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Abstract. We study a dynamic regulation model where firms’ actions contribute to a stock
externality. The regulator and firms have asymmetric information about serially correlated

abatement costs. With price-based policies such as taxes, or if firms trade quotas efficiently, the
regulator learns about the evolution of both the stock and costs. This ability to learn about
costs is important in determining the ranking of taxes and quotas, and in determining the

value of a feedback rather than an open-loop policy. For a range of parameter values com-
monly used in global warming studies, taxes dominate quotas, regardless of whether the
regulator uses an open-loop or a feedback policy, and regardless of the extent of cost corre-
lation.
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1. Introduction

The possibility of global warming has revived interest in comparing taxes and
quotas when the regulator and firms have asymmetric information about
abatement costs. Weitzman (1974) showed that there is a simple criterion for
ranking the policies when abatement costs and environmental damages are
quadratic functions of theflowof pollution, uncertainty enters additively (i.e., it
affects the level but not the slope of the firm’s marginal costs), and the optimal
quantity restriction is binding with probability one.1 When the externality is
caused by a stock rather than a flow the regulatory problem is dynamic, and the
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comparison of policies is more complicated. When stocks decay slowly, as do
greenhouse gases, current emissionsmay cause future environmental damages.
Regulatory policies should balance current abatement costs and the stream of
future environmental damages. In formulating these policies, the regulator
should also consider the possibility of learning about the firms’ abatement
costs, thereby reducing the future asymmetry of information.

We show how the regulator’s ability to update information about serially
correlated abatement costs affects the regulation of a stock pollutant, and
also alters the comparison of taxes and quotas. In a dynamic model with
serially correlated private information about abatement costs, past ob-
servations can provide information about current costs. In order to take
advantage of this information, the regulator needs to use a feed-back policy.

Uncertainty and learning about abatement costs is an important compo-
nent of the global warming problem. Arguably, uncertainty and learning
about the relation between greenhouse gas stocks and environmental da-
mages is at least as important; this topic is addressed in Karp and Zhang
(2002b). These two aspects of the problem are distinct, and a model that
incorporates both would be quite complicated. Here, we consider only un-
certainty and learning about abatement costs.

Staring (1995) considers the simplest dynamic model where the regulator
uses an open-loop policy, i.e., he announces the entire policy trajectory at the
initial time. Weitzman’s basic result, and the intuition for it, still holds: a
steeper marginal damage function or a flatter marginal abatement cost
function favor the use of quotas. A lower discount rate or a lower stock-
decay rate – both features that increase the importance of future damages
resulting from current pollution – favor the use of quotas.

Hoel and Karp (2002) show that both the ability to change the policy fre-
quently and the use of a feedback rather than anopen-looppolicy favors the use
of taxes.2 They assume that cost are uncorrelated, so past observations provide
no information about the current cost shock. The effect of all parameters on the
policy ranking is qualitatively the same in the open-loop and feedback settings.
Newell and Pizer (2003) extend the open-loop model by allowing costs to be
serially correlated. They show that a more positive degree of autocorrelation
favors the use of quotas. They study only the open-loop case, where the reg-
ulator learns nothing about either the evolution of stocks or abatement costs.

We consider the stock-regulation problem with correlated costs when the
regulator uses a feedback policy. Correlated costs increase the value of
feedback rather than the open-loop decision rules, because the regulator has
the opportunity to learn about both the evolution of stocks and costs. Not
surprisingly, most of the intuition developed in the earlier papers survives in
this more general setting. With a feedback policy, the distinction between
tradeable and non-tradeable quotas is important, because the two types of
policies provide the regulator with different amounts of information. This
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paper thus extends our intuition for the stock regulation problem and con-
firms that previous results hold in a more general setting.

Although these theoretical insights are valuable, the implications for
empirical work are probably more important. For some pollution problems
(such as global warming) where we would like to compare taxes and quotas,
we have only rough estimates (or guesses) of the slopes of marginal damages
and abatement costs, and estimates of other parameters such as decay and
discount rates and cost correlations. An empirical challenge is to use the
existing data to rank policies. This challenge cannot be met merely by
knowing the qualitative characteristics of a problem. For example, Hoel and
Karp (2002) show that despite the lack of a qualitative difference, there is a
large quantitative difference in the criterion for ranking taxes and quotas,
depending on whether the regulator uses open-loop or feedback policies;
however, for all plausible parameter estimates, taxes dominate quotas for the
control of greenhouse gases under either open-loop or feedback policies.
Newell and Pizer (2003) reach a similar conclusion with respect to changes in
the cost correlation parameter, given that the regulator uses an open-loop
policy. The formulae that we derive enable us to rank taxes and quotas in a
more realistic and general setting (e.g., with or without cost correlation,
under open-loop or feedback policies, with or without trade in quotas).

The literature to which this paper contributes compares efficient quotas
and efficient taxes. To be consistent with this literature, we assume that when
there is no trade in quotas, firms have the same marginal abatement costs. In
this case, there would be no efficiency gain from trade. When firms have
different cost shocks, we assume that there is trade in quotas, so the potential
efficiency gain is realized. That is, in both of these cases the quota is efficient.
The difference between the two cases is that with trade the equilibrium quota
price contains the same information about the aggregate cost shock as does
the equilibrium response to a tax; without trade, the regulator learns nothing
about the cost shock when he uses a quota. Thus, we identify the role of trade
in providing information (via the quota price). One way to interpret this
model is that trade in quotas is always permitted. In equilibrium, trade ac-
tually occurs if and only if firms are heterogenous.

A third possibility, that we do not study (but mention in note 8), is that
firms are heterogenous and there is no trade under quotas. In this case, the
quota is inefficient. This model would illustrate the combined effects of the
greater information and the greater allocative efficiency provided by taxes or
by quotas with trade.

Section 2 describes the model and section 3 explains the intuition for our
results. Section 4 generalizes Newell and Pizer’s policy ranking under the
open-loop assumption and shows that more positively correlated cost shocks
always favors the use of quotas. Section 5 shows that under the feedback
policy without quota trading, taxes tend to dominate quotas when the cost
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shocks are highly positively or negatively correlated. Section 6 shows that
efficient quota trading eliminates the informational advantage of taxes; as in
the open-loop setting, higher autocorrelation of cost shocks then favors the
use of quotas. Subsequent sections assess the likelihood that the policy
ranking is different in the three scenarios (open-loop, feedback with and
without quota trading), and provide an empirical illustration.

