
isoclines identifies the steady state, the point where dx

dt
= 0 = dy

dt
. For our

example, the steady state is x = 39.35, y = 0.335.
In order to understand a phase portrait, the reader has to keep in mind

that, outside the steady state, the stock and the harvest are changing over
time. Imagine that there is a third axis, labelled time, t, perpendicular to
the page, coming directly toward the reader. A point on the page represents
a particular value of x and y at t = 0. A point above the page represents a
particular value of x and y and a time t > 0.
Suppose that we start at t = 0, with some initial condition, x0 = x (0),

and we pick some initial harvest, y0. Starting from this point, there is a
path, a curve in three dimensional space, call it (xt, yt, t) along which the
differential equations dx

dt
= F (x) − y and dy

dt
= H (x, y) are satisfied. Now

imagine shining a light from your eyes to the page. The curve (xt, yt, t),
casts a shadow onto the page. We refer to this shadow as a trajectory.
The phase portrait provides information about such a trajectory (i.e., the
“shadow”); we use that information to infer facts about the behavior of the
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Figure 16.4: The solid curve: the x isocline (where dx
dt

= 0; dashed curve:
the y isocline (where dy

dt
= 0). The two isoclines divide the plane into four

regions, A,B,C and D, known as isosectors.

stock and the harvest over time. To this end, we use the four “isosectors”
whose boundaries consist of the two isoclines. Figure 16.4 identifies these
four regions as A,B,D, and E.

Isosector A B D E

motion of x
decreasing
(west)

increasing
(east)

increasing
(east)

decreasing
(west)

motion of y
increasing
(north)

increasing
(north)

decreasing
(south)

decreasing
(south)

overall motion
of trajectory

north-west north-east south-east south-west

Table 3. Direction of change of x and y and overall direction of motion of
trajectory in the four iso-sectors

Consider isosectors B and D, the region below the x isocline. For any
point in either of those two isosectors, y < F (x). Consequently at such a
point, dx

dt
= F (x) − y > 0, i.e. x is increasing over time. For shorthand,

we say that the trajectory is moving east (x is getting larger). Similarly,
above the x isocline, in isosectors A and E, y > F (x), so dx

dt
= F (x)−y < 0.

In these two isosectors, x is getting smaller, so we say that the trajectory is
moving west. The second row of Table 3 summarizes this information.
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We can identify the direction of movement in the north-south direction
by using information about the differential equation for y, dy

dt
= H (x, y)

(details in Appendix J.2). Below the y isocline (in isosectors D and E)
dy
dt

= H (x, y) < 0, i.e. y is decreasing, so the trajectory is moving south.
Above the y isocline (in isosectors A and B) dy

dt
= H (x, y) > 0, i.e. y is

increasing, so the trajectory is moving north. The third row of Table 3
summarizes this information. The fourth row puts together the previous
information, to obtain the overall direction of motion of a trajectory in each
isosector.

This qualitative information tells us that an optimal trajectory that ap-
proaches the steady state x∞ from a smaller value of x (to the west of x∞),
must lie in isosector B. Similarly, a trajectory that approaches the steady
state from a larger value of x (to the east of x∞) lies in isosector E. To
explain and confirm these statements, we consider the case where the optimal
trajectory approaches the steady state from below (i.e. from the west); the
situation where the optimal trajectory approaches from above is similar.

A trajectory that approaches the steady state from below cannot lie in
isosector E, because that isosector contains no stock levels less than the
steady state. Therefore, the trajectory must lie in isosectorsA,B, orD. The
path cannot lie in isosector A, because trajectories there involve westward
movements, i.e. reductions in the stock. Therefore, the trajectory must lie
in either isosector B or D. It cannot lie in D, because from any point in D,
it would be necessary for y to increase in order to reach the steady state; but
trajectories in D move south, i.e. y falls there. Consequently, trajectories
that approach the steady state from below (with stocks lower than the steady
state level) do so in isosector E.

For this problem, regardless of the initial (positive) stock level, the opti-
mally controlled fishery approaches the steady state. We can use this fact
to establish that for any initial stock below the steady state, the optimal tra-
jectory lies entirely in isosector B; and for any initial stock above the steady
state, the optimal trajectory lies entirely in isosector E. For example, sup-
pose that we begin with a stock below the steady state level. If, contrary to
our claim, the trajectory beginning with this stock lay in either isosector A
or D it would move away from the steady state.

Figure 16.5 repeats Figure 16.4, adding the dotted curve, the set of points
where rent is zero. Rent is positive below the dotted curve and negative
above it. We know that if the stock begins below the steady state, it ap-
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Figure 16.5: The dotted curve shows the combination of harvest and stock
at which rent is 0.

proaches the steady state in isosector B, so the trajectory must be above the
dashed curve (a boundary to isosector B). We also know that the sole owner
never harvests where rent is negative, so the trajectory must be on or below
the dotted curve. Therefore, we conclude that if the initial stock is below
the steady state, the trajectory must be sandwiched between the dashed and
the dotted curves. We obtained this information without actually solving
the optimization problem, using only the necessary conditions for optimality
and a bit of graphical analysis. This procedure illustrates the power of the
phase portrait.
Given the resolution of Figure 16.5, it appears that the dotted and the

dashed curves are coincident near the steady state. However, if we enlarged
the figure in the neighborhood of the steady state, we would see that the
dashed curve lies below the dotted curve. For this example, rent is always
positive, but it is close to zero for fish stocks near the steady state. For
different functional forms or parameter values, rent might be substantial
along the optimal trajectory.

The full solution

Figure 16.3 contains the graph of the sole-owner’s optimal harvest rule (the
dotted curve in that figure). To construct that graph, we need the solution
to the pair of differential equations dx

dt
= F (x) − y and dy

dt
= H (x, y) that

includes the point (x∞, y∞), the steady state. The steady state is a “bound-



304 CHAPTER 16. DYNAMIC ANALYSIS

ary condition”for this mathematical problem. As noted above, except for
very few functional forms (not including our parametric example), there is
no analytic solution to this problem. However, there are numerical routines
that are straightforward to implement. The harvest rule shown in Figure
16.3 was obtained using Mupad, a feature of ScientificWorkplace.

16.4 Summary

Two examples, one with constant harvest costs, and the other with stock-
dependent harvest costs, show how to analyze the dynamics under the sole
owner. We explained how to determine the sole owner steady state(s), and to
determine which steady state the sole owner fishery approaches, as a function
of the initial condition. With constant harvest costs, this determination
requires careful economic reasoning, but no new mathematical tools. With
stock-dependent harvest costs, we require new tools. The most important
of these is the phase portrait, which has many uses in dynamic problems.
Given this information, and using the fact that the open access fishery

harvests up to the point where rent is zero, we were able to make qualitative
statements about the optimal tax for the open access fishery. In particular,
we learned that regulating this fishery is important if the stock is low; for
suffi ciently high stocks, regulation of the open access fishery is unimportant.
This difference illustrates the general principle that for resource problems,
the optimal tax is stock-dependent. In practice, we seldom have enough
information to determine the optimal tax. A second best alternative is to
close down the open access fishery at low stock, and leave the fishery untaxed
at high stocks. A more nuanced policy imposes low or zero taxes at high
stocks, and high taxes at low stocks.
Examples of this sort are useful for developing intuition. The pedagogic

danger of these examples is that they may make the problem of regulation
appear too simple. It might appear that all we need is a few parameter
estimates and a modest knowledge of mathematics to propose optimal policy
measures. That conclusion is too optimistic. The models studied here
are good for the big picture, but they are too simple to be directly useful
in actual policy environments. There, it may be important to consider
multiple species or multiple cohorts of a single species, and different kinds
of uncertainty, including uncertainty about functional forms and parameter
values. Nevertheless, simple models provide a good place to begin.
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16.5 Terms, study questions, and exercises

Terms and concepts

Continuous time Euler equation, isocline, phase portrait

Study questions

1. Using Figure 16.1, for each of the three values of C, sketch the sole
owner’s harvest rule that is consistent with the claims in Table 2.

2. (a) Using your sketch from #1 and C = 3, pick two values of x to
the left of point f . At these two points, identify on the graph the
differences in harvest under open access and under the sole owner. (b)
Explain how you would use this graph to obtain the optimal tax under
the sole owner, at these two values of x. (c) What qualitative statement
can you make about the magnitude of the optimal taxes for the two
values of x?

Exercises

1. By adapting the arguments used in Section 16.2.2, confirm the claims
in the first row of Table 2 for x0 to the right of point d.

2. By adapting the arguments used in Section 16.2.2, confirm the claims
in the last two rows of Table 2.

3. Suppose that F (x) = 0.04x
(
1− x

50

)
, inverse demand is p (y) = 5−10y,

the discount rate is r = 0.02, and harvest costs are constant at C =
0.4. Suppose also that the initial condition, x0, is below the horizontal
coordinate of point e in Figure 16.1. (a) What tax (a number) supports
an open access steady state at point d? (b) If the policymaker uses this
constant tax, does it drive the stock to point d for all initial conditions
below e? (c) For initial conditions below e (i.e., for values of x0 below
the horizontal coordinate of point e) does the optimal tax rise or fall
with higher x?

4. For the example in the Exercise 3, suppose that C = 3. (a) Confirm
that for positive initial conditions to the left of the unstable steady
state (f), the sole owner drives the stock to point f . (b) Sketch the
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harvest rule under the sole owner. (Your drawing will not be accurate,
but you should be able to identify the points on the graph of the harvest
rule, y(x), corresponding to x = f and x = 0. (c) Using this sketch,
how does the first-best (stock-dependent) tax under open access vary
with the stock, x?

5. For the model in equation 16.3, use Figure 16.3 to estimate the optimal
tax for the open access fishery, at x = 5. Explain your steps.

Sources

Kamien and Schwartz (1991) provide many economic applications demon-
strating the use of phase portrait analysis.
Clark (1996) uses phase portrait analysis for the fishery model.
Readers interested in extending the deterministic methods to a stochastic

setting should consult Mangel (1985).



Chapter 17

Water Economics

Objectives

• Use the tools developed in previous chapters to study other natural
resource problems.

Skills

• Be familiar with market failures associated with water.

• Use both static and dynamic methods to study water problems, and to
analyze policy remedies.

We used oil and fish in developing analytic tools to study nonrenewable
and renewable resources, and also to illustrate market failures and appro-
priate policies. This chapter introduces water economics, emphasizing the
generality of both the policy problems and the tools discussed in previous
chapters. Nonrenewable resources, like oil, do not regenerate on a time-scale
relevant for human planning. Renewable resources, like fish, potentially
regenerate quickly, over a period of years or decades. Water, forests, and
many other resources, are intermediate cases. Water in a slowly recharging
aquifer (a geological formation that stores water) and the stock of old growth
redwood trees are, for practical purposes, nonrenewable resources. Water in
a lake (with inflows) and new-growth forests are renewable resources.
Water is an essential, and in many parts of the world, poorly managed

natural resource. A 2012 US government “Intelligence Community Assess-
ment” anticipates that during the next decade many countries will expe-
rience problems caused by water shortages, poor water quality, and floods.

307
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These problems contribute to political instability and regional tensions. Ab-
sent policy changes, growing water demand will outstrip supply, jeopardizing
production of food and energy, and putting at risk economic growth. Only
about 2.5% of the earth’s water is freshwater. Glaciers contain about 69% of
the freshwater and groundwater (water in aquifers) about 30%. The surface
(rivers, lakes) and atmosphere contain about 0.4% of freshwater.
Most uses of water have both “consumptive”and “nonconsumptive”uses.

Hydroelectric power generation does not reduce the quantity of water, and is
therefore considered a nonconsumptive use. However, the dams constructed
to create hydroelectric power reduce the availability of water for fish runs
and other environmental or recreational purposes. Dams can also reduce
water quality due to the buildup of silt and increased salinity. Much of
the water used for agricultural irrigation is absorbed by plants and the at-
mosphere, a consumptive use, but some of it returns to rivers and aquifers,
a nonconsumptive use. However, when agricultural runoff is polluted, these
return flows create costs, not benefits. Agriculture accounts for about 78%
of total (consumptive plus nonconsumptive) use, with household and indus-
trial (19%) and power generation (10%) making up most of the remainder
Agriculture accounts for about 93% of consumptive water use.
A larger and more prosperous population increases the demand for water,

as more people eat a more water-intensive diet. Improved technology and
additional infrastructure can help to offset the growing imbalance between
water supply and demand. Drought resistant crops and the development and
adoption of more effi cient irrigation can reduce the amount of water needed
to grow a given amount of food; infrastructure investments can reduce waste
by reducing leaks. Technical remedies are important in solving a global water
shortage, but without policy changes they are unlikely to be adequate.
In many places, political decisions impede obvious solutions and create

perverse incentives that make water problems worse. We provide examples of
these, and then discuss static and dynamic market failures. A static market
failure results in the ineffi cient use of a given flow of water. A dynamic
market failure results in too rapid use of water resources.

17.1 The policy context

Current water laws and policies result from the accretion of decades, and
in some places centuries, of social interactions. Not surprisingly, in many
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cases these policies are ineffi cient. This section discusses two types of policy
failure: (i) water is priced ineffi ciently, or not at all; (ii) policies not directly
targeted to water use make water problems worse.
The effi cient use of water creates positive “water rents”, just as the ef-

ficient extraction of oil or harvesting of a fishery lead to positive resource
rents. These rents equal the opportunity cost of water use, arising from wa-
ter’s scarcity and from higher future pumping costs. Effi cient management
of water resources requires that the user price includes not only the cost of
providing (pumping and transporting) water, but also rent, the opportunity
cost of the water. A price that includes only the cost of providing the water
(i.e., excludes rent) is too low, and leads to excessive water use. We consume
water as a “bundle”, consisting of the liquid itself, and its location at a point
in time. Putting aside contamination that might arise during transportation,
the physical object is the same if it exists in our kitchen tap or in an aquifer
hundreds of miles away. If we pay only for the cost of transporting the water
from the aquifer to our kitchen, without paying rent, then we are paying only
part of the real cost of consuming the water.
If users pay a single price per unit that includes rent, sellers’ revenue

exceeds their cost of provision. A California law forbids municipalities from
charging more for utilities (e.g. water) than the cost of provision. If the “cost
of provision”is narrowly construed, to exclude resource rent, this law makes
effi cient pricing impossible. “Tiered pricing”, which allows the price to vary
with the amount consumed, enables a municipality to induce the optimal level
of water consumption while not earning profits (or rent), and simultaneously
providing a subsidy to people who use little water (typically, poorer people).1

Effi cient tiered pricing requires that the marginal (highest) use be charged
at the effi cient price, equal to the marginal cost of provision plus the rent.
Lower quantities can be charged at lower prices, even below the marginal
cost of provision. Under this structure, the utility makes profits from selling
to high-quantity users, using those profits to subsidize low-quantity users.
Figure 17.1 shows an aggregate demand function and a supply function

with constant pumping + transport marginal = average cost, C = 3.2 Sup-

1A 2015 California State Supreme Court ruling upheld an appellate court’s decision
that struck down a municaplity’s use of tiered pricing. The appellate court did not ban
tiered pricing, but required that its structure be tied to the cost of providing service.

2The aggregate demand function is the horizontal summation of the individual house-
hold demand functions, which are not shown. Those demand functions vary with income
and other household characteristics.
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Figure 17.1: Cost of providing water = 3 and optimal rent = 2. The loss in
consumer welfare from moving to effi cient water pricing under a single price
is the trapezoid abde. The loss in consumer surplus under tiered pricing,
where consumers obtain all of the resource rent, is the triangle abc

pose that the socially optimal level of rent is R = 2. A municipality that
charges a single price greater than 3 has revenue exceeding costs, earning
profits. A municipality that charges a single price less than 5 induces so-
cially excessive water use. By using a price less than 3 for consumption
below a threshold, and using a price equal to 5 for consumption above that
threshold, the municipality can achieve the optimal level of water consump-
tion and break even. Figure 17.1 shows the case where the low price is 1 and
the low-price threshold is 2.5.
Tiered pricing can reduce the water bills of low-use consumers. High-

use consumers who see their water bills rise are likely to be wealthier. For
the example in Figure 17.1, moving from the ineffi cient price p = 3 to the
effi cient single price, p = 5, reduces consumer surplus by abde. In con-
trast, moving to effi cient tiered pricing with zero profits for the municipality,
reduces consumer surplus by abc. Whenever the socially optimal rent is pos-
itive, effi ciency reduces aggregate consumption (from 7 to 5 in this example),
lowering aggregate consumer surplus. Tiered pricing can reduce the fall in
aggregate consumer surplus from the large trapezoid to the small triangle,
while transferring welfare from the rich to the poor.
By 2015, over half of California’s water districts used some form of tiered

pricing; at the same time, in many Californian communities, water was not
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even metered. In Riverside California, tiered pricing reduced water demand
by 10- 15%. Santa Fe, New Mexico used tiered pricing with high marginal
prices, and had a per capita consumption of about 100 gallons per day;
Fresno, California, with a low uniform water price, had a per capita con-
sumption of over 220 gallons per day.
Laws that impede or prohibit effi cient pricing are perhaps the most obvi-

ous examples of policy failure. However, many policies ostensibly unrelated
to water have major implications for water use. Examples illustrate this
relation. Strong U.S. sugar lobbies have propped up domestic sugar prices
by maintaining restrictions on U.S. imports of lower-cost foreign sugar. This
method of supporting U.S. producers is politically attractive, because, unlike
direct subsidies (which have been widely used for export crops such as corn)
the trade restrictions have no direct budgetary costs; consumers, not taxpay-
ers pay for the subsidy to producers. The high domestic prices encourage
domestic production, which in the case of sugar has led to wasteful use of
water and associated pollution in the Florida Everglades. Chapter 9.5 shows
that output and input subsidies tend to reinforce each other: a positive out-
put subsidy can greatly increase the welfare loss arising from under-priced
natural resource inputs. Elsewhere, U.S. subsidies have promoted the pro-
duction of water-intensive crops in drought-prone areas, e.g. rice production
in California. U.S. ethanol policy, implemented by the Renewable Fuel Stan-
dard (Chapter 9.3), is an indirect subsidy to corn producers. This subsidy
has encouraged irrigated corn production in the high plains, adding pressure
to the Ogallala aquifer (Chapter 17.3).
Similar problems arise in many parts of the developing world. The Za-

yanderud River, which runs through the Iranian city of Isfahan (population
of 2.5 million) went dry in the early 2010’s, while groundwater levels fell and
wells dried up. A drought that began in 1999 and worsened in 2008 pre-
cipitated the crisis, and mismanagement exacerbated it. As part of political
maneuvering to increase local support, the central government transferred
control of the watershed from a unified authority to local leaders, who then
allocated water without regard to the resource constraint. Crop subsidies
that increased the demand for water, and local leaders’ support for water
intensive industries, worsened the problem. Popular sentiment opposed ra-
tional water pricing.
In India, tube wells increased irrigation in the Ganges watershed. In the

1980s, Uttar Pradesh subsidized the cost of well construction, and banks
extended credit for pumps. Users’ low electricity price encouraged pump-
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ing, and landowners were not charged for groundwater extraction. Over-
extraction caused water tables to fall, increasing pumping costs and en-
dangering public hand pumps used primarily by the landless poor. India’s
Ground Water Authority banned private extraction and sale of groundwater
in some areas, but illegal pumping continued. A 2012 scientific report stated
that the aquifer that serves the capital, New Delhi, could dry up in a few
years.
Examples of these sorts can be found in many countries. Increases in wa-

ter demand, due to higher population and higher living standards, put pres-
sure on limited resources. In some cases, these supplies are further stressed
by droughts and pollution. New infrastructure, in the form of dams, aque-
ducts, and replacement of leaky pipes, and better technology, in the form
of more effi cient irrigation and desalinization plants, can help to solve or at
least postpone crises. Rationalizing water pricing and reforming policies that
worsen water shortages, can make the problem more tractable.

17.2 The static market failure

In many parts of the world, including eastern U.S. states, water rights are
based on riparian (pertaining to riverbanks or wetlands) law; landowners have
the right to use water on their land, provided that their use does not conflict
with other riparian users. Typically, this use does not include irrigation. In
the western U.S. states, water rights arise from “prior appropriation”, having
been the first to make “beneficial use”(e.g. irrigation) of unclaimed water.
This basis for water rights led to a rush of sometimes fraudulent water claims
in the west. It also created the incentive to use water, sometimes ineffi ciently,
partly to forestall others frommaking their claim. In the first half of the 20th
century, western U.S. states rushed to build dams and irrigation projects.
These property rights entitle owners (individual farmers or cities or states)
to use, but not to sell “their”water.
Here we take the aggregate supply of water as fixed within a period,

and discuss its allocation across uses. The “static market failure” arises
from the ineffi cient use of a given flow of water. Water owners’ inability
to trade their water creates this static market failure. We illustrate this
graphically, explain some of its causes, and then consider a political economy
implication. Figure 17.2 shows the inverse demand functions for two agents
(solid and dashed) when the aggregate supply is y = 5. If one agent is a
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Figure 17.2: Two water demand functions, p = 12 − 3q (solid) and p =
8− 0.5 (y − q) (dashed) when the aggregate supply is y = 5. Consumption
of the "solid" firm is q and of the “dashed” firm is y − q. The effi cient
allocation occurs at q = 1.9, where both firms have the price p = 6.4. If
firms have equal shares of total supply, q = y

2
, then they have different

marginal willingness to pay, at points b and c.

household, then the inverse demand function has the usual interpretation,
as the marginal willingness to pay for an additional unit. If an agent is a
firm (or farm), the inverse demand is the value of marginal productivity of
water: the additional value to the firm created by using an additional unit of
water. Figure 17.2 looks like Figure 2.1. From the discussion of arbitrage
in Chapter 2.1, we know that an effi cient outcome occurs where each agent
has the same marginal willingness to pay, at point a; there, the “solid”agent
consumes q = 1.9 units and the “dashed”agent consumes 5−1.9 = 3. 1 units.
To explain the static ineffi ciency, suppose that both users have property

rights to half of the total allocation (y = 5), but an institutional constraint
prevents them from trading. They each consume 2.5 units, and have the
willingness to pay shown by points b and c. The prohibition against trade
causes a welfare loss equal to the area of the triangle abc. The “dashed”
agent would be willing to pay p = 6.75 for an extra unit of water, and the
“solid”agent would be willing to sell a unit of water for p = 4.5. At the
constrained outcome there are potential, but unrealized, gains from trade.
Figure 17.3 graphs, as a function of y, the welfare loss (the area of the

triangle abc). The solid curve shows this loss as a percent of the welfare
level in the constrained scenario, in which each agent consumes half of the
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Figure 17.3: The solid curve shows the welfare loss, as a percent of welfare
under the constaint q = 1

2
y, as a function of aggregate supply, y. The dashed

curve shows the absolute welfare loss.

available supply; the dashed curve shows the absolute welfare loss. There is
a particular value of y (equal to 3.2 for this example) at which it is optimal
for each firm to consume the same amount. At that point, the welfare cost
of the constraint is 0. For levels of y close to 3.2, the welfare loss due to the
constraint is small. However, it begins to rise quickly as y moves away from
3.2: the welfare cost is convex in the aggregate supply of water.3

The static market failure arises from a missing market: the inability of the
agents to trade their endowment. Water economists have devoted substantial
effort over the last several decades measuring and explaining the welfare
consequences of this policy-imposed market failure. Agents’ inability to
trade their endowment is a type of imperfect property rights: agents can use
but not sell their property.

Reasons for the prohibition on trade

In many cases, the historical evolution of property rights, not conscious de-
sign, explains the prohibition against water trades. This limitation is some-
times justified on the grounds of fairness, based on the idea that water is a
gift on nature: people should be allowed to use, but not to own this part

3Given the parameter values in this example, we require 1.34 ≤ y ≤ 8. For y < 1.34
the “dashed”agent has negative consumption under effi cient allocation, and for y > 8 the
“solid”agent has negative price under the ineffi cient allocation.
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of nature. This view is inconsistent with the fact that people own land and
mineral rights, which are equally gifts of nature. A related fairness argument
recognizes that in many areas the value of water stems from previous social
policy, not just from nature’s largess. In western U.S. states, as in many
parts of the world, publicly funded water projects created dams to store water
and aqueducts to transfer it to (principally) farmers. Most of these projects
were originally intended to be funded by the water users, but in practice they
were heavily subsidized by taxpayers. (An example in Chapter 2.5 shows
that an extended no-interest loan can amount to a sizeable implicit subsidy.)
Current farmers bought or inherited land, and with it, the attached water

rights. The increase in the value of water, resulting from allowing transfers,
provides a windfall to those with water rights. The people who would be able
to buy the water also gain: both buyers and sellers gain from a transaction.
By taxing some of the surplus created by water transfers, and using it for
public objectives, the gain can be spread more broadly.
Water transfers benefit both buyers and sellers, but they may harm third

parties. Some agricultural water use is consumptive, and some is noncon-
sumptive, because some irrigation water returns to rivers and aquifers, where
it can benefit other users. By removing water from the hydrologic system,
e.g. transferring it from agricultural to urban use, the trade can harm third
parties who would otherwise benefit from the recycled water. Water transfers
can also harm workers or businesses that benefit from a strong local economy.
If the transfer occurs from agriculture to urban use (as has recently been the
case in western U.S.), the demand for farm labor can fall, lowering the wage
or employment. The reduction in agricultural output can also decrease de-
mand for local farm services (e.g. machine sales and maintenance). These
third parties may have a strong incentive to block transfers.
These externalities or other market failures might cause the transfer-

induced reduction in third party benefits to exceed the direct welfare gain
arising from the transfer. In that case, allowing water transfers, without
correcting the other market failures, lowers welfare. Second-best arguments
have to be examined critically, on a case-by-case basis, because these kinds of
arguments can be constructed to oppose almost any reform. Even if the third
party argument does not provide an effi ciency rationale for prohibiting water
transfers, it helps explain the resistance to those transfers. The creation of
water markets requires consideration of third party consequences.
All of these issues are present in fisheries, and in many other resource set-

tings. In the fishery context, we noted the importance of creating individual
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transferable quotas (ITQs, not just IQs). The transferability enables the
market to reallocate quotas to the most effi cient fishers. This reallocation
creates a welfare gain, just as does the reallocation of water in the example
shown in Figure 17.2. There are also third-party issues in the fishing context,
related to local fishing communities. Although each natural resource gives
rise to specific problems, the different resources share many of the same fea-
tures. Thus, the skills and intuition acquired in studying one type of resource
often help in studying a different resource.

