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1 Introduction

The danger that greenhouse gas (GHG) stocks cause environmental damage has led to
a renewed interest in the problem of controlling emissions when there is asymmetric
information about abatement costs. Although hybrid policies, e.g., cap and tradewith a
price ceiling, are more efficient than either the tax or quantity restriction (Pizer 1999),
the comparison of taxes and quotas remains an important policy question. Since GHGs
are a stock pollutant, the regulator’s problem is dynamic. Most of the current litera-
ture on this dynamic problem assumes that non-strategic firms solve a succession of
static problems. If, however, a firm’s abatement costs depend on its stock of abatement
capital, the firm makes a dynamic investment decision as well as the static emissions
decision. We study the regulatory problem with asymmetric information when firms
invest in abatement capital. We find that for general functional forms, quotas have an
advantage over taxes that had not previously been recognized: quotas, but not taxes,
are “information-constrained” optimal with respect to investment. We then consider a
special functional form (linear–quadratic) where that advantage disappears, and here
we find that taxes can increase abatement and welfare.
Earlier literature, e.g., Chichilnisky and Heal (1995), provided policymakers with

the economic framework needed to compare different types of policies, thereby
contributing to the creation of the carbon market currently used by some Kyoto sig-
natories in the European Trading Scheme. Ellerman (2010) discusses the current state
of this market. Our paper contributes to policy discussions by helping to illuminate a
difference between taxes and quotas when forward-looking firms make investments
that reduce abatement costs. In our setting, investment decreases costs by increasing
the stock of abatement capital. We can also think of the firms’ activity as investment
in (excludable) R&D.
For a variety of pollution problems, capital costs comprise a large part of total

abatement costs (Vogan 1991) and investment in abatement capital depends on the
regulatory environment. In these cases, the endogeneity of investment is an impor-
tant aspect of the regulatory problem. Several recent papers (Buonanno et al. 2001;
Goulder and Schneider 1999; Goulder and Mathai 2000; Norhaus 1999) assume that
the regulator can choose emissions and also induce firms to provide the first-best level
of investment, e.g., by means of an investment tax/subsidy.
We consider the situation where the regulator has a single policy instrument, either

a sequence of emissions taxes or a sequence of quotas. This assumption is consis-
tent with many regulations and proposals that involve an emissions policy but ignore
endogenous investment (e.g., the Kyoto Protocol). In virtually any real-world prob-
lem, the regulator is likely to have fewer instruments than targets. Our model is an
example of this general disparity between the number of instruments and targets, and
therefore is empirically relevant. We identify a previously unrecognized difference
between taxes and quantity restrictions, and we provide a simple means of solving the
regulatory problem when a certain condition holds.1

1 Jaffe et al. (2003) and Requate (2005) survey the literature on pollution control and endogenous
investment. Many papers in this literature, including Biglaiser et al. (1995), Gersbach and Glazer (1999),
Kennedy and Laplante (1999), Montero (2002), Fischer et al. (2003), Moledina et al. (2003), and
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We now describe the problem in more detail. In each period, the representative
firm observes an abatement cost shock that is private information. If this cost shock is
serially correlated, the regulator learns something about its current value by observing
past behavior. The firm knows the current value of the cost shock and therefore is
better informed than the regulator. Both the regulator and firms obtain information
over time. We examine a subgame perfect equilibrium in which the regulator and
firms condition their decisions on “directly payoff-relevant” information, as distinct,
for example from the entire history of actions. That is, we consider a Markov perfect
equilibrium (MPE).
For the regulator, the payoff-relevant information consists of the aggregate stock

of abatement capital (which affects the industry-wide marginal abatement costs), the
stock of pollution (which determines marginal damages) and the regulator’s beliefs
about the current cost shock (which also affects the industry’s marginal abatement
costs). For the firms, the payoff-relevant information consists of the current policy level
(the tax or quota), the current cost shock, the individual firm’s level of abatement cap-
ital, the aggregate industry capital and the pollution stock. The last two state variables
are payoff-relevant for the firm because the firm understands that these variables affect
the evolution of aggregate capital stock and pollution stock, and the firm understands
that the regulator conditions future policy levels on future values of those two stocks.
The assumption ofMarkov perfectionmeans that the regulator cannotmake binding

commitments regarding future policies. Firms have rational expectations; they take the
current emissions policy as given and they understand how the regulator chooses future
policies. The non-atomic representative firm is not able to affect the economy-wide
variables that determine future policies. The representative firm therefore behaves
non-strategically, but not myopically, and also uses Markov policies.
The regulator understands that future emissions policies affect the current shadow

value of abatement capital and thus affect current investment. For example, firms’
anticipation that future emissions policies will be strict would increase the shadow
value of abatement capital, thereby increasing the current level of investment. The
regulator at the current time, t , might want to commit to a future policy, implemented
at t ′ > t , as a means of affecting current investment in abatement capital. This incen-
tive is the source of the familiar time-consistency problem. After time t , the time-t
investment is predetermined, so the motivation for the time t ′ policy choice that was
optimal at time t has changed. Our setting has the usual ingredients that lead to this
problem: the regulator with a second-best instrument (the emissions tax or quota)
wants to influence forward-looking agents.
Subgame perfection is stronger than time-consistency; the former requires that no

agent wants to deviate from the equilibrium strategy at any possible subgame, and
the latter requires only that no agent wants to deviate from the equilibrium strategy at

Footnote 1 continued
Tarui and Polasky (2005, 2006) assume that firms behave strategically with respect to the regulator: firms
believe that their investment decisions will affect future regulation. Several paper, includingMalueg (1989),
Milliman and Prince (1989), Requate (1998), Requate and Unold (2003) and Karp (2008) treat firms as
non-strategic. Papers that discuss time-inconsistency arising because of the disparity between the number
of targets and the number of instruments include Abrego and Perroni (2002) and Marsiliani and Renstrom
(2002).
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subgames that actually occur in equilibrium. The assumption of Markov perfection (a
refinement of subgame perfection) therefore implies time-consistency.
In order to understand an important difference between emissions taxes and

quotas, it is useful to determine whether the restriction to time-consistency is a bind-
ing constraint. To this end, we ask whether the solution to the regulator’s problem,
in the absence of a time-consistency constraint, would in any case be time-consis-
tent. If the private level of investment under the equilibrium emissions policy (the
tax or quota) is socially optimal, then the regulator wants to use the emissions pol-
icy exclusively to influence emissions, without having to consider how the emissions
policy affects investment. In this case, the regulator has no incentive to alter a previ-
ously announced policy rule. In this circumstance there is no time-consistency prob-
lem. Here we can obtain the MPE by solving an optimization problem that contains
elements of the regulator’s and the firms’ problems. If, in contrast, firms’ investment
decisions are not socially optimal given beliefs about the emissions trajectory, then
the regulator would like to choose the emissions policy partly to influence invest-
ment. In this case, the Markov perfect restriction, which implies time-consistency,
actually constrains the regulator. Here, we need to solve an equilibrium problem
(a dynamic game between the regulator and non-strategic firms) rather than a rel-
atively simple dynamic optimization problem. In other words, the type of problem
that we need to solve an equilibrium problem or an optimization problem depends
on whether the equilibrium level of investment is socially optimal, conditional on the
emissions trajectory.
There is another way of thinking about the time-consistency problem. The only

market failure is that firms do not take into account the social damages arising from
emissions. If there were no cost shock, or if the regulator and firms had symmetric
information, either the emissions tax or the quota would be sufficient to induce firms
to emit at the optimal level. In that case, firms’ investment decisions would be first
best. Therefore, if in addition to the emissions policy the regulator were able to use
an investment tax, the optimal level of that tax would be identically zero. However,
when there is asymmetric information about abatement costs, there is no assurance
that either the emissions tax or the quota leads to the first best level of emissions.
Therefore, with asymmetric information, the equilibrium level of investment under
the emissions policy might not be (information-constrained) socially optimal. In that
case, the optimal level of an investment tax would be non-zero.
We can ask our basic question in two equivalent ways. (1) Is the optimal emissions

tax or quota policy time-consistent? (2) Would a regulator who uses either the emis-
sions tax or the quota increasewelfare by additionally using an investment tax/subsidy?
(In other words: is the optimal investment tax/subsidy identically 0?).
We provide a simple answer to these questions. The optimal quota policy is time-

consistent; equivalently, when the regulator can use both an emissions quota and an
investment tax, the latter is identically 0. However, the optimal emissions tax policy is
time-inconsistent, unless a particular “ separability condition” holds; if this condition
does not hold, the optimal investment tax, when used with the emissions tax, is not
identically 0.
This result is useful for two reasons. First, under plausible circumstances the

separability condition does not hold. In these circumstances, an emissions tax cre-
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ates a secondary investment distortion, whereas the emissions quota does not. Thus,
we have identified a difference between taxes and quotas that has previously been
unnoticed.
Second, when the separability condition does hold, we can solve the dynamic game

by solving a much simpler dynamic optimization problem that combines elements
of the regulator’s and the firms’ optimization problems. The separability condition
holds for an important special case, the linear–quadratic model, which has been
previously used to study the problem of regulating both a flow and a stock pollutant
under asymmetric information. Our separability result means that we can generalize
the linear–quadratic model by including endogenous abatement capital. This general-
ization enables us to learn how the inclusion of endogenous abatement costs affects
the ranking of the two policies. Our principal numerical finding is that, in the linear–
quadratic framework, including abatement costs increases the advantage of taxes over
quotas.
In summary, explicit treatment of the investment decision renders the firms’ deci-

sion problems dynamic. In general, this feature favors the use of quotas, because these,
unlike taxes, introduce no distortion into firms’ investment decisions. However, in
special cases that include the linear–quadratic model, this distortion disappears with
taxes. For our calibration, the explicit treatment of the investment decision favors taxes
in the linear–quadratic setting.
The next section discusses a static problem that provides the intuition for the sep-

arability condition. Subsequent sections describe the dynamic model and show the
role of the separability condition. We then discuss the linear–quadratic specialization,
and explain how endogenous investment affects the comparison of taxes and quotas
in that setting. In closing the paper, we discuss other aspects of the tax versus quantity
debate, as it applies to climate change policy.
Other papers in this symposium discuss related aspects of the climate change

problem. Asheim et al. (2011), Lauwers (2011), Figuieres and Tidball (2011) and
Chichilnisky (2011) consider the ethical foundations of criteria for sustainability, and
the possibility of implementing such programs. Lecocq and Hourcade (2011) examine
the relation between income levels and abatement expenditure in an efficient solution.
Dutta and Radner (2011) show that capital accumulation can exacerbate the tragedy
of the commons, and that income transfers can alleviate this problem. Rezai et al.
(2011) explain why meaningful climate policy may require smaller (or even zero) sac-
rifice by the current generation, contrary to the conclusions of mainstream integrated
assessment models. Burniaux and Martins (2011) use a computable general equilib-
rium model to evaluate the key parameters in determining the magnitude of “carbon
leakage”. Ostrom (2011) emphasizes the importance of climate change policy at sub-
global levels. Chipman and Tian (2011) elaborate on the role of the Coase Theorem
in climate change policy.