2. The Model

We begin the analysis with the assumption that all firms are identical, so
there is no incentive for firms to trade quotas. Firms behave non-strategically
towards the regulator. We fix units of time equal to years and assume that a
period lasts for one year. All time-dependent variables are constant within a
period. At time t, the stock of pollutant is St and the flow of new pollution is
xt. The fraction 1� D of the stock decays within a period:

Stþ1 ¼ DSt þ xt: ð1Þ
In period t, the flow of environmental damages is DðStÞ:
D Stð Þ ¼ cSt þ g

2
S2
t ; g > 0:

The representative firm’s business-as-usual (BAU) level of emissions in
period t is xbt ¼ xþ ~ht where ~ht, is a random variable. With an actual emis-
sion level xt < xbt , the firm’s abatement cost is a quadratic function of

abatement A xtð Þ ¼ b
2 xbt � xt
� �2

with b > 0. The firm’s benefit from higher

emission equals the abatement costs that it avoids having to pay. Defining the

cost shock ht � b~ht, we write the benefit as a linear-quadratic function,
concave in the emission with an additive cost shock. The benefit function for
a representative firm is defined as the flow of cost saving due to more pol-
lution (less abatement):3

B xt; htð Þ ¼ fþ aþ htð Þxt � b

2
x2t ; b > 0: ð2Þ

At time t, only the firm observes ht; there is persistent asymmetric in-
formation. The regulator knows the parameters of the AR 1ð Þ process that
determines the evolution of h:

ht ¼ qht�1 þ lt; lt � iid 0; c2
� � ð3Þ

for t � 1. The regulator’s subjective distribution for h0 is

h0 � �h0;r
2
0

� �
:

The random variable h0 has (subjective) mean �h0 and variance r20. h0 and lt
are independent and the correlation coefficient q satisfies �1 < q < 1.
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If the regulator uses quotas, we assume that these are always binding.4

Depending on the choice of parameter values and the initial value of S,
the probability that the quota is binding for an arbitrarily large but finite
number of periods can be made arbitrarily close to one. Since the reg-
ulator discounts the future, this fact means that there is only a small loss
from ignoring the possibility that the quota is slack. Therefore, we view
the assumption that the quota is always binding as an approximation.

If the regulator uses a tax pt, firms in each period maximize the difference
between the savings in abatement cost and the tax payment:

Max
xt

Pt ¼ B xt; htð Þ � ptxt ¼ fþ aþ htð Þxt � b

2
x2t

� �
� ptxt:

The firms’ first order condition implies5

x�t ¼
a� pt
b

þ ht
b
: ð4Þ

When the regulator uses a tax, the flow of emissions and the evolution of
the pollutant stock St are stochastic. At time t, the regulator knows the actual
level of emissions and the tax at time t� 1; and (using Equation (4)) he is able
to infer the value of ht�1. The tax-setting regulator does better using a
feedback rather than an open-loop policy because he learns about the cost
variable and the pollution stock, and he conditions his policy on this in-
formation.

Define zit as the regulator’s expected emission given the tax pt , for i = OL
(open-loop) or i = FB (feedback). Under the open-loop tax policy,

zOL
t ¼ E0x

�
t ¼ a� pt

b
þ 1

b
E0ht ¼ a� pt

b
þ 1

b
qt�h0:

Under the feedback tax policy,

zFBt ¼ Etx
�
t ¼ a� pt

b
þ 1

b
Etht:

The regulator’s expectation of the cost variable (under the feedback policy) is
Etht ¼ �h0 when t ¼ 0 and Etht ¼ qht�1, when t � 1. Choosing a tax pt is
equivalent to choosing expected emissions zit. The firm’s actual level of
emissions is

x�t zt; htð Þ ¼ zOL
t þ 1

b ht � qt�h0
� � ðopen� loopÞ

zFBt þ 1
b ht � Ethtð Þ ðfeedbackÞ:

(
ð5Þ

Hereafter we model the tax-setting regulator as choosing zit; we drop the
superscript i (i ¼ OL or i ¼ FB) where the meaning is clear.
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3. The Intuition for Policy Ranking

The policy ranking obtained in subsequent sections depends on four
considerations. The first two, which we refer to as the flexibility effect and
the stochasticity effect, form the basis for policy ranking in Weitzman
(1974)’s static model, and in all of dynamic models previously cited.
Under taxes, emissions and marginal abatement costs are positively cor-
related. This flexibility increases expected cost saving, favoring taxes.
However, taxes result in a stochastic stock of pollution. Stochastic stocks
increase expected damages because damages are convex in stocks. The
stochasticity effect favors quotas.

The third and fourth considerations are related to the autocorrelation
parameter q. The change in the stock over several periods approximately
equals the sum of flows during that time. (A positive decay rate means
that the stock change does not exactly equal the sum of flows.) Other
things equal, the variation in the stock is smaller when the flows are
negatively autocorrelated – as occurs under taxes when costs are nega-
tively correlated. Thus, negative autocorrelation of costs reduces the
characteristic (stochasticity of stocks) that tends to make taxes un-
attractive. Similarly, positive autocorrelation of costs increases the char-
acteristic that tends to make taxes unattractive. This relation – ‘‘the stock
correlation effect’’ – explains why the preference for quotas is mono-
tonically increasing in q under an open-loop policy.

The stock correlation effect exists but is less important under the feedback
tax policy, because the regulator is able to adjust the policy in every period to
accommodate the previous shock. In choosing the current tax, he need only
consider next-period stock variability.

The fourth consideration is the learning effect. A higher absolute value of q
means that knowledge of the previous cost provides more information about
the current cost. By observing the level of lagged emissions and taxes, the tax-
setting regulator learns the previous cost variable under a feedback policy.
Under the feedback quota, the regulator learns the previous cost variable
only if quotas are traded.

When quotas are traded, the learning effect is the same under taxes and
quotas. This symmetry means that the only difference (related to q) between
taxes and quotas is the stock correlation effect. Consequently, a higher value
of q favors (tradable) quotas under feedback policies.

When quotas are not traded, the learning effect and the stock corre-
lation reinforce each other for q < 0, so a smaller value of q favors taxes;
when q > 0 the two effects tend to counteract each other. The interplay of
the two effects explains why the ranking of feedback taxes and non-
tradable feedback quotas may be non-monotonic in q.
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4. Open-Loop Policy

With an open-loop policy, the regulator chooses an infinite sequence of
policy levels, xtf g1t¼0 under quotas and ztf g1t¼0 under taxes, based on the
information he has at time 0. This decision depends on the variance and
covariance of the costs shocks, conditional on the information at time 0.

Conditional on information at time 0, limt!1 var htð Þ ¼ c2

1�q2. If the initial
conditional variance, r20, also equals c2

1�q2 (as in Newell and Pizer 2003), the
regulator’s open-loop problem is stationary. For any other value of r20, the
problem is non-stationary. We consider the general case (an arbitrary value
of r20) in order to be able to compare the policy ranking in the open-loop and
feedback settings. In the feedback setting, the regulator would have the prior
r20 ¼ c2

1�q2 after the first period only if he begins with these beliefs and uses a
non-tradable quota. This prior is therefore not useful for comparing the
open-loop and feedback settings.6

The regulator wants to maximize the expectation of the present value of
the difference between abatement cost saving and pollution damages

E0

X1
t¼0

bt B xt; htð Þ �D Stð Þf g:

b is a constant discount factor. The expectation is taken over the sequence of
random variables htf g1t¼0 with respect to the information available at t ¼ 0.
Define TOLðS0Þ as the maximized expected value of the regulator’s open-loop
(OL) program when he uses taxes and the initial stock of pollutant is S0.
Define QðS0Þ as the maximized expected value of the regulator’s program
when he uses a quota. (Since – as we explain in section 5 – this value is the
same under open-loop and feedback quotas without trading, we do not use a
superscript on the function QðSÞ.)

The expectation of the trajectories of the flow and the stock of pollution
are the same for every scenario that we consider: open-loop and feedback,
taxes and quotas, with and without quota trading. This fact is a consequence
of the Principle of Certainty Equivalence of the linear-quadratic model with
additive uncertainty.7 Consequently, the policy ranking depends on the sec-
ond moment of the random variable.