Political economy implications

We use Figures 17.2 and 17.3 to make a general point about political econ-
omy. The fact that effi ciency increases the size of the economic pie, might
suggest that greater effi ciency makes it easier to reach an agreement amongst
competing interests. However, people’s incentive to influence political deci-
sions, i.e. to maintain or increase their water allocation, likely depends on
the value of an additional unit of water, not only on the value of the wa-
ter they currently own. The distinction is between the value of water and
the marginal value of water. These two objects do not necessarily move in
the same direction. The marginal value of water, equal to the amount that
people would pay for an extra unit of water, is the inverse demand function
for water. An institutional change, such as opening water markets, typically
increases the value of water, but it might either increase or decrease the
demand for water.
Suppose that three interest groups, agricultural users, urban users, and

environmentalists, compete for water; initially, there are no water markets.
Figure 17.2 shows the water demand from agricultural and urban users. The
area under the demand function for urban users equals their consumer sur-
plus; the area under the value of marginal product curve for the agricultural
users equals their profit from water use. The aggregate area under the curves
equals the combined value of their allocation. Denote this combined area,
when transfers are not allowed, as V (y); it depends on the total allocation,
y, and on the split (one half for each user in this example). The marginal
value, dV (y)

dy
= V ′ (y), is the increase in these users’combined value, due to

an extra unit of water, given that they share this extra unit equally; V ′ (y) is
the aggregate demand function for urban and agricultural water users under
the equal-sharing constraint.
Denote V opt (y) (“opt” for “optimal”) as the combined payoff of urban
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Figure 17.4: The solid line shows the aggregate demand for water (dV
dy
) under

the constraint q = y
2
. The dashed line shows the aggregate demand for water

(d(V+∆)
dy

) when users can trade their allocations. Water markets increase the
demand for water if and only if y > 3.2.

and agricultural users when a water market permits transfers between them.
The loss in surplus arising from the constraint that prohibits water transfers
(the area of the triangle abc in Figure 17.2) is ∆ (y) ≡ V opt (y)−V (y). This
loss is positive, except for the knife-edge value of y (3.2 in the example).
The constraint unambiguously lowers the value of water. But how does
the constraint affect the demand for water? The model provides a simple
answer. The inverse demand under the constraint is D (y) = dV (y)

dy
, and the

inverse demand under water transfers equals

Dopt (y) =
dV opt (y)

dy
=
d (V (y) + ∆ (y))

dy
= Dcon + ∆′ (y) . (17.1)

Figure 17.3 shows that ∆′ (y) is positive or negative, depending on the mag-
nitude of y.
Figure 17.4 shows the aggregate consumptive demand functions without

(solid) and with (dashed) water markets. For this example, liberalizing mar-
kets (allowing water transfers) increases water demand if and only if y > 3.2.4

In general, a reform that moves us closer to effi ciency increases the value of

4This conclusion is based on a simple example, but the geometry shows that it relies only
on the shape of the loss function ∆ (y). Under quite general circumstances, this function
is convex and reaches a minimum at an interior value. Under these circumstances, the
result described in the text holds. Often examples can reveal general insights.
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water. However, there is no presumption that this reform increases the de-
mand for water. A change in institutions (or technology, or policy) can have
qualitatively different effects on the function V and on its derivative V ′.
The urban, agricultural and environmental lobbies engage in the political

process that determines the allocation of a fixed flow of water. The amount
available for environmental services (e.g. fish spawning) equals this flow
minus the aggregate allocation for urban and water users, y. In order to make
our point simply, we assume that urban and agricultural interests take as
given their split, so the only way that either can increase their own allocation
is by increasing the combined allocation, y. With this assumption, urban and
agricultural users are in a natural alliance. An increased allocation to urban
and agricultural users comes at the expense of environmental interests, who
in this example are arrayed against the urban—agricultural alliance.
Suppose that we begin in a scenario without water markets. The urban-

agriculture allocation, y, is determined by a political process that (along with
physical and technological considerations) balances the urban-agriculture and
environmental interests. The political economy forces depend in part on the
lobbying effort of the agricultural and urban users, both of whom want to
increase y (because V ′ (y) > 0). Their lobbying effort, and consequently
the (political) equilibrium value of y, depends in part on the value to the
consumptive users of an additional unit of water.
Now an economist enters the debate, promoting the adoption of water

markets on effi ciency grounds. Should an environmentalist support or oppose
this institutional reform? The previous analysis shows that the adoption
of water markets might either increase or decrease the consumptive users’
marginal value of water, thereby increasing or decreasing their incentives
to lobby for a higher allocation. If it increases their incentives to lobby
(i.e. if initially y > 3.2 in our example), then the institutional reform likely
increases the political opposition that the environmentalist faces. Even
in this case, the environmentalist might support the reform as a part of a
package deal that also protects the environment, e.g. by decreasing or at
least not increasing the consumptive allocation, y. Because the introduction
of water markets increases the consumptive users’value of a given allocation,
rational users would agree to a reduction in y in exchange for a reform that
increases the value of y.
A move to effi ciency creates surplus that can be used to compensate

environmentalists (or other third parties). Neither markets nor political
economy interactions automatically lead to this compensation. In our ex-
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ample, the political economy market, operating through lobbying, can lead
to a worse environmental outcome after an institutional reform that allows
water transfers. Political bargains potentially enable environmentalists to
support institutional reform while also protecting the environment.

One further point deserves mention. It is sometimes assumed that changes
that increase the value of a resource tend to reduce resource demand. For
example, better technology, in the form of drought resistant crops or more ef-
ficient irrigation techniques, make it possible to achieve the same level of pro-
duction with less water. These changes might also increase water demand, by
making it profitable to grow crops that were previously uneconomical. This
increase illustrates the “rebound effect”, the situation where a change that
would appear to decrease demand for a resource, ends up increasing demand.
Again, this possibility arises because demand depends on the marginal value
of an additional unit of a resource. A change can unambiguously increase
the value of the resource, while having an ambiguous effect on the marginal
value of the resource.

17.3 The dynamic market failure

The static question is “How should we use a given amount of water (a flow)
in a period?” The dynamic question is “How should we manage a given
stock of water, i.e. choose the flow trajectory?” Full effi ciency requires that
water allocations be arbitraged over competing users within a period, and
that they be arbitraged across time. Both the static and dynamic market
failures arise from imperfect property rights, which interfere with intra- and
inter-temporal arbitrage.

If all of our water came from (free flowing) rivers or from annual rainfall,
then the policy problem would be static. Nature would determine the avail-
ability of water in each year, and policy would determine the allocation of
that water across competing uses. Dynamics are important, because much
of our water supply is stored in reservoirs, lakes, and aquifers. The Ogallala
aquifer illustrates dynamic water problems. We then provide an analytic
foundation, building on resource models from previous chapters.
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17.3.1 The Ogallala aquifer

The Ogallala Aquifer, located beneath eight U.S. states from Texas to South
Dakota, exemplifies the problem of managing a common property resource.
This million-year old aquifer, ranging over 174,000 square miles, provides
water for almost a fifth of U.S. wheat, corn, cotton and cattle production;
agriculture accounts for about 95% of water use. The aquifer contains enough
water to cover all 50 states with 1.5 feet of water; if it went dry, it would take
natural processes 6,000 years to refill. Extraction during the first decade of
the 21st century was a third of total extraction during the previous century.
The stock of water in the aquifer declined 10% from the early 20th to the
early 21st century. Water levels in 25% of the land above the aquifer fell
by over 10 feet. There may be enough water in northern regions to last
hundreds of years, while in the southern High Plains a third of farm land
may lose irrigation over the next several decades.
Withdrawals from the Ogallala, made economical by the introduction of

the center-pivot irrigator, accelerated in the 1940s and 50s. Technological ad-
vances, including more effi cient irrigation or drought resistant crop varieties,
might reduce water demand. (Keep in mind the rebound effect, described
above). However, in most locations sustainable use of the aquifer requires
lower withdrawals. Some reductions might be accomplished by switching
to less water intensive crops (e.g. sunflowers instead of corn), by changing
cultivation practices (e.g. adopting “no-till”methods), or retiring land from
cultivation. These changes require short run sacrifices, which are hard to en-
force when decisions are made by thousands of farmers in a common property
setting.
The Ogallala is nominally a regulated resource, with rules varying across

states. Nebraska passed laws in the 1970s limiting water allocations and
using rotating water permits. Despite enforcement problems, Nebraska has
been successful in maintaining groundwater supplies. Elsewhere, regulation
has not prevented rapid declines in the aquifer. By the 1970s, the fact that
the Ogallala is a finite resource was widely recognized; in the mid 1980s, heads
of water conservation boards in Colorado and New Mexico stated that their
goal was to make this resource last for 25 —50 years. With this objective, it is
not surprising that the aquifer is being depleted rapidly. In Texas, regulation
largely consists of restrictions on the distance between wells and from wells to
property lines. Of the nearly 100 Texan groundwater conservation districts,
the Texas High Plains district was one of the first to limit the amount of water
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pumped. Their goal was to conserve half of the stock available in 2010 until
2060. A Texas Supreme Court 2012 opinion delayed the execution of this
ruling, questioning its legality on the basis that landowners have the same
property rights to the water beneath their land as to the oil and gas.
Kansas law allows conservation districts to limit water withdrawals, but

no such limitations were imposed from 2009—2014, despite falling water levels.
State offi cials claimed that mandating lower withdrawals would be heavy-
handed. Kansas law enables farmers to create groups that, with a two-thirds
vote, can restrict water withdrawals for all farmers in the area. This plan
reduces the transactions cost that arise when thousands of farmers over vast
expanses have to reach an agreement. Like the marketing orders described
in Chapter 9.3, it provides a possible remedy to a common action problem:
here, conserving water. Two years after Kansas made these associations legal,
only one group of 110 farmers formed such an agreement. Geological factors
add to the usual problems in getting a group with competing interests to
cooperate on a mutually beneficial plan. There is considerable geographical
variation in the aquifer’s lateral permeability. A successful farmer group must
include a large enough area to insure that little of the water saved by the
group migrates to parts of the aquifer below land owned by non-members.
Otherwise, the group’s conservation largely benefits non-members. Farmers
near the boundary of the group are likely to face increased movement of
water outside the group boundary. These geological factors complicate the
problem of managing water by means of voluntary groups.

17.3.2 A model of water economics

To examine the dynamic ineffi ciencies, we abstract from the complexities
associated with a particular aquifer. We also assume away the static ineffi -
ciency discussed in Section 17.2. For example, all of the users might have
the same marginal value of water and an equal allocation, so they have no
motivation to trade; alternatively, they may be allowed to trade amongst
themselves, so that in equilibrium they have the same marginal value. As
above, we denote the aggregate value of a given flow y as V (y).
The lessons learned from fishery economics, in particular the distinction

between open access and private ownership, are relevant in the water con-
text. In the fishery setting, absent regulation, open access (free entry) drives
equilibrium rent to zero. In the agricultural setting, only landholders can
pump water, creating a barrier to entry, and leading to the possibility of
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positive water rents even when water extraction is unregulated. However,
those rents are likely to be small: an individual landowner has little (selfish)
incentive to conserve the stock of water. Conservation reduces short run
profits; because the aquifer is porous, much of the saved water migrates to
neighbors’land, where others would use it in the future. Therefore, the out-
come under common property, with many users, is similar to the outcome
under open access.
We abstract from the fact that the aquifer is not perfectly porous, as-

suming that all users draw from a single stock of water. The model does not
describe the entire Ogallala aquifer, but it can describe a region below which
lateral movement of water occurs quickly, e.g. over a period of years, not
centuries. We refer to this region as the aquifer. Retaining notation from
previous chapters, we use xt to denote the stock of water in the aquifer at
the beginning of period t, and yt to denote the amount of water taken from
the aquifer in period t. The change in the stock is

xt+1 − xt = F (xt)− yt. (17.2)

If F (x) ≡ 0, we have the nonrenewable resource model of Chapter 5. For
F (x) 6= 0, we have the fishing model of Chapter 13. In simplest case, where
F (xt) = α, a constant, there is an exogenous flow of water into (if α > 0)
or out of (for α < 0) the aquifer. More generally, the amount of water
currently in the aquifer, xt, might affect current and future flows. If the
stock of water falls below a critical level, land above the aquifer may subside,
reducing the aquifer’s ability to store water. The flow also depends on xt if
our aquifer is part of a larger hydrologic system, and the stock of water in
neighboring parts of the system is exogenous; those stocks might be under
a different regulatory regime. The net flows to our aquifer depend on the
relative pressure in the different parts of the hydrologic system; the relative
pressure depends on xt and on the exogenous stock outside our aquifer.
The cost of extracting and transporting y units of water when the stock is

x equals (c0 − cx) y. For c > 0, a larger stock reduces these costs. Pumping
costs are lower when the water table is higher, corresponding to a larger stock
of water. There are two aspects of the externality associated with common
property aquifers: (i) Increased pumping reduces the stock of water, making
less available for other users in the future. (ii) The lower stock of water also
increases other farmers’future pumping costs. Scarcity and extraction costs
were important in our discussion of rent for both the nonrenewable resource
(Chapter 5) and the renewable resource (Chapter 15).
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Agents’incentives to extract water depends on the relation between the
marginal utility and marginal cost of water extraction, V ′ (y) and (c0 − cx).
An increase in V ′ (y) increases the incentive to extract, and a decrease in x
makes extraction more expensive, decreasing the incentive to extract. We
study extraction decisions under a social planner (perfect regulation) and
then under common property (no regulation). Extraction from aquifers lies
somewhere between these two extremes, but in many regions is closer to
common property.

The social planner

As in previous chapters, we denote the discount factor as ρ, and write the
present discounted value of the stream of water use, {y0, y1, y2, ....}, as

T∑
t=0

ρt [V (yt)− (c0 − cxt) yt] , (17.3)

where T is the last period during which extraction is positive. Depending
on the nature of regulation and the parameters of the model, extraction
might continue indefinitely (T = ∞) or end in finite time. We can use the
perturbation method (Appendix I) to write the Euler equation under a social
planner (first-best regulation) as

V ′ (yt)− (c0 − cxt) =

ρ

(V ′ (yt+t)− (c0 − cxt+t))
(

1 +
dF (xt+1)

dxt+1

)
︸ ︷︷ ︸+cyt+1

 . (17.4)

Equation 17.4 has the same interpretation as in the fishery setting. We
can perturb a candidate trajectory by extracting one more unit of water
in the current period, and making an offsetting change in the subsequent
period, so that xt+2, the stock in the next period, equals the level under the
candidate trajectory. If the candidate is optimal, the marginal gain from this
perturbation should exactly equal its marginal loss, so that the perturbation
has no (first order) effect on welfare.
The term on the left side of equation 17.4 is the marginal gain due to

extracting an additional unit of water in period t, the difference between
the marginal benefit and the marginal cost. In order to return the stock
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to the candidate level at t + 2, we must reduce extraction at t + 1 by the
under-bracketed term. (See Chapter 15.1.1.) Each reduction in next pe-
riod extraction reduces benefits by the single-underlined term. The reduced
benefit caused by the lower extraction at t + 1 equals the product of these
two terms. In addition, the lower stock at period t + 1 increases extraction
costs by the double-underlined term. Thus, the right side of equation 17.4
equals the present value of the marginal loss of the perturbation. The Euler
equation states that if the candidate is optimal, the marginal gain from a
perturbation must equal the marginal loss of the perturbation.
In previous chapters, where the single period payoff equals revenue mi-

nus costs, we defined rent as marginal revenue (= price for the compet-
itive firm) minus marginal cost. Here, the single period payoff equals
V (yt) − (c0 − cxt) yt, the current benefit minus the cost of extracting y; we
accordingly define water rent as marginal benefit minus marginal cost:

Rt = V ′ (yt)− (c0 − cxt) . (17.5)

Using equation 17.5, we simplify equation 17.4 to obtain

Rt = ρ

(
Rt+1

(
1 +

dF (xt+1)

dxt+1

)
+ cyt+1

)
. (17.6)

Regulation (potentially) leads to a high steady state stock only if the
planner cares enough about the future (has a high discount factor). A social
planner with a low discount factor might drive the stock to a low level, or
exhaust the aquifer. Figure 17.5 shows the steady state stock of water (solid)
and a multiple of the extraction (dashed), as a function of the discount factor,
ρ.5 A larger discount factor implies that the planner cares more about the
future, leading to a higher steady state stock of water. The extraction, y, in
contrast, is non-monotonic in the discount factor. For ρ < 0.93, the higher
stock corresponding to a higher discount factor makes it possible to extract
more in the steady state. However, for discount factors above ρ > 0.93, it is
necessary to decrease steady state extraction in order to maintain a higher
steady state stock. The planner with high ρ is willing to decrease extraction

5This example uses benefit = V = 10y − 1
2y
2, cost = (c0 − cx) y = (10− 5x) y, and

growth = F (x) = 1+0.1x
(
1− x

100

)
. This example has an exogenous (stock independent)

recharge rate α = 1. The dashed graph of extraction in Figure 17.5 shows 10 (y − 1), ten
times the water use in excess of the recharge, 1. Multiplying by 10 makes the scales of
extraction and stock similar.
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Figure 17.5: The steady state stock (solid) and 10 times the steady state
extraction from the aquifer steady state extraction, as a function of ρ

in order to increase the stock, because doing so lowers the cost of extraction.
For discount factors below about 0.4, both the the stock and extraction from
the aquifer are approximately 0 in the steady state. The steady state single
period payoff and rent both increase with the discount factor. For discount
factors below about 0.4, the planner cares so little for the future, that the
steady state rent and payoff are both negligible. The rent falls to 0 at ρ = 0.
We noted in Chapter 5 that with a nonrenewable resource, extraction

(and possibly also the stock) eventually approaches 0. In the renewable
resource context, we saw in Chapter 15.3 that it might be optimal to drive a
stock to extinction if the growth rate is small relative to the discount rate.6

For a slowly growing renewable resource such as groundwater, the growth
rate is very small. Thus, it might be optimal to eventually exhaust an
aquifer with a low recharge rate, even if the discount factor is quite large.
This caveat reveals a limitation of steady state analysis. The steady state
might be insensitive to the discount factor even if the extraction path and
welfare are very sensitive to it. By focusing exclusively on the steady state,
we might mistakenly conclude that the discount rate in not important to
the planning problem. For the same reason, we might mistakenly conclude
that the common property and sole owner (= social planner) outcomes are
similar, simply because their steady states are similar or the same. The steady

6Keep in mind the relation between the discount rate, r and the discount factor, ρ =
1
1+r . A small discount rate corresponds to a large discount factor.
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state may be less interesting than the path that takes us to the steady state,
particularly when the growth rate is very small. Exhaustion might occur in
50 years under common property, but in 200 years under the social planner.
The fact that the steady states are the same does not imply that welfare is
similar under the two trajectories.

Box 17.1 Uncertainty. We consider only the deterministic model.
Several sources of uncertainty, e.g. involving inflows, the function
F , and the level of x, are important, but including them greatly com-
plicates the model. One insight about the stochastic setting is readily
available. We emphasized that in a static setting, effi ciency requires
arbitrage over competing uses; in a dynamic setting, effi ciency re-
quires arbitrage over time. In the setting with uncertainty, effi ciency
requires “arbitrage over states of nature”. Consider the simplest set-
ting in which random inflows might be high or low, α ∈ {αH , αL}.
We speak of the two possible realizations, αH and αL, as “states of
nature”. “Arbitrage over states of nature”means that we adjust the
extraction decision depending on α; for example, we might decide to
use more water if inflows are high.

17.3.3 A common property game

We show how the outcome changes as we move from full regulation to com-
mon property with n ≥ 1 self-interested farmers. If n = 1, we have a sole
owner; for large n, the common property problem becomes severe. We use
a two-period example to identify the consequence of increasing n, and then
return to the dynamic water model.

A two-period game

For the two-period model, suppose that Farmer i obtains the benefit (net of
extraction cost) B (yi) from extracting yi in the first period. In the second
period, the remaining water, x1 = x0 −

∑n
j=1 y

j will be split equally among
the n farmers, and each will have the present value benefit ρW

(
x1

n

)
. (B and

W are concave functions, but otherwise unrestricted.) The social planner
wants to maximize the aggregate welfare of all farmers. This planner’s
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objective and first order conditions are

max
{y1,y2...yn}

(
n∑
j=1

B
(
yj
))

+ ρnW
(x1

n

)
⇒ B′

(
yi
)

= ρW ′
(x1

n

)
, i = 1, 2...n.

(17.7)
Farmer i’s objective and first order condition are

max
yi

B
(
yi
)

+ ρW
(x1

n

)
⇒ B′

(
yi
)

=
ρ

n
W ′
(x1

n

)
. (17.8)

The first order conditions for the individual farmer and the planner dif-
fer because the farmer weighs the next period marginal benefit, W ′, by ρ

n
,

whereas the planner weighs the next period marginal benefit by ρ. The
farmer knows that if she consumes one more unit of water in the first period,
her subsequent allocation will fall by 1

n
. She does not take into account

the fact that her additional first period consumption reduces the subsequent
allocation of the remaining n − 1 farmers. The planner, in contrast, takes
into account that by giving Farmer i an additional unit of water in the first
period, all farmers’subsequent allocation falls by 1

n
The marginal loss to all

of these farmers is nW ′ (x1

n

)
1
n

= W ′ (x1

n

)
.

This two-period example shows that in moving from the social planner
to common property with n farmers, it is as if the discount factor falls from
ρ to ρ

n
. The discount factor does not literally change: it is constant at ρ.

However, an agent attaches less value to conserving a resource stock when she
knows that other people will obtain some of the benefit of her conservation.

The dynamic game

The details are more complicated in the multiperiod setting, but the same ba-
sic idea holds. Here, we need to compare the Euler equation under the social
planner with the Euler equation for an individual farmer in a noncooperative
Nash equilibrium. This comparison identifies the two externalities that lead
to excessive extraction in the common property game: the “cost externality”
and the “scarcity externality”. Both the cost and the scarcity externalities
lead to higher extraction and lower welfare under common property, com-
pared to under the sole owner or social planner. In a Nash equilibrium,
the actions of individual farmers are individually effi cient, but collectively
ineffi cient.
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The cost externality arises because in making her own current extraction
decision, the individual farmer does not take into account that the lower fu-
ture stock caused by her extra unit of extraction at t, raises future extraction
costs for all of her neighbors. She only takes into account the effect of her
extraction on her own future costs.
The scarcity externality arises because the individual farmer understands

that her neighbors will likely condition their future extraction decisions on
the future stock. A lower future stock increases neighbors’extraction costs
and also makes the resource more scarce. Both of these features lower the
neighbors’incentive to extract. Therefore, an individual farmer understands
that by extracting an extra unit today, her neighbors will (likely) reduce their
future extraction. Under the sole owner (or social planner), an additional
unit of extraction today takes that unit away from the owner/planner in the
future. In contrast, under common property, extraction of an additional unit
by an individual farmer today, takes only part of that unit away from that
farmer in the future; it also takes part of that unit away from her neighbors.
The neighbors’losses are external to the individual farmer’s decision problem.
Appendix K provides details of this game.

17.4 External trade under common property

Our assumption that farmers within the aquifer are identical eliminates any
incentive that they have to trade amongst themselves. However, it leaves
the possibility that they might want to trade with water users outside their
aquifer. If that trade is allowed, it would occur whenever rent differs across
the two regions. A water market that allows northern states to ship wa-
ter to Texas would increase V ′ (y) from the exporting regions; the water
extracted in those regions now has a more profitable use: exports. Trade
therefore would tend to increase pumping from parts of the Ogallala aquifer
where stocks remain high. In the absence of other market failures, this inter-
state market increases social surplus, because it transfers water from a region
where the value of marginal product of water is low, to one where it is high.
However, the common property problem means that pumping is already too
high. The creation of the interstate water market reduces one distortion
(the spatial difference in the value of marginal productivity of water) at the
cost of worsening another distortion (excessive pumping from the aquifer).
If the second distortion is more serious, as is likely the case with the Ogallala
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aquifer, the water market reduces welfare. (Recall the Theory of the Second
Best, Chapter 9.)
This trade-related concern is even more important in the international

context. The Theory of Comparative Advantage explains why trade is mu-
tually beneficial for countries with different relative production costs.7 This
theory assumes a first-best setting, e.g. the absence of common property dis-
tortions. Many resource-rich countries, particularly, developing countries,
have weak property rights for natural resources. Their resource abundance
and weak property rights both contribute to low domestic resource prices
(e.g., cheap water or forest products). When they open up to international
trade, their low domestic prices make them an attractive source for foreign
buyers, resulting in exports of natural resources or of commodities that use
natural resources for production.
To the extent that these countries’ low domestic resource prices derive

from resource abundance, they have a “real”comparative advantage in the
resource sector, and international trade tends to increase their welfare. How-
ever, to the extent that their low domestic price derives from weak property
rights (leading to excessive extraction) they have an “apparent”but not a
real comparative advantage. In that situation, trade exacerbates a market
failure and possibly reduces their welfare. The market does not care about,
and cannot distinguish between, real and apparent comparative advantage.
Trade in mammals for which there are weak or nonexistent property rights

is likely to harm resource stocks. Examples include seals, beaver, the Arctic
Bowhead whale, buffalo, elephants, and rhinos. The trade-resource nexus
is equally or more important for forests, fish stocks, and water supplies.
There, identifying the impact of trade is particularly diffi cult, because in
many cases trade liberalization and migration (or population increases) occur
during the same period. Lack of data makes it hard to separate the effects,
on resource extraction, of these confounding factors. Consequently, most of
the empirical literature on natural resources and trade relies on case studies,
not econometric methods. It would be impractical to obtain a large random
sample of cases. Instead, cases are chosen because they are likely to exhibit
an important trade-resource connection. The fact that many of these studies
finds such a connection, does not imply that it exists in general. This
limitation occurs because of the non-random selection of cases, and is endemic

7This theory states that trade increases aggregate welfare in a country. Trade typically
harms some agents in some countries.
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to the case study approach.
It is nevertheless worth noting that many case studies find that trade

aggravates resource degradation. In some situations, e.g. in Argentina and
Senegal, trade and investment liberalization contributed directly to overhar-
vesting of fish stocks. Here, an additional distortion, EU subsidies to EU
fleets, compounded the problem of weak domestic property rights. Other
examples show why there is not a simple relation between trade and resource
use. An EU policy to stimulate livestock production in Ile de la Reunion
led to a temporary surge in maize exports from Madagascar, accelerating
deforestation; however, previous import restrictions in Madagascar, aimed
at increasing domestic production of food, led to even greater deforestation.
In regions of China and Vietnam, shrimp farming for the export market
contributed to the decline of mangroves. EU biofuel policy contributed to
deforestation (to develop palm oil plantations) in Southeast Asia, eliciting
calls for EU policy changes and subsequent complaints of unfair practices to
the WTO, by palm oil producers. Trade has complicated effects on natural
resources, sometimes benefitting and sometimes harming them. All of these
examples involve developing countries. Rich countries face similar, but less
pronounced problems. For example, Canada has restricted water exports
to the US out of concern that the increased demand would harm Canadian
stocks.
Institutions typically adjust more slowly than markets. Extraction rules

under common property might have adapted, over a long period of time, to
a particular market regime. The rules may be adequate to protect a natural
resource, even without formal property rights, when demand is small and
relatively constant and local societies are stable. The development-induced
migration or the higher demand resulting from trade liberalization might
overwhelm existing institutions.
Trade can change incentives to protect natural resources, eventually al-

tering common property rules, or leading to government regulation, or to the
creation of property rights. In our water model, trade increases the value
of water to landowners above the aquifer, increasing both the incentive to
pump it, and also increasing the incentive to protect the aquifer as a means of
generating future sales. Either of these forces may dominate; the trade might
make the resource so valuable that the property owners (or the government)
begin to protect the resource, moving away from common property towards
socially optimal extraction. These changes require an intentional political
response; they do not arise from the magic of the self-governing market.
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17.5 Summary and discussion

Water, like many other resources, is often ineffi ciently priced. We consume
water as a “bundle”, consisting of the physical commodity and its location in
time and space. If the user price of water includes only the cost of provision
(pumping and transportation), and ignores water rents, users pay for only
part of the bundle; the resource price is effectively set to zero. (Rent is the
resource price.) This under-pricing leads to excessive consumption. In many
places, users do not pay the full infrastructure costs of provision, associated
with building dams or aqueducts. There, the pricing ineffi ciency is even more
severe.
Often ineffi cient pricing arises from incomplete property rights. People

might have the right to a particular flow of a resource, but not be allowed
to trade it. This prohibition prevents the resource from being used where
its marginal value is highest. In many places, land ownership gives people
the right to pump from a common property aquifer, or use some other stock
of water, leading to excessively fast extraction. Here, resource use is not
arbitraged over time, leading to a dynamic loss in effi ciency. The common
property problem arises because property rights to land give people access
to groundwater, but not ownership of it. The fact that water stocks migrate
across the aquifer would make it diffi cult to assign and enforce such property
rights, even if there was the political will to create the rights. Scarcity and
future pumping costs, the two sources of rent, are also the two important
sources of externality. A farmer’s increased pumping raises her neighbors’
future pumping costs, and also leaves less in the aquifer for them to use.
The Theory of Second Best is important in water economics, as in other

fields of resource economics. Market failures that appear incidental to the
problem at hand, might make reform more urgent, or might militate against
reform. Crop subsidies create ineffi ciencies, attracting factors of production
(land, labor, water) to the subsidized crop and away from more effi cient uses.
A water price below the effi cient level (a water subsidy) compounds the dis-
tortion created by the output subsidy: both attract inputs to the subsidized
sector. The water subsidy creates an additional distortion, encouraging the
use of water at the expense of other inputs. The crop subsidies tend to
magnify the welfare cost of the water distortion (Chapter 9.5).
This chapter illustrates the broader relevance of the tools and the policy

questions discussed earlier in the book. To emphasize this generality, we
close by noting that the insights obtained from studying common property
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dynamic resource problems with fish and water, can be applied to forests,
the atmosphere, and to other resources. Forests in developed countries are
privately or publicly owned. In contrast, forests in many developing countries
are de facto common property. Weak institutions in parts of Indonesia and
Brazil (as elsewhere) enable people to clear forests for their private benefit.
Even where property rights are strong, owners do not internalize all of the
benefits created by the stock of forests, e.g. biodiversity and carbon seques-
tration. In this case, private land-clearing and timber harvesting decisions
are not socially optimal. (Chapter 15.2.2 contains a related example in the
fishery context.) Under common property, extraction decisions have even
less regard for these externalities.