2 The one-period example

This section uses a one-period model that demonstrates, in a simple setting, the differ-
ence between taxes and quotas when abatement costs are endogenous. We show that
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the emissions quota is always time-consistent; equivalently, if the regulator uses an
emissions quota and also is able to use an investment tax/subsidy, the optimal invest-
ment tax is 0. In contrast, the emissions tax is not time-consistent; equivalently, if the
regulator uses an emissions tax and also is able to use an investment tax/subsidy, the
investment tax is not 0 in general. However,the optimal emissions tax is time-consistent
if and only if the primitive functions satisfy a particular “separability condition”.
There is a simple explanation for this difference between taxes and quotas. An

emissions policy chosen before investment has a “ direct welfare effect” via its direct
effect on emissions, and an “indirect welfare effect”, via its effect on investment.When
the policy level is chosen after investment, the regulator takes into account only the
direct welfare effect, since investment is fixed. The optimality condition for the policy
chosen before investment requires that the sum of the direct and the indirect welfare
effects is set equal to 0. The optimality condition for the policy chosen after investment
requires that the direct welfare effect is set equal to 0. These two optimality conditions
are equivalent if and only if the indirect effect is 0 whenever the direct effect is 0. That
equivalence does not hold in general under taxes, but it does hold when the separability
condition is satisfied. In contrast, the indirect welfare effect under quotas is always
0, so the optimal quota is the same regardless of whether it is chosen before or after
taxes. All of this becomes obvious once we develop some notation and write down the
optimality conditions.
We normalize the initial level of abatement capital to 0. The non-strategic but

forward looking representative firm can buy k units of abatement capital at cost c(k);
the firm obtains benefits B(x, k, θ) by emitting x units of emissions when its stock of
abatement capital is k and the cost shock is θ . We can think of the function B(·) as
a restricted profit function in which input and output prices are suppressed. Alterna-
tively, we can interpret B(·) as the amount of avoided abatement costs. For the latter
interpretation, define xb as the Business-as-Usual (BAU) level of emissions, i.e., the
level of emissions under the status quo. Define a = xb − x as the level of abate-
ment, i.e., the reduction in emissions due to a new regulatory policy. The abatement
costs associated with the new regulations are A = A(k, θ, a). If xb is a function of
(k, θ), we can rewrite the abatement cost function as A(k, θ, a) = B(x, k, θ), with
Aa(·) = Bx (·): marginal abatement costs equal the marginal benefit of emissions.
The benefit function is increasing and concave in x and k and increasing in θ(Bk >

0, Bθ > 0, Bx > 0, Bkk < 0, Bxx < 0 ). More abatement capital decreases the mar-
ginal cost of abatement and, therefore, lowers the marginal benefit of pollution, so
Bxk < 0. A higher cost shock increases the marginal benefits of abatement capital and
emissions: Bkθ ≥ 0, Bxθ ≥ 0.
The damage from emissions (external to the firm) is D(x). The regulator chooses

either an emissions tax p or an emissions quota x̄ . Throughout this paper, we assume
that the emissions quota is binding for all realizations of θ . Both the regulator and the
firm have the same information about the distribution of θ before the firm observes its
value.
Each firm has measure 0, and by choice of units the mass of firms has measure 1.

With this normalization, in a symmetric equilibrium k and x represent the industry-
wide capital stock and aggregate emissions, as well as the firm level values. The
non-strategic firm chooses its (possibly constrained) level of k and x but takes the
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industry-wide levels as exogenous. In this section it is clear from the context whether
wemean firm or aggregate level variables, but in a later section wemodify the notation
to avoid the possibility of misunderstanding.
We consider the following two time-lines:

Time Line A Time Line B
1. The regulator chooses the

policy level (p or x̄).
1. The firm chooses
investment (k)

2. The firm chooses investment (k) 2. The regulator chooses
the policy level (p or x̄).

3. Nature reveals the cost shock (θ ) 3. Nature reveals the cost
shock (θ ).

4. The firm makes its emissions
decision (x)

4. The firm makes its
emissions decision (x).

With Time Line A, the emissions policy can influence both the levels of investment
and emissions. With Time Line B, the emissions policy depends on the level of invest-
ment, and influences only the emissions level. In the one-period game, neither of the
two time lines has a greater claim to plausibility, but the comparison of the two helps
to understand the time-consistency problem in the dynamic setting.
If the optimal policy for the regulator is the same under both time lines, then it is

obvious that the regulator uses that policy only to affect the emissions decision, not
to influence the investment decision. In this case, the emissions policy does not create
a secondary distortion in the investment decision; if we were to add a period after
stage 2 and before stage 3 (“stage 2.5”) to Time Line A, at which the regulator were
permitted to revise the policy announced in stage 1, the regulator would not want to
make a revision when policies are time-consistent.
We show that the emissions quota is always time-consistent, but the emissions tax

is time-consistent if and only if a particular separability condition holds. Equivalently,
if we were to add a “stage 0” to either time line, at which the regulator announces
an investment tax, the optimal investment tax is always 0 when the regulator uses an
emissions quota, but it is 0 when the regulator uses an emissions tax if and only if the
separability condition holds. To establish this claim, we examine each policy under
both time lines.

Emissions taxes Under Time Line A, p is predetermined when the individual firm
chooses k. Under Time Line B, p depends on aggregate capital, about which firms
have rational point expectations. Since firms take aggregate capital as given when
making their investment decision, and since they know the relation between p and
aggregate capital, it is “as if” they take p as given under Time Line B as well. In short

Remark 1 Under both time lines, the individual firm takes p as given when choosing
its level of capital.

This remark simplifies comparison of the two time lines because we need only
consider how the choice of time lines affects the regulator’s strategic incentives; firms
do not behave strategically, so the choice of time lines obviously does not affect their
strategic incentives.
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Consider Time Line A when the regulator uses a tax. The representative firm’s
payoff in stage 2 is

E [B(x, k, θ)− px − c(k)] ,

where the expectation is with respect to θ . The firm chooses x in the last stage, con-
ditional on k, p, and θ . It chooses k before it learns θ . The first-order conditions for x
and k and the corresponding decision rules (denoted using ∗) in stages 4 and 2 are

Bx (x, k, θ)− p = 0 ⇒ x = x∗(k, p, θ). (1)

E
[
Bk

(
x∗, k, θ

) − c′(k)
] = 0 ⇒ k = k∗(p). (2)

Note that k∗(p) is independent of θ . Differentiating the first-order condition (1) gives
the comparative statics result

∂x∗

∂p
= −1

Bxx (x, k, θ)
and

∂x∗

∂k
= −Bxk(x, k, θ)

Bxx (x, k, θ)
. (3)

The regulator’s problem under Time Line A is

max
p

E
[
B

(
x∗, k∗, θ

) − c
(
k∗) − D

(
x∗)] ,

leading to the first-order condition

E

{[
Bx (∗, θ)− D′ (x∗)] ∂x∗

∂p

}
+ E

{[[
Bx (∗, θ)− D′ (x∗)] ∂x∗

∂k

+Bk(∗, θ)− c′ (k∗) ]
dk∗

dp

}
= 0, (4)

(using the notation ∗ = (x∗, k∗)). Because k∗(p) is independent of θ , we can take dk∗
dp

outside the expectations operator and use the firm’s optimality condition (2) to write
the regulator’s optimality condition as

E

{[
Bx (∗, θ)− D′ (x∗)] ∂x∗

∂p

}
+ dk∗

dp
E

{[
Bx (∗, θ)− D′ (x∗)] ∂x∗

∂k

}
= 0, (5)

The first term on the left side is the direct welfare effect of the tax and the second term
is the indirect welfare effect, operating through investment.
The first-order condition for the firms’ emissions decision is the same under the

two time lines, since in both cases the firm conditions its emissions decision on pre-
determined values of p and k and the realized value of θ . In view of Remark 1, the
first-order condition to the individual firm’s investment problem under Time Line B is
(apart from an inessential notational difference) still given by Eq. (2). This notational
difference is that instead of treating p as a predetermined variable, under Time Line
B the firm treats p as a function of aggregate capital, which the firm takes as given.
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The fact that (apart from the notational difference) the firm’s first-order conditions
are the same under the two time lines means that the functions x∗(k, p, θ), and k∗(p)
are also the same under the two time lines, although of course the values of p in the
two scenarios (therefore, the equilibrium values of k and x) might differ. This possible
difference is the key to the time-consistency issue. Under Time Line B, the regulator
takes (aggregate) k as given, so its first-order condition for the tax is

E

{[
Bx (∗, θ)− D′ (x∗)] ∂x∗

∂p

}
= 0. (6)

Note that this optimality condition equates the expected marginal benefits and costs
of the tax, not the expected marginal benefits and costs of emissions. The two need
not be the same, because in general ∂x∗

∂p depends on θ .
Denote the optimal tax under Time Line B as p̂. We assume that the regulator’s

problem is concave under both time lines, so that the solution to the respective first-
order condition is unique. Comparison of Eqs. (5) and (6) shows that the optimal
emission tax is the same under the two time lines if and only if the indirect effect of
the tax, evaluated at p = p̂, is zero, i.e., if

E

{[
Bx (∗, θ)− D′ (x∗)] ∂x∗

∂k

}
|p= p̂

= 0. (7)

We refer to the following as the “separability condition”:

Condition 1 (Separability) Bxx and Bxk , evaluated at the optimal x∗, are independent
of θ .

Remark 2 Equation (7) holds for all functions B(x, k, θ) if and only if the separability
condition holds.

Proof In order to establish the sufficiency of Condition 1, note that it implies (using
Eq. 3) that both ∂x∗

∂p and
∂x∗
∂k are independent of θ . This independence, together with

Eq. (6) and the fact that ∂x∗
∂p �= 0 imply that p̂ (the optimal tax under Time line B)

satisfies

E
[
Bx

(
x∗ (

k∗, p, θ
)
, k∗, θ

) − D′ (x∗ (
k∗, p, θ

))] = 0. (8)

That is, under Condition 1, the tax equates expected marginal benefits of emissions
with marginal damages. The independence of ∂x∗

∂k and θ , and the fact that ∂x∗
∂k �= 0,

mean that Eq. (8) implies Eq. (7). Therefore, the optimal tax under the two lines is the
same.
In order to establish necessity, note that if either Bxx or Bxk are not independent of

θ , it is straightforward to construct examples under which the regulator’s first-order
conditions for p differ under the two time lines. ��
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It is also easy to show:

Remark 3 Suppose that the regulator uses an emissions tax. If we modify either time
lines by adding a stage 0 at which the regulator is able to choose an investment tax/sub-
sidy, the optimal level of this policy is identically 0 for all functions B(x, k, θ) if and
only if the separability condition holds.

