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Comparison of Maximum Entropy and Higher-Order Entropy Estimators 

 

1. Introduction 

The generalized maximum entropy (GME) estimation method (Golan, Judge, and Miller, 

1996) has been widely used for linear and nonlinear estimation models.  We derive two 

more general estimation methods by replacing the GME’s entropy objective with higher-

order entropy indexes.  We then show that the GME is the only estimation technique that 

is consistent with five axioms (desirable properties of an estimator) and that each of the 

two new estimators violates one of these axioms.  Nevertheless, linear model sampling 

experiments demonstrate that these new estimators may perform better than the GME for 

small or ill-behaved samples. 

The GME estimator is based on the classic maximum entropy (ME) approach of 

Jaynes (1957a, 1957b), which uses Shannon’s (1948) entropy-information measure to 

recover the unknown probability distribution of underdetermined problems.  Shannon's 

entropy measure reflects the uncertainty (state of knowledge) that we have about the 

occurrence of a collection of events.  To recover the unknown probabilities that 

characterize a given data set, Jaynes proposed maximizing the entropy, subject to the 

available sample-moment information and the requirement of proper probabilities.  The 

GME approach generalizes the maximum entropy problem by taking into account 

individual noisy observations (rather than just the moments) while keeping the objective 

of minimizing the underlying distributional, or likelihood, assumptions.1  

                                                 

1 The GME is a member of the class of information-theoretic estimators (empirical and 
generalized empirical likelihood, GMM when observations are Gaussian and BMOM).  
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We nest the GME estimator into two more general classes of estimators.  To 

derive each of these new estimators, we replace the Shannon entropy measure with either 

the Renyi (1970) or Tsallis (1988) generalized entropy measures.  Each of these entropy 

measures is indexed by a single parameter α (the Shannon measure is a special case or 

both of these measures where α = 1).  We call our generalized entropy estimators GME-α 

estimators. 

In Section 2, we compare the Shannon, Renyi, and Tsallis entropy measures.  We 

start Section 3 by briefly summarizing the GME approach for the linear model.  Then we 

derive the two GME-α estimation methods.  In Section 4, we show that GME can be 

derived from five axioms or properties that we would like an estimator to possess.  

Unfortunately, each of the GME-α estimators violates one of these axioms.  Nonetheless, 

one might want to use these GME-α estimators for small samples as they outperform the 

GME in some sampling experiments presented in Section 5.  We summarize our results 

in Section 6. 

2.  Properties of Entropy Measures 

After formally defining the discrete versions of the three entropy measures, we note that 

they share many properties but are distinguished by their additivity properties.  For a 

random vector x with K discrete values xk, each with a probability p P xk k= ( ) and 

p = { ,..., )p pK1 where p is a proper distribution, the Shannon entropy measure is  

                                                                                                                                                 

These estimators avoid using an explicit likelihood (e.g., Owen, 1991; Qin and Lawless, 
1994; Kitamura and Stutzer, 1997; Imbens et al., 1998; Zellner, 1997). 
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where 0 log 0 is defined as 0.  

The two more general families of information measures are indexed by a single 
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where the value of c, a positive constant, depends on the particular units used.  For 

simplicity, we set c = 1.  (The Renyi functional form resembles the CES production 

function and the Tsallis function form is similar to the Box-Cox.)  Both of these more 

general families include the Shannon measure as a special case: as α → 1, 

( ) ( ) ( )R TH H Hα α= =x x x . 

With Shannon’s entropy measure, events with high or low probability do not 

contribute much to the index’s value.  With the generalized entropy measures for α > 1, 

higher probability events contribute more to the value than do lower probability events.   

Unlike the Shannon’s measure (2.1), the average logarithm is replaced by an average of 

powers α.  Thus, a change in α changes the relative contribution of event k to the total 

sum.  The larger the α, the more weight the “larger” probabilities receive in the sum.  For 

a detailed discussion on entropy and information see Retzer and Soofi (this volume). 

These entropy measures have been compared in Renyi (1970), Tsallis (1988), Curado 
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and Tsallis (1991), and Holste et al. (1998).2   The Shannon, Renyi, and Tsallis measures 

share three properties.   First, all three entropy measures are nonnegative for any arbitrary 

p.  These measures are strictly positive except when all probabilities but one equal zero 

(perfect certainty).  Second, these indexes reach a maximum value when all probabilities 

are equal.  Third, each measure is concave for arbitrary p.  In addition, the two 

generalized entropy measures share the property that they are monotonically decreasing 

functions of α for any p. 

The three entropy measures differ in terms of their additivity properties.  Shannon 

entropy of a composite event equals the sum of the marginal and conditional entropies:  

H(x,y)=H(y)+H(x|y)=H(x)+H(y|x),    (2.4) 

where x and y be two discrete and finite distributions.3   However, this property does not 

hold for the other two measures (see Renyi, 1970).  If x and y are independent, then Eq. 

(2.4) reduces to  

                                                 

2 Holste et al. (1998) show that RHα  and )(xTHα  are related: 

( ) ]log11log[)1/1()( TR HH αα αα −+−=x . 
 