The payoff difference under taxes and quotas, given the open-loop policy,
is

WOL
0 � TOL S0ð Þ �Q S0ð Þ ¼ 1

2b 1�q2bð Þ r20 þ c2b
1�b

� �
1� g

b
b

1�bD2
1þqbD
1�qbD

n o
: ð6Þ

(Details of this and other derivations, discussions of tangential issues, and
some technical proofs, are contained in an appendix that is available upon
request.) Since the term outside the curly brackets is always positive, the
policy ranking is independent of the regulator’s priors (�h0; r20); that is, Newell
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and Pizer’s (2003) criterion for ranking policies is correct for all priors. We
restate this result as:

Remark 1. The preference for quotas under the open-loop policy is mono-
tonically increasing in g, b, D, q, and monotonically decreasing in b.

Since the possibility of learning about cost shocks depends on the value of
q, we emphasize the role of this parameter.

Proposition 1. Under an open-loop policy, the preference for quotas is mono-
tonically increasing in q. Taxes dominates quotas iff

q � 1� bD2 � bgb
bD 1� bD2 þ bgb
� � :

5. Feedback Policy without Quota Trading

The assumption that the optimal quota is always binding means that the
quota-setting regulator learns nothing about the previous cost shock and also
means that the evolution of the stock of pollution is non-stochastic. Since no
new information becomes available, the open-loop and feedback quota po-
licies (and payoffs) are identical when quotas are not traded. When the
regulator uses taxes, the evolution of St is stochastic. By observing the firms’
response to the tax, the regulator learns the value of the random cost. With
taxes the regulator obtains information over time, so a feedback tax policy
results in a higher payoff than does an open-loop policy.

We compare the payoffs under the two policies by comparing their re-
spective value functions. With correlated costs, there are two state variables,
the stock of pollution St and the current expected value of the cost variable
yt � Etht. When necessary to avoid confusion, we use superscripts to dis-
tinguish state variables under tax or quota policies, e.g., ytaxt and yquotat .

The value functions under both taxes and quotas are quadratic in the
state, i.e., they both have the form

Vi
0;t þ v1 v2ð Þ|fflfflffl{zfflfflffl}

V1

St

yt

	 

þ 1

2
St ytð Þ V11 V12

V12 V22

	 

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

V2

St

yt

	 

: ð7Þ

The first term of the value function Vi
0;t, i= tax, quota, depends on t because

VartðhtÞ changes exogenously in the first period. (See Equation (29) in the
Appendix.)

The Appendix contains explicit expressions for the parameters of the value
functions. The matrices V1 and V2 are the same under taxes and quotas. For a
given state, the optimal control, z�t under taxes and x�t under quotas are equal
and are given by
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a 1� bDð Þ � bc
b� bV11ð Þ � bbD

þ 1� qbD
b 1� qbDð Þ � bV11

yt þ bDV11

b� bV11
St; ð8Þ

with

V11 ¼ � bbD2 þ bg� b
� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bbD2 þ bg� b
� �2 þ 4bgb

q
2b

< 0: ð9Þ

The function V11 is independent of q; the correlation parameter affects
only the slope of the control rule with respect to the state yt. Equation (8)
implies that an increase in current expected costs, yt; increases the current
(expected) flow of pollution, as in the static model.

The values of z�t and x�t differ over time because the actual trajectories of
the state vector differ under taxes and quotas. However, as we remarked
above, the first moments of pollution flows and stocks are the same in all of
our scenarios, because of the Principle of Certainty Equivalence. Taking
expectations at time 0, we have E0y

tax
t ¼ E0 q ht�1ð Þ ¼ qt�h0 ¼ yquotat . This re-

lation and Equation (8) imply

E0z
�
t ¼ x�t : ð10Þ

The expected values of the programs are different because of the second
moments of the cost shocks. It makes sense to compare the values of these
programs only under the same information set, e.g., at time t ¼ 0. The same
comparison holds at an arbitrary time, provided that the regulator evaluates
the two policy instruments using the same information set.

In the initial period, ytax0 ¼ yquota0 ¼ �h0. The payoff difference under taxes
and quotas, given the feedback policy, is due to the difference in the term Vi

0;t

(evaluated at t ¼ 0) in equation (7) :

WFB
0 � TFB S0; �h0

� ��Q S0; �h0
� � ¼

1
2b 1�q2bð Þ r20 þ c2b

1�b

� �
1�b

bV11ð Þ 1�qbDð Þ2�b2

b2
V2

11
1�q2bð Þ

� 
1�qbD�b

bV11ð Þ2 :
ð11Þ

The ranking of feedback tax and quota policies depends only on the sign of
the term in curly brackets. Hoel and Karp (2002) show that for q ¼ 0 and
r20 ¼ c2, the parameters b, g, b and D have qualitatively the same effect on the
policy ranking under both open-loop and feedback policies. The comparative
statics of the ranking with respect to b, g, and D are unchanged when q 6¼ 0.
Remark 2. The preference for quotas under the feedback policy is mono-
tonically increasing in g, D, and monotonically decreasing in b.

However, the effect of q and b is different in the open-loop and feedback
setting. Equation (11) implies

Proposition 2. Feedback taxes dominate non-tradable feedback quotas iff
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fðqÞ � q2b2 D2 þ b
b2
V2

11

	 

� 2qbDþ 1� b2

b2
V2

11 � 0: ð12Þ

The function f qð Þ is convex in q and for some parameter values is non-
monotonic in q over q 2 �1; 1ð Þ. For such parameter values, the preference for
quotas is non-monotonic in q.

The function f qð Þ reaches a minimum at q � 0; the minimum occurs at
q ¼ 0 if and only if D ¼ 0, i.e., for a flow externality. We define q1 and q2 as
the smaller and the larger roots of f qð Þ ¼ 0, provided that these roots are real.
If both of these roots are in the interval �1; 1ð Þ,then for low values of q an
increase in q makes quotas more attractive, and the opposite holds for high
values of q. The following are sufficient conditions for either taxes or quotas
to dominate:

Corollary 1. A sufficient condition for taxes to dominate quotas is

1� bD2

b
>

g

b
:

A sufficient condition for quotas to dominate taxes is q1 < �1 and q2 > 1:
Under an open-loop policy, a larger value of b favors the use of quotas,

because a larger b increases the importance of the future stock variability
arising from the current flow variability. Under feedback policies, the com-
parative statics of b is ambiguous. We have:

Proposition 3. Under a feedback policy, a higher discount factor favors quotas
(i.e., it decreases WFB

0 ) iff

� D2 þ g
b

� �b
bV11 þ g

bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bD2 þ bgb � 1
� �2þ4bgb

q � q q2bD� 2Dþ q
� �
2 1� q2bð Þ32

: ð13Þ

A sufficient condition for inequality equation (13) is b � 2D�q
q2D and q � 0. These

two inequalities are satisfied if 0 � q � D.
A higher discount factor favors the use of quotas if the gain from the

informational advantage under taxes is not great enough to offset the higher
expected damage from future stock variability. The sufficient condition
0 � q � D means that equation (13) is very likely to hold for stock pollutants
that decay slowly. For example, when a period is one year a half-life of
15 years corresponds to D ¼ 0:9548; greenhouse gases have a half-life of over
80 years, for D ¼ 0:99 (see section 8).