We omit the proof, which parallels the proof of Remark 2.
We see that time-consistency requires that Eq. (6) implies Eq. (7). Equation (6)

states that the first-order change in welfare due to a change in the tax, (holding invest-
ment fixed), is zero. Equation (7) states that the first-order change in welfare due to
a change in investment (holding the tax fixed) is zero. In general, of course, there
is no reason that one equation implies the other, so in general the tax chosen before
investment is not time-consistent. However, the separability condition implies two
things about the problem: (1) ∂x∗

∂p is independent of θ , so that setting the expected net
marginal benefit of the tax (holding investment fixed) equal to 0 is equivalent to setting
the expected net marginal benefit of emissions equal to 0; and (2) ∂x∗

∂k is independent
of θ , so that setting the expected net marginal benefit of investment (holding the tax
fixed) equal to 0 is equivalent to setting the expected marginal benefit of emissions
equal to 0. When both Eqs. (6) and (7) are equivalent to setting expected net marginal
benefit of emissions equal to 0, the two are equivalent to each other.

Emissions quotas Based on the same reasoning that led to Remark 1, we have

Remark 4 Under both time lines, the individual firm takes the emissions quota as
given when choosing its level of capital.

If the regulator uses quotas (that by assumption are binding for all θ ) the firm’s
emissions decision equals x̄ , and ∂x∗

∂ x̄ = 1. In view of Remark 4, the firm’s first-order
condition for the choice of k (for both of the two time lines) is

E
[
Bk (x̄, k, θ)− c′(k)

] = 0 ⇒ k = k∗ (x̄) . (9)

As was the case with taxes, there is an unimportant notational issue: with Time Line
A, x̄ is literally predetermined, while with Time Line B, the firm treats x̄ as a known
function of aggregate investment, and the firm takes aggregate investment as given.
Under Time Line A, the regulator’s first-order condition for x̄ is

E

{[
Bx

(
x̄, k∗, θ

) − D′ (x̄)
] + [

Bk
(
x̄, k∗, θ

) − c′ (k∗)] dk∗

dx̄

}

= E
{[

Bx
(
x̄, k∗, θ

) − D′ (x̄)
]} = 0, (10)

where the first equality uses Eq. (9), the fact that k∗ is independent of θ , and dk∗
dx̄ �= 0.

The first-order condition under Time Line B is identical to the second equality in
Eq. (10). Thus, when non-strategic firms have rational expectations, the optimal quota
is the same under the two time lines. The regulator uses the quota to target only emis-
sions, and the firm’s investment decision is information-constrained socially optimal.
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There is no social value in using an investment taxwhen the regulator uses an emissions
quota.
The time-consistency of quotas is due to the fact that the indirect welfare effect of

the quota is always 0. Although the quota does affect the level of investment, the fact
that the quota is always binding means that this investment does not affect the level
of emissions. The only remaining indirect effect comes via the change in total cost;
however, the private optimality of investment insures that it chosen so that expected
marginal costs savings due to an extra unit of investment equals the marginal cost
of investment. Thus, the private optimality of the investment decision insures that
investment is also socially optimal.

3 Basics of the dynamic model

The stock of pollution at the beginning of period t is St−1 and the flow of emissions in
period t is xt . The fraction 0 ≤ � ≤ 1 of the pollution stock lasts into the next period,
so the growth equation for St is:

St = �St−1 + xt . (11)

The period t stock-related environmental damage equals Dt = D(St−1), with D
′
>

0, D
′′
> 0.

At time t the representative firm’s level of abatement capital is Kt−1 and its cost
shock is θt ; when it emits at xt its benefit is Bt = B (Kt−1, θt , xt ). At time t only the
firm knows the value of the random cost shock θt ; there is persistent asymmetric infor-
mation. All agents know the stochastic process for the cost shock, which we assume
is AR(1):

θt = ρθt−1 + μt , μt ∼ i id
(
0, σ 2μ

)
, ∀t ≥ 1, (12)

with −1 < ρ < 1.2 The sequence {μt }(t ≥ 1) is generated by an i.i.d. random pro-
cess with zero mean and common variance σ 2μ. At time 0 the regulator knows θ−1,
so the subjective expectation and variance of θ0 is

(
ρθ−1, σ 2μ

)
. This assumption about

the regulator’s initial priors makes the problem stationary; it has no bearing on our
results, but merely simplifies the notation. At time t ≥ 1 the regulator’s variance for
the current shock is σ 2μ provided that he has learned the value of the previous shock,
θt−1.
The representative firm invests in abatement capital to reduce future abatement

costs, i.e., to increase future benefits from pollution. The flow of investment in period
t is It . The fraction of abatement capital that lasts into the next period is 0 ≤ δ ≤ 1,
so the growth equation for Kt is:

Kt = δKt−1 + It . (13)

2 Throughout the paper we refer to θ as a “cost shock” , as an abbreviation for “random cost parameter”.
In most economically meaningful circumstances, this parameter is positively serially correlated: ρ > 0.
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The cost of investment, Ct = C(It , Kt−1), is increasing and convex in It . This con-
vexity means that abatement capital does not adjust instantaneously.
The endogeneity of the investment decision means that the marginal abatement

cost function, Bx (·), changes endogenously. Slower adjustment of abatement capital
means that it is optimal to adjust emissions more slowly.

4 The game

In this section, it is helpful to distinguish between the representative firm’s level of
capital and the aggregate level of capital. We denote the former by k and the latter
by k A. Where there is no danger of confusion, we denote both using K . Since we
normalize the number of representative firms to 1, k A = k = K in a symmetric equi-
librium. The representative firm understands that it controls k, and that this variable
affects its payoff directly, via the function B(·). This firm takes the aggregate level of
capital k A as exogenous; k A has no direct effect on the firm’s payoff. However, in a
Markov perfect equilibrium,where the regulator conditions policies on payoff-relevant
information, k A affects the firm’s beliefs about future policies.
To avoid a proliferation of notation, we do not distinguish between the firm’s level

of emissions and the aggregate level of emissions. However, it is important to bear in
mind that the firm treats aggregate emissions, and therefore, the aggregate pollution
stock, as exogenous.
The regulator always uses taxes or always uses quotas. The period t policy is the

tax pt or the quota xt . At time t the regulator knows the aggregate capital stock k A
t−1,

the pollution stock St−1 and (as we explain below), the lagged cost shock θt−1. These
are the payoff-relevant variables for the regulator. In a Markov perfect rational expec-
tations equilibrium, the representative firm takes the current level of the regulatory
policy (at time t) as given; it understands that the policy at time τ > t will be a
function of

(
k A
τ−1, Sτ−1, θτ−1

)
. Since the firm takes these conditioning variables to

be exogenous, it treats future policies as exogenous. This firm chooses investment
It under both policies, and it chooses the level of emissions if the regulator uses a
tax.
In view of the timing conventions in themodel, the regulator’s current (tax or quota)

policy influences the firm’s current emission, but not the current level of investment.
Investment depends on the firm’s beliefs about future policies (as was the case with
Time Line B in Sect. 2).

4.1 The firm’s emission and investment responses

The firm wants to maximize the expectation of the present value of the stream of cost
saving from polluting (B) minus investment cost (C) minus pollution tax payments
(under taxes). The constant discount factor is β, and we use the superscripts T and Q
to distinguish functions and variables under taxes and quotas.

Taxes. The firm’s value function under taxes, V T
(
kt−1, θt , pt ; St−1, k A

t−1
)
, solves

the dynamic programming equation (DPE)
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V T
(

kt−1, θt , pt ; St−1, k A
t−1

)
= max

xt ,It

{
B (kt−1, θt , xt )− pt xt − C (It , kt−1)

+ βEt

[
V T

(
kt , θt+1, pt+1;St , k A

t

)]}

subject to the equation of motion for the cost shock (12), the capital stock (13), and
the pollution stock (11). The firm’s expectation at t of θt+1 and pt+1 is conditioned
on the payoff-relevant variables

(
k A

t−1, θt , St−1
)
.

The optimal level of emissions solves a static problemwith the following first-order
condition

Bx (kt−1, θt , xt )− pt = 0. (14)

Solving for x , we obtain the optimal emission response

x∗
t = χ (kt−1, θt , pt ) ≡ χt . (15)

The optimal level of investment equates the marginal cost of investment and the
discounted shadow value of abatement capital. Setting k A = k = K , the stochastic
Euler equation is3

βEt {BK (Kt , θt+1, χt+1)− CK (It+1, Kt )+ δCI (It+1, Kt )} − CI (It , Kt−1) = 0.

(16)

This second-order difference equation has two boundary conditions, the current abate-
ment capital Kt−1, and the transversality condition

lim
T →∞ Et

{
βT −t CI (IT , KT −1) KT

}
= 0. (17)

Quotas Firms are homogeneous and quotas are not bankable. Thus, under a quota
policy, there is no incentive to trade permits. The firm solves the DPE

V Q
(

kt−1, θt , xt ; St−1, k A
t−1

)
= max

It

{
B (kt−1, θt , xt )− C (It , kt−1)

+βEt V
Q

(
kt , θt+1, xt+1; St , k A

t

)}
.

Again, the firm’s beliefs about the quota in the next period depend on
(
k A

t−1, θt , St−1
)
.

3 For all of the control problems, we merely write the Euler equation since the derivations are standard.
The first-order condition of the DPE with respect to It provides one equation. In this first-order condi-
tion, the firm’s expectation of pt+1 is independent of its investment. This independence reflects the fact
that the firm is unable to affect aggregate capital or pollution stock, and therefore cannot affect values of
the variables that affect future regulation. We differentiate the DPE with respect to kt−1, using the envelope
theorem, to obtain a second equation. Combining these two equations gives the stochastic Euler equation.
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The optimal level of investment solves the stochastic Euler equation

βEt {BK (Kt , θt+1, xt+1)− CK (It+1, Kt )+ δCI (It+1, Kt )} − CI (It , Kt−1) = 0,

(18)

and the transversality condition (17).
The investment rule Under both taxes and quotas, the current level of invest-

ment depends on the firm’s beliefs about future policy levels, but it does not depend
on the current policy level. The firm has rational expectations about future poli-
cies; we discuss this policy rule in the next section. Under either taxes or quo-
tas, the representative firm’s equilibrium investment rule at time t is a function of(
kt−1, θt ; St−1, k A

t−1
)
. When there is no danger of confusion, we write the investment

rule as I j (Kt−1, θt , St−1) , j = T, Q (for tax or quota).

4.2 The regulator’s problem

The regulator’s payoff equals the payoff to the representative firm net of taxes, minus
environmental damages. The regulator maximizes the expectation of the present dis-
counted value of the flow of the payoff, i.e., the expectation of

∞∑
t=0

β t (B(Kt−1, θt , xt )− C(It , Kt−1)− D(St−1)).