The market failure is worse for the atmosphere, for which there are no
property rights. Individuals have no (selfish) incentive to restrict their green-
house gas emissions, leading to dangerous buildup of greenhouse gas stocks.
It is not even sensible to think of assigning individual property rights to the
atmosphere. Internalization of the externality requires regulation.

All of these resources (fish, water, forests, the atmosphere) involve stock
variables. Our collective actions change these stocks. For all of these re-
sources, there are weak and sometimes non-existent property rights, and
important externalities. Optimal management of these resources under the
fiction of a social planner creates a benchmark. By comparing this bench-
mark to the common property or open access outcomes, we learn something
about the policies or institutional changes needed to induce society to use
resources more effi ciently.

17.6 Terms, study questions, and exercises

Terms and concepts

Aquifer, consumptive and nonconsumptive uses, water as a “bundle”, prior
appropriation, block rates, dynamic strategic substitutes, Theory of Com-
parative Advantage
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Study questions

Exercises

1. Suppose that consumer demand is 10 − q and the municipality’s con-
stant average cost of providing water is C. (a) If the municipality prices
water at its constant cost, how much water is consumed, and what is
the level of consumer surplus (both functions of C). (b) Suppose that
optimal management, rent is R, so the social cost of providing water
is C + R. What is the optimal level of consumption (a function of C
and R). (c) If the municipality can charge only a single price, what
price must it charge in order to induce consumers to buy the optimal
amount of water? What is the resulting level of consumer surplus.
(d) Now suppose that the municipality can charge block rates, and it
chooses these rates in order to induce the optimal level of consumption,
and also to break even. What is the level of consumer surplus in this
situation?

2. Use the perturbation method to derive the social planner’s Euler equa-
tion 17.4.

3. Using the equilibrium conditions in the two period common property
game in Chapter 17.3.3, show that the symmetric Nash equilibrium
approaches the open access equilibrium as n→∞.

4. Using the Euler equation in the dynamic common property game in
Chapter 17.3.3, show that the symmetric (Markov perfect) Nash equi-
librium approaches the open access equilibrium as n→∞.

Sources

The Intelligence Community Assessment (2012) provides the quoted statistics
on water availability and use, and describes likely consequences of future
water problems.
Schoelgold and Zilberman (2007) provide a recent survey of water eco-

nomics.
R Howitt (1994) provides an empirical analysis of water market institu-

tions.
Baerenklau et al (2015) provide empirical results on the effect of water

block pricing in Riverside California.
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Schwartzmay (2015) compares water use in Santa Fe, New Mexico, and
Fresno, California.
Chong and Sunding (2006) review water markets.
Kassler (2015) reports the California Supreme Court ruling involving

tiered water rates.
Nair (2014) describes the causes of the drought in Isfahan, Iran.
Acciavatti (2015) describes the water crisis Uttar Pradesh, India.
Papers in the 2014 Special Collection inWater Resources Research, edited

by Krause et al. (2014), study the dynamics of the aquifer-surface water
interface.
The USDANatural Resources Conservation Service website (http://www.nrcs.usda.gov/)

describes the Ogallala Aquifer and the problems it faces.
J Braxton (2009) provides an overview of the Ogallala Aquifer.
McGuire (2007) summarizes changes in water levels in the Ogallala Aquifer.
Stewarda et al. (2013) projects water availability over the Ogallalal

Aquifer for the next 100 years.
Galbraith (2012) reports on the dispute over the Texas High Plains Under-

ground Water Conservation District rule to restrict groundwater pumping.
Reisner (1986), an engaging history of the water in western states of the

U.S., describes the water extraction plans promoted by commissioners of
state water conservation boards in the early 1980s.
Dillon (2014) describes the attempt to form farmer-directed conservation

groups in Kansas.
Chichilniski (1994) is is among the first paper discussing the role of trade

when resource-rich countries have weak property rights.
Copeland and Taylor (2009) provides a model of endogenous property

rights under trade; these authors (jointly with J Brander) have made many
contributions to this literature.
The summary in Chapter 17.4 is adapted from Karp and Rezai (2015),

which discusses endogenous property rights in an overlapping generations
framework.
Bulte and Barbier (2011) review applications of the Theory of the Second

Best in the trade and resources setting.



Chapter 18

Sustainability

Objectives

• Understand the economic definition and measurement of sustainability.

Skills

• Know the meaning of strong and weak sustainability.

• Understand the meaning and the application of the Hartwick Rule.

• Understand the use of “green national accounts”and other indices of
sustainability.

Sustainable development “meets the needs of the present without compro-
mising the ability of future generations to meet their own needs”(Our Com-
mon Future, 1987). People born in the future are not responsible for, and
cannot insure themselves against, our actions. The view that self-interested
actions are unethical if they harm people who are blameless, and who cannot
protect themselves against those actions, provides a moral foundation for
the sustainability criterion.1 Although the idea of sustainability is straight-
forward, its measurement is not. A path is sustainable if the stocks of
productive assets that we leave our successors are, in their totality, at least

1“Brute luck” is the outcome of an involuntary and uninsurable lottery; “luck egali-
tarians”consider it morally wrong to disadvantage others as a consequence of brute luck.
One’s date of birth is a matter of brute luck, so luck egalitarians consider actions that
harm people born in the future unethical.
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as great as the stocks that we inherited. These stocks include produced capi-
tal (machines, infrastructure), knowledge capital, human capital, and natural
resources. The natural capital stocks include inputs for which markets exist,
such as oil, copper, fish, and timber, and stocks for which markets are limited
or absent, such as biodiversity and a resilient climate.
It is hard to determine whether we are on a sustainable path because it is

diffi cult to measure the changes in these stocks and it is hard to price these
changes. Although both of these impediments are important, the second is
probably the most serious. Without prices, we cannot evaluate the change in
social wealth. A person who inherits money, land, and art, and bequeaths an
equal or greater quantity (or value) of each to the next generation, has clearly
left more to the future than they inherited.2 However, if some components
are greater and others lower, we need the prices of land and of art to know
whether the bequest exceeds the inheritance.
We have observed rising living standards during most of the past two

centuries. Rising standards do not imply sustainability, because society may
be living off its capital. The stocks of produced capital, knowledge capital,
and human capital have risen over the last two centuries, but many stocks
of natural capital have fallen (Chapter 1). Society may be in the position
of the person who leaves her successors more money but less art.
This chapter provides an introduction and survey of attempts to deter-

mine whether our path of development is sustainable. We begin by explain-
ing the concepts of weak and strong sustainability. Using the example above,
the criterion of strong sustainability asserts that art cannot be measured in
units of money. A bequest satisfies strong sustainability (for this example) if
and only if both the bequest of money + (price of land) × (amount of land)
and of the stock of art left to the next generation is at least as great as the
amount that the first person inherited. If either stock has fallen, the bequest
fails the test of strong sustainability.. The criterion of weak sustainability
insists that art must have a price (= monetary unit value), even if we cannot
measure it precisely. That criterion directs us to estimate this price, and
then to determine whether wealth has increased or decreased based on the
change in the money-equivalent of the sum of the components of wealth.

2It would not make sense to merely count the number of pieces of art. We need some
way of assessing the individual values in order to add them up and thus determine the value
of the collection. The diffi culty of assessing the value of the art collection is analogous to
the diffi culty of assessing the value of our bequest of natural capital.
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We describe and assess the “Hartwick Rule”, which prescribes the amount
of savings needed to maintain a sustainable path, using the criterion of weak
sustainability. The next section describes how economists have attempted to
measure changes in wealth. One approach “greens”Gross National Product
to take into account changes in a small number of natural resource stocks
omitted in standard national accounts. A second approach looks for radically
different measures of sustainability, in some cases using the “green”GDP as
one of several elements in an index of sustainability; other measures discard
GDP and focus exclusively on changes in natural resources.

18.1 Weak and strong sustainability

Objectives and skills

• Know the meaning, and the strengths and limitations of the concepts
of strong and weak sustainability.

• Understand the meaning of the Hartwick Rule, and its relation to weak
sustainability.

• Understand why a sustainable path exists only if the resource is “not
too important”to production.

Strong sustainability requires that capital stocks, including stocks of nat-
ural capital, not fall below current levels. Weak sustainability requires that
future utility levels do not fall below the current level. These two concepts
address different aspects of the sustainability question. The criterion of
strong sustainability is conceptually simple, but neglects the possibility of
substituting one type of good for another, both in the production process
and in consumption. Weak sustainability allows any type of substitution
possibility; implementing this criterion requires making specific assumption
about substitutability. Both concepts require measure of changes in stocks
of natural capital. We have estimates of stocks of resources for which there
are markets. Stocks of other resources, or aggregations of those stocks, such
as biodiversity, are important, but extremely hard to measure.
The concept of strong sustainability not only ignores the possibility of

substitution, but in the case of nonrenewable resources, it sets an impossible
standard. We cannot, for example, consume oil while also keeping the stock
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of oil from falling. Why should we even want to do so? Higher stocks of
produced capital, technology, and human capital, which require current oil
consumption, might reduce and eventually eliminate our dependence on oil.
In the case of renewable resources, strong sustainability might be feasible,
but because of opportunities for substitution, not be a sensible objective.
Farmland is a renewable resource; we can use it without depleting its stock.
If our concern is with agricultural production, not farmland per se, then
technological improvements that increase yield make it possible to increase
production and also convert some farmland to other uses. That conversion
violates the strong sustainability criterion, but might be in society’s interest.
The concept of weak sustainability uses production functions and a utility

function to aggregate all goods and services into something we call utility.
Utility can depend on material goods, such as TV sets, services created by
natural resources (e.g. hiking and fishing opportunities), and even on the
existence of (rather than the use of) natural resources. By choosing the pro-
duction and utility functions, we can impose any degree of substitutability;
these function choices are often driven by mathematical convenience.
An additional dollar of income contributes to people’s utility by enabling

them to buy more goods. The additional utility produced by one more
dollar of income is the marginal utility of income. The ratio of the marginal
utility of the resource based good to the marginal utility of income provides
a measure of people’s willingness to substitute between market-based goods
and resource-based goods. The units of marginal utility of income are utility

dollars ,
and the units of the marginal utility of a resource good are utility

resource good . The
units of the ratio of these two ratios are

utility
resource good

utility
dollars

=
dollars

resource good
,

the dollar equivalent of the marginal utility of the resource good.
Travel cost models and contingent valuation surveys provide ways of es-

timating this ratio. Travel cost models use data on the amount of time and
money people spend in reaching places where they can (for example) fish or
hike, to estimate the implicit price they pay for those recreational opportu-
nities. Those implicit prices, together with data on how often people go
fishing or hiking, can be used to construct the value to them, and thus to
society, of a marginal change in recreational opportunities. These models are
diffi cult to estimate and they involve assumptions that cannot be tested. In
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addition, natural capital typically has value beyond the recreational services
it provides, so at best these models can measure one component of the value
of natural capital. Contingent valuation surveys ask people how much they
would be willing to spend (e.g. in the form of higher taxes) to achieve a par-
ticular environmental outcome. These methods provide information about
people’s willingness to substitute income for (typically small) changes in nat-
ural resources. They provide limited information about our willingness to
make non-marginal substitutions across goods/services associated with nat-
ural capital versus produced capital.
Some sustainability measures use a hybrid of the weak and strong con-

cepts. For example, the Ecological Footprint (EF) measures the number of
hectares, of average productivity, it takes to sustain a population of a given
size at current levels of consumption. In aggregating all natural capital
into a “hectare equivalent”, the measure implicitly assumes perfect substi-
tutability across the different types of natural capital; in this respect, EF
uses a concept similar to weak sustainability. However, the measure does
not include produced capital or technology, implicitly assuming zero substi-
tutability between natural and produced capital; in this respect, EF uses a
concept similar to strong sustainability.

18.1.1 Weak sustainability

Weak sustainability accommodates nonrenewable resources, where stocks fall
while extraction is positive, and also takes into account substitutability across
goods and services. We address two questions about (weak) sustainability:
(i) What investment policy leads to a sustainable path? (ii) When is a sus-
tainable path feasible? Our model assumes constant population and a single
“composite commodity”, i.e. a single consumption good. The compos-
ite commodity assumption means that we cannot discuss substitution across
goods in consumption, but it enables us to address substitution across inputs
to production. The two inputs are the stock of man-made capital, K (t) and
a resource flow (e.g. oil, or more generally, energy produced using nonre-
newable resources), E (t). These inputs produce the composite commodity,
Y (t) = F (K (t) , E (t)) under the following assumptions:

(i) F (·) is constant returns to scale inK,L: doubling both inputs
doubles output.
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(ii) Both inputs are necessary to production: output equals 0 if
either input is 0.

(iii) Man-made capital, K, does not depreciate.

(iv) The constant average cost of extracting the resource is c.

By choice of units, we can set the price of the composite commodity equal
to 1, making it possible to interpret Y as both the physical amount of the
commodity, and the value of the commodity (= income). Therefore, ∂F

∂K

represents both the marginal product of capital and the value of marginal
product of capital. We denote p (t) as the price of a unit of energy, and r (t)
as the rental rate for capital. The competitive equilibrium conditions require
that the price of an input equals its value of marginal product:

∂F (K (t) , E (t))

∂K
= r (t) and

∂F (K (t) , E (t))

∂E
= p (t) . (18.1)

The assumption of constant extraction costs implies that the resource
rent at time t equals p (t)− c. The Hotelling rule for competitive extraction
of a nonrenewable resource with constant extraction costs states that rent
rises at the rate of interest, r (t) (cf. equation 5.9). In the continuous time
setting adopted here, this rule is

Hotelling Rule: r(t) =
d(p(t)−c)

dt

p (t)− c. (18.2)

The stock of capital (K) and the resource stock (x) evolve according to:

Definitions:
dK

dt
= I and

dx

dt
= −E.

One unit of investment, I (t), adds one unit to man-made capital. One unit
of energy, E, reduces the resource stock by one unit.

18.1.2 The Hartwick Rule

A sustainable consumption path requires that utility remain constant; be-
cause utility depends only on consumption (in this simple model), a sustain-
able consumption path requires a constant level of consumption. If indeed
a sustainable consumption path exists, the “Hartwick Rule”states that this
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path requires that society invest (rather than consume), at each point in
time, the resource rents. Using dK

dt
= I and the definition of resource rent,

the rule is (Appendix L.1):

Hartwick Rule: I(t) = (p (t)− c)E (t) . (18.3)

The Hartwick Rule has an intuitive explanation. If there were a single
factor of production, e.g. a single capital stock, then it would be obvious
that maintaining a constant level of consumption (and thus utility), requires
maintaining a constant capital stock. Our model, however, has two factors
of production, capital and the resource input. Moreover, it is not feasible
to maintain a constant positive level of resource extraction, because doing
so would eventually exhaust the resource stock. After exhaustion occurs,
extraction drops to 0, at which time output and consumption also equal 0.
However, by building up the stock of man-made capital, K, society may be
able to decrease resource use over time, approaching (but never reaching) zero
resource use. The resource stock falls, but it is not exhausted in finite time.
Under the assumption that it is possible to achieve this delicate balancing
act, the Hartwick Rule explains how it is done: by investing resource rents
in man-made capital.

18.1.3 Existence of a sustainable path

When is it possible to maintain a constant consumption trajectory? For
the special case where the production function is Cobb Douglas, F (K,E) =
K1−αEα, with 0 < α < 1, the answer can be illustrated geometrically. The
parameter α equals the revenue of the resource sector, pE, as a share of the
value of output, F (K,E): α = pE

F
. A smaller value of α means that the

resource sector contributes a smaller fraction of value added to the economy.
A sustainable trajectory is feasible if and only if α < 0.5; this inequality
states that the resource is not “too important”in production.
With Cobb Douglas technology and the Hartwick Rule, consumption

equals the fraction 1−α of output; remaining income is invested or pays for
extraction. Here, constant consumption requires constant income. This fact
means that the question can be rephrased as “When is it feasible to maintain
constant income?” To answer this question, pick an arbitrary positive level
of income, Y . With Cobb Douglas technology, we can rewrite the relation
Y = K1−αEα to express E as a function of Y , K, and α: E = (Y Kα−1)

1
α .
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Figure 18.1: Isoquants for two values of α, with Y = 1. Given initial stock
K = 0.7, the area under each isoquant, to the right of 0.7, equals the size of
the initial resource stock needed to maintain constant output Y when society
follows the Hartwick Rule. Area = 2.4 for α = 0.4 and area is infinite for
α ≥ 0.5.

The curve showing E as a function of K, for a particular value of Y , is an
isoquant: the combination of E and K needed to produce Y .
Figure 18.1 shows the graphs of two isoquants, corresponding to α = 0.4

and α = 0.6, for Y = 1.3 The α = 0.4 isoquant lies above the α = 0.6
isoquant for small levels of K, but crosses it and falls more steeply toward
0 as K increases. This relation shows that for large capital stocks, the
technology corresponding to α = 0.4 requires less more of the resource input
(compared to the technology with α = 0.6) in order to produce Y = 1.
We can check whether it is feasible to maintain a constant stream of

income. With constant income, savings remain positive, so the capital stock
continues to grow. Thus, the capital stock becomes infinitely large over
time, as resource use (along with the resource stock) falls asymptotically to
0. Given an initial value of the capital stock, constant output requires that
the production point “slide down the isoquant”. Over time, with increasing
capital stock, resource use falls, but Figure 18.1 shows that it falls much
faster the smaller is α.

3Setting Y = 1 is not important to this discussion. With constant returns to scale, the
isoquant for any positive value of Y merely scales up or down the isoquant corresponding
to Y = 1.
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Suppose that the initial capital stock is K = 0.7 (the location of the
vertical line in Figure 18.1). The area under the isoquant, from K = 0.7
to K = ∞, equals the initial resource stock needed to maintain a constant
level Y = 1 of output (and therefore a constant level of consumption) when
society follows the Hartwick Rule. For α = 0.4 and K = 0.7, society needs
to begin with 2.4 units of the resource in order to sustain a constant Y = 1.
For any α ≥ 0.5, society would need an infinitely large initial resource stock
in order to maintain the constant level of output. Therefore, the constant
output trajectory Y = 1 (and indeed, any constant trajectory with Y > 0)
is not feasible when α ≥ 0.5. Figure 18.1, makes it plausible that the area
under the isoquant is much smaller under α = 0.4 compared to α = 0.6,
simply because the curve falls so much more quickly if α = 0.4.
If α ≥ 0.5, it is not feasible to maintain in perpetuity any positive constant

level of output (or consumption). In this case, there is no sustainable plan.
If α < 0.5 and the initial capital stock is positive, it is possible to support a
positive sustainable consumption path, one that depends on the initial stocks
of capital and the resource, and on α.

18.1.4 Adjustments to the Hartwick Rule

We described the Hartwick Rule in the simplest setting, with a single man-
made stock of capital and a single stock of nonrenewable natural capital, and
restrictive assumptions about technology. The model shows that in some
circumstances, by investing natural resource rent into man-made capital,
i.e., transforming natural capital into man-made capital, it is possible for
society to sustain a constant level of consumption. In these circumstances, a
society that follows the Hartwick Rule can gradually use up resource, without
harming future generations. In other circumstances, it is not possible to
maintain forever any positive consumption level; resource constraints imply
that consumption must eventually fall to 0.
This model can be generalized by including depreciation of man-made

capital, renewable resources (fish, not just oil), and the inclusion of many
stocks of both man-made and natural capital. The generalization to many
stocks accommodates knowledge as well as physical capital. By investing
in knowledge capital (education, research and development), society changes
the technology, likely relaxing the resource constraint. Empirically, a higher
stage of economic development (greater wealth) is associated with a decrease
in the number of units of energy per unit of output; this negative correla-



344 CHAPTER 18. SUSTAINABILITY

tion between wealth and energy intensity is particularly strong for individual
countries, as they develop (Table 18.1).

Country 1971 1990 2000 2005 2010
United States 0.41 0.27 0.23 0.21 0.19
Germany 0.29 0.20 0.16 0.15 0.14
Japan 0.22 0.15 0.16 0.15 0.14
Korea 0.21 0.22 0.23 0.21 0.20
Brazil 0.17 0.14 0.15 0.15 0.15
China 0.88 0.47 0.22 0.21 0.19
World 0.32 0.26 0.22 0.21 0.19

Table 18.1: Total primary energy supply per unit GDP
Tones of oil equivalent per thousand 2000 US dollars using PPP4 (OECD

Factbook 2011- 12)

Endogenous technical change does not fundamentally alter the conclu-
sions discussed above, provided that production is constant returns to scale.
Increasing returns to scale at level of the economy can increase the possibility
of a sustainable level of utility (as considered above) and even of sustainable
growth. For example, if the production function is Y = NK1−αEα, where
N denotes knowledge capital, then doubling all inputs, N , K, E, leads to a
four-fold increase in output. In this setting, sustainable consumption may
be possible even if α > 0.5; whether it is actually possible depends on the
cost of increasing knowledge capital.
Even if sustainability is feasible, there is no presumption that society

actually follows a sustainable path. Current generations might want to
consume some of the resource rent, violating the Hartwick Rule and leading
to decreased consumption. Even if consumption remains constant for a
period of time, this level of consumption may be unsustainable if it includes
a portion of the resource rents or if a sustainable path is not feasible.
The model above involves a “closed economy”, one where there is no

trade. It is thus appropriate for describing the aggregate world economy:
our world currently cannot trade with any other world. The model is not
designed to describe an open economy, particularly one that is “small”(i.e.
a country whose trade does not affect the prices at which it exchanges goods
with other countries). To see how trade changes matters, consider a country

4PPP is purchasing power parity, a method of converting foreign currency to US dollars
based on prices of a reference bundle of commodities, instead of the offi cial exchange rate.
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that has no resource stock, and therefore must import E. Suppose that this
importer has the production function used above, Y = K1−αEα. Because
this importer has no resource stock, it earns zero rent. In this case, the
Hartwick Rule says “invest nothing”. If the import price of the resource
were constant, this rule would indeed lead to a sustainable consumption path.
The importer buys a constant amount of oil at a constant price, exports the
fraction α of its income = output in order to pay for resource imports, and
consumes the remaining fraction.

If the import price increases over time (as in the Hotelling model), the
importer must increase its capital stock in order to maintain a constant level
of consumption. The increase in capital stock requires investment, lowering
consumption. Because the importer with no resource stock has zero rent
regardless of whether it faces increasing import prices, the Hartwick Rule
instructs it to invest nothing. But if it invests nothing, its consumption
path falls over time, as the import price increases. In this open economy
that faces increasing import prices, the Hartwick Rule leads to a decreasing,
not a sustainable consumption path.

The case of a resource exporter is the mirror image. For example, Nigeria
obtains most of its foreign revenue from oil exports and has little influence on
the world price of oil. Increases in oil prices increase the value of its resource
stock, thereby increasing Nigeria’s wealth, making it possible for Nigeria to
maintain a sustainable consumption path while also consuming some of its
current rent. In this case, the Hartwick Rule instructs the economy to
consume too little (for the purpose of maintaining constant consumption).
The Hartwick Rule pertains to a closed economy, so it requires modification
if used for an open economy.

18.2 Welfare measures

We would like to know whether future generations will be better or worse off
than current generations. This comparison requires a measure of welfare.
We first describe how standard national accounts can be modified to take
into account resource depletion and other changes that affect sustainability.
We then consider alternative welfare measures.
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18.2.1 Greening the national accounts

Economists use Gross Domestic Product (GDP) or the closely related Gross
National Income (GNI) as measures of national wellbeing. (Box 18.1) To
simplify the discussion, we ignore foreign remittances and assume that trade
is balanced (value of imports = value of exports); here, GDP and GNI are
the same. In the simplest setting, net output (defined as output after re-
placing depreciated capital) depends only on the stock of capital, K: net
output equals F (K). Output can be used either for consumption, C, or net
investment, I, so GDP = F (K) = C + I.

Box 18.1 Measures of income. GDP and GNI measure economic activ-
ity within a country’s borders, and GNP measures economic activity
of the country’s residents.
GDP = consumption + investment + government spending + exports
- imports.
GNP = GDP + net income receipts from assets abroad minus income
of foreign nationals in the country.
GNI = GDP + payments into the country of foreign nationals’interest
and dividend receipts, minus similar payments out of the country.
Example 1: The output of an American owned factory in China con-
tributes to China’s GDP. Profits from this factory that are repatriated
to the US reduce China’s GNP and increase US GNP. Example 2:
Profits that a foreign national living in the US earns outside the US
and brings into the US, contributes to US GNI but not to US GDP.