In the limiting case where D ¼ 0, the externality is a flow pollutant. Define
~g ¼ bg, the present value of the slope of marginal damages and set r20 ¼ c, the
variance of the innovation to costs. The difference between payoffs under
taxes and quotas for a flow pollutant is
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WFB
0 ¼ r20

2b 1� bð Þ
bq2

1� bq2ð Þ 1þ ~g
b

� �þ 1� ~g

b

	 
" #
:

This expression shows how the learning that is made possible by a non-zero
value of q favors the use of taxes for the case of a flow pollutant. When q ¼ 0,
we obtain Weitzman’s (1974) criterion.

6. Ranking with Quota Trading

Previous sections assume that all firms are identical, so firms have no in-
centive to trade emissions permits. When firms are heterogeneous, emissions
trade increases efficiency and also reveals industry-wide costs with a one-
period lag. The informational advantage of taxes disappears in this case.

Suppose there are n firms, where n is large. Let xi;t be firm i ’s emissions at
time t. The benefit for firm i of emitting xi;t is

Bi xi;t; ht; �i;t
� � ¼ f

n
þ aþ ht þ �i;t
� �

xi;t � bn

2
x2i;t; ð14Þ

where �i;t is the firm-specific deviation from the industry-wide cost ht. These
firm-specific deviations are i:i:d over time with mean 0 and constant variance
r2� . They are uncorrelated with each other and are independent of the in-
dustry-wide average ht, which follows the AR ð1Þ process defined in Equation
(3).

We use pt (p
tax
t or pquotat ) to denote either the tax level or the quota price

from trading. The first order condition to firm i’s problem gives its emission
response as

x�i;t ¼
a� pt
bn

þ ht þ �i;t
bn

: ð15Þ

Summing over x�i;t gives the aggregate industry level emission

xt ¼
Xn
i¼1

x�i;t ¼
1

b
a� ptð Þ þ ht þ

P
�it
n

	 

: ð16Þ

The last term in Equation 16ð Þ is iid 0;
r2�
n

� �
; since n is large, we replace

r2�
n

with 0. Thus, once the regulator knows pt and xt, he knows ht. Under quotas
the regulator chooses xt, and pt is endogenous; under taxes the regulator
chooses pt; and xt is endogenous.

Quotas. Under quotas, in each period the aggregate emissions, and con-
sequently the pollutant stock, are deterministic. Equation (16 ) implies the
equilibrium quota price pquotat ¼ aþ ht � bxt . By observing pquotat ; the reg-
ulator learns ht. Substituting this price into Equation 15ð Þ gives firm i’s
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emission level as xt
n þ �it

bn. Substituting this expression into Equation 14ð Þ,
summing over i, and taking expectations gives the aggregate expected cost
saving under quotas:8

Et

Xn
i¼1

Bi xquotai;t ; ht; �i;t
� �

¼ fþ aþ Ethtð Þxt � b

2
x2t þ

1

2b
r2� : ð17Þ

Taxes. A tax policy results in a stochastic level of aggregate emissions.
Choosing a tax is equivalent to choosing the expected aggregate emissions
zt � Etxt ¼ 1

b a� ptaxt

� �þ 1
bEtht: The actual level of aggregate emissions is

xt ¼ zt þ 1
b ht � Ethtð Þ: By observing xt, the regulator learns ht. Firm i’s

emission level is 1
n zt þ 1

bn ht � Ethtð Þ þ 1
bn �i;t. Substituting this expression into

Equation ð14Þ, summing over i, and taking expectations gives the aggregate
expected cost saving under taxes:

Et

Xn
i¼1

Bi xtaxi;t ; ht; �i;t
� �

¼ fþ aþ Ethtð Þzt � b

2
z
2

t
þ 1

2b
r2� þ

1

2b
Vart htð Þ:

ð18Þ
Taxes vs. Quotas. The firms’ individual deviations have the same effect on

the aggregate expected cost saving under taxes and quotas. These firm-spe-
cific deviations do not affect the policy ranking.

As before, the regulator maximizes the expectation of the difference be-
tween firms’ aggregate cost saving from polluting and environmental damage:

E0

X1
t¼0

bt
Xn
i¼1

Bi xi;t; ht; �i;t
� ��D Stð Þ

( )
:

Under quotas, the control variable is xt and the expected aggregate benefit
is Equation (17). Under taxes, the control variable is zt and the expected
aggregate benefit is Equation (18). The expectation is taken over sequences of
random variables htf g1t¼0 and �i;t

� 1
t¼0

with respect to the information
available at the current time, t ¼ 0.

With the open-loop policy, the regulator decides his future policy trajec-
tory at the initial period t ¼ 0 and commits to it. There is no learning. All of
the conclusions in section 4 also hold when quotas are traded. The payoff
difference under taxes and quotas, WOLþTrade

0 , is the same as in Equation (6).
With the feedback policy, the regulator adjusts the instrument level as he

learns about cost shocks. Under both taxes and quotas, the regulator’s
posterior is

ht � qht�1; c
2

� �
; 8t � 1:

The corresponding law of motion for yt � Etht, under both quotas and
taxes is ytþ1 ¼ qyt þ qlt. (Without quota trading, ytþ1 ¼ qyt ; see Appendix.)

LARRY KARP AND JIANGFENG ZHANG284



This difference identifies the informational advantage of tradeable quotas
(relative to non-traded quotas).

The optimal control, zt under taxes and xt under quotas, obeys the linear
control rule (8). The regulator has the same amount of information about
costs under taxes and quotas, although in general the realization of S is
different under the two policies. Consequently, the optimal controls are
identical, for a given value of S:

z�t ¼ x�t : ð19Þ
Note the qualitative difference between equations (10) (E0z

�
t ¼ x�t ) and

(19) (z�t ¼ x�t ). By observing the price of emissions permits, the regulator has
the same information about costs under taxes and quotas in every period, not
just at time t ¼ 0.

Although – as previously noted – the first moment of stocks and flows are
the same under taxes and quotas, their second moments differ, leading to
different expected payoffs:

WFBþTrade
0 ¼ JT0 S0; �h0

� �� J
Q
0 S0; �h0
� �

¼ 1
2b r20 þ c2b

1�b

� �
1�b

bV11ð Þ 1�qbDþb
bV11ð Þ

1�qbD�b
bV11

: ð20Þ
V11 < 0 is given in equation (9).

The payoff under taxes is higher than under quotas if and only if

1� qbDþ b
b
V11 � 0:

This inequality implies:

Remark 3. With efficient quota trading, changes in parameters b, g, b, D, and
q have qualitatively the same effect on the policy ranking under open-loop
and feedback policies.

The qualitative differences in policy ranking between open-loop and
feedback policies depend only on the informational advantage of taxes under
feedback policies. Emissions trading eliminates this informational advantage.
Again, we emphasize the effect of cost autocorrelation:

Proposition 4. With quota trading, more positively autocorrelated cost shocks
(higher q) favors the use of quotas under both open-loop and feedback stra-
tegies. Feedback taxes dominate tradeable feedback quotas iff

q � 1
bD 1þ b

bV11

� �
:

7. Sensitivity of the Ranking

This section identifies the region of parameter space where the open-loop and
feedback assumptions lead to different policy rankings. The difference in
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policy ranking arises because the informational differences between taxes and
quotas varies over the three scenarios (open-loop, feedback with quota trade,
and feedback without quota trade). Table I summarizes these informational
differences for q 6¼ 0. Rows 2 and 3 of the first column give the two state
variables, the pollution stock and the lagged cost shock. For example, the
entry ‘‘no/yes’’ in the second column and second row indicates that for the
open-loop tax policy, the regulator does not condition the policy level in
future periods on the value of the stock in those periods (‘‘no’’). In contrast,
for the open-loop quota policy, it is as if the regulator does condition the
policy level in future periods on the value of the stock in those periods
(‘‘yes’’). Under quotas the stock trajectory is non-stochastic, so the regulator
at time 0 knows all future stocks, given the quota trajectory.