His policy (always a tax or always a quota) can be a function of (only) payoff-rel-
evant variables: the current stocks of pollution and capital, and the regulator’s cur-
rent information about the cost shock. Under taxes the regulator knows that Eq. (15)
determines emissions. Under either policy, he knows that investment is given by
I j (Kt−1, θt , St−1) , j = T, Q.
The regulator takes as given the investment rule and (under taxes) the emissions

rule. At time t the regulator observes the aggregate stocks St−1, Kt−1. If ρ = 0, the
regulator learns nothing about the current cost shock by observing firms’ past behav-
ior. The past cost shock provides information about the current shock if and only if
ρ �= 0. Under taxes, the regulator learns the previous cost by observing the response
to the previous tax (via Eq. 15). With tradable quotas, the regulator learns the previous
cost by observing the previous quota price.4

The regulator’s decision rule is a function z j (Kt−1, θt−1, St−1) , j = T, Q that
determines the current tax ( j = T ) or quota ( j = Q) as a function of his current
information, given his beliefs about the firm’s decision rules.

4 Under either policy, the regulator can also learn the previous cost shock by observing lagged investment,
provided that BK θ �= 0. From Eq. (18), BK θ �= 0 means that current investment depends on the firm’s
beliefs about future cost shocks. When ρ �= 0 these beliefs—and therefore current investment—depend on
the current cost shock.
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4.3 The equilibrium

Both the regulator and the representative firm solve stochastic control problems; the
exact problem that one agent solves depends on the solution to the other agent’s prob-
lem. The rational expectations equilibrium investment rule for the firm depends on
the regulator’s policy rule, and that policy rule depends on the equilibrium investment
rule. The investment and the regulatory decision rules generate a random sequence
of pollution and capital stocks. Agents have rational expectations about these random
variables.
An equilibrium consists of a (possibly non-unique) pair of decision rules

I j∗ (Kt−1, θt , St−1) and z j∗ (Kt−1, θt−1, St−1) for j = T, Q that are mutually con-
sistent; the superscript “∗” indicates equilibrium functions. Hereafter, we refer to
I j∗ (Kt−1, θt , St−1) , and zi∗ (Kt−1, θt−1, St−1) as Markov perfect policy rules.
Modern computational methods make it possible to (approximately) solve these

kinds of dynamic equilibrium problems, i.e., to find a fixed point in function space
(Judd 1998;Marcet andMarimon 1998;Miranda and Fackler 2002). These fixed point
problems are not trivial, especially when the state space has more than one dimen-
sion—it has three in our problem.

5 Finding the Markov perfect equilibrium

In many cases, the type of model described in the previous section must be solved as
an equilibrium problem rather than as an optimization problem. The next subsection
explains why this complication might arise. Using an auxiliary control problem in
which the regulator has two policy instruments, we then identify conditions under
which the model can be solved as a straightforward optimization problem.

5.1 The time-consistency problem

In general, the regulator might want to announce a rule that would determine future
levels of the tax or quota. The purpose of such an announcement would be to alter the
firm’s investment rule—as distinct from altering a stock that appears as an argument
of the investment rule. The inability to make binding commitments, and the Markov
assumption, exclude this possibility. In a rational expectations equilibrium, current
investment depends on beliefs about future policies, and these beliefs and policies
depend on the pollution stock. By choice of the current quota or tax level, the reg-
ulator affects the future pollution stock, which can affect future investment. Under
our assumptions, the only means by which this period’spolicy can influence future
investment is by influencing the future level of the pollution stock.
Consider a simpler problem without asymmetric information, where a representa-

tive firm with rational expectations makes investment decisions. The firm’s optimal
decisions depend on its beliefs about future regulations, and the regulator wants to
influence the firm’s decisions. If the regulator has a first best policy (defined as one
that does not cause secondary distortions), he can induce the firm to select exactly
the decisions that the regulator would have used, had he been in a position to choose
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them directly. In that case, the regulatory problem can be solved as standard optimi-
zation problem. If, however, the regulator has only a second-best policy, the familiar
time-consistency problem arises. (See Xie 1997; Karp and Lee 2003 for discussions
of this problem, and references.) The Markov restriction is binding in this setting, so
finding the equilibrium requires solving an equilibrium problem rather than a standard
optimization problem.
The presence of asymmetric information in our model leads to the possibility of

time-inconsistency of the optimal emissions tax or quota. We know from the literature
on principal-agent problems that with asymmetric information, non-linear policies are
generally superior to either the linear tax or the quota. We noted in Sect. 4.1 that the
firm’s investment depends on its beliefs about future policies. Since the regulator has
two targets, (emissions and investment) and only one instrument, it appears that the
regulator might want to use future emissions taxes or quotas to influence the firm’s
current investment decision. In that case, the information-constrained first best tax or
quota would be time-inconsistent: the ability to make commitments about future taxes
or quota decision rules would enable the regulator to achieve a higher payoff than
under the Markov restriction. If this were the case, we would not be able to obtain
a Markov perfect equilibrium merely by solving a dynamic optimization problem,
but would instead have to solve the equilibrium problem described in the previous
section.

5.2 An auxiliary control problem

This subsection describes an auxiliary control problem that helps identify conditions
under which the Markov perfect equilibrium can be obtained by solving an optimi-
zation problem. In this auxiliary control problem, in each period the regulator sets an
emissions tax or quota using the same information as in the game; later in the same
period he observes the current cost shock and then chooses investment directly. In
contrast, in the game the regulator chooses only an emissions policy. The regulator’s
ability (in the auxiliary problem) to control current investment directly, knowing the
current cost shock, eliminates any incentive to use future emissions policies to control
current investment.
In this setting, it does not matter whether the regulator chooses investment directly

(e.g., by command and control), or decentralizes this decision by means of an invest-
ment tax/subsidy. In the former case, firms make no investment decision, and in the
latter case, firms merely carry out the optimal investment decision induced by the
investment tax/subsidy. However, the model with the investment tax/subsidy is more
helpful with intuition, so we emphasize that model. The optimal investment tax/sub-
sidy is identically 0 if and only if Markov perfect rules in the game are equivalent to
the optimal policy rules in the auxiliary problem. With an identically zero investment
tax, agents in the auxiliary problem have exactly the same optimization problem as
in the game. It is optimal to use a non-zero investment tax/subsidy if and only if the
Markov perfect policies do not solve the auxiliary problem.
In the auxiliary problem, we need to consider a two-stage optimization within each

period. At the beginning of the period the regulator knows (Kt−1, θt−1, St−1) and
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chooses the emissions policy (a tax or quota); the regulator then learns θt and chooses
the level of investment or the investment tax/subsidy. It does not matter whether this
time-line is plausible.We use this problem only as a means of finding conditions under
which the Markov perfect rules can be obtained by solving a control problem.
Suppose we find that the investment tax/subsidy is identically 0 in the auxiliary

control problem. In this case, the regulator is willing to allow firms to choose invest-
ment, given that the regulator chooses the emissions policy. The regulator in the game
is therefore also willing to allow firms to choose investment. That is, the regulator in
the game also has no wish to use an investment tax/subsidy.

5.2.1 Quotas in the auxiliary problem

When the regulator chooses emissions quotas in the auxiliary problem he solves the
following DPE:

J Q(Kt−1, St−1, θt−1) = max
xt

Eθt |θt−1

{
B(Kt−1, θt , xt )− D(St−1)

+max
It

[
−C(It , Kt−1)+ βJ Q(Kt , St , θt )

]}
(19)

subject to Eqs. (11) and (13). The first-order condition for the optimal quota is

Eθt |θt−1
{

Bx (Kt−1, θt , xt )+ βJ Q
S (Kt , St , θt )

}
= 0 (20)

and the Euler equation for investment under quotas is

βEθt+1|θt {BK (Kt , θt+1, xt+1)− CK (It+1, Kt )+ δCI (It+1, Kt )}
−CI (It , Kt−1) = 0. (21)

The transversality condition is

lim
T →∞ EθT |θt

{
βT −t CI (IT , KT −1) KT

}
= 0. (22)

5.2.2 Taxes in the auxiliary problem

Using the firm’s emission response function (15), the regulator in the auxiliary problem
with emissions taxes solves the following DPE

J T (Kt−1, St−1, θt−1) = max
pt

Eθt |θt−1

{
B

(
Kt−1, θt , x∗

t

) − D(St−1)

+ max
It

[
−C(It , Kt−1)+ βJ T (Kt , St , θt )

]}
(23)
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subject to Eqs. (11), (13) and (15). We use the definition

Ht ≡
[

Bx
(
Kt−1, θt , x∗

t

) + βJ T
S (Kt , St , θt )

]
,

and the abbreviation χt ≡ χ (Kt−1, θt , pt ) = x∗
t . The function Ht is the social benefit

of an additional unit of emissions, and recall that χ is the firm’s decision rule for emis-
sions under emissions taxes (Eq. 15). With this notation, we can write the first-order
condition with respect to pt as

Eθt |θt−1

{
Ht
∂χt

∂pt

}
= 0, (24)

and the stochastic Euler equation for investment as

βEθt+1|θt

{
BK

(
Kt , θt+1, x∗

t+1
) − CK (It+1, Kt )+ δCI (It+1, Kt )+ Ht+1

∂χt+1
∂Kt

}

−CI (It , Kt−1) = 0. (25)

The transversality condition is Eq. (22).

5.3 Social optimality of the Markov perfect rules

Differentiating the first-order condition (14) implies the following:

Lemma 1 Condition 1 is equivalent to the following two conditions: (1) ∂χ(Kt−1,θt ,pt )
∂pt

is independent of θt , (2)
∂χ(Kt−1,θt ,pt )

∂Kt−1 is independent of θt , where pt is the time t emis-
sions tax.

Our main result is the following:

Proposition 1 (i) When the regulator uses emissions quotas, the solution to the
auxiliary problem (19) is a Markov perfect equilibrium to the original game. (ii)
When the regulator uses emissions taxes, the solution to the auxiliary problem (23)
is a Markov perfect equilibrium to the original game if and only if the separability
condition holds.

The proof, contained in Appendix 1, verifies that the equilibrium conditions in the
games and in the auxiliary problems are identical under the conditions stated in the
proposition.

5.3.1 Significance of the proposition

When the regulator uses quotas to control emissions, the Markov perfect investment
rule is always information-constrained socially optimal. With emissions quotas, the
ability to use an additional policy instrument to influence investment does not increase
social welfare.
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If the regulator uses emissions taxes to control emissions, theMarkov perfect invest-
ment rule is socially optimal if and only if Condition 1 is satisfied. This condition
depends only on the benefit function B(·), not on the damage or the investment cost
function. If the separability condition holds, the investment tax that supports optimal
investment in the auxiliary problem is identically 0.
Proposition 1 identifies a previously unnoticed difference between taxes and quo-

tas. When the separability condition does not hold, the regulator who uses an emis-
sions tax to control pollution creates a secondary distortion in investment. In these
circumstances, private investment is optimal under an emissions quota but not under
an emissions tax. The emissions tax, but not the quota, creates the need for an invest-
ment tax/subsidy.
The proposition also provides a simple way of obtaining the equilibrium for the

game when the separability condition holds. This method requires only solving a
dynamic optimization problem rather than a dynamic equilibrium problem.