Estimated adjusted net savings and population growth are inputs to es-
timates of changes in per capita wealth. The World Bank estimates that
almost half of the world’s countries have falling per capita wealth. Amongst
24 low income countries, and 32 Sub-Sahara African (SSA) countries, almost
90% having falling per capita wealth. (The annual increase in population in
SSA is about 2.7%, much lower than adjusted net savings.)
Wealth is a stock variable and income is a flow variable. Wealth and in-

come are highly correlated, but they are not the same thing. A rich person’s
primary source of income is often the return on their invested wealth. Their
income might fluctuate, even though their wealth remains high. Wealth
provides a better indication (compared to income) of a person’s future con-
sumption possibilities. GDP is better measure of income than wealth, but
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in some cases it is closely related to wealth. Suppose that the consump-
tion trajectory, C(t), is the equilibrium to a competitive economy, and that
the discount rate for consumption is the constant r. As above, production
depends only on capital, and output can be either consumed or invested.
We define society’s wealth, or welfare, as the present discounted value of the
stream of future consumption, W =

∫∞
t=0

e−rtC (t) dt. It can be shown that

rW (t) = C (t) + I (t) (= GDP (t)) . (18.4)

It is as if society, with wealthW , can invest in an asset that pays the return
r; society uses the return on the asset, rW , for the purpose of consumption
and net investment. Equation 18.4 helps to explain why GDP is a proxy for
wealth: in some cases they are related by a factor of proportionality, r.
The introduction of nonrenewable resources, or other stock variables, does

not change the basic idea, provided that these resources are priced effi ciently.
Effi cient pricing requires secure property rights and well-functioning markets
for the resource. In order to incorporate natural resources and maintain a
simple model, suppose that production depends on capital and on a single
nonrenewable resource, e.g. oil; suppose also that oil can be extracted cost-
lessly. When extraction of the resource is E, output is F (K,E) = C + I.
In a competitive equilibrium, we know from Chapter 5 that the price of this
resource, denoted p(t), rises at the rate of interest; moreover, the price equals
the resource rent, or the shadow value of the resource. In this setting, with
secure property rights and effi cient markets, the resource price is an accu-
rate measure of the value (both to the resource owner and to society) of an
additional unit of the resource stock. The reduction in society’s stock of
capital, due to the extraction of a unit of the resource is p (t)E (t). The
proper measure of “adjusted”GDP is therefore C (t) + I (t)− p (t)E (t), and
the measure of wealth becomes

rW ∗ (t) = C (t) + I (t)− p (t)E (t) . (18.5)

The problem arises when the resource price does not accurately reflect the
resource’s social opportunity cost, as occurs under open access or common
property (Chapters 14 and 17). The resource price might be zero, although
its social opportunity cost is positive. The atmosphere has limited ability to
assimilate CO2 without leading to costly climate change, so the social cost
of carbon is positive; but in most countries the price of carbon is zero. A
resource-intensive economy may be generating a high GDP by using up its
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resources. If we observe GDP (t) and we ignore the resource use (perhaps
because it is unpriced) our measure of the society’s wealth, using equation
18.4, is W = GDP

r
. Taking the natural resource into account, our measure

of wealth (using equation 18.5), is GDP−pE
r

. The percent correction, due to
properly taking into account resource use, is

C(t)+I(t)
r

− C(t)+I(t)−p(t)E(t)
r

C(t)+I(t)
r

100 =
p (t)E (t)

GDP (t)
100 (18.6)

The social value of resource use (p (t)E (t)), as a percent of GDP , gives
a measure of the welfare reduction due to resource use. For a resource-
based economy, failure to adjust GDP to account for resource depletion may
significantly overstate wealth.
The discussion above generalizes to the case of multiple stocks, including

renewable and nonrenewable resources and other productive assets such as
human capital. Some of these stocks might be growing over time; for exam-
ple, education or health care can improve the stock of human capital, and
conservation efforts can lead to higher stocks of renewable resources. The
correction to GDP needed to accurately measure society’s wealth, could be
positive or negative, depending on how stocks are changing, and on the value
of these changes.
Research during the past quarter century has attempted to “green the

national accounts” by including the value of changes in productive assets
that are not already incorporated into GDP . Estimating GDP requires
estimating the value of production of society’s goods and services, a daunting
measurement problem, but one that has been studied and refined over many
decades. Measuring the correction required by changing resource stocks is a
harder problem. Researchers have to decide which stocks to include in the
correction, then attempt to estimate the reduction in the stock and finally to
attribute a price to this stock. For resources with well-functioning markets,
such as oil and forestry products, the market price can be used to value the
change in stock. However, the correction is also important where property
rights and markets are weak or non-existent, requiring researchers to estimate
(often with little data) the prices used in the correction.
Table 18.2 shows World Bank estimates of savings, and adjusted savings,

for the world and for different regions. After accounting for depreciation
(“consumption of capital”), the World Bank estimates that the world saves
about 24.5− 13.6 = 10. 9% of GNI. Educational investments, which increase
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the stock of human capital, almost exactly offset the reductions due to re-
source depletion and pollution, so adjusted net savings are also close to 11%
for the world. Gross savings rates and consumption of capital in Sub-Sahara
Africa (SSA) are close to world levels. Investment in education is slightly
lower than world levels, but the correction for resource depletion and pollu-
tion damages is much higher, resulting in an estimated adjusted net savings
for SSA of 0.9%. Increases in population imply that per-capita wealth is
falling in these regions.

World EAP1 LAC2 MENA3 SSA4

Gross savings 24.5 47.6 19 25.9 26.3

(−)
Consumption
of fixed capital

13.6 12.0 12.2 9.9 13.0

(+)Educ. Expenditure 4.3 2.1 5.1 4.5 3.4
(−)Energy depletion 2.4 2.7 4.7 12.9 10.3
(−)Mineral depletion 0.6 1.4 1.2 0.5 1.8
(−)Net forest depletion 0.1 0.1 0.4 0.2 1.8
(−)CO2 damage 0.5 1.0 0.3 0.7 0.6

(−)
Particulate

emissions damage
0.6 1.6 0.8 0.9 1.2

Adjusted
net savings

11.1 30.0 4.5 5.3 0.9

Table 18.2 National accounting aggregates (savings, depletion and
degradation). All numbers are percent of Gross National Income. 1 East
Asia and Pacific; 2 Latin America and Caribbean; 3 Middle East and
North Africa; 4 Sub-Sahara Africa. Source: World Bank, Little Green

Data Book 2014.

18.2.2 Alternatives to adjusted national accounts

GDP or GNI include some components that do not belong in a measure of
welfare, and exclude some that do belong. Increased construction of prisons
and employment of prison guards might stimulate the economy, increasing
overall employment and GDP. If this increased activity is the result of stricter
laws for minor infractions, and if those laws contribute to social dysfunction,
the additional prisons and the guards do not represent an increase in social
welfare. GDPmeasures only market-based transactions. If a couple divorces
and one person begins paying for services that were previously unpaid, those
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payments (if recorded) show up as an increase in GDP. However, the change
likely does not represent a real increase in economic output, or welfare. GDP
statistics do not reflect inequality, which may reduce social cohesion, lowering
welfare. Higher levels of pollution or congestion likely decrease welfare, but
because these are typically unpriced, GDP does not capture them. Green
national accounts attempt to remedy this omission, but not the others.
A literal interpretation of strong sustainability is impractical, because it

would require a long list of stocks, many of which we have no hope of mea-
suring. Even if it were possible to measure the components of this list, it
would be too complex to understand, and therefore useless for policy guid-
ance. A useful welfare measure must present information in an intelligible
manner. The simplicity of national accounts such as GDP is an important
part of their appeal. Politicians routinely use changes in GDP as evidence
of their own or their rivals’economic (in)competence. An index combines
different pieces of information into a single number. GDP adds up the value
of goods and services in an economy. A green national account includes the
estimated value of unpriced (or mis-priced) goods and services. Because all
of these components are in the same units (e.g. dollars) it is sensible to add
them together. For indices that involve non-commensurable components,
merely summing the components is arbitrary.
The United Nations (UN) produces the Human Development Index (HDI),

a widely used index of welfare that includes measures of health, education,
and material wellbeing. The HDI aggregates these three components using
their geometric mean (the cube root of the product of the components). A
1% change in any of the components has the same effect on the geometric
(but not the arithmetic) mean. The geometric mean also implies less sub-
stitutability among the different components, compared to the arithmetic
mean. The UN also produces broader indices of well-being that include
factors such as measures of inequality, human security, and gender disparity.
Other indices include the Measure of Economic Welfare (MEW), Sustain-

able Measure of Economic Welfare (SMEW), Index of Sustainable Economic
Welfare (ISEW), the Genuine Progress Indicator (GPI), and Ecological Foot-
print (EF). MEW adds (to standard national accounts) the estimated value
of activities that contribute to welfare (e.g. leisure) and subtracts activi-
ties that do not (e.g. commuting). SMEW modifies MEW by taking into
account changes in wealth. ISEW and GPI deducts other costs, including
those related to pollution, the loss of wetlands, and CO2 damage. Over the
past quarter century, GDP has continued to grow, whereas alternatives such
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as the GPI and the HDI have been flat. Different measures of welfare lead
to different conclusions about sustainability.
The EF calculates the amount of “average quality”productive land needed

to support a population at current consumption levels. Our species’EF ex-
ceeded the earth’s carrying capacity by 25% in 2003. There are about 1.8
hectares of average quality land per person available globally; Europeans use
about 5 hectares per person, and North Americans use twice that amount.
The EF takes into account the forest area needed to absorb carbon emissions.
Changes in consumption levels or in production methods could alter our EF;
those sorts of changes caused Malthus’predictions to not (yet) occur. Cross
country differences in C02 emissions explain a large part of the cross country
differences in EF. Compared to its EF, a country’s carbon footprint proves
a more easily calculated and communicated measure of its resource use.

18.3 Summary

Economic development is sustainable if it meets current needs without sac-
rificing the ability of future generations to meet their needs. Attempts to
rigorously define and to measure sustainability rely on concepts of weak or
strong sustainability. The former recognizes substitutability in production
and consumption, and focuses on future utility levels. The later assumes
limited substitutability, and focuses on maintaining constant or increasing
levels of stocks.
A body of theory studies the decisions needed to achieve weak sustain-

ability. In a simple setting, weak sustainability requires that resource rents
be invested in man-made capital. This investment program transforms nat-
ural capital into man-made capital, achieving weak sustainability if and only
if natural capital is not “too important” in production. This conclusion
rests on many assumptions, but is intuitive: a constant or increasing stream
of future utility is feasible only if man-made capital provides an adequate
substitute for a dwindling supply of natural resources. Even if weak sustain-
ability is feasible, there is no reason to assume that society is on a sustainable
trajectory.
Attempts to measure sustainability have followed two principle avenues,

closely related to the concepts of weak and strong sustainability. The first
begins with the positive relation between wealth (a stock) and GDP (a flow).
Standard national accounts (e.g. GDP) measure the value (in dollars, or some
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other currency) of market-based economic activity. These statistics ignore
the value of changes in many natural resources and in other stocks, e.g. in
human capital. During the last quarter century, economists have attempted
to include the value of these kinds of changes, resulting in “green”national
accounts. Recent estimates show that many poor countries are not increasing
their stock of man-made plus natural capital fast enough to accommodate
population growth. By this measure, these countries appear not to be on a
(weakly) sustainable development path.
The second approach to measuring sustainability focuses on resource

stocks, not standard economic measures of income. There are many of these
measures; some rely on a single number, e.g. the amount of average quality
productive land needed to support a population, in perpetuity, at current
levels of income. This measure concludes that our development trajectory
is not sustainable, because the actual population exceeds the level that can
be supported by available land. Other measures create indices that aggre-
gate measures of health, education, material wellbeing, and sometimes other
components. These indices attempt to provide welfare measures, without
necessarily enquiring whether this level of welfare is sustainable.
The variety of measures of sustainability (or welfare) is testimony to the

diffi culty of the empirical question. At a suffi ciently abstract level, it is easy
enough to say what we think sustainability means (even if there is disagree-
ment on this point). However, even under a host of assumptions, it is not
easy to reach definitive conclusions about the sustainability of our develop-
ment path, i.e. whether future generations are likely to be richer or poorer
than the current generation. The large number of different sustainability and
welfare measures provide alternatives that focus on different aspects of the
same general question.

18.4 Terms and study questions

Terms and concepts

Weak and strong sustainability, travel cost models, contingent valuation,
composite commodity, constant returns to scale, Cobb Douglas production
function, national income accounting identity, Hartwick Rule, GDP, GNP,
GNI, Human Development Index, Ecological Footprint, geometric mean.
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Study questions

1. Explain the meaning of weak and strong sustainability; discuss some
of the advantages and disadvantages of both concepts.

2. State the Hartwick Rule and describe the question to which it provides
an answer.

3. Given the Cobb Douglas production function F (K,K) = K1−αEα,
state the condition under which a sustainable consumption path is fea-
sible, and provide an intuitive justification for this condition.

4. Using the simple model in this chapter, define GDP. When all inputs
are correctly priced, what is the relation between GDP and wealth (de-
fined as the present value of the stream of future consumption. Explain
the adjustments to GDP that must be made (in order to use GDP as
a measure of wealth) when production uses unpriced (or incorrectly
priced) natural resources.

5. Describe the adjustments to gross savings that World Bank makes, in
order to calculate "adjusted net savings". How do adjusted net savings
vary across countries at different income levels? What is the practical
significance of this relation?

6. Green National Accounts and the Ecological Footprint are two attempts
to shed light on the issue of sustainability. Briefly explain both of
these; your explanation should describe the relation between both of
these measures and the concepts of weak and strong sustainability.

Sources

The “Brundtland Report”Our Common future” (1987) set out a framework
for sustainability, relating economic development and environmental protec-
tion.
Roemer (2009) discusses the idea of brute luck and the school of luck

egalitarians.
Solow (1974b) and Hartwick (1977) introduced the Hartwick Rule.
Asheim et al. (2003) discuss some of the misconceptions that have arisen

related to this Rule. Mitra et al. (2013) summarize and extend results on
the issue of sustainability in resource markets.
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Table 18.1 is taken from the OECD Factbook 2011-2012.
Table 2 is based on the World Bank Little Green Data Book 2014.
Weitzman (1976b) demonstrates the relation between GDP and welfare.
Weitzman (1999) shows the effect on mineral depletion on welfare.
Hamilton (2002) provides estimates of changes in total and per capita

wealth.
Hartwick (2011) explains the relation between green national income and

green national product.
Wolff et al. (2011) identified systemic errors in the Human Development

Index.
Stiglitz et al. (2009) discuss the theory and the practicalities of measuring

economic performance and social progress. They describe the various indices
used to measure sustainability.
Kubiszewski et al. (2013) compare measures of sustainability.



Chapter 19

Valuing the future: discounting

Objectives

• Understand the role of discounting in evaluating a policy that has con-
sequences over long spans of time.

Skills

• Understand the basics of the model of discounted (expected) utility.

• Know the difference between discounting utility versus consumption,
and understand the “tyranny”of discounting.

• Understand how beliefs about future technology and future wealth af-
fect current policy.

• Understand the relation between impatience and discounting, and the
difference between intra- and inter-generational transfers.

Many environmental and resource issues, and climate change in partic-
ular, involve welfare trade-offs over long spans of time. How much should
society be willing to spend today to reduce the risk of future climate dam-
age? Climate scientists’consensus views provide the proper foundation for
evaluating climate policy. However, policy-based models require economic
assumptions and ethical judgements, along with climate science. Most of
these models use discounted utilitarianism. We describe this framework and
explain how it affects policy recommendations.

355
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Carbon taxes have been enacted or seriously considered in only a few
countries or regions (e.g. Sweden, and for a time, Australia). Despite its lack
of political traction, a carbon tax is useful both for describing policies that are
more widely used, and for recommending policies that should be used; these
are “positive” and “normative” applications, respectively. Many climate
policies that are actually used, including cap and trade, green subsidies, and
renewable fuel portfolio standards, can be expressed as a “tax equivalent”, a
tax that would yield (approximately) the same level of emissions reductions,
although usually at different economic cost. Most climate policy models
express their policy recommendation (a normative statement) by proposing
an optimal tax. A higher tax leads to lower carbon emissions, and thus
corresponds to a stricter policy.

The optimal carbon tax equals the “Social Cost of Carbon”(SCC), de-
fined as the present discounted value of the stream of additional costs arising
from an extra unit of atmospheric carbon. Chapter 2.5 provides a stylized
example of the SCC. An estimate of the SCC requires estimates of the effect
of current emissions on future climate variables (e.g. temperature and pre-
cipitation) and the link between those variables and economic costs. We use
discounting to transform this stream of future marginal costs into a single
number, the SCC. Every step of this calculation involves assumptions and
judgements. This chapter discusses the use of discounting to aggregate costs
across different periods. The material helps readers to evaluate discounting
assumptions and to understand how they influence model results.

The U.S. Environmental Protection Agency (EPA) uses the SCC in con-
ducting cost benefit analysis for policies that have significant effects on car-
bon emissions.1 In calculating adjusted net savings, the World Bank uses
the SCC to estimate the cost of increased atmospheric carbon (Table 18.2).
Thus, estimates of the optimal carbon tax are important for policy discus-
sions, despite the fact that carbon taxes are rarely used. Economic models
produce a wide range of recommendations for the optimal tax (the SCC),
from less than $10 to well over $100 per ton of carbon. We do not know
whether taxes in this range are too low, too high, or about right, but we can
understand and evaluate the assumptions that lead to these estimates.

1Most estimates of the SCC consider the cost to the world as a whole, not specifically
to the U.S., of an additional unit of atmospheric carbon. The EPA, a U.S. agency, uses
a global cost of carbon in assessing the cost/benefit ratio of a U.S. policy.
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We begin by explaining discounted utilitarianism. It is straightforward
to think of utility as an “ordinal”concept; a person may have no diffi culty
in ranking (“ordering”) two consumption bundles, such as a beer and a pizza
versus a movie and popcorn. Deciding that they like one bundle twice as
much as the other, or more generally assigning a number of “utils”to each
bundle, requires a “cardinal”measure. Policy models involving trade-offs
across people or across time use a cardinal measure, a utility function that
assigns a number of utils to a particular outcome.
A utilitarian evaluates social welfare by adding up the utility of society’s

members, assigning welfare uM + uJ to an allocation (e.g. of consumption)
that gives Mary and Jiangfeng utility levels uM and uJ , respectively. “Dis-
counted”utilitarianism often begins with the fiction of a representative agent
at each point in time, proceeding as if all currently living people are identi-
cal, or their preferences can be aggregated (“added up”) to enable a single
agent to represent them. The discounted utilitarian evaluates a stream of
utility by discounting utility at each point in time and then adding up the
discounted utility levels. Accounting for future uncertainty (“stochastics”),
including those related to economic growth and to climate change, requires
replacing discounted utility with discounted expected utility (DEU).
The use of discounted utilitarianism is a major reason that many economic

models support only modest climate policy. Discounting depends on techno-
logical optimism (“growth”) and impatience. Optimism takes several forms,
the most important being that technological change and increased accumu-
lation of (man-made) capital will make people in the future richer than those
currently alive. Consequently, climate policy should involve only modest
expenses, in order to avoid requiring the relatively poor current generations
to make sacrifices that benefit relatively rich future generations. In addition,
if future inventions will lower the cost of reducing carbon emissions, it makes
sense to delay emissions reductions until they become cheaper. Events of
the past two centuries support technological optimism, but provide a ques-
tionable basis for policy that might have major effects on our species.
Models that build in impatience for future utility tend to promote mod-

est climate policy. People dislike delaying gratification, even abstracting
from the uncertainty about whether they will live to enjoy the future. Be-
cause individuals appear to be impatient about their own future utility, some
modelers assume that the social planner who acts on their behalf should ex-
hibit the same kind of impatience. This view makes no distinction between
intra-personal transfers (from a young person to or from her older self) and
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intergenerational transfers (from someone currently alive to or from a person
who will live in the future).
The next section explains the difference between discounting utility and

discounting consumption. It shows the “tyranny”of discounting in influenc-
ing policy, and it illustrates the role of uncertainty. The following section
develops the idea of consumption discounting, explaining how characteristics
of preferences and of the economy determine the consumption discount rate
in a deterministic setting. We then explain how economists have introduced
uncertainty about growth. The final section takes up the role of impatience,
and the distinction between intra- and intergenerational transfers.

19.1 Discounting utility or consumption

Objectives and skills

• Understand the difference between discounting utility and discounting
consumption.

• Understand the sense in which discounting is “tyrannical”, and the
interaction between uncertainty and discounting.

Discounting utility is different than discounting consumption, but in ei-
ther case it can be “tyrannical”, inducing people today to (almost) ignore
the future. We show how a particular type of uncertainty interacts with dis-
counting. Throughout this discussion, we use a continuous time setting. For
example, if the discount rate under annual compounding is 5%, the discount
rate under continuous compounding is about 4.9% (Chapter 2.5).
The discount factor makes objects at different points in time compara-

ble. The logic of discounting is the same regardless of whether we apply
it to dollars or utility (or anything else), but the interpretation and the nu-
merical value of the discount rate may vary with the context. To keep this
distinction in mind, we use different symbols to represent discount rates ap-
plied to different objects. In this chapter only, ρ denotes the (continuously
compounded) discount rate for utility, and r denotes the discount rate for
consumption (measured in dollars). For constant values of ρ and r, the
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utility and the consumption discount factors are:

e−ρt =

{
utility discount

factor

}
=


number of units of utility a

person will sacrifice
today to obtain one additional

unit of utility at time t



e−rt =

{
consumption
discount factor

}
=


number of units of consumption ($)
a person will sacrifice today to
obtain one additional unit of

consumption at time t

 .
A higher discount rate corresponds to a lower discount factor. A lower dis-
count factor means that we value future utility or consumption less. Valuing
the future less means that we are willing to sacrifice less today to benefit the
future. A higher discount rate leads to a lower recommended carbon tax.

19.1.1 The tyranny of discounting

Even for near-term events, discount rates can have a significant effect on our
decisions. The example in Table 2.2, involving the levelized cost of electric-
ity, shows that for an investment with a maximum lifetime of 45 years, the
relation between the present value of two alternatives changes significantly
when the annual discount rate changes from 2% to 4%. Discounting can be
even more important when considering distant events.
The “tyranny” of discounting refers to the fact that, at non-negligible

discount rates, events in the distant future have almost no effect on current
decisions: the present discounted value of a cost, measured in either utility
or dollars, in the distant future can be very small, even if the absolute cost
in the future is very large. As a consequence, people today may not want
to incur even a small current cost to avoid a large future cost. The logic of
discounting “compels”us to essentially ignore the consequences of our actions
on people in the distant future. Here we emphasize utility discounting, so
the relevant discount rate is ρ, but the same logic applies to consumption
discounting. A larger value of ρ implies that the planner is more impatient
with regard to future utility: she is willing to give up less current utility in
order to obtain an extra unit of future utility.
Environmental policy provides a kind of insurance. A person who buys

standard insurance makes a fixed payment (the premium) that entitles her to
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a payout under certain contingencies. People can buy insurance against some
natural events, such as floods or earthquakes, but society as whole cannot
obtain insurance against a world-wide occurrence of climate change: there
is no cosmic insurer standing outside our world, able to make a contract
exchanging premiums for a payout in the event of a bad outcome. However,
society can decide to incur near-term costs, e.g. by replacing fossil fuels with
a more expensive alternative, to reduce the likelihood or the severity of future
climate-related damages. These policies are analogous to insurance because
they involve current costs (the “premium”) to mitigate the consequences of
unknown future events.
Climate-related damages associated with current emissions might not

arise for many decades, or even centuries, but if they do occur they are
likely to persist a long time. Our illustrative model incorporates both delay
and persistence. Suppose that in the absence of costly changes (e.g. moving
toward low-carbon energy) an “event”, such as the melting of the Western
Antarctic Ice Sheet (WAIS) will occur in 200 years, and will result in a loss of
100 units of utility in each subsequent period.2 Society can avoid this event
by paying, in perpetuity, a “premium”of z. The payment z is not literally
an insurance premium; it is the flow cost of taking actions that eliminate the
event, e.g. using expensive alternatives to carbon-based energy.
Figure 19.1 illustrates this scenario. The solid step function shows the

trajectory of utility if society does not pay the premium: utility falls by 100
units, from 150 to 50, at the event time t = 200. If society can avoid the loss
by paying a premium z = 13.5, the dashed line (constant at 150−13.5) shows
its utility trajectory. If, instead, society can eliminate this loss by paying a
premium of only z = 0.25, the dotted line (constant at 150 − 0.25) shows
its utility trajectory. The largest premium society would be willing to pay,
denoted Z, makes society indifferent between the trajectory shown by the
solid step function, and the trajectory with constant utility 150−Z. We can
compare these two trajectories by comparing the present discounted value
of costs under them. If society pays the premium ,z, in every period, the
present discounted value of the premium cost is

∫∞
0
ze−ρtdt = z

ρ
. If society

does not pay the premium, it incurs no cost until t = 200, and thereafter
occurs the cost 100 in every period, leading to a present discounted cost of∫∞

200
100e−ρtdt = e−200ρ 100

ρ
. The maximum premium that society would pay

2Such an “event”would actually occur over long periods of time, possibly centuries,
not at a single point in time, as in our model.
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Figure 19.1: Solid step function: the utility trajectory when the event occurs
at t = 200 and leads to a 100 unit drop in utility. Dashed and dotted lines
show the constant utility trajectory when society pays a premium (13.5 or
0.25) that eliminates the event.

equates these two costs: Z (ρ) is the solution to e−200ρ 100
ρ

= z
ρ
, so Z (ρ) =

e−200ρ100. Society is willing to pay any premium less than or equal to Z (ρ)
to avoid the loss beginning at t = 200.
The solid graph in Figure 19.2 shows this premium as a function of ρ,

for an event time T = 200, illustrating the tyranny of discounting. At a
discount rate of 1%, the maximum premium is about 13.5% of the loss, but at
a discount rate of 3% the premium falls to less than 0.25%. With discounting
at a non-negligible level, decisionmakers value the (finitely long) near future
vastly more than they value the (infinitely long) distant future. Here, society
has little incentive to incur even modest current costs, associated with climate
change policy, to avoid large future costs.

19.1.2 Uncertain timing

The example above assumes that the time of the event is certain. Random
timing likely increases the risk premium, because a deterministic model tends
to understate actual costs arising under uncertainty. If, for example, there
is a 50% chance that, in the absence of climate policy, the event will occur in
150 years, and a 50% chance that it will occur in 250 years, then the expected
time of occurrence, 200 years, equals the certain time in the example above.
The present value cost of the event is much greater if it occurs in 150 years,
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Figure 19.2: Maximum premium as a percent of the flow loss when certain
event time is T = 200 (solid) and when event time is exponentially distributed
with E (T ) = 200 (dashed).

and only slightly less if it occurs in 250 years, both relative to the present
value if it occurs in 200 years. Therefore, the expected cost (the probability-
weighted average of the two costs) is closer to the higher, earlier cost: the
expected costs in the stochastic scenario is greater than the known costs in
the deterministic scenario.3

The dashed graph in Figure 19.2 shows the maximum risk premium if the
time of the event is random (and exponentially distributed), with expected
event time T = 200 (so that the two graphs are comparable).4 Moving
from the deterministic to the stochastic setting increases the maximum risk
premium by a factor of 2.5 at ρ = 0.01, and by a factor of 57 at ρ =
0.03. Mistakenly treating the event time as deterministic, when in fact it
is stochastic, can lead to a moderately large underestimate of the amount
society should be willing to spend to avoid the event (the maximum risk
premium) at small discount rates (ρ = 0.01), and a very large underestimate
at higher discount rates (ρ = 0.03).
In the real world, stochasticity is important. We do not know if an event

such as the melting of the WAIS will happen sooner or later, or perhaps

3This result is a special case of “Jensen’s inequality”: if T is a random variable, and
Z (T ) is a convex function of T , then E (Z (T )) > Z (E (T )), where E (·) denotes “expec-
tation”. The present value, exp (−ρT ), is a convex function of T.

4If the probability that the event will occur over the next small unit of time, “dt”, given
that it has not yet occurred, is approximately h × dt, with h > 0 a constant, then the
event time is exponentially distributed; h is known as the “hazard rate”, and the expected
time of the event is 1

h . For Figure 19.2, h = 1
200 = 0.05.
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never (in a span relevant to human existence). If we ignore our uncertainty
about the time of the event, and instead merely replace the random time
by its expectation, we may vastly understate the amount that we should be
willing to spend to prevent the event from happening. There are many
other types of uncertainty. Our example assumes that the cost of the event
is known, but both the cost and the timing are uncertain. The example also
assumes that payment of the premium eliminates the possibility of the event.
However, at best, costly actions such as the reduction of emissions decrease
but do not eliminate the possibility of future climate events. The general
point is that using a deterministic model (one that ignores uncertainty) to
approximate a stochastic world can lead to large errors in formulating policy
prescriptions. Stochastic models have only recently become widely used in
climate economics.

Box 19.2 A different perspective on the tyranny of discounting. The
present discounted value of a perpetual annual loss of x, equals the
sum of the loss for the next 200 years (1−e−ρ200

ρ
x) and the loss for the

infinitely many years beginning 200 years from now (e
−ρ200

ρ
x). The

ratio of these two losses, e−ρ200

1−e−ρ200 , equals the value, to the decision-
maker today, of the infinitely many years starting 200 years from now,
relative to the value of the next 200 years. At a 1% discount rate
this ratio is 0.157 and at a 3% discount rate the ratio is 0.0025. At
3% discounting, the planner values utility during the next 200 years
(about 10 generations) 400 times as much as she values utility for the
infinitely many years (and generations) beginning in 200 years.

19.2 The consumption discount rate

Objectives and skills

• Understand the relation between discounting utility and discounting
consumption, and the Ramsey formula for the Consumption Discount
Rate (CDR).

• Understand why growth has a large effect on the CDR, and thus on
policy prescriptions.

For policy applications, the consumption discount factor, and the asso-
ciated consumption discount rate, is more useful than the utility discount
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factor and rate. The SCC is computed using the consumption discount rate.
Most people, including policymakers, care about consumption, income, jobs
and the other things that produce utility, not utility itself. Asking a pol-
icymaker how many units of utility society should sacrifice today to obtain
an extra unit of utility at some time in the future, will elicit a blank stare.
(Readers know that the answer is “The utility discount factor”.)
Asking the policymaker “How many dollars of consumption should society

be willing to give up today in order to obtain one extra dollar of consumption
at a future time?”, is at least an intelligible question. The question captures
the trade-offarising with policy that has costs and benefits at different points
in time, such as climate policy. That policy may reduce consumption today,
by requiring greater expenditures on pollution abatement or the switch to
more expensive types of energy. By protecting the climate, the policy may
make people in the future better off.