We define the critical ratio of g
b as the value of the ratio that makes the

regulator indifferent between taxes and quotas. The critical ratio is obtained
by setting the differences in payoffs equal to 0 and solving for g

b. The pre-
ference for quotas is monotonically increasing in g

b under both open-loop and
feedback policies, so the quota is the right instrument if and only if the actual
value of the ratio of slopes exceeds the critical value.

The critical values in the open-loop and feedback cases are respectively

g

b

� ��OL

¼ g

b

� ��OLþTrade

¼ 1� qbD
1þ qbD

	 

1

b
� D2

	 

;

g

b

� ��FB
¼

1� qbDð Þ 1� qbDð Þ þ 1� bD2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2b
pn o

b 1� q2bð Þ þ 1� qbDð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2b

pn o ;

g

b

� ��FBþTrade

¼ 1� qbDð Þ 1

b
� D2

2� qbD

	 

:

In the static model, the critical ratio of g
b is 1. When both q ¼ 0 and D ¼ 0,

the critical ratio under both open-loop and feedback policies is b�1 rather
than 1, since (by assumption) the current flow of pollution causes damages in

Table I. The different information in different scenarios. (Under quotas the stock is non-

stochastic, so the regulator always knows the current stock.)

Policy
conditioned on

Open-loop
tax/quota

Feedback, homogenous firms
tax/quota without trade

Feedback, heterogenous firms
tax/quota with trade

(i) Current

pollution stock

no/yes yes/yes yes/yes

(ii) Lagged cost

shock

no/no yes/no yes/yes
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the next period. The following Propositions describe the relation between the
critical ratio of g

b and q.

Proposition 5. The critical ratio of g
b is monotonically decreasing in q under both

an open-loop policy and a feedback policy with tradable quotas. Under a feed-
back policy without tradable quotas, the critical ratio of g

b is non-monotonic in q:

@ g
b

� ��FB
@q

< 0; if q < D
¼ 0; if q ¼ D
> 0; if q > D:

8<
:

Proposition 6. Without efficient quota trading, the critical ratio of g
b under

feedback policies is always greater than or equal to the open-loop level:

g

b

� ��FB
� g

b

� ��OL

; 8 q: ð21Þ

With efficient quota trading, the critical ratio of g
b under feedback policies is

greater than the open-loop level only for a subset of parameters:

g

b

� ��FBþTrade

� g

b

� ��OLþTrade

; iff q � ~q; ð22Þ

where ~q is a function (of only b and D) that satisfies �1 � ~q < 0.
The equality in Equation (21) holds only if q ¼ D ¼ 0, i.e., with a flow

externality and uncorrelated cost shocks. The function ~q b;Dð Þ used in
Equation (22) equals �1 only if b ¼ D ¼ 1; i.e., where both discount rate and
stock decay rate are zero. The proposition implies:

Corollary 2. Taxes will necessarily be the right instrument choice in the feed-
back setting if taxes dominate quotas in the open-loop setting, provided that

� there is no quota trading; or
� there is quota trading, and cost shocks are non-negatively autocorrelated.
With negatively correlated shocks and quota trading, there exist para-

meter values such that it is optimal to choose taxes under the open-loop
policy but quotas under the feedback policy – or vice versa.

Figure 1 plots the critical ratios of g
b against q, holding b ¼ 0:9512 and

D ¼ 0:9548. Since a period is 1 year, these values imply a continuous dis-
count rate of 0.05 and a half-life of 15 years. The left panel shows the case
without quota trading, and the right panel shows the case with quota trading.
In both panels, the solid curve graphs the critical ratio under the feedback
policy and the dotted curve graphs the ratio under the open-loop policy. The
tax is better than the quota if and only if the actual ratio of g

b lies below the
critical ratio. The left panel of Figure 1 illustrates Equation (21) and the right
panel illustrates Equation (22). Table II summarizes the different ranking
possibilities.
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8. An Application to Global Warming

Current estimates of greenhouse gas-related abatement costs and environ-
mental damages are largely speculative. This absence of (reasonably) precise
estimates makes it particularly important to use a parsimonious and simple
model of global warming, i.e., one for which the relation between economic
assumptions and model parameters is transparent. If we had a good
knowledge of the physics and economics of global warming, it would be
worth constructing complex models. At this stage we know little more than
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Figure 1. Critical ratios g
b without quota trading (left panel) and with quota trading

(right panel). Solid curve identifies feedback, dashed curve identifies open-loop.

Table II. Feedback vs. open-loop optimal instrument choice

Optimal instrument choice Open-loop Feedback

Without quota trading

A tax tax

B quota tax

C quota quota

With quota trading

A tax tax

B quota tax

C quota quota

D tax quota
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that there is a probable connection between greenhouse gases and global
warming, and that the economic consequences of this relation may be im-
portant. The scientific uncertainty and disagreement makes the simplicity of
the linear–quadratic model very attractive. With this model, we can easily see
how policy conclusions depend on beliefs about the unknown parameters.
For example, we can determine whether a particular conclusion would
change if we increase our estimate of environmental damages by a factor of
10 or 100. Of course, since these experiments maintain the assumption of the
linear–quadratic structure, they tell us nothing about whether the policy
conclusions are sensitive to functional form.

A number of papers use the linear-quadratic structure, together with ex-
isting estimates of costs and benefits of greenhouse gas abatement, to ex-
amine particular policy issues. We briefly review these papers. Under the
assumption of zero autocorrelation of cost shocks, Hoel and Karp (2002)
show that taxes dominate quotas even if environmental damages associated
with greenhouse gases are much more severe than is commonly believed. This
conclusion holds under open-loop and feedback policies, with a period of
commitment of anywhere from 1 to 10 years. Newell and Pizer (2003) find
that taxes dominate quotas under open loop policies with positive auto-
correlation. Hoel and Karp (2001) compare feedback taxes and quotas with
multiplicative (rather than additive) and serially uncorrelated cost shocks.
The multiplicative structure means that the Principle of Certainty Equiva-
lence does not hold, and thus raises issues that are not present in the previous
papers. Subsequent papers examine more complicated (feedback) models,
where the regulator learns about environmental damages (Karp and Zhang
2002b) or where there is endogenous investment that reduces abatement costs
(Karp and Zhang 2002a). Those papers review previous integrated assess-
ment models that have been used to study greenhouse gas abatement.

We use a time period of one year. Many economic studies (Nordhaus
1994); (Kolstad 1996) use an annual decay rate of 0.0083 (a half-life of 83
years) for atmospheric concentrations of the primary greenhouse gas, CO2,

Table III. The critical ratio g/b

q Open-loop Feedback and homogenous

firms (no trade)

Feedback and heterogenous

firms (with trade)

)0.99 1.9427 8.2154 1.3619

)0.5 0.1343 1.1344 0.9393

0 0.0470 0.5388 0.5388

0.5 0.0165 0.2470 0.1987

0.99 0.0011 0.0471 0.0043
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implying D ¼ 0:9917. We set b ¼ 0:9704 (a continuous discount rate of
0.03). Using these values, Table III shows the critical values of the ratio g

b
for five values of q, under three models: open-loop and feedback policies
with either homogenous or heterogenous firms (i.e., without quota trade
and with quota trade).9 In interpreting this table, it is important to keep
in mind the informational differences, summarized in Table I, between the
three models.