5.3.2 Interpretation of the separability condition

We first identify the secondary distortion under emissions taxes, and we explain why
it vanishes if the separability condition holds. This discussion also explains why emis-
sions taxes and quotas typically have different effects, as regards the secondary dis-
tortion.
In order to identify the secondary distortion, we follow the standard procedure of

computing the investment tax/subsidy that supports the information-constrained first
best investment policy. Suppose that firms face an investment tax st , so their single
period payoff is B(·) − C(·) − st It − pt xt . We can write the Euler equation for the
capital stock corresponding to this problem, and compare it to the optimal invest-
ment policy under an emissions tax, Eq. (25). We omit the details, but the comparison
implies that the investment tax supports the socially optimal level of investment if and
only if5

− st + βδEθt+1|θt st+1 = βEθt+1|θt

{
Ht+1

∂χt+1
∂Kt

}
. (26)

The left side of Eq. (26) equals the effect of the tax sequence on the marginal incen-
tive to invest in the current period. Under the investment tax, an additional unit of
investment costs the firm st in the current period, but reduces the expected cost of tax
payments by δEt st+1 in the next period. The right side of Eq. (26) is the present value
of the expectation of the secondary distortion. Ht+1 is the marginal value to society
of an additional unit of emissions in the next period, and ∂χt+1

∂Kt
equals the change in

emissions in the next period caused by an additional unit of investment in the current
period. Thus, the term in brackets in Eq. (26) is the value to society of the lower future
emissions caused by the additional investment. This benefit is external to the firm. The
optimal investment tax sequence induces the firm to internalize the present value of

5 The right side of Eq. (26) equals the function τ , used in the proof of Proposition 1.
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the expectation of this additional social benefit of investment, i.e., to internalize the
externality.
The optimal emission quota does not create a secondary distortion. Under the quota,

the expected social benefit of an additional unit of emissions is zero in each period
(Eq. 20). The socially optimal rule for determining investment, Eq. (21), involves only
the current and future expected marginal investment and abatement costs. The socially
optimal balance of these costs is identical to the balance that firms choose.
The optimal emissions tax, in contrast, requires that a marginal change in the tax

has zero expected social value (Eq. 24). This condition is not, in general, equivalent
to the requirement that the expected social marginal benefit of emissions (Ht ) is zero.
The expected social marginal benefit of an additional unit of emissions is zero if and
only if Bxx is independent of θ (equivalently, if and only if

∂χ
∂p is independent of θ ).

This independence implies that Et Ht = 0.
Even if this independence holds, Ht is a random variable, a function of θ . If

∂χ
∂K is

also a function of θ (i.e., if Bx K is not independent of θ ), then the socialmarginal benefit
of emissions is correlated with ∂χ

∂K . In that case, the expected marginal value to society
of the lower future emissions caused by the additional investment (i.e., the secondary
distortion, measured by the right side of Eq. (26) is non-zero. Here, the investment
externality is non-zero. Consequently, both Bxx and Bx K must be independent of θ in
order for the investment externality to vanish under emissions taxes.

6 The linear–quadratic model

The static model with a flow pollutant shows that a simple comparison of taxes and
quotas requires strong functional assumptions: quadratic abatement costs and qua-
dratic damages and additive uncertainty (the “linear–quadratic model”) (Weitzman
1974). Without these assumptions, the ranking of taxes and quotas depends on param-
eters such as the variance of the cost uncertainty, for which we have very poor (if any)
estimates. The major insight from the static linear–quadratic model is that taxes dom-
inate quotas when the marginal abatement cost function is steeper than the marginal
environmental damage function.
Analytical comparisons of the two policies in the climate change literature use the

linear–quadratic model in which damages arise from the pollution stock, rather than
the flow of emissions. Some commentators have claimed that for the regulation of
GHGs, taxes obviously dominate quotas, because the marginal damage function for
GHGs is so flat relative to the marginal abatement cost function. This reasoning is
faulty, because in the dynamic setting the marginal abatement cost depends on the
flow of emissions, while the marginal damage depends on the stock of pollution. The
two slopes have different units in the dynamic problem, whereas they have the same
units in the static problem.6 In the dynamic setting it is not sensible to simply compare

6 Suppose we measure stock S in tonnes and emissions x in tonnes/year. Suppose that single period envi-
ronmental damage is a +bS2 and abatement cost is c+dx2 and both are measured in dollars per year. Then
the units of b, the slope of marginal damages, are $

year·(tonne)2 and the units of d, the slope of marginal

abatement costs, are $·year
(tonne)2

.
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magnitudes of the two slopes. The dynamic optimization problem has to be solved in
order to know how to compare these slopes, i.e., to know what constitutes a “large
slope” and a “small slope” with GHGs.
This analysis has been undertaken with the competing assumptions that the regula-

tor announces the entire sequence of future policies today (the open loop assumption)
(Newell and Pizer 2003) or that the regulator conditions future policies on future infor-
mation (the feedback assumption) (Hoel and Karp 2002; Karp and Zhang 2005), and
under the assumption that the regulator expects to learn about a damage parameter
(Karp and Zhang 2006). This analysis, together with available estimates of parameter
values, supports the view that taxes dominate quotas for climate policy. Numerical
results that do not use the linear–quadratic model also support this conclusion (Pizer
1999; Hoel and Karp 2001; Pizer 2002).
To determine the effect of endogenous abatement capital, it makes sense to use

the linear–quadratic model. This functional form allows us to compare our results
with those of earlier papers in this literature. With different functional assumptions,
we would not be able to isolate the effect of endogenous capital. The linear–qua-
dratic model satisfies the separability assumption—a fortunate circumstance, because
it means that the effect of endogenous capital is not confounded by differences (under
taxes and quotas) in strategic interactions. Both the information constrained optimal
tax and quota are subgame perfect. Moreover, Proposition1 enables us to obtain this
equilibrium by solving the auxiliary control problem introduced in Sect. 5.2, instead
of solving a dynamic game.
The representative firm’s benefit function is

B(Kt−1, θt , xt ) = f0 + ( f1 + ψθt )Kt−1 − f2
2

K 2
t−1 + (a − φKt−1 + θt )xt − b

2
x2t

with f1 > 0, f2 > 0, b > 0, ψ ≥ 0, φ ≥ 0. The function B(·) (which includes
the rental cost of capital) satisfies the separability condition. The cost of changing the
level of capital is7

C(It ) = d

2
(It )

2, d > 0.

Environmental damages are also quadratic:

D(St−1) = g

2

(
St−1 − S̄

)2

where S̄ is the stock level that minimizes damages.
The following remark collects a number of useful facts about the comparison of

policies. These results will be obvious to readers familiar with the linear–quadratic
control problem, so we state them without proof:

7 We can replace the investment cost function with a quadratic function of net rather than gross investment,
so that adjustment costs are zero in the steady state. This slightly more plausible model does not lead to
any interesting changes in analysis below. However, it complicates the problem of calibrating the model.
Therefore we discuss only the model in which adjustment cost depends on gross investment.
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Remark 5 In this linear–quadratic model with additive errors, the Principle of
Certainty Equivalence holds. The expected trajectories of all stock and flow vari-
ables are the same under taxes and quotas. The higher moments of these trajecto-
ries differ under the two policies. Neither the policy ranking nor the magnitude of
the payoff difference depends on the information state (Kt−1, St−1, θt−1). The mag-
nitude (but not the sign) of the difference in payoffs depends on the variance of
cost, σ 2μ.

6.1 Regulated emissions and investment

For the linear–quadratic model, we obtain an explicit equation for the emissions rule
(Eq. 15) under taxes:

x∗
t = et − φ

b
Kt−1 + θt

b
; et ≡ a − pt

b
.

A higher cost realization increases current emissions, and a higher tax or a higher
stock of abatement capital decreases emissions.
Using standard methods (e.g., Chapter 14 of Sargent 1987) we can solve the firm’s

Euler equation (16) under taxes and (18) under quotas) to write current investment
as a linear function of current capital (Kt−1) and the firm’s expectations of the future
cost variables and policies (taxes or quotas). The optimal investment under emissions
taxes is

I ∗
t = λβ f1

dδ(1− λβ)
+ (λ− δ)Kt−1

+λβ
dδ

Et

⎡
⎣(
ψ − φ

b

) ∞∑
j=0
(λβ) jθt+1+ j − φ

∞∑
j=0
(λβ) j et+1+ j

⎤
⎦ . (27)

where 0 < λ < 1 is the smaller root of the quadratic equation λ2 + h
β
λ+ 1

β
= 0 and

h ≡ −
[
1
δ

+ β
dδ

(
f2 − φ2

b

)
+ βδ

]
. A lower expected future tax (i.e., a higher value

of et+ j ) decreases current investment. A higher expected future cost shock increases
(decreases) current investment if ψ − φ

b is positive (negative). Since BK θ = ψ > 0,
a higher expected cost shock increases the expected marginal benefit of capital—and
thus increases the marginal shadow value of capital. This effect encourages invest-
ment. However, a higher expected cost shock increases expected emissions, reducing
the expected marginal benefit of capital (Bx K = −φ < 0) and discouraging invest-
ment. These offsetting effects are exactly balanced if ψ = φ

b , in which case the cost
shock has no effect on investment, under emissions taxes.
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The optimal investment under emissions quotas is8

I ∗
t = μβ f1

dδ(1− μβ)
+ (μ− δ)Kt−1

+μβ
dδ

Et

⎡
⎣ψ

∞∑
j=0
(μβ) jθt+1+ j − φ

∞∑
j=0
(μβ) j xt+1+ j

⎤
⎦ . (28)

where 0 < μ < 1 is the smaller root of the quadratic equation μ2 + w
β
μ + 1

β
= 0

andw ≡ −
(
1
δ

+ β f2
dδ + βδ

)
. Higher expected quotas decrease investment, and higher

expected cost shocks increase investment. With quotas, cost shocks have an unambig-
uous effect, because the firm treats future emissions quotas as exogenous.

6.2 A limiting case: flow externality

If � = 0 all of the pollution stock decays in a single period, and the model collapses
to the case of a flow externality. In this case, emissions in the current period cause
damages only in the next period: D(St−1) = D(xt−1).9 By defining D̃(xt ) = βD (xt )

we can write the difference between the benefits and costs of current emissions as
B(Kt−1, θt , xt ) − D̃(xt ). This simplification eliminates a state variable (S), making
it possible to obtain some analytic results. We can solve the dynamic programming
equations under taxes and quotas and compare the payoffs.
We show that in two cases, the policy ranking does not depend on the parameters

associated with abatement capital: (1) ρ = 0; or (2) ρ �= 0 and ψ �= 0. If neither of
these two conditions hold, so that ρ �= 0 and ψ = 0, the policy ranking does depend
on the parameters associated with abatement costs.
If ρ = 0, or if ρ �= 0 and ψ �= 0, the payoff difference under taxes and quotas, is

J T − J Q = σ 2μ

2b (1− β)

(
1− βg

b

)
.

This expression reproduces a result in Weitzman (1974)’s static model and in two
dynamic models (Hoel and Karp 2002; Karp and Zhang 2005).
If ρ �= 0 and ψ = 0, the payoff difference equals

J T − J Q = σ 2u

2b (1− β)

[
� +

(
1− βg

b

)]
. (29)

The function � > 0 depends on f2, d and δ (among other parameters).