19.2.1 The Ramsey formula

The Ramsey formula shows the relation between the consumption discount
rate, r, (CDR) and the utility discount rate, ρ (Appendix M.1)

Ramsey formula for CDR: r (t) = ρ+ ηtgt,

using the definitions

ηt ≡ −
u′′(ct)
u′(ct)

ct and gt ≡
dc
dt

ct
(the growth rate).

(19.1)

This formula shows that the CDR may change over time, but we first discuss
the case where it is constant. To achieve this simplicity, we assume: (i)
Utility equals u (c) = c1−η

1−η , so that −
u′′(ct)
u′(ct)

ct = η, a constant. (ii) The growth
rate for consumption is a constant, g. With these assumptions, the CDR is
a constant, r = ρ+ ηg. The parameters have the following interpretation:

If ρ is larger, the planner is less patient, and thus places less
weight on future utility.

If η is larger, the planner is more averse to inequality, and thus
less willing to impose costs on one generation in order to benefit
a richer generation.

If g is higher, growth is faster, making people in the future that
much richer than people today.
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Anything that increases r, lowers the consumption discount factor, e−rt,
thus reducing the amount society should spend today to avoid a dollar loss
in consumption at t. The parameter ρ is a measure of our impatience
with respect to future utility. An increase in ρ makes future utility less
valuable from the standpoint of today, thereby making a planner willing to
forgo less current consumption (and utility) in order to obtain higher future
consumption (and utility). Thus, an increase in ρ causes r to increase.
The parameter η is an inverse measure of society’s willingness to transfer

income from one point in time to another (the inverse of the elasticity of
intertemporal substitution). A larger value of η (a smaller elasticity of
intertemporal substitution) means that people are less willing to transfer
income from one period to another. If we think of consumption at different
points in time as corresponding to consumption for different people, then η
provides a measure of aversion to inequality: a larger value of η means that
society has a greater aversion to inequality.
Figure 19.3 helps to visualize the role of η in determining the willingness to

move consumption from one period to a different period (or from one person
to a different person). Each curve shows the combination of consumption
levels in two periods (or for two people), denoted C and c, that lead to a
constant sum of utility, u (c)+u (C). The dashed curve corresponds to η = 2
and the solid curve corresponds to η = 0.5. The two curves are tangent, and
represent the same sum of utility, at c = C = 5. 5 This figure abstracts from
the role of impatience by setting ρ = 0.
Suppose that a utilitarian planner wants to maximize this sum of utility.

The planner with η = 2 is indifferent between (c, C) = (5, 5) (the point
of tangency) and (c, C) = (3.34, 10) (shown as point X in the figure); this
planner is willing to give up 1.66 units of c in order to increase C by 5
units. The planner with η = 0.5 is indifferent between (c, C) = (5, 5) and
(c, C) = (1.71, 10) (shown as point Y in the figure); this planner is willing
to give up 3.39 units of c in order to increase C by 5 units. The larger
is η, the more averse is the planner to inequality in consumption between
the two periods (or two people). The larger is η, the less consumption the

5Each of the graphs is analogous to an isoquant; instead of showing combinations of
factors of production leading to a constant level of output, the graph shows the combination
of consumption levels, in the two periods, leading to a constant level of total utility. A
normalization results in the two curves in Figure 19.3 being tangent at C = c = 5.
This normalization is unimportant for our purpose here, which involves only the relative
curvature of the two graphs, not their relative levels.
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Figure 19.3: Combinations of consumption in two periods, C and c, that
lead to a constant sum of utility, U (c) +U (C), for η = 0.5 (solid) and η = 2
(dashed).

planner is willing to take away from a poorer person in order to increase the
consumption of a richer person.

With decreasing marginal utility (a concave utility function) each addi-
tional unit of consumption provides a smaller increase in utility: a rich person
values an extra $100 less than a poor person does. A positive value of g
(= growth) means that people in the future are getting richer, decreasing
their marginal valuation of still higher consumption. Thus, a larger positive
value of g (faster growth) makes the planner today less willing to sacrifice
consumption today (when society is poorer) in order to increase consumption
for the richer future. Larger growth increases the consumption discount rate
(decreases the consumption discount factor). An increase in g has a greater
effect on the consumption discount rate, the more averse the planner is to
income inequality (the larger is η).

In summary, a planner has a higher consumption discount rate (lower
consumption discount factor) the more impatient she is with regards to future
utility (the larger is ρ), or the more rapidly people in the future are getting
richer (the larger is g), or (for g > 0) the more averse she is to income
inequality (the larger is η).
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19.2.2 The importance of the growth trajectory

If ρ, g, and η are constant, then the CDR is also constant, and the insights
from Chapter 19.1 apply, replacing “utility”with “consumption”. The para-
meters ρ and η measure preference characteristics: the planner’s impatience
(ρ) and aversion to (intertemporal) inequality (η). Those parameters might
change over time or with levels of consumption, but they are often treated as
constants. The growth parameter, g, in contrast, describes the economy, not
preferences; there is no reason to think that it is constant. Growth rates over
long spans of human history have been close to zero, but growth rates over
the past two centuries have been around 1.5% —2%. Given the consensus
view that η is not close to zero, a positive value of g has a significant effect
on the CDR, and thus on society’s willingness to sacrifice consumption today
in order to protect future generations from climate damages.
If we expect high growth to continue over future centuries, then our suc-

cessors will be much richer than we are; if we are somewhat averse to in-
tergenerational income inequality (η is not close to 0), then it makes sense
for us to be reluctant to incur costs in order to protect our much richer suc-
cessors from (non-catastrophic) climate-related damages. This view relies
on the assumption that growth over the next several centuries will resemble
growth of the past two centuries, not growth over the previous millennia.
It is not reasonable to assume that growth will abruptly stop, but it may
be presumptuous to make long-lasting decisions based on optimism about
growth. Growth experts were asked for their assessment of likely growth
over the next two centuries. Most anticipate growth in the 1% —3% range,
but some expect negative growth and one expects growth above 6%. There
appears to be little consensus amongst experts about future growth.
Appendix M.2 presents a model in which growth starts out at 2% and

falls to zero gradually over time. We compare society’s willingness to pay to
avoid damages that begin in T years when it correctly anticipates this growth
trajectory, versus when it is either “falsely pessimistic”(believing incorrectly
that future growth will always be zero) or “falsely optimistic” (believing
incorrectly that future growth will always be at 2%). False optimism makes
society willing to spend too little, and false pessimism makes society willing
to spend too little to avoid the future damages. Which of these errors is
greater in magnitude? If the damages begin soon (T is small), then near-term
growth is important. Our assumption that actual growth falls slowly means
that the falsely optimistic view is closer to being correct in the near term,
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compared to the falsely pessimistic view. In this circumstance (T small), the
error under pessimism is greater than under optimism. The reverse holds
if damages begin in a century (T large), when the pessimistic view about
growth is closer to being correct. For large T , the error under false optimism
is much greater than under false pessimism.
The main effects of climate change are likely to occur a century or more

in the future: T is large. The model suggests that the error we make in being
too optimistic about growth (spending too little to avoid climate damages)
is likely to be much greater than the error we make in being too pessimistic
about growth (spending too much to avoid damages). This conclusion favors
the use of caution (erring on the side of safety) in setting climate policy.

19.2.3 Growth uncertainty

Economists have followed two principal strategies to incorporate uncertainty,
including uncertainty about growth. The first, most straightforward and
widely used approach, changes the planner’s welfare criterion to discounted
expected utility (DEU). This criterion also adds up the discounted utility
in different periods, but now takes expectations of the sum with respect to
future consumption (or whatever variable is random). The second strategy
for incorporating uncertainty replaces the model of DEU with a more general
alterative.
Both approaches produce a “certainty equivalent”CDR, that can be used

to evaluate how much society should be willing to invest today, in order to
increase consumption (reduce damages) in an uncertain future world. In
both cases, the certainty equivalent CDR generalizes the Ramsey formula
19.1; it involves the parameters of the distributions of the random variables,
and parameters that describe attitudes to impatience, risk and intertemporal
consumption transfers. The name “certainty equivalent”means that the
discount rate can be used to assess a public investment as if the world were
non-random; the randomness is already built in to the certainty equivalent
discount rate.

Discounted expected utility The simplest modification replaces de-
terministic constant growth, g, with a random process, g̃ (t) = ḡ + ε̃t where
ḡ equals expected growth and ε̃t is a serially uncorrelated mean-zero ran-
dom variable. The absence of correlation means that growth in one period
does not affect growth in subsequent periods. This model of uncertainty
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increases the amount we are willing to spend to avoid future damages, but
not by much.
Positive correlation between growth in different periods increases this

correction (lowers the CDR by more), because positive correlation makes the
future riskier. An example, in which a person might get $0 or $1 in each of
two periods, makes this relation intuitive. In one scenario, the probability
of receiving either amount is the same, and the amount received in the first
period has no effect on the likelihood of receiving a dollar in the second: the
gifts are uncorrelated. In this case, the person receives a total of $0 or $2,
each with 25% chance, and $1 with 50% chance. In the other scenario, the
person has an equal chance of receiving $0 or $1 (as in the first scenario) but
the gifts are perfectly positively correlated: she receives the same amount
in both periods. In this scenario, she has a 50% chance of obtaining either
$0 or $2. In expectation, she obtains the same amount in both scenarios
($1), but the variance of total receipts is higher in the second scenario; that
scenario is riskier. Therefore, positively correlated random growth increases
the amount society is willing to spend today to avoid future damages by
substantially more, compared to uncorrelated random growth.
A richer model of stochastic growth uses

g̃ (t+ 1) = ḡ + α (ḡ − g (t)) + ε̃t (19.2)

where the shocks ε̃t are serially uncorrelated and ḡ and α are parameters.
The specialization ḡ = 0 and α = −1 implies that growth is a random walk:
growth in the next period equals current growth plus a random variable. The
specialization 0 < α < 1 implies that growth is mean-reverting, approaching
its long-run level ḡ; if the current growth is above ḡ, growth in the next
period is expected to be less than current growth. Other models, involve
longer lags or different assumptions about the distribution of the shock.
An alternative allows for the possibility of large (“catastrophic”) shocks.

For example, the shock ε̃t might be the sum of two random variables; the first
has a “typical”(perhaps bell-shaped) distribution, and the second equals a
large negative number with small probability and is otherwise zero. The
realization of the second part of the random variable is zero in most years,
but a catastrophe such as a world war sharply reduces growth (and income).
Using a model of stochastic growth to calculate the certainty equivalent

CDR requires estimating the parameters of a model like equation 19.2. Re-
searchers might then proceed as if the estimated model is the truth, i.e. as if
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the growth process really has the hypothesized form, with actual parameters
equal to the estimated parameters. An alternative assumes that the func-
tion describing growth is known, but recognizes that the parameters are only
estimated. This alternative, using Bayesian methods, models the evolution
of future parameter estimates. The alternative provides a model both of
how growth changes, and how our estimates of future growth change.
These alternatives (positively correlated growth, the possibility of catastro-

phes, Bayesian models that update parameter estimates) lead (almost al-
ways) to further reductions in the certainty equivalent CDR, increasing es-
timates of the amount that society should spend today in order to reduce
damages in an uncertain future world. Implementing these modifications
requires using data to estimate the models. These more sophisticated alter-
natives improve on naive models that assume deterministic growth, but they
are still based on the premise that the distant future will look like the recent
past; without that premise, growth data would be useless.
These methods of estimating the certainty equivalent CDR consider a sin-

gle type of uncertainty, often uncertainty about growth. A different exten-
sion focuses on the correlation between growth and climate-related damages.
Climate policy is an investment, requiring higher costs and reduced con-
sumption due to the use of more expensive energy sources; the payoff of this
investment is a reduction in future damages, and a corresponding increase in
future consumption. The policy therefore indirectly creates a consumption
transfer from today to future periods. Because growth is uncertain, we do
not know the level of future consumption, absent this transfer. We therefore
do not know the marginal value, to the future, of an additional unit of con-
sumption. In addition, because of all of the uncertainties of climate science,
we do not know how current policy would change the magnitude of future
climate damages. Therefore, the “return on investment”of current climate
policy is a random variable.
An investor deciding on how to allocate funds between a “market port-

folio” (e.g. an index fund) and a particular stock, faces a similar problem.
Box 6.1 sketches the idea that a stock that is negatively correlated with the
market return provides a hedge against market risk, and therefore might be
worth buying even if its expected return is below the expected market return.
If climate policy is likely to yield a large return (reduce future damages by a
large amount) in circumstances where the future is relatively poor, then cli-
mate policy provides a hedge against future growth uncertainty. In this case,
investing in climate policy may be economically rational even if its expected
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return is below that of other social investments. In contrast, if climate policy
is likely to provide a high return in circumstances where the future is rich,
then climate policy should be required to pass a more stringent cost-benefit
test, compared to other social investments. Currently, there is no consensus
about which of these two possibilities is more likely.

A different paradigm The stochastic extensions of the Ramsey for-
mula described above use discounted expected utility (DEU), adding up the
discounted utility in different periods, and taking expectations with respect
to the random variables. For decades economists have been aware that im-
portant implications of DEU are inconsistent with stock market data. The
risk premium equals the difference between the expected return on a risky
asset (e.g. a portfolio of stocks), and the return on a riskless asset such as US
government bonds. For long periods, this risk premium has exceeded 6% in
the US, and has also been high in other countries. Explaining this difference
using DEU requires a value of η much larger than consensus estimates. This
inconsistency is known as the equity premium puzzle.6

Attempts to resolve this puzzle within the framework of DEU use some
of the extensions discussed above, including models of catastrophic events or
learning about uncertain parameters. A different approach replaces the DEU
model with “recursive utility”. This alternative has enough free parameters
to be made consistent with market data.
DEU uses a single parameter, η, to represent two characteristics of pref-

erences. In the deterministic framework, η represents the inverse of the
elasticity of intertemporal substitution (“inequality aversion”). In the sto-
chastic framework, η also represents risk aversion. That is, η represents both
the decision-maker’s attitude to transferring consumption over different time
periods (or different people), and also her attitude about transferring con-
sumption over different “states of nature”, corresponding to different realiza-
tions of a random variable. There is no reason why risk aversion and aversion
to intertemporal transfers should be governed by the same parameter. The
DEU model is too parsimonious, using one parameter to represent two logi-
cally different characteristics. Recursive utility is more general, permitting
the distinction between these two preference characteristics.

6Resolving this puzzle by simply assuming that the actual value of η is much larger
than consensus estimates, leads to the “risk-free rate puzzle”: the conclusion that the
riskless rate is much higher than observed rates.
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A related objection to DEU can be explained using an example. Con-
sider a trajectory consisting of only two periods, with no impatience regard-
ing utility (a utility discount factor equal to 1). Consumption might be low
or high, yielding low or high utility uL or uH respectively. In one deter-
ministic scenario an agent obtains first high and then low utility,

{
uH , uL

}
,

and in a second deterministic scenario she receives
{
uL, uH

}
. Because she

is not impatient, and faces no uncertainty, the discounted utilitarian as-
signs the same payoff, uH + uL, to both scenarios; she is indifferent between
them. Consider a third scenario in which the agent faces a lottery. With
probability 0.5 she obtains

{
uH , uH

}
and with probability 0.5 she obtains{

uL, uL
}
. This agent faces intertemporal risk: she might have two good pe-

riods or two bad periods. Discounted expected utilitarianism evaluates this
payoff by taking expectations over the random payoffs, assigning the value
0.5
(
uH + uH + uL + uL

)
= uH + uL to this lottery.

This example shows that the DEU model implies that the social planner,
or the people she represents, are indifferent about intertemporal fluctuations
in utility. Models of recursive utility include an additional parameter that
measures intertemporal risk aversion. A planner who is intertemporally risk
averse prefers the trajectory

{
uH , uL

}
(equivalently,

{
uL, uH

}
) to the lottery

over trajectories. With empirically plausible levels of intertemporal risk
aversion, stochastic growth might have little effect on the consumption dis-
count rate. That is, taking into account intertemporal risk aversion, and also
recognizing that future growth is stochastic, can lead to a certainty equivalent
consumption discount rate close to the (deterministic) consumption discount
rate under zero growth. The policy implication is that stochastic (as dis-
tinct from zero) growth might lead to only small reductions in the amount
an intertemporally risk averse planner is willing to spend today in order to
avoid future damages.

19.3 Patience and intergenerational transfers

Objectives and skills

• Understand the meaning of and rationale for hyperbolic discounting.

• Understand the meaning and cause of time inconsistency.

• Understand the effect of hyperbolic discounting on climate change pol-
icy.
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In order to discuss the role of patience and intergenerational transfers, we
now abstract from both deterministic and stochastic growth, setting g = 0.
However, we allow the patience parameter to depend on time, replacing ρ
with ρ (t).7 The number of units of utility a person (or the planner who
represents her) would give up at time 0 in order to obtain one extra unit of
utility at time t depends on the average utility discount rate between time 0
and t; the utility discount factor is now e−

∫ t
0 ρ(τ)dτ .

19.3.1 Explanation of hyperbolic discounting

We consider the case where ρ (t) decreases with t, known as “hyperbolic
discounting”. (The case where ρ (t) increases over time is empirically less
interesting, but involves similar analysis.) We discuss hyperbolic discount-
ing in four contexts: where a decision affects a single person or generation;
where a decision creates transfers across different generations; where it cre-
ates transfer both within and across generations; and finally, a “physical”
interpretation of hyperbolic discounting. We then explain its relevance to
environmental and resource policy.

Transfers affecting a single person or generation Hyperbolic dis-
counting provides a model of “excessive procrastination”: deferring unpleas-
ant tasks longer than we would like to. For example, suppose that we are
told that a project due on December 10 will take five hours to accomplish if
done on December 9, and only four hours if done on December 8. Because
the project requires work (disutility), we prefer to put if off as long as pos-
sible; but we also prefer to spend as little time as possible on it, so there is
a trade-off. On September 1 suppose that we can make a provisional plan
to do the project on either December 8 or 9. It would be nice to delay for
an extra day, increasing by 1% the amount of time we can put off the work.
However, this extra 1% delay requires a 25% increase in the amount of time
we will have to work when the day of reckoning arrives. The 25% extra work
may seem more important (salient) than the 1% additional delay, leading us
to decide, on September 1, to do the project on December 8.

7The argument t is the distance from the current calendar time, normalized to time 0,
to a future time, t. It is not “calendar time”. Thus, t = 40 regardless of whether, at
calendar time 2020 we are considering an event at 2060, or whether, at calendar time 2050
we are considering an event at 2090.
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Suppose that on December 8, a minute before we are scheduled to begin,
we can reconsider our earlier plan. A postponement (doing the project on
December 9 instead of December 8), gives us a 1441 minute delay, instead
of the one minute delay if we carry out our original plan; it still requires a
25% increase in the amount of time needed to work. From the standpoint
of December 8, the 144,100% increase in delay might be more salient than
the 25% increase in working time, causing the person to reverse her earlier
decision. Hyperbolic discounting can explain why a person changes the Sep-
tember 1 plan, and now delaying the project an additional day (“excessive
procrastination”).
A particularly simple form of (“quasi”) hyperbolic discounting represents

this situation using two “time preference” parameters, 0 < β ≤ 1 and
0 < δ < 1. The utility discount factor for t ≥ 1 periods in the future
is βδt. A constant utility discount rate corresponds to β = 1 and hyperbolic
discounting corresponds to β < 1. Suppose that the disutility of working
4 hours is D (4) and the disutility of working 5 hours is D (5). On Sep-
tember 1, the present value disutility of doing the project on December 8 is
βδ100D(4) and the present value disutility of doing the project on December
9 is βδ101D (5). On September 1, the person prefers to do the project on De-
cember 8 if βδ100D(4) < βδ101D(5), i.e. if D(4) < δD(5). Once December 8
arrives, the choice is between doing the project on that day, having disutility
D (4), or procrastinating, and having present value disutility βδD(5). On
December 8, the person procrastinates if D(4) > βδD(5).
Plans are “time-inconsistent”if a person wants to change an earlier plan,

despite having received no additional information since the original plan was
made. Putting the two previous inequalities together, we see that the plan
made on September 1 is time inconsistent if

βδD(5) < D(4) < δD(5). (19.3)

This inequality requires β < 1, i.e. hyperbolic discounting.
With time inconsistency, the modeler has to decide what type of outcome

is “reasonable”. Suppose that inequality 19.3 holds, so that time inconsis-
tency arises in our example. If the person has a “commitment device”on
September 1 that somehow binds them to completing the project on Decem-
ber 8, the optimal plan will be carried out. For example, the person may
commit to getting married on December 9, making it prohibitively expensive
to procrastinate when December 8 arrives. It may be costly to construct
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a commitment device. Absent such a device, there is nothing to keep the
person from procrastinating, and the reasonable outcome is for the project
to be completed December 9.
More generally, when time inconsistency arises, and commitment devices

are impractical, the equilibrium outcome can be obtained by thinking of the
decision problem as a game amongst a “sequence of selves”. The “self”at
time t takes an action (e.g. deciding whether to work on the project), taking
into account how future “selves”will behave.

Transfers across generations We may, for example, feel appreciably
closer to our children than to our unborn grandchildren, but make little or
no distinction between the 10’th and the 11’th future generation. In that
case, we would be willing take less from our children in order to enhance our
grandchildren’s welfare, than we would take from the 10’th future generation
to enhance the welfare of the 11’th generation. Hyperbolic discounting
formalizes this type of intergenerational perspective.
Time inconsistency arises here for the same reason as in the single agent

example, but here the game involves a sequence of generations instead of a
sequence of selves. Table 19.1 provides an example that helps to understand
this situation. The example uses the parameters β = 0.7 and δ = 0.9, so
βδ = 0.63. The current date is t = 0.
There are two investment opportunities, A and B. Both yield the same

payoff, an increase of one unit of utility at t = 2, but they have different cost
structures. Investment A requires no action and therefore no costs today
(t = 0), but it requires an investment costing 0.64 units of utility to the
generation alive the next period, at t = 1. Investment B requires costly
actions both in the current and the next period. These actions create a
utility loss to generation t = 0 of 0.17 and a utility loss to generation t = 1
of 0.625.
From the standpoint of the generation at t = 0, the present discounted

benefit exceeds the present discounted cost for both investments, but this
generation prefers investment A. With investment A, discounted benefit
minus costs for generation t = 0 equals −βδ (0.64)+βδ21 = 0.163 8 and with
investment B this discounted benefit minus costs equals −0.17−βδ (0.625)+
βδ21 = 0.003 25. Thus, generation t = 0 would like to compel its successor
to make investment A. If it is not capable of this compulsion, generation
t = 0 is willing to begin investment B, provided that it believes that its
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successor would complete the project.
From the standpoint of generation t = 1, investment A’s present dis-

counted value of benefits minus costs is −0.64 + βδ1 = −0.01 < 0. Invest-
ment A does not pass the cost-benefit test for generation t = 1. In contrast,
if generation t = 0 had started investment B, the present discounted value
of benefits minus (remaining) costs, from the perspective of the generation
at t = 1 is −0.625 + βδ1 = 0.005 > 0. Knowing that the generation at
t = 1 would complete the investment B, but not undertake investment A,
the generation at t = 0 chooses investment B.

utility change t = 0 t = 1 t = 2 PDV at t = 1 PDV at t = 0
investment A 0 −0.64 1 −0.01 0.163 8
investment B −0.17 −0.625 1 0.005 0.00325

Table 19.1 Bold entries show flow benefits in different periods. PDV =
“present discounted value”of future stream from standpoint of t = 1 and

t = 0. β = 0.7, δ = 0.9.

In this example, the equilibrium is for generation t = 0 to begin invest-
ment B, and generation t = 1 to complete it. Investment B is absolutely
more expensive than A (0.17 + 0.625 = 0.795 instead of 0.64 undiscounted
units of utility), and has a much lower present discounted value for generation
t = 0 (0.00325 instead of 0.1638). However, in the absence of a commitment
device, investment A is not feasible, whereas investment B is. This example
illustrates the general point that with hyperbolic discounting, and lacking a
credible device for committing future generations to act in a certain way, an
earlier generation may chose a “less effi cient”investment.
This example has parallels with climate change policy. Protecting the

future from climate damage requires investment in low-carbon alternative
energy supplies. From the standpoint of the current generation, the best
policy may be to do nothing, requiring the next generation to undertake the
entire cost of creating the low-carbon alternative (option A above). But the
next generation possibly has the same incentive to delay. If the current gen-
eration delays, nothing is done in either period. However, by undertaking
an expensive down payment on the low-carbon technologies (option B), the
current generation may be able to change the trade-off that the next gener-
ation faces, inducing that generation to complete the investment needed to
protect against climate damage.
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Transfers within and across generations Climate policy likely cre-
ates transfers both within and across generations. For example, a switch to
low-carbon fuels that decreases the (current) utility of those currently alive
may benefit some of these people late in their life, and may also benefit peo-
ple who have not yet been born. The first is an intra-generational transfer
(from a person at one point to another point in their life ) and the second
is an inter-generational transfer. People might discount their own future
utility at a constant rate and also discount the utility of future generations
at a constant rate. However, there is no reason to think that they would use
the same constant rate to discount their own and future generations’utility.
Agents might discount these distinct types of transfers at different rates.
The distinction between intra- and inter-generational transfers requires

an “overlapping generations model”, one that recognizes that at any point
in time some people are old and some are young; over time, the old die,
the young become old, and new youngsters are born. If people in an over-
lapping generations framework use a lower discount rate to evaluate inter-
generational transfers compared to intra-generational transfers, their pref-
erences exhibit hyperbolic discounting.8 For example, a person might be
impatient for their own future utility, and also be a “luck egalitarian”, un-
willing to disadvantage future generations merely because of the date of their
birth.

A “physical” interpretation of hyperbolic discounting Ramsey
(1928) remarked “My picture of the world is drawn in perspective. ...I apply
my perspective not merely to space but also to time.” Perspective applied to
both space or time seems to be part of our cultural DNA. Perspective implies
that objects further in the distance, either spatially or temporally, appear
smaller. Perspective applied to time implies that a unit of utility in the
future appears less valuable than a unit of utility today: the utility discount
factor decreases with time. A declining discount factor requires that the
utility discount rate, ρ, is positive, but tells us nothing about whether ρ is
constant.
The simplest model of spatial perspective, known as “one point perspec-

tive”, can be visualized as railroad tracks that are parallel but which appear

8In the simplest overlapping generations model, the population is constant and peo-
ple live for two periods. This model gives rise to the β, δ quasi-hyperbolic discounting
discussed above.
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to converge to a point, as they vanish into the distance. The actual railroad
ties that connect these tracks each have the same length (because the tracks
are parallel), but the ties appear to get smaller as they become more distant.
The ratio of the apparent length of two successive ties (with the closer tie in
the denominator), provides a spatial analog of the time discount factor. This
ratio is always less than 1 (because the ties appear to be getting smaller) but
it increases with distance. Therefore, the spatial analog of the discount rate
falls with distance. To the extent that one accepts one point perspective
as a model of spatial perspective, and also agrees that spatial and temporal
perspective are analogous, hyperbolic discounting appears to be part of our
cultural DNA.