Table III illustrates two important characteristics of the ranking. First,
the criterion for ranking policies is sensitive to whether the regulator uses
an open-loop or a feedback policy. For our purposes, the economically
most relevant situation is where q � 0. Here, the critical ratio g

b differs by
a factor of between 4 and 12, even when there is quota trade. (The dif-
ference is larger without quota trade.) A primary motivation for this paper
is that correlated abatement cost shocks may be important in regulating
stock pollutants, and that an open-loop policy is not reasonable in the
presence of this correlation. (With an open-loop policy, the regulator does
not use the potential information that arises as a consequence of the
correlation.) The analytic results reported in sections 4–6 show that the
qualitative difference between open-loop and feedback policies is minor.
Table III shows that the quantitative difference is significant. For em-
pirical purposes, the feedback model is an important improvement over
the open-loop model.

Table III also shows that for j q j	 1, the ranking is very sensitive to
whether the feedback quota policy enables the regulator to learn the lagged
cost shock. With regard to the cost shock, neither policy has an informa-
tional advantage under either the open-loop structure or under the feedback
structure with traded quotas. (With the open-loop structure, the regulator
does not use the lagged cost shock for either the tax or the quota; for the
feedback structure and traded quotas, the regulator uses the lagged cost
shock for both the tax and the quota.) However, for large j q j, taxes have an
important informational advantage over quotas in the feedback structure
where quotas are not traded.

The survey in Hoel and Karp (2002) suggests a point estimate of
g
b ¼ 1:4062
 10�5 (based on the estimate that doubling carbon stocks causes
a 5% reduction in Gross World Product (GWP) and that a 50% reduction in
emissions causes a 1% reduction in GWP).10 The estimated value of g

b is
linearly related to the estimate of environmental damages. (A 10-fold increase
in the estimated reduction in GWP associated with a doubling stocks leads to
a ten-fold increase in the estimate of g

b.) This evidence suggests that in the case
of greenhouse gases, the serial correlation of cost shocks does not overturn
the preference for taxes. This conclusion does not depend on whether the
regulator uses feedback policies and learns about the cost shock.
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9. Summary

This paper provides a criteria for ranking taxes and quotas for the control of
a stock pollutant in a linear–quadratic model. We extended previous results
by including serially correlated abatement costs under either open-loop or
feedback policies, with or without trading in emissions quotas.

Under a tax policy, or under a quota policy with efficient quota trading
among polluting firms, the regulator learns about the industry’s abatement
cost schedule by observing the aggregate emission response. The feedback
strategy, unlike the open-loop strategy, enables the regulator to use new
information to adjust his policy level, leading to higher welfare.

With feedback policies, the ranking of taxes and non-traded quotas may
be non-monotonic with respect to both the autocorrelation parameter and
the discount factor. In contrast, the effects of the other parameters (the
relative slopes of marginal costs and damages, and the decay rate) on the
ranking are monotonic and are qualitatively the same under the open-loop
and feedback assumptions. A large absolute value of autocorrelation in-
creases the potential for learning, thus increasing the advantage of feedback
taxes relative to both the non-traded quota and to open-loop taxes. When
quota trading occurs, the feedback tax loses its informational advantage over
feedback quotas, and more autocorrelated cost shocks favor the use of
quotas.

Without quota trading, taxes will certainly be the right instrument choice
in the feedback setting if taxes dominate quotas in the open-loop setting.
However, this conclusion does not hold if firms can trade quotas. With
tradeable permits, endogenous learning occurs under quotas. In this case, a
regulator who is required to use an open-loop policy might want to use one
instrument, where a regulator who is able to use a feedback policy would
use the other instrument. Using estimates of greenhouse gas-related da-
mages and abatement costs, we provide evidence that taxes dominate
quotas for the control of greenhouse gases regardless of the opportunities
for learning.

Notes

1. There is a large literature that examines other aspects of the problem of choosing policies
under asymmetric information. Important contributions to this literature include Das-
gupta, Hammond and Maskin (1980), Kwerel (1977), Malcomson (1978), Robert and
Spence (1976), Stavins (1996) and Watson and Ridker (1984). These papers are concerned

with the problem of flow rather than stock externalities.
Non-linear policies can achieve higher payoffs than linear taxes or quotas. Robert and
Spence (1976) points out that a non-linear tax, with the marginal tax rate equals the

marginal damage, achieves the first-best outcome in regulating a single firm and is superior
to a quantity policy.
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2. The effect of the length of a period is the same in the more general setting discussed in this
paper (where costs are serially correlated). Details are available upon request.

3. The parameters satisfy f ¼ �b
2x

2þ (terms involving ~h). We hereafter ignore the effect of ~h
on f since f has no effect on the regulator’s control.

4. Costello and Karp (2004) study a dynamic model with flow pollution, in which the pos-
sibility that the quota is not binding enables the regulator to learn about the firm’s cost.
Brozovic, Sunding and Zilberman (2002) point out that even in the simplest static pro-

blem, the regulator’s payoff might not be globally concave. In this case, a binding quota
might be a local but not a global maximum.

5. Our model treats technology as fixed. In particular, firms do not invest in abatement

capital. Therefore, firms solve a succession of static optimization problems. The exclusion
of endogenous technical change clearly reduces the realism of our model, and therefore
limits its policy relevance. However, any tractable model has to ignore some important

features of the real world. In a separate paper, Karp and Zhang (2002a), we study the case
where firms make investment decisions which affect their future abatement costs. That
model requires the solution of a dynamic game, even though firms are non-strategic.

6. An earlier version of this paper explains a second reason for considering general priors.

The variance of costs changes in a predictable manner, raising the possibility that the
choice of policy instruments (as distinct from the choice of policy levels) might be time-
inconsistent. Our earlier paper shows that this type of time-inconsistency does not occur.

7. This Principle states that in the linear–quadratic control problem with additive random
variables, the optimal control rule does not depend on second moments of the random
variable. Hoel and Karp (2001) examine the case, where the slope rather than the intercept

of firms’ marginal abatement cost is uncertain. In that case uncertainty is multiplicative,
and the Principle of Certainty Equivalance does not hold.

8. If firms are heterogeneous and each firm receives the same allocation of quotas, but there

is no trade in quotas, the expected single period benefit of emissions is given by
fþ aþ E0htð Þxt � b

2x
2
t . The difference between this expression with the right side of

Equation (17) identifies the informational advantage of trade (the fact that with trade we
have Etht rather than E0ht) and the allocative efficiency (the presence of the term 1

2br
2
� ).

9. Recall that in the absence of trade there is no allocative inefficiency because (by as-
sumption) firms are homogenous; the quota is always efficient. The reader interested in
comparing taxes and inefficient quotas can carry out the calculations using the single

period benefit function described in note 8. This calculation requires an additional
parameter that measures the extent of firm heterogeneity, given by r2� .