8 An algebraic proof confirms that expectated investment is the same under the rules given by Eqs. (27)
and (28)—as Remark 5 states they must be.
9 The specialization in this section simplifies the stock pollution problem, and it is also of independent
interest, because it shows how to compare taxes and quotas for a flow pollutant when abatement costs are
endogenous.
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We summarize the implications of these expressions in the following:

Remark 6 For a flow pollutant (� = 0): (i) If (a) ρ = 0, or if (b) ρ �= 0 and ψ �= 0),
the policy ranking depends only on the relative slopes (appropriately discounted) of
the marginal benefit and damage functions. (ii) When neither conditions (a) or (b)
in part (i) hold the policy ranking also depends on the parameters associated with
abatement capital.

The next section considers the problem of a stock-related pollutant with ρ �= 0
and ψ �= 0; there the policy ranking does depend on the parameters associated with
abatement capital—in contrast to Remark6.i. Here we explain why stock and flow
pollutants have this qualitative difference.
As Remark5 notes, the expected levels of emissions and of investment are the same

under taxes and quotas. The first-order condition for investment (using Eqs. 19 or 23)
is

−CI (It , Kt−1)+ βJ i
K (Kt , St , θt ) = 0, i = T, Q.

The linear–quadratic structure with additive uncertainty implies thatJ T
K (Kt , St , θt ) ≡

J Q
K (Kt , St , θt ): the shadow value of capital and, therefore, the investment rules under
taxes and quotas, conditional on (Kt−1, St , θt ), are identical.
For a stock pollutant, J i

K ,S �= 0, so investment at time t depends on the pollution
stock at the beginning of the next period, St . That pollution stock depends on current
emissions; therefore, emissions in period t affect investment in period t . Conditional on
the regulator’s information at the beginning of a period, the current level of emissions
is random under taxes and is a choice variable under quotas. Therefore, conditional on
the information at the beginning of a period, the distribution function for the current
level of investment differs under the two policies. The expected payoff difference,
therefore, depends on the parameters associated with abatement capital.
In contrast, with a flow pollutant, the current level of emissions has no effect on

future payoffs. The shadow value of capital J i
K depends only on (Kt , θt ). With a

flow pollutant, the currentinvestment and currentemissions decisions are decoupled.
Therefore, the value to the regulator of the difference in emissions under taxes and
quotas does not depend on investment costs.

7 An application to climate change

With a stock externality problem such as greenhouse gasses, we have three state vari-
ables (greenhouse gasses, the capital stock, and the expected cost shock) and therefore
cannot obtain an analytic solution. However, using Proposition 1, it is straightforward
to solve the tax and quota problems numerically. The resulting control problem is
almost standard, except that new information arrives within a period, so there are two
stages of optimization within a period. This fact accounts for the nested maximization
in Eqs. (19) and (23). For the linear–quadratic model, we can solve each of these
dynamic programming problems by solving a matrix Riccati equation.
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Table 1 The model of global warming

1. Pollutant stock growth St − S̄ = �
(
St−1 − S̄

) + xt .

2. Environmental damage D(St−1) = g
2

(
St−1 − S̄

)2
.

3. Abatement capital growth Kt = δKt−1 + It .

4. Investment cost C(It ) = d
2 I 2t .

5. “Business as usual” emissions xb
t = m0 − m1Kt−1 + θ̃t .

6. Abatement cost A (xt ) = b
2

(
xb

t − xt

)2
.

7. “General” benefit function

B(Kt−1, θt , xt ) = f0 + ( f1 + ψθt ) Kt−1 − f2
2 K 2t−1 + (

a − φKt−1 + θt
)

xt − b
2 x2t .

Parameter restriction

0 ≤ � ≤ 1, g > 0, 0 ≤ δ ≤ 1, d > 0, m0 > 0, m1 ≥ 0, b > 0.

Relation of parameters

θt = bθ̃t , f0 = − b
2m20, f1 = bm0m1, f2 = bm21, a = bm0, φ = bm1, and ψ = φ

b = m1.

7.1 Model calibration

Table 1 describes the model. In order to calibrate the general linear–quadratic model
described in the previous section, we assume that benefits are equal to the value of
abatement cost that the firm avoids by increasing emissions. Abatement costs are a
quadratic function of abatement, xb

t − xt (row 6), where the BAU emissions xb
t is a

decreasing linear function of abatement capital (row 5). A higher level of abatement
capital makes it cheaper to reduce emissions, and also decreases the marginal abate-
ment costs. The cost variable θ̃ (which is proportional to the random variable θ used
above) changes the level of BAU emissions and therefore changes marginal abate-
ment costs. Row 7 of Table 1 repeats the general linear–quadratic model; the final row
gives the parameter restrictions under which this general model reproduces the special
model described in the rows two to six of the table.10 Ifm1 = 0, capital does not affect
abatement costs. This limiting case reproduces previous linear–quadratic models of a
stock pollutant (Karp and Zhang 2005)
Table 2 lists baseline parameter values. In presenting the simulation results, we

use the parameter π , defined as the percentage loss in Gross World Product due to a
doubling of greenhouse gasses. This parameter is linearly related to g, the slope of
marginal damages. Our baseline parameters assume that π = 1.33, an estimate that
has been widely used. For comparison, we also discuss results when π = 3.6 (the
average of expert opinions, reported in Nordhaus 1994a) and π = 21 (the maximum
of these expert opinions).
Appendix 3 explains our calibration of the abatement costs (rows 3–6 of Table 1).

Our companion paper (Karp and Zhang 2006)11 describes the calibration of the growth

10 We ignore the effect of θ̃ on the constant term since the constant has no effect on the regulator’s control.
11 That paper studies the problem in which the regulator learns about the relation between pollution stocks
and environmental damages; there we ignore abatement capital. Since performing this calibration, more
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Table 2 Parameter values for the baseline model

Parameter Note Value

β A continuous discount rate of 5% 0.9512

� Pollutant stock persistence 0.9917

δ Capital stock persistence 0.85

π The percentage loss in GWP from doubling S̄ 1.33

g Slope of the marginal damage billion
$/(billion tons of carbon)2

0.0022

b Slope of the marginal abatement cost,
billion $/(billion tons of carbon)2

26.992

d Slope of the marginal investment cost, billion $ 703.31

m0 Intercept of the BAU emissions,
billion tons of carbon

12.466

m1 Slope of the BAU emissions, (billion
tons of carbon)/(billion $)

0.7266

ρ Cost correlation coefficient 0.90

σμ Standard deviation of cost shock,
$/(ton of carbon)

1.7275

xb
0 Current CO2 emissions into the

atmosphere billion tons of carbon
5.20

S̄ Preindustrial stock, billion tons of carbon 590

S−1 Current pollutant stock, billion tons of carbon 781

K−1 Initial capital stock, billion $ 10

and damage functions (rows 1 and 2 of Table 1) and of the equation for the random
shock (Eq. 12).

7.2 Numerical results

We begin by summarizing results from earlier static and dynamic models that exclude
abatement capital. We then discuss new results —those directly related to abatement
capital.

7.2.1 Previous results

Previous papers study the relation between the policy ranking and parameters in the
linear–quadratic model with additive errors (Hoel and Karp 2002; Newell and Pizer
2003; Karp and Zhang 2005). Those papers show that the difference in payoffs under
optimal taxes and quotas, J T − J Q , is decreasing in g

b . The intuition is the same
as in Weitzman (1974)’s static model. A larger value of g means that damages are
more convex in S. In view of Jensen’s inequality, as damages become more convex it
becomes more important to control emissions exactly (as under a quota) rather than

Footnote 11 continued
recent estimates of climate-related damage have been published (including Stern 2007; Intergovernmental
Panel on Climate Change 2007) but these are within the range of estimates in our calibration. For this reason,
and in order for the results here to be comparable to those in our earlier paper, we use the same calibration.
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to choose only the expected value of emissions (as under a tax). A higher value of
b makes it more important for the firm to be able to respond to changes in the cost
variable by changing emissions. It is able to respond under a tax but not under a quota.
There is a critical value of g

b above which quotas are preferred. This critical value
is decreasing in both β and �. When more weight is put on future costs and benefits
(higher β), or when the stock is more persistent (higher �), it is more important to
control the exact level of emissions (as under quotas) rather than the first moment of
emissions (as under taxes).
The previous papers calibrate models using parameter values that are consistent

with published estimates of the abatement costs and environmental damages associ-
ated with greenhouse gasses. These studies find that taxes dominate quotas for the
control of greenhouse gasses.
These qualitative results also hold for our parameterization of themodelwith endog-

enous abatement capital. This robustness is worth noting, but our analysis adds nothing
to the intuition for these results, and therefore we do not discuss them further. Instead,
we emphasize the comparative statics anddynamics associatedwith endogenous abate-
ment costs.

7.2.2 The role of abatement capital

There are three important parameters related to abatement capital: δ (capital stock
persistence), d (slope of marginal investment cost), andm1 (marginal effect of capital
on BAU emissions)We consider the first two briefly, and then concentrate on the third.
In all cases, we perform the obvious experiment of varying one of these parameters,
holding all others constant. This experiment has a shortcoming that we discuss later,
where we consider a second type of experiment.
We explained why a more durable pollution stock (higher�) decreases the prefer-

ence for taxes. However, a more durable capital stock (higher δ) increases the prefer-
ence for taxes. Under taxes, the firm responds to a cost shock by changing the level
of emissions. For ρ �= 0,12 the firm responds to a cost shock by changing the level of
investment, thereby changing the future level of capital under both taxes and quotas.
The adjustment mechanism via capital provides a partial substitute for the inability
to change emissions under quotas. A large value of δ means that current investment
has long-lasting effects, tending to make capital less flexible. The decreased flexi-
bility associated with larger values of δ increases the value of being able to respond
to the cost shock by changing emissions. A larger value of δ therefore increases the
advantage of taxes.
A lower value ofm1 (a decrease in the marginal effect of capital on BAU emissions)

or a larger value of d (an increase in the adjustment cost for abatement capital), favors
quotas. Figure 1 shows the relation between the difference in payoffs (the value of
using taxes minus the value of using quotas) and the parameters d and m1 for three
values of π , holding all other parameters constant. (Recall that π is the percentage loss

12 If ρ = 0, the current cost shock provides no information about the future cost shocks. Since current
investment reduces abatement costs only in future periods, the firm’s investment does not depend on the
current cost shock if ρ = 0.
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Fig. 1 Dependence of expected payoff difference on cost-related parameters

in global world product due to a doubling of greenhouse gasses.) When environmental
damages aremoderate (π = 1.33 orπ = 3.6) the difference in payoffs is insensitive to
changes in d and m1; for large environmental damages (π = 21) the change in either
parameter has a noticeable affect on the payoff difference. Previous linear–quadratic
models that do not include investment capital are a special case of the model here,
obtained by letting d → ∞ or m1 → 0. Those models tend to understate (slightly)
the advantage of using taxes.
As d increases, capital increasingly resembles a fixed input; asm1 decreases, abate-

ment capital has less effect on the marginal benefit of pollution. A larger value of d
or a smaller value of m1 both imply less flexibility of marginal abatement costs. This
diminished flexibility favors quotas, just as does the diminished flexibility in marginal
abatement costs associated with a smaller value of b (the slope of Bx ).
In all cases, the present discounted value of the payoff difference under taxes and

quotas is approximately 1 billion dollars, implying an annualized cost of about 50
million dollars. Our parameterization of abatement costs assumes that the annualized
cost of stabilizing emissions is about 1 percent of income, or 290 billion dollars. Thus,
the payoff difference of the two policies is less than 0.02 of the estimated costs of
stabilizing emissions.
The small difference in the expected payoffs may be due largely to the Princi-

ple of Certainty Equivalence, mentioned in Sect. 5: the expected stock trajectories
are identical under taxes and quotas—only higher moments differ. Uncertainty in
our calibrated model (but not in the general formulation) arises only because BAU
emissions are uncertain. Given the (small) magnitude of this particular type of uncer-
tainty, the higher moments of stocks simply are not very important. Models that do
not satisfy the Principle of Certainty Equivalence find a larger payoff difference under
taxes and quotas (Pizer 1999; Hoel and Karp 2001).