19.3.2 The policy-relevance of hyperbolic discounting

Economists disagree about the policy-relevance of hyperbolic discounting.
One basis for skepticism is that for intergenerational problems such as climate
change, no utility discounting is ethical. If we require ρ = 0, there is
no reason to be interested in the possibility that ρ decreases over time.9

Our discussion of transfers both within and across generations illustrates
the problem with this objection. One might agree that intergenerational
transfers be discounted at rate 0, but recognize that people appear to be
impatient for, and therefore discount, their own future utility. Why should
social policy not take this intra-personal impatience into account? Allowing
the inter-generational discount rate to be lower than the intra-generational
rate results in hyperbolic discounting.
Rejection of hyperbolic discounting also puts the modeler on the horns

of a dilemma. Setting ρ at a non-negligible positive constant leads to the
tyranny of discounting discussed above. Setting ρ to a constant close to
zero overcomes the tyranny of discounting, but it also implies (in DEU mod-
els) that current generations should be willing to save man-made capital at
rates far in excess of those actually observed. Investment in man-made cap-
ital, particularly if it depreciates quickly, depends primarily on near-term
discounting, whereas investment in long-lived natural capital, such as the
climate, depends on discounting over long spans of time. Hyperbolic dis-
counting offers an escape from this dilemma: models with a declining ρ (t) can

9Instead of insisting that ρ = 0, a luck egalitarian might set it at a very small value to
account for the possiblity that our species will be suddenly made extinct, e.g. by a comet
striking the earth.
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produce equilibrium savings rates equal to observed levels, while still leading
to appreciable investment in climate policy. A small body of research uses
hyperbolic discounting to model climate policy.

19.4 Summary

Climate policy (like natural resource policy in general) is a type of public
investment, incurring costs with the expectation of future benefits. Econo-
mists base climate policy models on consensus views from climate science.
Recognizing that resource policy involves trade-offs, most of these models in-
volve discounting. Discounting renders costs and benefits in different periods
and for different projects commensurable, and makes it possible to evaluate
policies and to recommend the optimal level of carbon tax, or of other policies
that reduce emissions.
Because we do not know the actual socially optimal level of climate pol-

icy, it is not possible to determine whether the carbon taxes recommended
by mainstream economic models are too high, too low, or about right. To
some environmental activists, a modest carbon tax seems inconsistent with
the severity of the problem of climate change. Discounting is an important
component of economic climate models, affecting the level of policy prescrip-
tions. A higher discount rate corresponds to a lower discount factor, placing
less weight on the future, and leading to more modest policy recommenda-
tions. Consumption discount rates (CDRs) depend on levels of impatience
and “optimism”.
If the economy grows during the next several centuries at rates seen dur-

ing the last two centuries, people in the future will be much richer than we
are, and able to tolerate the reduced consumption caused by non-catastrophic
climate change. If we accept that the poor should not sacrifice in order to
benefit the rich, and if indeed future generations will be richer than cur-
rent generations, and furthermore we are confident that climate damage will
be non-catastrophic, then society today should make no more than modest
investments to protect the climate.
However, we do not know if growth will continue to be high during the

next centuries, or if climate change will be non-catastrophic. The effect of
growth uncertainty on the “certainty equivalent”CDR is sensitive to model
specification. If we think of future growth as a sequence of serially uncorre-
lated random shocks (so that growth in one period does not affect growth in
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another), recognition of uncertainty leads to a small decrease in the certainty
equivalent CDR, and a correspondingly small increase in the optimal level of
environmental policy. Positive serial correlation of future growth increases
the variance of future income. Variable income is “less valuable”than cer-
tain income, so positively correlated growth leads to a larger reduction in the
CDR, and a larger increase in recommended policy.

The recognition that both economic growth and climate change are un-
certain, further complicates matter. If a lower carbon stock is particularly
valuable to future generations when growth has been relatively low, then
growth and the return on the investment in climate policy are negatively
correlated. In that case, climate policy provides a hedge against stochastic
growth, making it easier to justify strict climate policy. If, however, a lower
carbon stock is particularly valuable to rich future generations, the case for
climate policy is weaker. The current stage of research has not reached a
consensus on the sign of the correlation.

The standard paradigm uses a single parameter to measure a person’s
attitude to random income and to changes in income over time. A gener-
alization, known as recursive utility, disentangles these two characteristics,
leading to a different calibration and in some cases to significant differences in
policy prescriptions. This generalization also incorporates a particular type
of “intertemporal”risk aversion, which the standard paradigm of discounted
expected utility assumes is zero.

The standard paradigm also treats the parameter that measures impa-
tience with respect to future utility as a constant. A declining rate of
impatience can explain “excessive”procrastination. More important for en-
vironmental policy, a declining rate also can distinguish between intra- and
inter-generational transfers. Today’s climate policy can effect the utility
of currently living people late in their life, and also the utility of people
not yet born. This climate policy therefore involves both intra- and inter-
generational transfers. A declining rate of impatience often creates time-
inconsistency, and requires solving a game instead of an optimization prob-
lem in order to assess environmental policy. A declining rate of impatience is
consistent with high discounting in the short run, and low discounting in the
long run. It can therefore reconcile observed savings rates (which depend
primarily on near term discounting) with strong protection for the climate
(which depends primarily on long term discounting).
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19.5 Terms, study questions, and exercises

Terms and concepts

Positive and normative statements; Social Cost of Carbon, Discounted ex-
pected utilitarianism, utility discount rate and factor, consumption discount
rate and factor, tyranny of discounting, hazard rate, Ramsey formula, elas-
ticity of intertemporal substitution, inequality aversion, consumption growth
rate, certainty equivalent discount rate, recursive utility, intertemporal risk
aversion, equity premium puzzle, (quasi) hyperbolic discounting, intra- and
inter-generational transfers, time inconsistency, overlapping generations, game
among “sequence of selves”.

Study questions

1. Explain the difference between discounting utility and discounting con-
sumption.

2. Explain what it means to say that discounting is “tyrannical”.

3. Explain the sense in which climate policy provides a kind of insurance.

4. Given the Ramsey formula for the consumption discount rate, explain
the meaning of each term.

5. Explain why near-term growth is particularly important in evaluating
a public investment project that has a payoff in the near term, whereas
growth over long periods of time are important in evaluating a public
investment project that has a payoff in the distant future.

6. Sketch some of the ways in which the certainty equivalent consumption
discount rate the stochastic growth.

Exercises

Background for Question 4 Economists often work with the natural log of
variables instead of their levels. This choice makes it easy to calculate
growth rates and also means that in some applications we are able to work
with the sum of two random variables, instead of their product, facilitating
some calculations. Let C2 and C1 be the levels of consumption in two periods.
The growth rate of consumption across these two periods is G2 = C2−C1

C1
, or
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G2 + 1 = C2

C1
. Define gi = ln (Gi + 1). To a first order approximation, gi ≈

Gi. Consumption in period 2 is C2 = (1 +G2)C1 = (1 +G2) (1 +G1)C0.
Taking logs gives lnC2 = ln (1 +G2) + ln (1 +G1) + lnC0. Normalize by
setting C0 = 1, define c2 = lnC2 and use the definition of g to obtain
c̃2 = g̃1 + g̃2. The tildas emphasize that these are random variables. The
log of second period consumption equals the sum of two random variables.

1. Provide an intuitive explanation for the claim in the text thatWTP (γ, T )
decreases in both γ and T .

2. (*) Write the formula forWTP (γ, T ) and confirm algebraically that it
decreases in both γ and T .

3. For the example at the beginning of Chapter 19.2.3 (where income in
two periods is either 0 or 1) calculate the variance of the payoff in
the two cases, first where the two income levels are uncorrelated, and
second where they are perfectly correlated.

4. Current consumption is C0 = 1. Find the formulae for the expecta-
tion and the variance of a sum of two random variables (look it up in
a statistics textbook or Google it). Use this formula and the “back-
ground”above, with ln c2 = g̃1 + g̃2. Given information at period 0,
they have the same mean, Eg̃1 = Eg̃2 = ḡ, and the same variance,
var (g̃1) = var (g̃2) = σ2, and their correlation coeffi cient is φ. (The
usual symbol for correlation is usuallyρ, but we have used that symbol
for the utility discount rate.) Show how the mean and variance of
lnC2 depends on φ.

Sources

Llavador et al. (2015) provide a detailed criticism of the discounted utili-
tarianism model, particularly as applied to climate change policy, and they
suggest a sustainability-based alternative.
The examples in Chapter 19.1 are taken from Karp (2016).
Arrow et al (2012) examine discounting in an intergenerational context.
Gollier (2014) and Lemoine (2015) offer differing perspectives on the cor-

relation between the market return and the return to protecting the climate
Gillingham et al. (2015) use a suite of models to examine uncertainty

about climate change. They provide a survey of growth experts’assessment
of future growth.
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Gordon (2015) provides a comprehensive history of American growth, and
explains why he expects that high growth rates during the last century will
not continue into the future.

Mehra (2003) discusses the equity premium puzzle and reviews some of
the explanations offered for it.

Epstein and Zinn (1991) provide an early empirical application of recur-
sive utility.

Traeger (2014) explains the theory of intertemporal risk aversion and
shows how it alters the relation between stochastic growth and the consump-
tion discount rate.

Barro (2006) models the effect of rare catastrophic events on discount
rates.

Laibson (1997) discusses the role of quasi-hyperbolic discounting in a
model of savings.

Karp (2005) applies hyperbolic discounting to climate policy in partial
equilibrium settings.

Ekeland and Lazrak (2010) note the relation between overlapping gener-
ations and hyperbolic discounting.

Ramsey (1928) is the source of the quote on time perspective.

Gerlagh and Liski (2012) and Iverson (2015) apply hyperbolic discounting
to climate policy in a general equilibrium setting.
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Appendix A

Ehrlich versus Simon

The Ehrlich-Simon bet involved prices of metals for which there are well es-
tablished property rights. These metal prices have been volatile over the
past century, and in one respect Ehrlich was simply unlucky. Had he picked
a different decade in the 20th century, he would have had a better than even
chance of winning the bet. The price of this basket of metals fell dramatically
during the economic upheaval following World War I, and in most subsequent
decades rose gradually. The volatility of metal prices has been largely due
to macro economic cycles (recessions or booms) or political events (wars or
boycotts) unrelated to scarcity. The theory developed in subsequent chap-
ters explains why, putting aside these reasons for price volatility, modest but
not spectacular price increases might be expected. The basis for this theory
is that resource owners can “arbitrage over time”, advancing or postpon-
ing their sales in order to take advantage of expected price changes. This
arbitrage tends to lead to modest expected price increases.
Basing the wager on these metal prices was, in some respects, an odd

choice for both the resource optimist (Simon) and pessimist (Ehrlich). It was
an odd choice for Simon, the economist, because economic theory predicts
modest price increases, not decreases. It was an odd choice for Ehrlich,
the ecologist, because it involves the category of resources for which market
forces are most likely to “work well”: those having strong property rights.
Five years later, Ehrlich proposed a different bet, involving changes CO2

concentrations, temperature, tropical forest area, and rice and wheat stocks
per person, rather than commodity prices. Simon rejected Ehrlich’s of-
fer, and countered with a wager involving direct measures of human well-
being, including life expectancy, leisure time, and purchasing power. Ehrlich
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declined that offer. Some of the components of these differing proposals
reflect different views about the relation between mankind and natural re-
sources. The resource pessimist begins with the premise that human welfare
is inextricably linked to resource stocks; their degradation must eventually
lower human welfare. For example, society may be well offduring the period
it uses fish or forest resources intensively, degrading their stocks. If resource
use is unsustainable, resource extraction must eventually fall, and with it,
human well-being. This overuse is more likely for resources where property
rights are weak. The resource optimist, in contrast, starts from the premise
that society will be able to find new resource stocks (new sources of fossil
fuels) or alternatives to those resources (solar power instead of fossil fuels)



Appendix B

Math Review

This appendix reviews some concepts and results from basic calculus. It
can be used as a reference during the course, and also gives readers an idea
of the level of mathematics required for the course. The text assumes that
readers have seen much this material before.
1. Derivatives and graphs The derivative of a function, f(x) at a

point x0, written
df(x0)
dx
, is the tangent (“slope”) of a function, evaluated at

a particular point, here x0. If f (x) = a+ bx, where a, b are independent of
x (and therefore constants for our purposes here), then df

dx
= b, a constant.

More generally, however, the value of the derivative depends on x. Figure
B.1 shows the graph of f (x) = 2 + 3x− 4x2− 5x3, the solid curve, the graph
of g (x) = df(x)

dx
, the dashed curve, and the graph of h (x) = dg(x)

dx
= d2f(x)

dx2 .
This figure reminds the reader that, in general, (1) a derivative is a function,
not a constant; (2) where a function reaches an extreme point (a maximum
or a minimum) the derivative of that function equals 0. If the graph of a
function has an inflexion point, i.e. switches from being concave to convex,
the second derivative of the function equals 0 at the inflexion point.
Another way to indicate that a function is being evaluated at a particular

point, say x = 2, uses subscripts. For example, the subscript “|x = 2”here
indicates that we evaluate the derivative of f with respect to x at x = 2:

df (x)

dx |x=2
= 2 + 3 (2)− 4 (2)2 − 5 (2)3 .

It is worth repeating that (in general) df(x)
dx

is itself a function of x; above

we called this function g (x). Similarly, d
2f(x)
dx2 is a function of x; above we

387
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Figure B.1: The solid curve shows the graph of f(x), the dashed curve shows
the graph of g(x) = df

dx
, and the dotted curve shows the graphof h (x) = dg

dx
=

d2f
dx2 .

call it h (x).
Another way to write the derivative uses the “prime sign”, ′:

df (x)

dx
= f ′ (x) .

2. Derivatives of exponents. In the example above we took the
derivative of a function involving an exponent. Students should know the
following rule: if a is a constant (with respect to x), then

d (xa)

dx
= axa−1.

We write that “a is a constant with respect to x", instead of merely
writing “a is a constant”because the formula above is correct even if a is a
function of other variables (not x). For the purpose of taking this derivative,
it does not matter whether a is a literally a constant or merely a constant
with “respect to x”. What matters is that a change in x does not change a.
3. The sum, product, and quotient rules. Students should know a

few of the primary rules for derivatives. Suppose we have two functions of
x, a (x) and b (x). (Note: in the previous line we treated a as a constant.
Here we treat it as a function. In general, we are careful not to use the same
symbol to mean two different things. Here, we intentionally use the same
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symbol, a, to mean two different things, first a constant and then a function.
We want to encourage readers to pay attention to definitions.) We can form
other functions using these two functions.
If c is the sum of these two functions, then

c (x) = a (x) + b (x) and
dc

dx
=
da

dx
+
db

dx
.

The derivative of a sum equals the sum of a derivative. For brevity we write,
for example, da

dx
instead of da(x)

dx
.

If c is the product of the two functions, then

c (x) = a (x)× b (x) and
dc

dx
=
da

dx
b+

db

dx
a.

If c is the quotient of two functions, then

c (x) =
a (x)

b (x)
and

dc

dx
=
b da
dx
− a db

dx

b2
.

4. The chain rule. The chain rule enables us to take the derivative
of a function of a function. Suppose that y is a function of x and x is a
function of z. Then y is a function of z, via the effect of z on x. The chain
rule states

dy

dz
=
dy (x (z))

dx

dx (z)

dz
.

For example, if y = x0.3 and x = 7z, then dy(x)
dx

= 0.3x0.3−1 and dx
dz

= 7, so

dy

dz
=
dy (x (z))

dx

dx (z)

dz
= 0.3x0.3−1 × 7 = 0.3 (7z)−0.7 × 7.

5.Partial derivatives. Some of our functions involve two arguments,
instead of one. Throughout the book we use a cost function that depends
on the stock of the resource, x, and the amount that is extracted in a period,
y. We write this cost function as c (x, y). A partial derivative tells us how
the value of the function (here, costs) changes if we change just one of the
variables, either x or y. We use the symbol ∂ instead of d to indicate that
we are interested in the partial derivative.
We frequently illustrate concepts using the following specific cost function

Parametric example: c (x, y) = C (σ + x)−α y1+β,
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where C, α, σ, and β are non-negative parameters. (Note that lower case c is
a function, and upper case C is a parameter; this use of two similar symbols
to mean two different things is intentional. It is important to pay attention
to definitions.) The partial derivatives of this function with respect to x and
y are

∂C(x+σ)−αy1+β

∂x
= −αC (x+ σ)−α−1y1+β,

∂C(x+σ)−αy1+β

∂y
= (1 + β)C (x+ σ)−αyβ.

Because we use this formulation throughout the text, the reader should be
sure to understand it at this point. For example, in taking the partial of c
with respect to x, we recognize that Cy1+β does not depend on x. Thus,
in writing the partial of c with respect to x we treat Cy1+β as a constant.
Although not literally a constant, this term is constant with respect to x.
In English: this term does not depend on x; therefore, changes in x do not
affect this term. To drive this point home, we can write

c (x, y) = “Constant with respect to x”× (σ + x)−α

and then use the rule in item #2 above to write the partial derivative of c
with respect to x as

∂c(x,y)
∂x

= “Constant with respect to x”× d(σ+x)−α

dx

= “Constant with respect to x”× (−)α (σ + x)−α−1

= −αC (σ + x)−α−1 y1+β

The two partial derivatives of c with respect to x and y are themselves
functions of x and y. Thus, we can differentiate either of these functions,
with respect to either x or y, to obtain a higher order partial derivative. For
example,

∂2C(x+σ)−αy1+β

∂y2 =
∂

[
∂C(x+σ)−αy1+β

∂y

]
∂y

=
∂[(1+β)C(x+σ)−αyβ]

∂y

= (1 + β) βC (x+ σ)−αyβ−1,

and

∂2C(x+σ)−αy1+β

∂y∂x
=

∂

[
∂C(x+σ)−αy1+β

∂y

]
∂x

=
∂[(1+β)C(x+σ)−αyβ]

∂x
=

(1 + β) (−α)C (x+ σ)−α−1yβ.

6. Total derivatives. A function may depend on two variables, and
each of those variables might depend on a third variable. The total derivative



391

tells us how much the function changes for a change in this third argument.
For example, suppose that costs depend on x and y, as above, and x and
y both depend on ε. We show this dependence by writing x (ε) and y (ε).
With this notation, we write costs as c (x (ε) , y (ε)). The total derivative of
c with respect to ε is

dc (x (ε) , y (ε))

dε
=
∂c

∂x

dx

dε
+
∂c

∂y

dy

dε
. (B.1)

In writing this equation, we merely apply the chain rule twice: the first term
accounts for the fact that a change in ε alters c via the change in x, and the
second term accounts for the fact that a change in ε alters c via the change
in y. The total change in c due a change in ε is the sum of these two terms.
This expression might seem complicated, but most of the applications

in this book are extremely simple. We will be interested in the case where
x = x1 − ε and y = y1 − ε, where x1 and y1 are treated as constants for the
purpose here. For these two functions, we have

dx

dε
= −1 and

dy

dε
= −1. (B.2)

Substituting equation B.2 into equation B.1 gives the total derivative

dc (x (ε) , y (ε))

dε
= −∂c (x1 − ε, y1 − ε)

∂x
− ∂c (x1 − ε, y1 − ε)

∂y
.

We often want to evaluate this derivative at ε = 0. In this case, we write

dc (x (ε) , y (ε))

dε |ε=0
= −∂c (x1, y1)

∂x
− ∂c (x1, y1)

∂y
.

Remember that the subscript “|ε = 0”on the left side of this equation means
that we evaluate the derivative of c with respect to ε where ε = 0.
7. Constrained optimization. Suppose that the problem is to maxi-

mize V (z) ("value") subject to 0 ≤ z ≤ 4. We might have either an interior
equilibrium (a solution where 0 < z < 4) or a boundary equilibrium (where
z = 0 or z = 4). The function V represented by graph B has an interior
optimum (the optimal z is between the two boundaries, 0 and 4). At this
interior optimum, dV

dz
= 0: a marginal increase or decrease in z does not

change V (z). The function V represented by both graphs A and C have
boundary optima: z = 0 for A, where dV

dz
< 0 and z = 4 for C, where dV

dz
> 0.
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Figure B.2: The curve B has an interior maximum. The curves A and C
have boundary maxima.
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Figure B.3: A change in x away from point A has only a second order effect
on y. A change in x away from point B has a first order effect on y.

For A a decrease in z at z = 0 increases V and for C an increase in z at
z = 4 increases V , but either of these changes violates a constraint and thus
is not feasible.

8. First and second order effects. Figure B.3 illustrates the meaning
of “first order” and “second order” effects. The figure shows a graph, the
solid curve, and the dashed tangencies at two points, the maximum point
A and an arbitrary point B. The first derivative of the function at x = 2.5
(the horizontal coordinate of A) is zero and the second derivative is nonzero
(negative). A very small movement away from x = 2.5 results in negligible
change in the value of y: the first order effect, on y, of the change in x is zero,
and the second order effect is negative. In contrast, a very small movement
away from x = 5 (the horizontal coordinate of point B) results in a non-
negligible (“first order”) change in y, because the derivative of the function
at x = 5 is nonzero.
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Exercises

1. For the function f (x) = −2x+x0.4, graph f (x), f ′ (x), and f ′′ (x). (A
sketch is adequate —it does not have to be precise.)

2. Find the condition (an equation) for an extreme point of f . Is this
extreme point a maximum or a minimum. (How do you know?)

3. For the function g (x, y) = x2y0.2− 3y, (a) write the partial derivatives
of g wrt x and y and (b) evaluate these derivatives at x = 3, y = 1.

4. Suppose that you are told x = t2 and y = 7t. (a) Write the total
derivative, wrt t, of h (t) = g (x (t) , y (t)), where g (x, y) = x2y0.2 − 3y.
Evaluate this derivative at t = 1.

5. Evaluate
d
(

4z2+3z
7z0.5

)
dz |z=1

6. Evaluate
d ((4z2 + 3z) (7z0.5))

dz |z=1

7. Suppose that demand is D = 10− 2P , where P is price. (a) Evaluate
the elasticity of demand at P = 2. (b) Evaluate the elasticity of
demand at P = 3. (c) Write the marginal revenue, evaluated at these
two prices.

8. Suppose that demand is D = 10P−1.2. (a) Evaluate the elasticity of
demand at P = 2. (b) Evaluate the elasticity of demand at P = 3.
(c) Write marginal revenue, evaluated at these two prices.

9. For the constrained maximization problem

max
x,y

4xy − 3x2 − y2

subject to x+ 4y = 17,

Use the constraint to solve for x as a function of y. Substituting this
result into the maximand (the object you are maximizing) write the
first order condition for the optimal y.
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Appendix C

Comparative statics

Comparative statics exercises often use differentials of an “equilibrium con-
dition”. This equation might be the first order condition to an optimization
problem, or it might be a statement that says “supply equals demand”. The
equilibrium condition determines an “endogenous variable”(e.g., the optimal
level of sales or the price that equates supply and demand) as a function of
model parameters. A comparative statics exercise asks how the endogenous
variable changes as one or more parameters of the model change.
The comparative statics exercises discussed here use the differential of a

function. A function might depend on several arguments. Suppose that a
function L depends on x, y, z: L = L (x, y, z). The differential of L, denoted
dL is

dL =
∂L

∂x
dx+

∂L

∂y
dy +

∂L

∂z
dz.

The change in L (denoted dL) equals the change in L due to the change in
x, ∂L

∂x
times the change in x, dx, plus the change in L due to the change in

y, ∂L
∂y
, times the change in in y, dy, plus the change in L due to the change

in z, ∂L
∂z
, times the change in z, dz.

To illustrate the use of differentials in comparative statics experiments,
suppose that the demand is QD = p−0.6 and supply is QS = 2 + βp + p0.5,
with β > 0. Define excess demand, E (p, β), as demand minus supply. The
equilibrium price equates supply and demand, i.e. it sets excess demand
equal to 0:

E (p, β) = p−0.6 −
(
2 + βp+ p0.5

)
= 0.

For this example, we have one endogenous variable, p, and one parameter,
β. We cannot solve the equilibrium price as a function of β. Figure C.1

395
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Figure C.1: The solid graph shows the excess demand for β = 3; here the
equilibrium price is p = 0.17. The dashed graph shows excess demand for
β = 5. Here the equilibrium price is p = 0.15.

shows the graphs of excess demand for β = 3 (solid) and for β = 5 (dashed).
The higher value of β (associated with a larger supply at every price) leads
to a lower equilibrium price.
The differential of E is

dE =
∂E

∂p
dp+

∂E

∂β
dβ.

As we change β, the equilibrium price also changes. The equilibrium price
causes excess demand to equal 0. Therefore, equilibrium requires that dE =
0:

dE =
∂E

∂p
dp+

∂E

∂β
dβ = 0. (C.1)

This equation states that an exogenous change in β, dβ, induces an endoge-
nous change in the price, dp, in order to maintain excess demand at 0. The
partial derivatives of E are

∂E
∂p

= −0.6p−1.6 − β − 0.5p−0.5 < 0

∂E
∂β

= −p < 0.
(C.2)

The first line of equation C.2 says that an increase in p, at fixed β, decreases
excess demand. The second inequality says that an increase in β, at fixed
p, decreases excess demand. The endogenous price must adjust to a change
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in β in order to keep excess demand at 0, in order to satisfy our equilibrium
condition. Inspection of these two partial derivatives tells us that if β
increases (thereby lowering E), there must be an offsetting decrease in p, in
order to maintain excess demand at 0.
Here we can figure out how p must change in response to a change in

β simply by thinking a bit about the implication of the signs of the partial
derivatives. Many problems are too complicated for that kind of casual
reasoning to be useful. Therefore, we proceed systematically, using equations
C.1 and C.2:

0 = ∂E
∂p
dp+ ∂E

∂β
dβ = (−0.6p−1.6 − β − 0.5p−0.5) dp+ (−p) dβ ⇒

(−0.6p−1.6 − β − 0.5p−0.5) dp = pdβ.

The first equality repeats equation C.1; the second uses the information in
equation C.2. Rearranging this equation gives the implication in the second
line. We solve this equation, dividing both sides by dβ and also dividing
both sides by (−0.6p−1.6 − β − 0.5p−0.5) to write

dp

dβ
=

p

(−0.6p−1.6 − β − 0.5p−0.5)
.

This equation is our comparative static expression. The numerator of the
ratio on the right side is positive and the denominator is negative, so dp

dβ
< 0.

C.1 Comparative statics for the tea example

The equilibrium condition for the tea-in-China example is

20− qChina︸ ︷︷ ︸ =
1

1 + b

(
18−

[
10− qChina

])
︸ ︷︷ ︸

L
(
qChina

)
= R

(
qChina, b

)
.

. (C.3)

In the text we solve this equation to obtain qChina as an explicit function of
the model parameters. In cases where the equilibrium condition is too com-
plicated to solve explicitly, we can still obtain information merely by using
the equilibrium condition, which gives the endogenous variable as an implicit
function of the exogenous parameters. The second line of equation C.3 shows
that the left side is denoted as L

(
qChina

)
and the right side as R

(
qChina, b

)
.
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An exogenous change in b alters the right side without having a direct effect
on the left side. In order for the equality L

(
qChina

)
= R

(
qChina, b

)
to con-

tinue to hold after the change in b, there must be a compensating change in
qChina. The change in R, denoted dR, must equal the change in L, denoted
dL. These changes are called the “differentials”of R and L. Equilibrium
requires

dL
(
qChina

)
= dR

(
qChina, b

)
. (C.4)

Using the definition of the differential and the fact that the right side of
the equilibrium condition (R) depends on both b and qChina, and the left side
(L) depends only on qChina, we have

dL =
∂L(qChina)
∂qChina

dqChina

dR =
∂R(qChina ,b)
∂qChina

dqChina +
∂R(qChina ,b)

∂b
db.

Substituting these expressions into the definitions of the differentials, and
using the equilibrium requirement dL = dR gives

∂L
(
qChina

)
∂qChina

dqChina =
∂R
(
qChina, b

)
∂qChina

dqChina +
∂R
(
qChina, b

)
∂b

db.

Collecting terms gives(
∂L
(
qChina

)
∂qChina

−
∂R
(
qChina, b

)
∂qChina

)
dqChina =

∂R
(
qChina, b

)
∂b

db.

Rearranging this equation gives

dqChina

db
=

∂R(qChina ,b)
∂b(

∂L(qChina )
∂qChina

− ∂R(qChina ,b)
∂qChina

) > 0.