10. We cannot assess the plausibility of these estimates. A reader who thinks that the damage

estimate understates actual damages by, for example, a factor of 10, should magnify the
point estimate of g

b by a factor of 10. The lack of ‘‘reliable’’ estimates of costs and damages
is, as we have emphasized, one of the main attractions of using a simple linear–quadratic
model.
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A. Appendix

A.1. GENERAL SOLUTION FOR A LINEAR QUADRATIC DYNAMIC PROGRAMMING

PROBLEM

We set up the dynamic programming equations in general matrix notation as:

Jt Xtð Þ ¼ Max
Yt

U0 þ 1

2
X0

tQXt þ Y0
tWXt þM0Xt þU0

1Yt � 1

2
Y0

tU2Yt

�
þU3Vart htð Þ þ bEtJtþ1 Xtþ1ð Þg;

s:t: Xtþ1 ¼ AXt þ BYt þ Clt þD: ð23Þ
The subscript t in Jt denotes the change in Vart htð Þ. Vart htð Þ ¼ r20, when t ¼ 0; and
Vart htð Þ ¼ r2l, when t > 0.

Xt is a n
 1 vector of state variables; Yt is a m
 1 vector of control variables; lt is a white

noise. Dimensions for those coefficient matrices are: Q is n
 n symmetric; W is m
 n; M is
n
 1; U0 is 1
 1; U1 is m
 1 ; U2 is m
m; U3 is 1
 1; A is n
 n; B is n
m; C is n
 1; D is
n
 1.
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Given the quadratic value function Jt Xtð Þ ¼ V0;t þ V0
1Xt þ 1

2X
0
tV2Xt , the first order con-

dition with respect to Yt is

WXt þU1 �U2Yt þ bEt B
0V1 þ B0V2 AXt þ BYt þ Clt þDð Þ½ � ¼ 0:

The optimal feedback control rule is

Y�
t ¼ U2 � bB0V2Bð Þ�1

U1 þ bB0 V1 þ V2Dð Þ þ Wþ bB0V2Að ÞXt½ �; ð24Þ
a linear function of state variables. Substituting Y�

t back into the dynamic programming
equation and equating coefficients gives the algebraic Riccati matrix equation for V2:

V2¼QþbA0V2Aþ W0þbA0V2Bð Þ U2�bB0V2Bð Þ�1
WþbB0V2Að Þ: ð25Þ

V2 is a n
 n symmetric negative-semidefinite matrix. After obtaining V2, we can solve for

the n
 1 coefficient matrix V1:

V1 ¼ I� bA0 � b W0 þ bA0V2Bð Þ U2 � bB0V2Bð Þ�1
B0

h i�1


 Mþ bA0V2Dþ W0 þ bA0V2Bð Þ U2 � bB0V2Bð Þ�1
h


 U1 þ bB0V2Dð Þ�; ð26Þ
and the constant term V0;t

V0;t ¼ gt U3 þ b
2
C0V2C

	 

þ 1

1� b
U0 þ bV0

1Dþ b
2
D0V2D

�

þ 1

2
U1 þ B0 V1 þ V2Dð Þ½ �0 U2 � bB0V2Bð Þ�1

U1 þ B0 V1 þ V2Dð Þ½ �
�

ð27Þ
where gt depends on the second moment of cost shocks: gt ¼ r20 þ b

1�b r
2
l when t ¼ 0, and

gt ¼ 1
1�b r

2
l when t > 0. The first moment of the cost shock affects both the value function and

the optimal control, but the second moment affects only the constant term of the value
function.

A.2. FEEDBACK POLICY

First we write the law of motion for yt � Et htð Þ. For the feedback quota policy, no new
information becomes available over time, and

ytþ1 ¼ Etþ1htþ1 ¼ E0 Etþ1htþ1ð Þ ¼ E0htþ1 ¼ qtþ1�h0 ¼ qyt:

Under the feedback tax policy, the regulator infers ht by observing the firm’s emissions, and

ytþ1¼Etþ1htþ1¼Etþ1 qhtþltþ1

� �¼qht¼ qh0¼qy0þql0; t¼0
q qht�1þltð Þ¼qytþqlt; t�1

�
ð28Þ

with l0 � h0 � �h0. The distribution of cost shocks in the initial and subsequent periods
have different variances:

Vart htð Þ ¼ r20; t ¼ 0
Vart ltð Þ ¼ c2; t � 1:

�
ð29Þ

Under both feedback taxes and quotas, the equation of motion for the state variable yt � Etht
is independent of the regulator’s actions. However, there is a qualitative difference in yt under
taxes and quotas because of endogenous learning.
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Under feedback tax policies, using Equation (5), the expected benefit in period t, is

Et B x�t zt; htð Þ; ht
� ��  ¼ fþ aþ Ethtð Þzt � b

2
z2t þ

1

2b
Vart htð Þ:

The regulator’s value function under taxes, TFB St; ytð Þ, solves the dynamic programming
equation

TFB St; ytð Þ ¼ Max
zt

EtB x�t zt; htð Þ; ht
� ��D Stð Þ þ bEtT

FB Stþ1; ytþ1ð Þ� 
¼ Max

zt
fþ aþ ytð Þzt � b

2
z2t þ

1

2b
Vart htð Þ

�
� cSt þ g

2
S2
t

� �
þ bEtT

FB Stþ1; ytþ1ð Þ
o

s:t: Stþ1 ¼ DSt þ zt þ 1

b
lt

ytþ1 ¼ qyt þ qlt:

Under quotas, the regulator’s value function, Q St; ytð Þ , solves the dynamic programming

equation

Q St; ytð Þ¼Max
xt

EtB xt;htð Þ�D Stð ÞþbEtQ Stþ1; ytþ1ð Þf g

¼Max
xt

fþ aþytð Þxt�b

2
x2t � cStþg

2
S2
t

� �
þbQ Stþ1; ytþ1ð Þ

� �
s:t: Stþ1¼DStþxt

ytþ1¼qyt:

Solving the Dynamic Programming Equations. Using a two-dimensional state vector
Xt ¼ St; ytð Þ0, the dynamic programming equations (DPE) can be written in general matrix

notations as in the previous subsection. The control variable is zt under taxes, and xt under
quotas. Those coefficients are

Q¼
�g 0

0 0

 !
; W¼ 0 1ð Þ; M¼

�c

0

 !
;

A¼
D 0

0 q

 !
; B¼

1

0

 !
; C¼

Ctax¼ 1
b ; q
� �0 ðtaxÞ

Cquota¼ 0; 0ð Þ0 ðquotaÞ

8<
: ; D¼

0

0

 !
;

U0¼ f; U1¼a; U2¼b; U3¼
1
2b ðtaxÞ
0 ðquotaÞ

(
:

We see the DPE for taxes and quotas only differ in U3 and C. Thus at any time with the
same state vector Xt, the payoff difference between feedback taxes and quotas is

TFD Xtð Þ �Q Xtð Þ ¼ Vtax
0;t � Vquota

0 ¼ gt U3 þ b
2
C0

taxV2Ctax

	 


¼
1
2b r20 þ c2b

1�b

� �
1þ bbC0

taxV2Ctax

� �
; t ¼ 0;

c2

2b 1�bð Þ 1þ bbC0
taxV2Ctax

� �
; t � 1:

8><
>:
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With Ctax ¼ 1
b; q
� �0

, expanding C0
taxV2Ctax leads to

TFD X0ð Þ �Q X0ð Þ ¼ 1

2b
r20 þ

c2b
1� b

	 

1þ b

b
V11 þ 2bqV12 þ bbq2V22

	 

: ð30Þ

where V11; V12; V22 are elements of V2 which can be solved for from Equation (25). Sub-

stituting Q; A; B; W into Equation (25) and equating elements of matrices at different side of
the ‘‘=’’ sign, we get the following system of equations for V11; V12; V22.