123



Taxes versus quantities for a stock pollutant 399

The relations between the equilibrium decision rules and levels of the state vari-
ables are as expected. The optimal quota (which equals the expected level of emissions
under the optimal tax) decreases with the level of pollution and with the capital stock
and increases with the lagged cost shock (for ρ > 0, as in our calibration). Equilibrium
investment is an increasing function of the stock of pollution and a decreasing func-
tion of capital stock. Firms understand that a higher pollution stock will lead to lower
future equilibrium emissions, increasing the marginal value of investment. A higher
aggregate capital stock encourages the regulator to reduce future emissions, increasing
the value of investment. However, the representative firm’s level of capital equals the
aggregate level. For a given quota or tax, a higher capital stock reduces the marginal
value of investment. The net effect of higher capital stocks is to reduce investment.
As we mentioned above, the comparative dynamics associated with a change in a

single parameter value might be misleading. For example, when we decreasem1 hold-
ing other parameters constant, we change the BAU level of emissions and the abate-
ment costs associated with a particular emissions trajectory, in addition to changing
the marginal effect of capital on abatement costs. Here we consider a slightly different
experiment: When we vary m1 we make offsetting changes in m0 in order to maintain
current BAU emissions at 5.2, and we require that the year 2100 BAU emissions are
consistent with a particular IPCC scenario.
Our baseline calibration (m1 = 0.7266) makes our model consistent with the IPCC

IS92a scenario that projects BAU CO2 stocks of 1500 GtC in the year 2100—an
approximate doubling of stocks relative to pre-industrial levels. For comparison we
also choose parameters that are consistent with the IS92cscenario of a 35% increase
in CO2 concentration (m1 = 0.0416) and with the IS92e scenario of a 170 increase in
CO2 concentration (m1 = 1.6622).
Figure 2 graphs optimal abatement levels, i.e., the difference in the BAU and the

optimal levels of emissions (the left panel) and the difference between BAU and the
regulated pollution stock (the right panel), as a function of time. The three graphs in
each panel correspond to the three values ofm1. In all cases, abatement increases over
time. Both the level and the change over time of abatement is greatest when abatement
capital has a large effect on marginal abatement costs (m1 is large). This result is
further evidence that the consideration of endogenous investment in abatement capital
increases the optimal level of abatement.

8 Discussion and conclusion

The previous literature that compares taxes and quotas assumes that firms solve a
sequence of static problems. Our paper recognizes that firms also make investment
decisions which affect their future abatement costs. The value of this investment
depends on the severity of future environmental restrictions, so the policymaker might
have an incentive to announce future environmental policies in order to influence cur-
rent investment. When this incentive arises, the firms’ investment decisions are not
constrained optimal, so the regulator would increase welfare if he were able to use an
investment tax/subsidy together with the emissions policy. We showed that for gen-
eral functional forms, when the regulator uses a quota (cap and trade), the competitive
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Fig. 2 Changes in expected pollution flows and stocks relative to BAU levels

firms’ investment policy is information-constrained efficient. In contrast, for general
functional forms, when the regulator uses an emissions tax, the firms’ investment
policy is not information-constrained efficient. In this sense, there is an advantage to
quotas, relative to emissions taxes, that had not previously been recognized.
This particular advantage disappears under a “separability condition” on the primi-

tive functions. The linear–quadratic model, generalized to include endogenous invest-
ment, satisfies this condition. Using a calibrated model and a numerical solution, we
found that making capital more durable or more effective in reducing the cost of
abatement, or reducing the marginal adjustment cost of capital, all favor the use of
taxes rather than quotas. These numerical results and the previously described ana-
lytic result lead to a mixed message for the comparison of policies. Within the func-
tional assumptions that most previous studies have used, we find that the inclusion of
endogenous investment increases the advantage of taxes. However, for more general
functional forms, quotas have an entirely different type of advantage. We do not know
anything about the magnitude of the latter advantage; its measurement would require
a more complicated (i.e., non-linear–quadratic) model, which presents problems of
calibration, and it would also require the solution to a dynamic game rather than an
optimization problem.
We close by discussing several other views of the relative efficiency of taxes and

quotas. One view is that the risk of extreme environmental damages, associated with
high GHG stocks, means that over some range damages are likely to be very convex
in stocks, i.e., the slope of marginal damages is actually very large. In addition, over
a long enough time span, given the opportunities for the development and adoption
of new technologies, the marginal abatement cost curve is actually rather flat. Based
on these (in our view, plausible) observations, and reasoning from the standard static
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model, Dietz and Stern (2007) conclude that quantity restrictions are more efficient
than taxes for climate policy. We have three reasons for doubting this conclusion.
First, the use of the static framework (or the open loop assumption in a dynamic set-
ting) is not appropriate for studying climate policy, because the current policymaker
cannot choose policy levels decades into the future. More rapid adjustment of policy,
i.e., a decrease in the length of period between policy adjustments, favors the use of
taxes. Second, even if the possibility of extreme events makes the marginal damage
function much steeper than current estimates suggest, the magnitude of the slope of
damages would have to be implausibly large to favor quotas. (Hoel and Karp (2002)
demonstrate both of these claims.) Third, the current paper shows that endogenous
investment in abatement capital is likely to increase the advantage of taxes, given the
linear–quadratic framework.
A second view, which we have heard propounded orally but not in writing, is

that the existing models inaccurately describe the abatement problem and are, there-
fore, simply inappropriate for comparing policies. The objection is that firms will
first exhaust the cheapest abatement opportunities; once these are used, they are
unavailable in the future. There are (at least) two ways to respond to this objec-
tion. First, a stationary upward sloping marginal abatement cost curve (used in most
previous analyses) is obviously consistent with the claim that firms first use the
cheapest way of reducing emissions, and then use more expensive means when reg-
ulation becomes stricter. However, because abatement is a flow decision, the fact
that the cheap abatement opportunities were used early in the program does not
mean that they are unavailable later in the program. The firms move up their mar-
ginal abatement curves as the policy becomes stricter. A second response interprets
the objection as a call to use a model in which abatement is a stock rather than
a flow decision—specifically, a model with endogenous investment in abatement
capital, in which there is a sequence of increasingly expensive technologies that
reduce emissions. It would be fairly straightforward to produce that kind of model,
using a slight modification of the model in this paper. We assumed that the cost
of investment is a function of gross investment. To address the objection, we could
modify the cost function so that the cost of an additional unit of capital increases
with the current level of capital. With this formulation, the firms’s level of capital
is a proxy for it’s stage of technology. Because it first adopts the cheapest (most
efficient) technologies, it becomes increasingly expensive to make further reduc-
tions in abatement costs. It is not clear how this change affects the policy rank-
ing.
There are several other model variations that would address other interesting ques-

tions. For example, network externalities may cause the productivity of a firm’s
capital to increase with the level of aggregate capital. Also, if we think of invest-
ment as being R&D rather than the installation of new capital, there are likely to be
important spillovers. At least in the linear–quadratic framework, it would be straight-
forward to include such spillovers. There may be intra-firm increasing returns to scale.
There might also be learning by doing, so that an increase in cumulative abatement
decreases abatement costs. The inclusion of intertemporal trade (banking and borrow-
ing) under quantity restrictions would be even more interesting. Because GHGs are a
stock pollutant, the stream of damages can be sensitive to the cumulative emissions
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over a long period of time without being sensitive to the precise timing of emissions.
Intertemporal trading allows firms to optimally allocate over time a given cumulative
level of emissions. The introduction of banking and borrowing (under the quantity
restriction) would likely significantly erode the advantage of taxes. The effect of
banking and borrowing on the incentive to invest is not clear. These questions, and the
model variations that they entail, are the subject of current research.

Appendix

The Appendix consists of three parts. Part 1 contains the proof of Proposition 1.
Part 2 provides the formulae for � used in Eq. (29). Part 3 contains information cali-
bration information. An additional Appendix, available on request, contains additional
information on calibration.

Proof of Proposition 1

We use J j (·)( j = T, Q) to denote the regulator’s value function in the dynamic game
(where the regulator chooses only an emissions policy), and J j (·)( j = T, Q) to
denote the regulator’s value function in the corresponding auxiliary problem (where
the regulator chooses an emissions policy and then chooses investment after observing
the current cost variable).Wewant to find conditions under which the equilibrium cap-
ital and pollution stocks are identical in the Markov perfect equilibrium to the game
and in the auxiliary problem. Equivalently, we want to find conditions under which
the optimal investment tax/subsidy is identically 0 in the auxiliary problem.

(i) Quotas When the regulator uses an emissions quota, the Euler equations for
investment in the Markov perfect equilibrium (Eq. 18) and investment in the
auxiliary problem (Eq. 21) are identical, as are the corresponding transversality
conditions. We need to confirm that the Euler equations for the pollution stock
are also identical in the two settings.
In the Markov perfect equilibrium with quotas the regulator solves the follow-
ing DPE:

J
Q(Kt−1, St−1, θt−1) = max

xt
Eθt |θt−1

{
B (Kt−1, θt , xt )− D(St−1)

−C
(

I Q
t , Kt−1

)
+ βJ

Q
(
δKt−1 + I Q

t ,�St−1 + xt , θt

)}

subject to the private investment rule I Q
t ≡ I Q (Kt−1, θt , St−1), which is inde-

pendent of the current quota level xt . The stochastic Euler equation for pollution
stock is:

Eθt |θt−1Bx (Kt−1, θt , xt )− βD
′
(�St−1 + xt )− β�Eθt+1|θt−1

Bx (Kt , θt+1, xt+1) = 0.
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The transversality condition is

lim
T →∞ EθT |θt−1

{
βT −t Bx (KT −1, θT , xT ) ST

}
= 0.