Using rules of differentiation, we have

∂L(qChina)
∂qChina

= −1 < 0,
∂R(qChina ,b)
∂qChina

= 1
1+b

> 0

and
∂R(qChina ,b)

∂b
= −1

(1+b)2

(
18−

[
10− qChina

])
< 0.
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Substituting the expressions for the partial derivatives into the previous equa-
tion and simplifying yields equation C.5

dqChina

db
=

qChina + 8

b2 + 3b+ 2
> 0. (C.5)

Equations 2.3 and C.5 both show how qChina responds to a change in
transport costs, b. The right side of equation C.5 involves the unknown
value qChina, whereas the right side of equation 2.3 involves only numbers
and the exogenous parameter b. In this respect, the comparative statics
expression 2.3 is more informative than equation C.5. The approach using
differentials is useful when it is diffi cult to solve the equilibrium condition
to obtain the explicit expression for the endogenous variable. Equation C.5
tells us only that an increase in b increases sales in China. Often we use
models to obtain “qualitative”rather than “quantitative” information, e.g.
we care more about the direction than the magnitude of the change.

C.2 Comparative statics for the two-period
resource model

Following the procedure in the previous section, we denote the left side of
the equilibrium condition, equation 3.5, as L (y, ·) = (a− by − c) and the
right side as R (y, ·) = ρ (a− b (x− y)− c). The “·”notation is shorthand
for all of the exogenous variables, the parameters of the model: a, b, c, x, ρ.
With this notation, we rewrite the equilibrium condition, equation 3.5 as
L (y, ·) = R (y, ·) .
Equilibrium requires that a change in an exogenous parameter, such as

the demand slope b, be offset by a change in the endogenous variable, period
0 supply, y: dL = dR. We totally differentiate the equilibrium condition,
equation 3.5, with respect to y and b, to write

dL =
∂L

∂y
dy +

∂L

∂b
db =

∂R

∂y
dy +

∂R

∂b
db = dR.

Rearrange the differentials on the two sides of the equality to write(
∂L

∂y
− ∂R

∂y

)
dy =

(
∂R

∂b
− ∂L

∂b

)
db⇒ dy

db
=

∂R
∂b
− ∂L

∂b
∂L
∂y
− ∂R

∂y

.
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To evaluate this expression we use

∂L

∂y
= −b, ∂R

∂y
= ρb,

∂L

∂b
= −y, ∂R

∂b
= −ρ (x− y) .

Putting these results together, we have

dy

db
=

∂R
∂b
− ∂L

∂b
∂L
∂y
− ∂R

∂y

=
−ρ (x− y)− (−y)

−b− ρb

Simplifying the right side of this equation produces the comparative statics
expression

dy

db
=
−ρx+ (1 + ρ) y

−b (1 + ρ)
. (C.6)

The denominator of the right side of this equation is negative, but without
additional information we cannot determine whether the numerator is posi-
tive or negative. The most that we can say, using only the information in
equation C.6, is that dy

db
< 0 if and only if −ρx + (1 + ρ) y > 0, i.e. if and

only if y > ρ
1+ρ

x.

It is instructive to compare the derivatives dy
db
in equations 3.6 and C.6.

Both of them are correct, but the former contains more information; it tells us
that dy

db
< 0, whereas equation C.6 gives us only a condition ( y > ρ

1+ρ
x) under

which dy
db
< 0. The fact that the two approaches yield different amounts of

information is not surprising, because the first approach begins with more
information: it uses the explicit expression for y as a function of model
parameters. In contrast, the second approach uses only the equilibrium
condition. More information is preferred to less, so in this sense the first
approach is better than the second. But bear in mind that the first approach
is not always available to us, because many models are too complicated to
yield explicit solutions for the endogenous variables.
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Comparison of monopoly and
competitive equilibria

To emphasize that there is nothing peculiar about the possibility that the
monopoly and competitive firm might choose the same level of sales (as in
Chapter 3.2) , consider an even simpler, one-period model. In this model, the
firm (either a monopoly or a representative competitive firm) can produce up
to 10 units at constant costs 4. Production beyond that level is not feasible;
equivalently, the marginal cost of production becomes infinite at y = 10. In
the first scenario, the inverse demand function is p = 30 − y, and in the
second scenario it is p = 15 − y. Figures D.1 and D.2 show the demand
functions in these two cases (the solid lines), and the corresponding marginal
revenue curves (the dashed lines). In both cases the marginal production
cost is 4 for y < 10 and infinite for y > 10.
In the high-demand scenario (Figure D.1), the constraint y ≤ 10 is bind-

ing for both the monopoly and the competitive firm, so both firms produce
y = 10. In this case, the price is also the same under the competitive firm
or the monopoly. In the low-demand scenario (Figure D.2), the constraint is
binding for the competitive firm, which produces y = 10. Here, the marginal
revenue curve (which lies below the demand curve) equals marginal cost at
y = 5.5. The monopoly produces less than competitive firms, and receives
a higher price.
There is nothing special about the possibility that a monopoly and a

competitive firm might produce at the same level. The outcome depends on
the relation between the point at which the cost function becomes vertical
(y = 10 in this example) and the demand and marginal revenue functions.
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Figure D.1: The solid line shows the demand function p = 30 − y, and the
dashed line is the marginal revenue function corresponding to this demand
function. Marginal costs are constant at 4 for y < 10 and infinite for y > 10.
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Figure D.2: The solid line shows the demand function p = 15 − y, and the
dashed line is the marginal revenue function corresponding to this demand
function. Marginal costs are constant at 4 for y < 10 and infinite for y > 10.
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Derivation of the Hotelling
equation

By definition, T is the last period during which extraction is positive, so
extraction at T + 1 is zero. In the class of problems we consider, extraction
is also positive at earlier times: yt > 0 for all t < T . This fact means that
we can make small changes (perturbations) in any of the yt’s, and offsetting
changes in other yt’s, without violating the non-negativity constraints on
extraction, or on the stocks. A perturbation is “admissible” if it does not
violate these constraints.
A “candidate” is a series of extraction and stock levels that satisfy the

non-negativity constraints. At the optimum, any admissible perturbation of
the candidate yields zero first order change in the payoff. In the two-period
setting, only “one-step” perturbations, in which we make a small change
in period-0 extraction and an offsetting change in period-1 extraction, are
possible. In a multiperiod setting, in contrast, many types of perturbations
are possible. For example, we can reduce extraction by ε in period t, make
no change in period t + 1, and increase extraction by ε/3 in each of the
subsequent three periods. To test the optimality of a particular candidate,
we have to be sure that no admissible perturbation, however complicated,
creates a first order change in the payoff. With many possible perturbations,
that sounds like a diffi cult job. However, the task turns out to be simple,
because any admissible perturbation, no matter how complicated, can be
broken down to a series of “one-step”perturbations.
Therefore, we can check whether a candidate is optimal by considering

only the one-step perturbations affecting pairs of adjacent periods. Let t be
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any period less than T , so that extraction is positive in periods t and t + 1.
Because we are considering one-step perturbations that affect only these two
periods, we only have to check that the perturbation has zero first order effect
on the combined payoffs during these two periods. The combined payoff in
these two periods, under the perturbation is

g (ε; yt, xt, yt+1) = ρt[(pt (yt + ε)− c (xt, yt + ε))

+ρ (pt+1 (yt+1 − ε)− c (xt+1 − ε, yt+1 − ε))].
(E.1)

This gain function and the gain function from the two-period problem, equa-
tion 4.6, are the same, except for the time subscripts (and the fact that ρt

multiplies the right side of equation E.1). In the two-period setting, we
noted that an optimal candidate has to satisfy the first order condition 4.7.
The necessary condition in the T -period setting is exactly the same, except
for the time subscripts:

dg (ε; yt, xt+1, yt+1)

dε |ε=0
= 0.

Evaluating this derivative (repeating the steps in Box 4.2) produces the Euler
equation 5.2.



Appendix F

Algebra of taxes

This appendix collects technical details for the chapter on taxes.

F.1 Algebraic verification of tax equivalence

Denote the producer price as ps (for supply) and the consumer price as pc

(for consumption) and write the “market price”as p. If consumers pay the
tax, the prices are ps = p and pc = ps + ν (producers receive the market
price and consumers pay this price plus the tax). If producers pay the tax,
ps = p−ν and pc = p (consumers pay the market price and producers receive
this price minus the tax). We want to confirm that tax-inclusive prices are
the same regardless of who directly pays the tax.
If consumers pay the tax, the supply equal demand condition is

S(p) = D(p+ ν). (F.1)

Let p∗ (ν) be the (unique) price that solves this equation; this is the equi-
librium producer price (a function of ν) when consumers pay the tax: p∗ (0)
is the equilibrium price when ν = 0. Because consumers (directly) pay the
tax, the price producers receive (the “supply price”) equals p∗ (ν) and the
price consumers pay equals p∗ (ν) + ν.
If, instead, producers directly pay the tax, the equilibrium condition is

S(p− ν) = D(p). (F.2)

Substitute p = p∗ + ν into this equation to write equation (F.2) as

S(p∗) = D(p∗ + ν).
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The last equation reproduces equation (F.1) evaluated at p = p∗ (ν), the
unique solution to that equation. Thus, the two equations (F.1) and (F.2)
lead to the same producer and consumer prices.

F.2 The open economy

For a closed economy, domestic supply equals domestic demand: there is
no trade. For an open economy, the difference between domestic demand
and supply equals the amount imported or exported. Tax equivalence holds
in a closed economy, where all sources of supply or demand are subject to
the tax, but not in an open economy. In Chapter 10.1 we noted that in
a closed economy, the “Polluter Pays Principle”may be vacuous, because
(under some conditions) the tax equivalence result implies that it does not
matter whether the polluter or the pollutee pays the environmental tax.
Because tax incidence does not hold in the open economy, it does matter
whether a consumer or producer tax is used.
We use an example to compare tax incidence in a closed and an open

economy. First consider the case where the economy is closed. Suppose
that domestic demand is qd = 10 − p, domestic supply equals qs = bp, and
foreign supply is qs,for = cp. Column 2 of Table F.1 shows that, for the closed
economy, the consumer and producer tax incidence does not depend on which
agent, consumers or producers, directly pays the tax. The incidences in this
column are calculated using the following steps:

1. Calculate the equilibrium price in the absence of tax by setting the
untaxed supply equal to the untaxed demand.

2. Calculate the equilibrium consumer price and producer price when one
of these agents directly pays the tax, by setting the (taxed) demand
equal to the (taxed) supply.

3. Use the tax-inclusive consumer and producer price for the two cases
(where one agent or the other directly pays the tax) and the zero-tax
price to calculate the incidences.

The third column of the table shows that in the open economy, the in-
cidences do depend on which (domestic) agent directly pays the tax. For
example, to calculate the incidences in the open economy when consumers
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directly pay the tax (regardless of the source of supply), we use essentially
the same steps as above. The market clearing condition in the absence of a
tax is 10 − p = (b+ c) p. We solve this to find the zero-tax price. If con-
sumers pay the tax, the market clearing condition is 10− (p+ τ) = bp+ cp,
where now we understand that p is the price received by both domestic and
foreign firms, and p + t is the consumer tax-inclusive price. We solve this
equation to find the equilibrium producer and consumer prices. Using the
formula for tax incidence, we obtain the expressions in the third row and
third column of Table F.1. An exercise asks readers to use this procedure
to derive the formulae in the table.

closed economy
qd= 10− p
qs= bp

market clearing
10− p = bp

open economy
qd = 10− p

qs = bp and qs,for = cp
market clearing

10− p = (b+ c) p

consumers
pay tax

consumer
incidence

b
1+b

100%

producer
incidence

1
1+b

100%

consumer
incidence

b+c
1+b+c

100%

producer
incidence

1
1+b+c

100%

domestic
producers
pay tax

consumer
incidence

b
1+b

100%

producer
incidence

1
1+b

100%

consumer
incidence

b
1+b+c

100%

producer
incidence

1+c
1+b+c

100%

Table F.1 consumer and producer tax incidence in closed and open economy

In an open economy, domestic supply does not equal to domestic demand.
Taxing consumers causes the market demand function to shift in, lowering
the price that both domestic and foreign producers face and increasing the
consumer’s tax-inclusive price. Taxing only domestic supply causes the do-
mestic supply function to shift in, increasing the consumer price, decreasing
the domestic tax-inclusive price, and shifting supply from domestic to foreign
producers. Under the consumer tax, both the domestic and foreign produc-
ers receive the same price. Under the (domestic) producer tax, consumers
and foreign producers face the same price, and domestic producers receive a
lower after-tax price.
This example shows that although in a closed economy producer and

consumer taxes are equivalent, the two taxes are not equivalent in an open
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economy. The rest of this appendix considers only the closed economy.
Exercise: Derive the tax incidences shown in Table F.1.

F.3 Approximating tax incidence

In the closed economy, it does not matter whether consumers or produc-
ers are charged the tax. Suppose that consumers are charged the tax, so
that the equilibrium condition is equation F.1. This equation expresses the
equilibrium price as an implicit function of the tax: as the tax changes, the
equilibrium price p changes. The consumer incidence (expressed as a fraction
instead of a percent) equals

p∗ (ν) + ν − p∗ (0)

ν
=
p∗ (ν)− p∗ (0)

ν − 0
+ 1 =

∆p

∆ν
+ 1. (F.3)

The numerator on the left side equals the change in price that consumers
pay. We obtain the first equality by simplifying, i.e. using the fact that
ν
ν

= 1, and subtracting 0 from the denominator. We subtract 0 in order to
emphasize that both the numerator and the denominator are changes: the
numerator is the change in price, in moving from a 0 tax to a non-zero tax,
and the denominator is the change in the tax, ν − 0. We obtain the second
equality by using the “delta notation”: ∆ means “change in”. The next
step requires a formula for an approximation of ∆p

∆ν
, which we obtain using

the fact that the derivative dp
dν
is approximately equal to ∆p

∆ν
.

Treating p = p(ν) (i.e. price as a function of the tax —and dropping the
“*”to simplify notation) we can differentiate both sides of the equilibrium
condition F.1 to write

dS(p)

dp

dp

dν
=
dD(p+ ν)

dpc

(
dp

dν
+ 1

)
.

Divide both sides by the equilibrium quantity, using S = D, and multiply by
the equilibrium price p to write

dS(p)

dp

p

S

dp

dν
=
dD(p+ ν)

dpc
p

D

(
dp

dν
+ 1

)
. (F.4)

Because we are considering an approximation for small ν, we evaluate equa-
tion F.4 at ν = 0. Using the definitions in equation 10.1, and evaluating
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equation F.4 at ν = 0, we rewrite that equation as

θ
dp

dν
= −η

(
dp

dν
+ 1

)
.

We can solve this equation for dp
dν
to obtain

dp

dν
= − η

θ + η
. (F.5)

This equation shows the derivative of the equilibrium price with respect to
the tax, evaluated at a 0 tax. Notice that dp

dν
< 0: the tax, although paid by

consumers, reduces the equilibrium price that producers receive.
We use the fact that

∆p

∆ν
≈ dp

dν

and equations F.3 and F.5 to write the expression for the consumer incidence
as

∆p

∆ν
+ 1 ≈ dp

dν
+ 1 = 1− η

θ + η
=

θ

θ + η
.

The tax incidence for producers equals

reduction in producer price
level of (unit) tax

.

Initially the tax is 0, so the level of the tax (once it is imposed) is ν−0 = ∆ν.
The producer tax incidence is

producer incidence:
−∆p

∆ν
≈ η

θ + η
.

This expression involves −∆p rather than ∆p because the definition of the
producer incidence involves the “price reduction”, not the “price change”. If
the price change is, for example, −3, then the reduction is 3.
Exercise: Suppose that consumers are charged the tax, as above. Let

the demand function be D (p) = p−η with η > 1 and suppose that firms have
constant marginal cost, c. Evaluate the consumer and producer tax incidence
under the monopoly, as a function of η. Compare with the consumer and
producer tax incidence under competition, with the same demand and cost
functions. Hint Mimic the derivation above, replacing marginal revenue
with price.
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F.4 Approximating deadweight loss

The graphical representation of the deadweight cost of the tax is the area
of the triangle in Figure 10.1. To verify equation 10.4 for the case of linear
supply and demand we use the formula for the area of a triangle: one half
base times height. Turn the triangle bcd in Figure 10.1 “on its side”, so that
the base of the rotated triangle is bd, and split the triangle into two triangles,
bcg and dcg. The area of bcd equals the sum of the area of the two smaller
triangles. Denote the consumer tax incidence (as a fraction, not a percent)
as 1−φ, so the producer incidence is φ. The length of bd is ν, the tax, so the
length of the base of gb is φν. Denote the absolute value of the slope of bc as
S1 and denote the slope of dc as S2. Using the formula “slope = rise/run”,
S1 = φν

∆q
, or ∆q = φν

S1
. Therefore, the area of triangle bcg is 1

2
φν φν

S1
= 1

2
φ2

S1
ν2.

Using the same reasoning, the area of the triangle dcg is 1
2

(1−φ)2

1−S2
ν2. The sum

of the areas is 1
2

(
φ2

S1
+ (1−φ)2

1−S2

)
ν2, i.e. it is proportional to the square of ν.

To approximate the DWL when the supply and demand functions are not
linear, we again begin with the formula for the area of a triangle, turned on
its side. The base of the triangle is the tax, ν. Denote the height of this
triangle as ∆q, the change in quantity demanded. We have (by multiplying
and dividing)

∆q =
∆q

∆p
∆p =

∆q

∆p

(
∆p

∆ν

)
∆ν =

(
∆q

∆p

p

q

)
q

p

(
∆p

∆ν

)
∆ν. (F.6)

Equation 10.2 and the definition of the supply elasticity imply, respectively,
the following two equations

∆p

∆ν
≈ dp

dν
= − η

θ + η
and

(
∆q

∆p

p

q

)
≈ θ.

Inserting these formulae into equation F.6 gives the approximation

∆q ≈ θη

θ + η

q

p
ν. (F.7)

Here we used the fact that ∆ν = ν − 0 = ν, because we are taking the
approximation in the neighborhood of a zero tax. This result and the formula
for the area of a triangle produces equation 10.4.
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F.5 Cap and trade

This appendix provides more detail on the comparison of taxes and cap
and trade. We explain how a cap and trade system works, and why the
equilibrium level of each firm’s emissions does not depend on whether firms
are given permits or have to buy them. We then explain the sense in which
a cap and trade policy is equivalent to an emissions tax. We use that
equivalence to approximate the fraction of permits that firms would have to
be given, in order to make them just as well off under cap and trade as they
are in the absence of regulation.

The basic ingredients of cap and trade. The regulator chooses the cap
on emissions, denoted Z. The many competitive firms are able to buy and
sell permits. This buying and selling is the “trade”part of the cap and trade
policy. Each of these firms takes the price of an emissions permit as given.
Denote the equilibrium price of permits as pe (Z). This relation recognizes
that (as in all markets) the equilibrium price depends on the supply. Here,
the supply is a number, Z. Due to the (assumed) fixed relation between
output and emissions, by choice of units we can set one unit of output to
equal one unit of emissions.

Claim #1: The permit price and firm-level emissions are inde-
pendent of the allocation of permits The equilibrium permit price
depends on the aggregate number of permits, Z. However, if firms are price
taking and profit maximizing, and if the permit market works well, then firm-
level pollution levels are independent of the distribution of allowances, e.g.
whether firms are given or sold the permits. To verify this claim, we show
that each firm’s demand for permits is independent of its own allocation.
Consider an arbitrary firm that is given an allowance A (possibly equal to
zero). This price-taking faces the output price, p, and the permit price, pe,
and wants to maximize profits:

pq − c (q) + pe (A− q)︸ ︷︷ ︸ .
The underlined term equals the firm’s revenue from selling the good minus its
cost of production; the under-bracketed term equals the firm’s profits from
selling (if A > q) or its costs of buying (if A < q) permits.
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The first order condition to the firm’s problem states that price equals
marginal cost. Marginal cost here equals the sum of the “usual”marginal
cost (dc

dq
), and the cost of buying an emissions permit, pe. The first order

condition

p =
dc

dq
+ pe, (F.8)

does not depend on its permit allocation, A. A firm’s decision about how
much to produce, and thus about how many permits to use, does not depend
on the allocation of permits.
A firm that buys permits has to pay pe for the additional permit needed to

produce an additional unit. A firm that sells permits incurs an opportunity
cost pe in using an additional permit: by using that permit it is no longer
able to sell it. Thus, regardless of whether the firm is a net buyer or seller
of permits, it incurs the cost pe of using an additional unit. Recent research
finds empirical support for Claim 1 (Box 10.1).

Claim #2: There exists a quota-equivalent emissions tax To
simplify the exposition, we assume that all firms have the same cost function,
so that we can use the representative firm model. As in Chapter 2.4, we
denote the cost function for the representative firm as c (Q). Using the fact
that Q = Z (because one unit of output produces one unit of emissions),
equation F.8 implies

p (Q)|Q=Z = dC(Q)
dQ |Q=Z

+ pe (Z) or(
p (Q)− dC(Q)

dQ

)
|Q=Z

= pe (Z) .
(F.9)

The second equation shows that the equilibrium permit price equals the
difference between the inverse demand function, p (Q), and the marginal
cost function, dC(Q)

dQ
.

Figure F.1 shows linear (product) demand and marginal cost curves, and
the equilibrium permit price (dashed line) as the vertical difference between
the two (equal to the left side of equation F.9). The dashed curve is the
inverse demand for pollution permits. For this example, the equilibrium
quantity (= emissions) absent regulation is 3.33. If the regulator chooses
Z ≥ 3.33, then the regulation is vacuous, and the permit price is zero. But
for Z < 3.33, the emissions constraint is binding, and the permit price is
positive. Every value of Z below the unregulated “Business as usual”level
(3.33) corresponds to a different equilibrium permit price.
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Figure F.1: Solid lines: inverse demand and marginal cost. Dashed curve:
the equilibrium permit price, pe, is the vertical difference between inverse
demand and marginal cost.

If the representative firm faces a tax ν, the equilibrium condition (price
equals “usual”marginal cost plus the tax) is

p (Z) =
dC (Q)

dQ
+ ν. (F.10)

Comparing equation F.10 to the first line of equation F.9 shows that the tax
ν = pe (Z) induces the competitive industry to produce at the same level as
under the cap and trade policy with cap Z.

Claim #3: There is a simple formula for compensating firms A
cap and trade policy with cap Z determines the amount of emissions. We
showed that there is an equivalent tax that leads to the same amount of
emissions. Firms have the same level of producer surplus if they face the
cap Z and all permits are auctioned (i.e., there is no grandfathering), or if
they face the tax that “supports”the level of pollution Z. Under a cap and
trade policy the regulator can reduce the cost to the firms by giving them
(grandfathering) some permits, instead of auctioning all of them. (Under
the equivalent tax, the regulator can compensate firms by giving them some
of the tax revenue.) What fraction of permits would the regulator have
to give firms, to make them (almost) as well off under regulation as under
Business as Usual?
This question has a simple answer in our setting. If the regulator auctions

all of the permits (gives none to the firms) then from the standpoint of firms,
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it is exactly as if they face the tax ν = pe (Z). Figure 10.1 shows that the
firms’ loss in surplus, due to a tax ν (or to being forced to buy all of its
emissions permits at the price p̂ (Z) = ν) is the area fcba = fgba + bgc.
Denote the producer incidence under the tax (a fraction) as φ. If firms are
given (instead of being forced to buy) the fraction η

θ+η
of permits, then the

value of this gift is φ times the potential tax revenue. (Review equation
10.3.) This value equals the area of the rectangle fgba. Firms’net loss
equals their loss in producer surplus minus the value of the gift, the area of
the triangle bcg. This triangle is the small correction that is needed to make
firms whole. The fraction φ is (typically) much less than 1, so even with the
correction, it would be necessary to give firms only a fraction of the permits,
to compensate them for the regulation.
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Continuous time

Consider the growth equation with a harvest rule y(x); this rule determines
the level of harvest as a function of the stock, x. Equation 13.3 shows the
discrete time dynamics for two particular harvest rules. Later we encounter
other harvest rules, so here we use the general formulation y (x). With this
harvest rule, the next-period and current-period stocks are related according
to

xt+1 − xt = F (xt)− y (xt) = [F (xt)− y (xt)] 1. (G.1)

Multiplying F (xt) − y (xt) by 1, as in the last equality, obviously does not
change the quantity.
We have to measure time in specific units. For example, it is meaningful

to say “That was three years ago,”but we would never say “That was three
ago.” We choose the unit of time to equal one year; this choice is arbitrary:
we could have chosen a unit to equal one second or one century. There is no
reason (apart from convenience) to assume that the length of a period equals
one unit of time.
We use the symbol ∆ to represent the length of a period. Given that

our unit of time is a year, the symbol ∆ = 10 means that a period lasts for a
decade. If a period lasts for a day, then ∆ = 1

364
. In order for our model to

show explicitly the length of a period, we can replace the number 1 wherever
it appears in equation G.1 (including in the subscripts) with ∆; the equation
becomes

xt+∆ − xt = [F (xt; ∆)− y (xt; ∆)] ∆⇒

xt+∆−xt
∆

= F (xt; ∆)− y (xt; ∆) .
(G.2)

415
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By introducing the parameter ∆, we have made a subtle change in the de-
finition of F (xt) and y (xt); these are now rates, i.e. they give growth and
harvest per unit of time (one year). To take into account this change, we
replace F (xt) and y (xt) with F (xt; ∆) and y (xt; ∆). If ∆ = 1

364
and if

the growth per year is 0.8, and harvest per year is 0.2 , then the amount
of growth and harvest over one period (one day, for ∆ = 1

364
) equals 0.8

364

and 0.2
364
, respectively. (The change over one day is xt+∆ − xt = (0.8− 0.2)

∆ = (0.8− 0.2) 1
364
.)

Now that we explicitly recognize that growth and harvest are rates, we
no longer need to require that y ≤ x. For example, suppose that x = 40
and y = 60. It is not possible to extract 60 units of biomass if the stock
of biomass equals only 40. However, it is certainly possible to harvest at
an annual rate of 60 for a short period of time. If ∆ = 1

364
and y = 60,

then after 10 periods (= 10 days) we have extracted 60
364
× 10 = 1. 65 units of

biomass. In general, if ∆ is suffi ciently small, then the annual harvest rate
y can be arbitrarily large without violating the non-negativity constraint on
the stock of fish.
The last line of equation G.2 shows the ratio xt+∆−xt

∆
, equal to the change

in stock per change in time. With ∆ = 1
364
, this ratio is the change in the

stock per day. As ∆ → 0, the ratio xt+∆−xt
∆

converges to a time derivative.
We define

F (x) = lim
∆→0

F (x; ∆) and y (x) = lim
∆→0

y (x; ∆) .

With this definition, the continuous time limit of the last line of equation
G.2 is

dxt
dt

= F (xt)− y (xt) . (G.3)

Equation G.2 is a difference equation, and equation G.3 is a differential
equation. They both describe how x changes over time. When studying
stability we use the continuous time model.
It is important to be clear about the relation between equations G.2 and

G.3. By construction, they have the same steady states. In other respects,
however, they may contain very different information. For example, suppose
that we have two fish stocks; the first grows according to equation G.2 and
the second grows according to equation G.3. We start both stocks at the
same level, and let each evolve in the manner described by its equation of
motion. Would these two stocks evolve in the same way, i.e. would the
time-graphs of their trajectories look similar? In general, the answer is
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“no”. If we want to change the length of a period (e.g. from ∆ = 1
to ∆ = 1

10,000,000,000
), while keeping the trajectory qualitatively unchanged,

we have to re-calibrate the functions F (xt) and y (xt). However, if ∆ is
suffi ciently small, then trajectories arising from the continuous and discrete
time models are qualitatively similar, at least in the neighborhood of a steady
state.
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Appendix H

Bioeconomic equilibrium

Here we offer a slightly different perspective on the open access steady state.
The zero profit condition, and the production function in equation 14.2, imply

0 = (pqx− w)E ⇒ x =
w

pq
=
C

p
, (H.1)

where the last equality uses the definition w
q

= C. The production function
14.2 and the steady state condition under logistic growth (harvest equal
growth) give

y = qEx = γx
(

1− x

K

)
. (H.2)

Substituting equation H.1 into equation H.2 gives the steady state supply
function

y = γ
C

p

(
1− C

Kp

)
. (H.3)

The steady state supply function for harvest gives the harvest level, as
a function of the price, that is consistent with a steady state stock of the
fish and zero profits in the fishery. Figure H.1 shows the supply function
for parameter values K = 50, γ = 0.03, and C = 5. The notable feature is
that this supply function bends backwards. For prices p < 1

Kq
= 0.2, supply

increases with price, and is very price-elastic (flat). At higher prices, equi-
librium supply decreases with the higher price. At a given stock, the higher
price induces greater harvest, but the higher harvest reduces the steady state
stock. The net effect in the steady state is that a higher price reduces equi-
librium supply over the backward bending part of the curve.