V11 ¼ �gþ bD2V11 þ b� bV11ð Þ�1b2D2V2
11; ð31Þ

V12 ¼ qbDV12 þ b� bV11ð Þ�1bD 1þ bqV12ð ÞV11; ð32Þ
V22 ¼ q2bV22 þ b� bV11ð Þ�1 1þ bqV12ð Þ2: ð33Þ

Given that the value function is quadratic in St and bounded above, V11 < 0. V22 < 0 is not
required since the equation of motion for yt is not affected by the regulator’s actions. Ob-

taining the negative root of Equation (31) and then solving the linear Equations (32) and (33)
recursively lead to the expression for V11; V12, and V22:

V11 ¼
� bbD2 þ bg� b
� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bbD2 þ bg� b
� �2 þ 4bgb

q
2b

< 0;

V12 ¼ bDV11

b 1� qbDð Þ � bV11
< 0;

V22 ¼
1� b

bV11

� �
1� qbDð Þ2

b 1� q2bð Þ 1� qbD� b
bV11

� �2 > 0:

Similarly we obtain elements v1; v2ð Þ of matrix V1 from Equation (29) by substituting in
V2; M; A; B; W:

v1 ¼ �cþ b� bV11ð Þ�1abDV11

1� bD� b� bV11ð Þ�1b2DV11

< 0;

v2 ¼ 1

1� qb

 a 1� bDð Þ � bc

b� bV11ð Þ � bbD

 1� qbDð Þ b� bV11ð Þ

b� bV11 � bqbD
:

After obtaining V2 and V1, we can get the constant term V0;t. The constant term under
quotas is

Vquota
0 ¼ 1

1� b
fþ 1

2

 ½a 1� bDð Þ � bc�2

b� bV11ð Þ � 2bbDþ b� bV11ð Þ�1b2b2D2

( )
:

We obtain the optimal control rule (Equation (8) in the text) by substituting matrices
V1; V2; A; B; W into Equation (24); and the payoff difference (Equation (11) in the text) by

substituting V11; V12; V22 into Equation (30).
The procedure for solving the DPE with quota trading is similar. The only necessary

change for the coefficient matrices is to replace Cquota by CqþTrade ¼ 0; qð Þ0.

LARRY KARP AND JIANGFENG ZHANG296



Proof. (Remark 2) Feedback emission taxes are preferred to quotas if and only if

1� qbDð Þ2�b2

b2
V2

11 1� q2b
� � � 0: ð34Þ

Given V11 < 0, Equation (34) is equivalent to

V11

b
� � 1� qbD

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2b

p

() bD2 þ bgb � 1
� �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bD2 þ bgb � 1
� �2 þ 4bgb

q
2

� 1� qbDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2b

p : ð35Þ

It is easy to see that the left hand side of the above inequality is monotonically increasing in g,
D, b, and monotonically decreasing in b. The right hand side of the above inequality is
independent of g and b, and monotonically decreasing in D. Hence, higher g and D and lower b

all make quotas more attractive, relative to taxes.

Proof. (Proposition 2) Equation (34) can be transformed to

f qð Þ � q2b2 D2 þ b
b2
V2

11

	 

� 2qbDþ 1� b2

b2
V2

11 � 0: ð36Þ

f qð Þ is a convex quadratic function in q, and symmetrical with respect to

q0 ¼
D

b D2 þ b
b2
V2

11

� � � 0:

Proof. (Corollary 1) The inequality in Equation (36) will always hold if

2bDð Þ2�4b2 D2 þ b
b2
V2

11

	 

1� b2

b2
V2

11

	 

< 0

() 4b3
V2

11

b2
�1þ bD2 þ b2

V2
11

b2

	 

< 0

() 4b3
V2

11

b2
1� b

b
V11

	 

bD2 þ b

g

b
� 1

� �
< 0

() 1� bD2

b
>

g

b
:

Otherwise, there will be two real roots

q1;2 ¼
D�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
b2
V2

11 1� b
bV11

� �
bD2 þ bgb � 1
� �r

b D2 þ b
b2
V2

11

� �

satisfying the equality, and the turning point

0 � q0 ¼
D

b D2 þ b
b2
V2

11

� � � D:
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Proof. (Proposition 3) The effect of b on the right hand side of (35) is given by

@ 1�qbDffiffiffiffiffiffiffiffiffiffi
1�q2b

p
	 


@b
¼ q

2

 q2bD� 2Dþ q

1� q2bð Þ32
which is non-positive if b � 2D�q

q2D when q � 0 or b > 2D�q
q2D when q < 0. Otherwise, higher b will

increase both sides of the inequality (35) and make the effect of higher discount factor on the
ranking more complicated. We obtain the left hand side of Equation (13) in the text by taking
partial derivative of the left hand side of Equation (35) with respect to b. The condition

b � 2D�q
q2D is satisfied if

0 � q � D ¼) 2D � 2q � qþ q2D ¼) 2D� q
q2D

� 1 � b:

Proof. (Remark 3) With quota trading, feedback taxes are preferred to quotas if and only if

1� qbDþ b
b
V11 � 0

()1� qbD� bD2 þ bgb � 1
� �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bD2 þ bgb � 1
� �2 þ 4bgb

q
2

� 0: ð37Þ

It is easy to see that the left hand side of the above inequality is monotonically decreasing in g,
D, b, and monotonically increasing in b. Hence, higher g, b and D and lower b all make quotas

more attractive relative to taxes, qualitatively the same as under open-loop policies.

Proof. (Proposition 4) It is straightforward from Equation (37).

A.3. COMPARISON OF RANKING

Proof. (Proposition 5)

@ g
b

� ��OL

@q
¼ �2bD

1þ qbDð Þ2
1

b
� D2

	 

< 0:

@ g
b

� ��FB
@q

¼ 2 q� Dð Þ
1� q2bð Þ32



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bD2 þ bgb � 1
� �2þ4bgb

q
bD2 þ bgb þ 1
� �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bD2 þ bgb � 1
� �2þ 4bgb

q

with the sign depending on the sign of q� D.

@ g
b

� ��FBþTrade

@q
¼

D bD� 2� qbDð Þ2
h i

2� qbDð Þ2 < 0

since in general 0 < bD < 1 < 2� qbD.
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Proof. (Proposition 6)

g

b

� ��FB
� g

b

� ��OL

() 1� qbDð Þ þ 1� bD2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2b
p

1� q2bð Þ þ 1� qbDð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2b

p � 1� bD2

1þ qbD

() 1� q2b2D2
� �� 1� q2b

� �
1� bD2
� � � �2qbD 1� bD2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2b

p
() q2b 1� bD2

� �þ bD2 1� q2b
� � � �2qbD 1� bD2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2b

p
which holds in general.

g

b

� ��FBþTrade

� g

b

� ��OLþTrade

() q2bD� 2 1� bD2
� �

q� D � 0

() ~q � q � �q

with

�1 � ~q � 1� bD2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bD2
� �2þbD2

q
bD

< 0;

�q � 1� bD2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bD2
� �2þbD2

q
bD

� 1:
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