A straightforward calculation confirms that the corresponding Euler equation
and transversality condition in the auxiliary problem are identical to the last
two equations. (To obtain the Euler equation in the auxiliary problem we
differentiate the DPE (19) with respect to St−1, using the envelope theorem; we
combine the resulting equation with the first-order condition equation (20).)

(ii) Taxes We first consider the equations that determine the evolution of capital
stock. Inspection of the Euler equations for capital (Eq. (16) in theMarkov per-
fect equilibrium and Eq. (25) in the auxiliary problem) establishes that these
are identical if and only if the function τ , defined as

τt ≡ βEθt+1|θt

{
Ht+1

∂χt+1
∂Kt

}
,

is identically 0.We therefore find necessary and sufficient conditions for τt ≡ 0.
Note that the assumptions that Bx K < 0 and BK K < 0 imply that ∂χt+1

∂Kt
�= 0.

By Lemma 1, the separability condition is equivalent to

Condition 2 (a) ∂χ(Kt−1,θt ,pt )
∂pt

is independent of θt . (b)
∂χ(Kt−1,θt ,pt )

∂Kt−1 is independent
of θt .

We, therefore, need only show that Condition 2 is necessary and sufficient for
τt ≡ 0. We first consider sufficiency. If Condition (2a) holds, the first-order condition
(24) implies

Eθt |θt−1{Ht } = 0, ∀t. (30)

If Condition (2b) also holds, we can write τt as

τt ≡ β

(
∂χt+1
∂Kt

)
Eθt+1|θt {Ht+1}.

Using Eq. (30), the last equality implies that τt ≡ 0. Clearly the transversality condi-
tions in the two problems are the same.
The necessity of the separability condition follows from the previous argument.

If either part of Condition 2 does not hold the function τ is not identically 0. (Of
course the equality τ = 0 might hold for some values of the information state, but we
need the stronger condition that the equality hold identically, i.e., for all possible values
of the information state.)
To complete the proof, we need only check that the Euler equations and transver-

sality conditions for the pollution stock are also the same in the two problems. In the
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Markov perfect equilibrium with taxes, the regulator solves the following DPE:

J
T (Kt−1, St−1, θt−1) = max

pt
Eθt |θt−1

{
B(Kt−1, θt , χt )− D(St−1)− C

(
I T
t , Kt−1

)

+βJ
T

(
δKt−1 + I T

t ,�St−1 + χt , θt

)}
(31)

subject to emissions χt given by Eq. (15), and the private investment rule I T
t ≡

I T (Kt−1, θt , St−1) . I T
t is independent of the current tax level pt as discussed in

Sect. 4; ∂χt
∂pt
is independent of θt because of Condition 1. Thus the first-order condition

for the optimal tax is

Eθt |θt−1
{

Bx
[
Kt−1, θt , χ(Kt−1, θt , pt )

] + βJ
T
S

[
Kt ,�St−1 + χ(Kt−1, θt , pt ), θt

]} = 0.

(32)

Differentiating the DPE (31) with respect to St−1, using the envelope theorem, and
combining the resulting equationwith the first-order condition (32) gives the stochastic
Euler equation for the pollution stock in the dynamic game:

Eθt |θt−1
{

Bx
[
Kt−1, θt , χ(Kt−1, θt , pt )

] − βD
′ [
�St−1 + χ(Kt−1, θt , pt )

]}
−β�Eθt+1|θt−1Bx

[
Kt , θt+1, χ (Kt , θt+1, pt+1)

] = 0.

(33)

The transversality condition is

lim
T →∞ EθT |θt−1

{
βT −t Bx

[
KT −1, θT , χ (KT −1, θT , pT )

]
ST

}
= 0.

Again, it is straightforward to obtain the Euler equation for pollution stocks in the
auxiliary problem. We differentiate Eq. (23) with respect to St−1, using the envelope
theorem. Combining the resulting equation with the first-order condition (30) leads
to the stochastic Euler equation for the pollution stock in the auxiliary problem. This
equation is identical to Eqs. (33). The transversality conditions are also the same.QED

Formulae for �

The function � used in Eq. (29) is

� =
β2ρ2φ2

(d−βh)

b
(
1+ βg

b

)2
(d−βh−dβρ)2

+ βρ2

1+ βg
b

1− βρ2
> 0
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with

h =
−�−

√
�2 + 4βd

(
f2 − φ2

b+βg

)

2β
< 0

� ≡
(

f2 − φ2

b + βg

)
β − d

(
1− βδ2

)

Calibration of abatement costs and the shock

We assume that abatement capital depreciates at an annual rate of 16.25%, the mean
of capital stock depreciation rates in 14 OECD countries (Cummins et al. 1996). This
depreciation rate implies that δ = 0.85.
A higher unit of abatement capital decreases the BAU emissions bym1 units. When

m1 = 0, BAU emissions are constant, and abatement capital has no effect on the mar-
ginal benefit of pollution (i.e., on marginal abatement costs). In this special case, the
firm’s emission decision and investment decision are decoupled, and the firm’s capital
stock has no effect on the regulator’s optimal policy. The restriction m1 = 0 therefore
reproduces the linear–quadratic models of global warming in Karp and Zhang (2006).
The dependence of adjustment costs on gross rather than net investment leads to a

simple method of calibration. In the absence of additional regulation, i.e., under Busi-
ness as Usual—firms never invest: I b

t = 0,∀t ≥ 0. If the initial level of abatement
capital is positive, the level monotonically decreases over time, so BAU emissions
monotonically increase:

K b
t = δt+1K−1, xb

t = m0 − m1K b
t−1 + θ̃t = m0 − m1δ

t K−1 + θ̃t ,

where K−1 > 0 is the abatement capital at the beginning of the initial period (t = 0).
Our assumptions provide a simple way to include endogenous investment, and also to
reproduce the stylized fact that BAU emissions will increase. The model is “incom-
plete” , since it does not explain why K−1 > 0. The expected future BAU atmospheric
CO2 stock is:

St = �t+1S−1 − m1K−1
δt

[
1− (

�
δ

)t+1]
1− �

δ

+ [
m0 + (1−�)S̄

] 1−�t+1

1−�
, (34)

where S−1 is the pollutant stock at the beginning of the initial period.
The current anthropogenic fluxes of CO2 into the atmosphere is 5.2 GtC13 so we

set Exb
0 = m0 − m1K−1 = 5.2 to obtain one calibration equation. The IPCC IS92a

13 We use “current” to mean the year 2000. The current total anthropogenic CO2 emissions are about 8.12
GtC, which equals the sum of 6.518 GtC of global CO2 emissions from fossil fuel combustion and cement
production (Marland et al. 1999) and 1.6 GtC annual average net CO2 emissions from changes in tropical
land-use (Intergovernmental Panel on Climate Change 1996).We obtain the current anthropogenic fluxes of
CO2 into the atmosphere 5.20 GtC by multiplying the total anthropogenic emissions by 0.64, the marginal
atmospheric retention ratio.
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scenario projects BAU CO2 stocks at 1,500 GtC in 2100 (Intergovernmental Panel on
Climate Change 1996), page 23. This estimate, Eq. (34), and the estimate of current
atmospheric CO2 concentration at S−1 = 781GtC (Keeling and Whorf 1999), gives
a second calibration equation. The two equations imply

m0 = 12.466, m1K−1 = 7.2661.

We do not have data on abatement capital, so we choose an arbitrary value for K−1.14
We set K−1 = 10.
We choose the baseline values of d (the slope of the marginal investment cost) and

b (the slope of the marginal abatement cost) to satisfy a scenario in which firms are
required to maintain emissions at the current level in each period. Firms begin with
the initial abatement capital and solve an infinite horizon investment problem to min-
imize the present discounted sum of investment and abatement cost under emission
stabilization. In order to determine the two unknown parameters, we assume:

• The annualized discounted present value of firms’ total (abatement-related) costs
is about 1% of 1998 GWP (Manne and Richels 1992). 15

• In the steady state the ratio of investment costs to total abatement costs is about
0.5 (Vogan 1991).

These two assumptions lead to the baseline parameter values: d = 703.31, and b =
26.992.

Calibration material not intended for publication

Row 1 in Table 1 is pollutant stock growth equation. We measure S t , the CO2 atmo-
spheric concentration, in billions of tons of carbon equivalent (GtC). S̄ equals 590GtC,
the preindustrial CO2 concentration (Neftel et al. 1999). Let et be total anthropogenic
CO 2 emissions in period t . The proportion of emissions contributing to the atmo-
spheric stock is estimated at 0.64 (Goulder and Mathai 2000; Nordhaus 1994b). This
fraction accounts for oceanic uptake, other terrestrial sinks, and the carbon cycle
(Intergovernmental Panel on Climate Change 1996). The linear approximation of the
evolution of the atmospheric pollutant stock is

St − 590 = �(St−1 − 590)+ 0.64et .

This equation states that 64 of current emissions contribute to atmospheric CO2, and
that CO2 stocks in excess of the preindustrial level decays naturally at an annual rate
of 1−�. We take xt ≡ 0.64et , the anthropogenic fluxes of CO2 into the atmosphere,

14 Even for pollution problems that have been studied in more detail, data on abatement capital is diffi-
cult or impossible to obtain. For example, Becker and Henderson (1999) note the absence of estimates of
abatement capital stocks associated with U.S. air quality regulation.
15 Manne and Richels (1992) estimate that the total global costs of stabilizing CO2 emissions at the 1990
level are about 4,560 billions of 1990 US dollars, or 20.25% of the 1990 GWP.We take the same percentage
loss and use the annualized value (1− β)× 20.25% = 1%.
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as the control variable. The stock persistence is � = 0.9917 (an annual decay rate of
0.0083 and a half-life of 83 years) (Goulder and Mathai 2000; Nordhaus 1994b).
We assume that the preindustrial CO2 concentration has zero environmental dam-

age. Damages from higher CO2 concentration are
g
2

(
S − S̄

)2
(row 2 in Table 1). For

ease of interpreting the numerical values, we use π to denote the percentage loss in
GWP (Gross World Product) from a doubling of the preindustrial CO2 concentration.
With the 1998 GWP of 29,185 billion dollars (International Monetary Fund 1999) we
have

π% · 29185 = g/2 · 5902 �⇒ g = 0.0017π.

For example, π = 1.33 which is widely used corresponds to g = 0.0022. For the sen-
sitivity analysis we consider two other damage parameters, π = 3.6 and π = 21.0,
the mean and the maximum of expert opinions.
Using maximum likelihood, we fit the following data generating process for global

carbon emissions over the 50-year period 1947–1996 from Marland et al. (1999).

et = e0 + nt + εt , εt = ρεt−1 + νt , νt ∼ i id N
(
0, σ 2υ

)
.

The estimates are ρ = 0.9 and συ = 0.1GtC. We convert the emission uncertainty
συ into cost uncertainty σμ by multiplying it by 0.64 (because xt ≡ 0.64et ), and then
by the slope of marginal abatement cost b = 26.992 (because θt ≡ bθ̃t ). The result is
σμ = 0.1× 0.64× 26.992 = 1.7275$/(ton of carbon).

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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