419
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Figure H.1: The backward bending steady state supply function (solid) and
a linear demand curve.

The dashed curve in the figure shows the linear demand curve, p = 3.5−
10y. There are three “bioeconomic equilibria”, combinations of output and
price where supply equals demand and the stock is in a steady state. The
equilibria A and D, corresponding to high price and low harvest, and low
price and high harvest, are stable; the intermediate equilibrium is unstable,
just as we saw in Section 14.1.2.
In order to examine the stability of the different steady states, we in-

troduce a fictitious “Walrasian auctioneer”. This auctioneer calls out an
arbitrary price. If, at that price, supply equals demand, the auctioneer has
found an equilibrium. However, if at the price the auctioneer has called out,
demand exceeds supply, then the auctioneer raises the price, in an effort to
bring supply and demand into equilibrium.
Suppose that this auctioneer calls out a price slightly above the p coor-

dinate of point B; at this slightly higher price, demand exceeds supply. In
an effort to balance supply and demand, the auctioneer increases the price.
The higher price initially elicits greater supply, but that reduces future stock,
creating an even larger divergence between steady state supply and demand.
The auctioneer continues to raise the price, toward the p coordinate of point
A, where at last steady state supply equals demand. Thus, a price that
begins slightly above the p coordinate of point B moves away from that
point, so this price is unstable. Parallel arguments show that the prices
corresponding to points A and D are stable steady states.
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The Euler equation for the sole
owner fishery

We find the optimality condition where both the stock and the harvest are
strictly positive, i.e. along an interior optimum. As in Chapter 5, we de-
termine the optimality condition using the perturbation method. Natural
growth, the function F (xt), complicates the problem, but the logic is the
same. We begin with a feasible “candidate trajectory” of harvest, y0, y1,
y2..., and the corresponding stock sequence, x0, x1, x2... . We obtain the
condition that must be satisfied if no perturbation increases the present dis-
counted value of the payoff. As before, we consider a particular one-step
perturbation: one that increases harvest in an arbitrary period (t) by ε, and
makes an offsetting change in harvest in the next period (t + 1) in order to
keep unchanged the stock in the subsequent period (t + 2). We can build
a more complicated perturbation from a series of these one-step perturba-
tions, but for the purpose of obtaining the necessary conditions, it suffi ces to
consider the one-step perturbation.
We begin by finding the offsetting change needed in period t+ 1, in order

to keep unchanged (relative to the unperturbed candidate) the stock in period
t+ 2. If we increase harvest in period t by ε, the stock in period t+ 1 is

xt+1 = xt + F (xt)− (yt + ε) .

This relation implies
dxt+1

dε
= −1. (I.1)
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The increased harvest in period t reduces the stock in period t+ 1 from xt+1

(the level under the candidate trajectory) to xt+1 − ε. Under the candidate
trajectory, we plan to harvest yt+1 in period t + 1. The offsetting change
in yt+1, required by the fact that we increased yt by ε, and by our insistence
that xt+2 be unchanged, is δ (ε). The notation δ (ε) emphasizes that δ, the
change in yt+1, depends on, ε, the change in yt. Using the growth function,
we have

xt+2 = (xt+1 − ε) + F (xt+1 − ε)− (yt+1 + δ (ε)) . (I.2)

We require that the total change in xt+2 —including the changes in both
periods t and t+ 1, be zero, i.e.,

dxt+2

dε
= 0.

Using this condition, and differentiating both sides of equation I.2 implies

dxt+2

dε
= 0 = −1 + dF (xt+1)

dxt+1

dxt+1

dε
− dδ

dε
⇒ −1− dF (xt+1)

dxt+1
− dδ

dε
= 0⇒

dδ
dε

= −
(

1 + dF (xt+1)
dxt+1

)
.

(I.3)

The first line differentiates both sides of equation I.2 with respect to ε, using
the chain rule. We use equation I.1 to eliminate dxt+1

dε
to obtain the equation

after the first “⇒”, and rearrange that equation to obtain the second line.
The last line of equation I.3 provides the first piece of information: the

required reduction in yt+1, given that we increase yt by ε, and given that we
want to keep xt+2 unchanged. A one unit increase in yt leads to a one unit
direct reduction in xt+1 and

dF (xt+1)
dxt+1

units loss in growth; the loss in growth
affects xt+2. Therefore, if we increase yt by ε units, we must decrease yt+1 by(

1 + dF (xt+1)
dxt+1

)
ε units, to offset both the direct effect on xt+2 and the indirect

effect that occurs via the reduced growth.
Under the perturbation, periods’ t and t + 1 contribution to the total

payoff is ρt times

g (ε) =

(
pt −

C

xt

)
(yt + ε) + ρ

(
pt+1 −

C

xt+1 − ε

)
(yt+1 + δ) .

If the candidate is optimal, then a perturbation must lead to a zero first
order change in the gain function. Using the product and the quotient rules,
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we have

dg(ε)
dε |ε=0

= pt − C
xt

+ ρ
[
− C
x2
t+1
yt+1 +

(
pt+1 − C

xt+1

)
dδ
dε

]
=

pt − C
xt

+ ρ
[
− C
x2
t+1
yt+1 −

(
pt+1 − C

xt+1

)(
1 + dF (xt+1)

dxt+1

)]
= 0⇒

pt − C
xt

= ρ
[(
pt+1 − C

xt+1

)(
1 + dF (xt+1)

dxt+1

)
+ C

x2
t+1
yt+1

]
The last line is the Euler Equation 15.4.
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Appendix J

Dynamics of the sole owner
fishery

This appendix derives the continuous time analog of the Euler equation, and
then derives the differential equation for harvest.

J.1 Derivation of equation 16.2

We could have begun with a continuous time problem, and derived equation
16.2 directly. That approach is mathematically preferable, but it requires
methods that we have not discussed. Therefore, we proceed mechanically,
taking equation 15.7 as our starting point, and showing how to manipulate
it to produce the continuous time analog, equation 16.2.
We need to have in mind a unit of time. Because we want the discrete

time and the continuous time models to be “close to each other”, the unit
of time should be small. As in Chapter 13.3, we begin with the model in
which one period equals one unit of time, and then divide that period into
smaller subperiods. Mechanically, we do this by replacing the number 1, the
length of a period, with ∆. We also need to rewrite the discount factor as
ρ = 1

1+∆r
instead of ρ = 1

1+r
Using the growth equation

xt+∆ − xt = [F (xt)− y (xt)] ∆,

we replace F (xt) and y (xt) with F (xt) ∆ and y (xt) ∆. Thus, the terms

dF (xt+1)

dxt+1

and − C

x2
t+1

yt+1
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in equation 15.7 become, respectively,

dF (xt+∆)

dxt+∆

∆ and − C

x2
t+∆

yt+∆∆.

These substitutions mean that instead of having the length of a period
be one unit of time (e.g. one minute), we now have the length of a period be
∆ units of time. With these substitutions, we rewrite equation 15.7 as

Rt =
1

1 + ∆r

[
Rt+∆

(
1 +

dF (xt+∆)

dxt+∆

∆

)
+

C

x2
t+∆

yt+∆∆

]
. (J.1)

Subtract Rt+∆ from both sides of equation J.1 and collect terms on the right
side to rewrite the result as

Rt−Rt+∆ =

(
1

1 + ∆r
− 1

)
Rt+∆+

1

1 + ∆r

[
Rt+∆

(
dF (xt+∆)

dxt+∆

)
+

C

x2
t+∆

yt+∆

]
∆.

Divide both sides of this equation by ∆ to write

−(Rt+∆ −Rt)

∆
=

(
1

1+∆r
− 1
)

∆
Rt+∆+

1

1 + ∆r

[
Rt+∆

(
dF (xt+∆)

dxt+∆

)
+

C

x2
t+∆

yt+∆

]
.

Now take the limit of both sides of this equation as ∆→ 0, using

lim
∆→0

(Rt+∆ −Rt)

∆
=
dRt

dt
and lim

∆→0

(
1

1+∆r
− 1
)

∆
= lim

∆→0

(
1−1−∆r

1+∆r

)
∆

= −r

to write

−dRt

dt
= −Rt

(
r − dF (xt)

dxt

)
+
C

x2
t

yt.

Multiplying through by −1 gives equation 16.2.

J.2 The differential equation for harvest

Chapter 16.3.2 uses the differential equation for the sole owner harvest,dy
dt

=
H (x, y). This appendix explains how we obtain this equation, i.e., how we
obtain the function H (x, y). The procedure uses the equations of motion
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for the stock, the rent, and the definition of rent. We repeat these three
equations:

dx
dt

= F (x)− y

dRt
dt

= Rt

(
r − dF (xt)

dxt

)
− C

x2
t
yt

Rt = p (yt)− C
xt

(J.2)

The first equation is merely the constraint of the problem, i.e. it is “data”
(given to us). The second equation is the Euler equation, expressed in terms
of rent. Both of these equations are the continuous time versions of the
discrete time model. The third equation is the definition of rent.
Because the third equation holds identically with respect to time (i.e., it

holds at every instant of time), we can differentiate it with respect to time
to write

dRt

dt
=
d
[
p (yt)− C

xt

]
dt

= p′ (yt)
dyt
dt

+
C

x2
t

yt
dxt
dt

We can use the first two lines of equation J.2 to eliminate dRt
dt
and dxt

dt
, to

write

Rt

(
r − dF (xt)

dxt

)
− C

x2
t

yt = p′ (yt)
dyt
dt

+
C

x2
t

yt (F (x)− y) .

We can now use the third line of equation J.2 to eliminate Rt, to write(
p (yt)−

C

xt

)(
r − dF (xt)

dxt

)
− C

x2
t

yt = p′ (yt)
dyt
dt

+
C

x2
t

yt (F (x)− y) .

Solving this equation for dyt
dt
gives

dy

dt
=

(
p (yt)− C

xt

)(
r − dF (xt)

dxt

)
− C

x2
t
yt − C

x2
t
yt (F (x)− y)

p′ (yt)
= H (xt, yt)

The middle expression is a function of only x and y, and the model parame-
ters. We define this expression as the function H (xt, yt).
This function looks complicated, but for the functional forms and the

parameter values in our example, it simplifies to

dy

dt
= 0.000 02

−500.0yx+ 80.0yx2 − 28.0x2 + 195.0x+ 750.0

x
= H (xt, yt) .
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Chapter 16.3.2 uses this function to construct the y isocline, the set of points
where dy

dt
= 0. This isocline is given by

dy

dt
= 0⇒ y = − 1

10x (0.08x− 0.5)

(
−0.28x2 + 1. 95x+ 7. 5

)
.

J.3 Finding the full solution

In order to find the solution to the optimization problem, needed to construct
the dotted curve in Figure 16.3, we take the ratio of the differential equation
for y and the differential equation for x, to obtain a new differential equation,
showing how y changes with changes in x:

dy
dt
dx
dt

=
dy

dx
=

H (xtyt)

F (x)− y .

The solution to this equation is a function giving the optimal harvest as a
function of the stock, the optimal “harvest rule”. Denote this function as
y = Y (x). Figure 16.3 shows the graph of Y (x), the dotted curve. Solving
the differential equation to obtain the optimal harvest rule, Y (x), requires
a “boundary condition”, giving the value of y at some value of x. Our
boundary condition is given by the steady state, denoted (x∞, y∞). We
calculate the steady state by finding the intersection of the x and the y
isoclines. Our boundary condition is y (x∞) = y∞.
Some numerical algorithms encounter a problem in solving the differential

equation, because both the numerator and denominator of dy
dx
vanish at the

steady state, making the ratio an indeterminate form. This problem is easily
resolved, but involves methods beyond the scope of this book. We can
linearize our original non-linear system and use the eigenvector associated
with the stable eigenvalue to replace the boundary condition (the steady
state) with a point on the “stable”eigenvector. We have to (numerically)
solve the resulting initial value problem twice, once beginning with a point
slightly below the steady state, and then beginning with a point slightly
above the steady state. Figure 16.3 shows the first of these two parts of the
solution.
The dotted curve in Figure 16.3 shows the graph of the optimal harvest

level, as a function of the stock, x. Harvest is positive only when the stock is
above 3. As the stock increases over time, the harvest rises. The harvest is
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nearly constant, once the stock reaches about 20 or 25. The stock continues
to grow to its steady state, and the harvest changes very little.
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Appendix K

The common property water
game

We define an individual farmer’s benefit of consuming y
n
units of water as

v
(
y
n

)
; when each of n farmers consumes y

n
units, the total benefit of consump-

tion is nv
(
y
n

)
≡ V (y). With this definition, the net benefit to Farmer i is

v (yit)−(c0 − cxt) yit, and the aggregate benefit, when each farmer consumes an
equal share (yi = y

n
) equals V (yt)−(c0 − cxt) yt. Replacing V (y) with nv

(
y
n

)
does not alter the social planner’s problem, or the Euler equation for that
problem, but it provides the notation needed to think about the game when
each farmer individually chooses her own extraction. In a symmetric equi-
librium, each farmer has the same level of consumption in a period: yit = yt

n
.

Using the chain rule and V (y) ≡ nv
(
y
n

)
, we have V ′ (y) = nv′

(
y
n

)
1
n

= v′
(
y
n

)
.

When Farmer i’s benefit of extraction is v (yit) − (c0 − cxt) yit, her rent in a
symmetric equilibrium is

Ri
t

(yt
n
, xt

)
= v′

(yt
n

)
− (c0 − cxt) = V ′ (y)− (c0 − cxt) = R (yt, xt) . (K.1)

These equalities state that for a given level of extraction, yt, and a given
stock, xt, the individual farmer’s rent and the social planner’s rent are the
same. Of course, the equilibrium level of extraction differs in a common
property game and under the social planner.
Consider a noncooperative Nash equilibrium in which farmer i extracts

yit units of water at t, and takes as given the aggregate extraction policy (a
function of the stock, x) of all other farmers.1 We denote that aggregate

1There are a number of different types of Nash equilibria in dynamic games of this sort.
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extraction policy as y∗ (xt). Farmer i faces the equation of motion

xt+t − xt = F ∗ (xt)− yit, with F ∗ (xt) ≡ F (xt)− y∗ (xt) . (K.2)

and her Euler equation is (cf. equation 17.6)

Ri
t = ρ

(
Ri
t+1

(
1 +

dF ∗ (xt+1)

dxt+1

)
+ cyit+1

)
. (K.3)

As in our two-period example, we want to compare the optimality con-
ditions under the planner (equation 17.6) and in the game (equation K.3),
without actually solving for the two equilibria. The left sides of these two
equations are the same (by virtue of Equation K.1), but their right sides
differ (just as is the case with the two first order conditions in our two-period
example). The right side of equation 17.6 contains cyt+1, accounting for the
higher aggregate costs in period t + 1 due to the lower stock. In contrast,
the right side of equation K.3 contains cyit+1, accounting for the higher cost
only to Farmer i due to the lower stock. When the planner decides whether
to extract an extra unit, she takes into account the higher aggregate future
cost; the individual farmer only takes into account her own future higher cost.
The higher cost that other farmers face is the “cost externality”discussed in
the text.
The “scarcity externality”arises from the fact that the right side of the

equation 17.6 contains the term dF (xt+1)
dxt+1

, whereas the right side of equation

K.3 contains dF ∗(xt+1)
dxt+1

. If Farmer i (irrationally) believes that the other
farmers would not condition their future extraction decisions on the future
water stock, then y∗′(x) = 0 and these two terms are identical. In that
case, the Euler equation does not reflect a scarcity externality.2 However, a
reasonable conjecture for equilibrium is that

dy∗ (xt)

dx
> 0. (K.4)

This inequality states that a higher stock of water leads to higher extraction
by the other agents. The assumption is reasonable, because the higher is

We consider a feedback (also known as Markov perfect) equilibrium, in which each agent
thinks that all of the other agents will base their decisions on the “payoff relevant”state
variable. Here, the payoff relevant state variable is the stock of water.

2Our analysis ignores the transversality condition. When the resource is eventually
exhausted, the scarcity externality also shows up in this condition.
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the stock of water, the lower are extraction costs, and the less scarce is the
water. Both of these considerations tend to encourage higher extraction.
Inequality K.4 means that actions are “dynamic strategic substitutes”,

in the following sense: If agent i extracts an extra unit of water at time t,
the stock in the next period will be lower than it otherwise would have been,
causing other farmers’extraction decisions to be lower than they otherwise
would have been. That is, higher extraction by farmer i at a point in time
causes other farmers to reduce their future extraction.
If equation K.4 holds, then

dF ∗ (xt+1)

dxt+1

<
dF (xt+1)

dxt+1

.

This inequality lowers the reduction in extraction that Farmer i needs to
make at time t + 1, following an increase in her extraction at t (in order to
return to the candidate trajectory). By leaving her neighbors with a lower
stock, Farmer i induces them to lower their future extraction, benefitting
Farmer i. The neighbors’future response to lower stocks encourages Farmer
i to increase her current extraction.
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Appendix L

Sustainability

We first confirm the Hartwick Rule and then examine the feasibility of sus-
tainability, when society follows the Hartwickt rule.

L.1 Confirming the Hartwick Rule

Here we show that the Hotelling Rule + Hartwick Rule implies constant
consumption (dC

dt
= 0). Reordering the argument shows that constant con-

sumption + the Hotelling Rule implies the Hartwick Rule.
The national income accounting identity states that total income (Y )

must equal total expenditures. Expenditure is the sum of investment (I =
dK
dt
) and extraction costs (cE) and consumption (C):

Income accounting identity: Y =
dK

dt
+ cE + C (L.1)

We rearrange this identity to write.

Y − (I + cE) = C

Using the Hartwick Rule, I = (p− c)E, we have

Y − ((p− c)E − cE) = Y − pE = C. (L.2)

Differentiating both sides with respect to time gives

dY

dt
− d (pE)

dt
=
dC

dt
.
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We use the differential for Y (K,E) to write the left side of this equation as

FKI + FE
dE

dt
− d (pE)

dt
= r (p− c)E + p

dE

dt
− d (pE)

dt
.

The equality uses the Hartwick Rule and equation 18.1, the fact that the
value of marginal product equals factor price. Using the Hotelling Rule, we
write the right side of the last expression as

dp

dt
E + p

dE

dt
− d (pE)

dt
= 0.

The equality follows from the product rule for differentiation. Thus, we have
shown that the Hotelling Rule plus the Hartwick rule implies that consump-
tion is constant over time.

L.2 Feasibility of constant consumption

Here we assume that technology is Cobb Douglas, F (K,E) = K1−αEα, a
stronger assumption than constant returns to scale. We show that sustain-
able consumption is feasible if and only if α < 0.5. As a preliminary step,
we establish that under the Hartwick Rule, consumption is constant if and
only if output, Y , is also constant. To demonstrate this claim, use the equi-
librium condition that the value of marginal product of E equals the price
of E:

∂K1−αEα

∂E
= p⇒ αK1−αEα−1 = p⇒ pE = αK1−αEα ⇒ pE

Y
= α. (L.3)

The last equality states that payments to the resource sector, pE, as a share
of the value of output, K1−αEα, equals the constant α. Using the last parts
of equation L.2 and L.3, we have

Y = C + pE = C +
pE

Y
Y = C + αY ⇒ (1− α)Y = C

The last equality implies that output (= income) is constant if and only if
consumption is constant.
In order to determine whether a constant consumption path (i.e. a

constant output path) is feasible, we solve Y = K1−αEα for E to obtain
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E = Y
1
αK

α−1
α . For α 6= 0.5, the integral of this function from an initial

capital stock k to a larger stock z gives

R (z, k) ≡ Y
1
α

∫ z

k

(
K1− 1

α

)
dK =

α

2α− 1
Y

1
α

(
z2− 1

α − k2− 1
α

)
.

For α = 0.5, this integral is R (z, k) = Y 2
∫ z
k

(K−1) dK = Y 2 (ln z − ln k).
The function R (z, k) equals cumulative extraction needed to produce a con-
stant output Y as K varies from the initial level k to some larger level z. As
noted in the text, capital becomes infinitely large along the sustainable tra-
jectory, so (for α 6= 0.5) a sustainable trajectory requires an initial resource
stock of

lim
z→∞

R (z, k) = lim
z→∞

α

2α− 1
Y

1
α

(
z2− 1

α − k2− 1
α

)
=

{
∞ if α > 0.5

α
1−2α

Y
1
αk2− 1

α if α < 0.5
.

For α = 0.5, the initial resource stock needed in order to maintain constant
output is limz→∞ Y

2 (ln z − ln k) =∞. Thus, if α ≥ 0.5, it is not feasible to
maintain any positive constant level of output, simply because such a path
would require an infinite resource stock. If α < 0.5, and the initial resource
stock is x and the initial capital stock is k, it is feasible to maintain the
constant level of output y that solves

x =
α

1− 2α
Y

1
αk2− 1

α ⇒ Y =

(
(1− 2α)x

α

)α
k1−2α.

For Y = 1, k = 0.7 and α = 0.4 (as in Figure 18.1), x = 2.4. If α = 0.4, the
initial resource stock is 2.4 and the initial capital stock is 0.7, the constant
output path Y = 1, and the corresponding consumption path (1− 0.4) 1 =
0.6 are sustainable.
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Appendix M

Discounting

We derive the Ramsey formula for the consumption discount rate, and then
discuss a numerical example that shows the effects, on willingness to pay to
avoid future damages, of excessive optimism or pessimism.

M.1 Derivation of equation 19.1

We want to know how many units of consumption people today (time 0)
are willing to sacrifice to increase time t consumption by 1 unit (one dollar
or one billion dollars, depending on choice of units). Suppose, absent the
policy, that society has c0 units of consumption today for the present value
utility e−ρ×0u (c0) = u (c0), and society has ct units of consumption at time
t > 0, with present value utility e−ρtu (ct). The utility discount factor e−ρt

converts the time t utility into its present value (at time 0, today) equivalent.
If society gives up $x today, the utility cost is u′ (c0)x, the marginal value
of a unit of consumption, times the number of units that society gives up
today. The present value of the increased utility due to the extra dollar at
time t is e−ρtu′ (ct). Equating the marginal cost to the marginal gain gives

x(t) =
e−ρtu′ (ct)

u′ (c0)
.

This value of x(t) equals the number of units of consumption society is willing
to give up today, in exchange for one more unit of consumption at time t;
x (t) therefore is the consumption discount factor, giving the present value
today of a future unit of consumption.
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A rate of change (with respect to time) of a variable equals the derivative
of the variable with respect to time, divided by the variable. Because x (t)
is the consumption discount factor, the absolute value of its rate of change
is the consumption discount rate, which we denote as r (t). Taking the
derivative gives

r (t) = −
dx(t)
dt

x(t)
= −

d(e−ρtu′(ct))
dt

e−ρtu′ (ct)
=
ρe−ρtu′ (ct)− e−ρtu

′′
(ct)

dc
dt

e−ρtu′ (ct)

=
ρe−ρtu′ (ct)− e−ρtu

′′
(ct) c

dc
dt

c

e−ρtu′ (ct)
= ρ− u

′′
(ct) c

u′ (ct)

dc
dt

c
= ρ+ ηtgt.

The last equality uses the definitions in the second line of equation 19.1

M.2 Optimism versus pessimism about growth

Growth is g (t) = .02
1+γt

, γ ≥ 0. The parameter γ determines growth’s speed
of decrease. For γ = 0, growth is constant at 2% per year; as γ →∞, growth
falls almost immediately from 2% to 0%. We also use the intermediate value
γ = 0.0133, for which annual growth falls to 1% after 75 years, and then
gradually falls to 0. This example is broadly consistent with some complex
policy-driven models, for which the current growth rate is 1.5% —2%, and
is expected to decline over time. Our example assumes that the true value
is γ = 0.0133; γ = 0 implies “false optimism” and γ = ∞ implies “false
pessimism”about growth.
If the CDR is constant, at r, then the consumption discount factor is

e−rt. If, instead, the CDR is a function of time, r (t), then the consumption
discount factor for a future time, t, is e−R(t)t, with R (t) equal to the average
discount rate from today (time 0) and time t:

R (t) =

∫ t
0
r (τ) dτ

t
.

The consumption discount factor, used to evaluate an exchange between the
present and t periods in the future, depends on the consumption discount
rates at all intervening periods. Using ρ = 0.01, η = 2, and g (t) = .02

1+γt
with

γ = 0.0133, the Ramsey formula implies r (t) = 0.01 + 2 × .02
1+0.0133t

; it falls
over time from 5% to 1%, reaching the intermediate 3% level after 75 years.
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Under growth-optimism (γ = 0), r (t) = 0.05 and under growth pessimism
(γ = ∞), r (t) = 0.01. The short run growth predictions are similar under
γ = 0 and γ = .0133 and very different for γ = ∞. In contrast, the long
run growth predictions are similar under γ = 0.0133 and γ = ∞, and very
different under γ = 0.
The three scenarios with γ = 0 (growth is constant at 2%), γ = 0.0133

(described above), and γ = ∞ (future growth is zero) illustrate the policy
importance of assumptions about growth over long stretches of the future.
For each of these scenarios, we ask “What is the maximum risk premium
(measured in dollars) that society would pay, in perpetuity, in order to avoid
a $100 perpetual loss in consumption beginning T years in the future?”1

Denote this Willingness to Pay as WTP (γ, T ), a function of T and γ.
To show the policy relevance of assumptions about future growth, we

consider the ratios of WTP (γ, T ) for different values of γ and T . Denote

Ratio(1,T ) =
WTP (γ = 0.0133, T )

WTP (γ = 0, T )
; Ratio(2,T ) =

WTP (γ =∞, T )

WTP (γ = 0.0133, T )

For example, if Ratio(1,T ) = 10, then the planner is willing to spend 10 times
the amount to avoid the event when growth falls (γ = 0.0133) compared to
when growth is constant at 2% (γ = 0). Because we assume that γ = 0.0133
describes actual growth, Ratio(1,T ) equals the magnitude of the error if we
are too optimistic about growth, and Ratio(2,T ) equals the error if we are
too pessimistic. The “error”is the understatement or overstatement of WTP,
relative to the correct WTP when we know γ = 0.0133.
Figures M.1 and M.2 show graphs of these two ratios as functions of the

event time, T . The first figure graphs these two ratios as T varies from 0
to 120 years, and the second figure shows the ratios as T varies from 120 to
220 years. By using two figures, we can see how the scale of the comparison
depends on the event time, T . For example:

• If the event time is T = 50, Ratio(1) = 2.2 and Ratio(2) = 3.3. In this
case, the error (in calculating the correct Willingness to Pay) arising
from to being too pessimistic is 3.3

2.2
100 = 150% of the error arising from

being too optimistic.

1Chapter 19.1.1 addresses a similar question, but here we measure the trade-off in
dollars instead of utility, and we take into account the possibility of growth.
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• If the event time is T = 200, Ratio(1) = 127.5 and Ratio(2) = 23.4. In
this case, the error (in calculating the true Willingness to pay) arising
from being too optimistic is 127.5

23.4
100 = 544% of the error arising from

being too pessimistic.

This example illustrates that the cost-benefit analysis of a public invest-
ment with a payoff in the near future, e.g. the next century, depends largely
on near-term growth. In contrast, the cost benefit analysis of a public invest-
ment with a payoff in the distant future is much more sensitive to growth
rates over long spans of future time. We probably know much less about
growth in the distant compared to the near future. Overestimates of future
growth lead to too low an estimate of willingness to pay to avoid future
damages. Underestimates of future growth lead to too high an estimate of
willingness to pay.
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