3 Let x and y be two discrete and finite distributions with possible realizations 

Kxxx ,...,, 21  and Jyyy ,...,, 21  respectively.  Let p(x,y) be a joint probability distribution. 
Now, define ( ) kk pxP ==x , ( ) jj qyP ==y , ( ) kjjk wyxP === yx , , 
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H(x,y)=H(x)+ H(y),     (2.5) 

which is the property of standard additivity, that holds for the Shannon and Renyi entropy 

measures, but not for the Tsallis measure.4 

Finally, only the Shannon and Tsallis measures have the property of Shannon 

additivity.  The total amount of information in the entire sample is a weighted average of 

the information in two mutually exclusive subsamples, A and B.  Let the probabilities for 

subsample A be { }Lpp ,...,1  and those for B be{ }1,...,L Kp p+ , and define �
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3.  GME-αααα Estimators 

We can derive the GME-α estimators using an approach similar to that used to derive the 

classic maximum entropy (ME) and the GME estimators.  The GME and GME-α 

coefficient estimates converge in the limit as the sample size grows without bound.  

However, these estimators produce different results for small samples.  As the chief 

application of maximum entropy estimation approaches is to extract information from 

limited or ill-conditioned data, we concentrate on such cases. 

                                                 

4 For two independent subsets A and B, THα  is “pseudo-additive” and satisfies 

)()()1()()(),( BHAHBHAHBAH TTTTT
ααααα α−++=  for all α where 

( ) )1/(1),(),( , αε
αα −−=≡ � jk kj
TT wHBAH yx . 
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We consider the classical linear model: 

 X= +y ββββ εεεε ,     (3.1) 

where y N∈ℜ , X is an N K×  known linear operator, ββββ ∈ℜK  and ε ∈ℜN  is a noise 

vector.  Our objective is to estimate the vector ββββ from the noisy observations y.   If the 

observation matrix X is irregular or ill-conditioned, if K N>> , or if the underlying 

distribution is unknown, the problem is ill-posed.  In such cases, one has to (i) incorporate 

some prior (distributional) knowledge, or constraints, on the solution, or (ii) specify a 

certain criterion to choose among the infinitely many solutions, or (iii) do both. 

 
3.1.  GME Estimation Method  

We briefly summarize how we would obtain a GME estimate of Eq. (3.1).  Instead of 

making an explicit likelihood or distributional assumptions we view the errors, εεεε, in this 

equation as another set of unknown parameters to be estimated simultaneously with the 

coefficients, ββββ.  Rather than estimate the unknowns directly, we estimate the probability 

distributions of ββββ and εεεε within bounded support spaces. 

  Let zk be an M-dimensional vector 1( ,..., ) 'k k kMz z=z  for all k.  Let kp  be an M-

dimensional proper probability distribution for each covariate k defined on the set zk  

such that  

�≡
m

kmkmk zpβ     and      1=�
m

kmp .   (3.2) 

Similarly, we redefine each error term as 

�≡
j

jiji vwε     and      1=�
j

ijw .    (3.3) 

The support space for the coefficients is often determined by economic theory.  



 7

For example, according to an economic theory, the propensity to consume out of income 

is an element of (0, 1), therefore we would specify the support space to be vk = (0, 0.5, 1)’ 

for M= 3.  Lacking such theoretical knowledge, we usually assume the support space is 

symmetric around zero with large range. 

Golan, Judge, and Miller (1996) recommend using the “three-sigma rule” of 

Pukelsheim (1994) to establish bounds on the error components: the lower bound is 

3 yv σ= −  and the upper bound is 3 yv σ= − , where σ y  is the (empirical) standard 

deviation of the sample y. For example if J= 5, then v=(-3 yσ , -1.5 yσ , 0, 1.5 yσ , 3 yσ )’. 

Imposing bounds on the support spaces in this manner is equivalent to making the 

following convexity assumptions: 

Convexity Assumption C1.  ββββ ∈ B  where B is a bounded convex set. 

Convexity Assumption C2.  εεεε ∈V  where V is a bounded convex set that is symmetric 

around zero. 

Having reparameterized ββββ and εεεε, we rewrite the linear model as 

1 1 1

K K M

i ik k i ik km km j ij
k k m j

y x x z p v wβ ε
= = =

= + = +� �� � ,  i=1, …, N  (3.4) 

We obtain the GME estimator by maximizing the joint entropies of the distributions of 

the coefficients and the error terms subject to the data and the requirement for proper 

probabilities: 

GME= 
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Jaynes's traditional maximum entropy (ME) estimator is a special case of the GME where 

the last term in the objective – the entropy of the error terms – is dropped and (pure) 

moment conditions replace the individual observation restrictions (i.e., y = Xβ β β β = Xp and 

ε ε ε ε = 0). 

The estimates (solutions to this maximization problem) are 

)~(

)~exp(

)~exp(

)~exp(
~

1

1
λ

λ

λ

λ

k

i
ikkmi

m

N

i
ikkmi

N

i
ikkmi

km

xz

xz

xz
p

Ω

�−
≡

� �−

�−
=

−

=   (3.6) 

and 

 

 
exp( ) exp( )

exp( ) ( )
i j i j

ij
i j i

j

v v
w

v
λ λ

λ λ
− −

= ≡
− Ψ�

� �

�
� �

,   (3.7) 

The point estimates are kmm kmk pz ~~
�≡β  and ijj ji wv ~~

�≡ε .  Golan, Judge, and Miller 

(1996) and Golan (2001) provide detailed comparisons of the GME method with other 

regularization methods and information-theoretic methods such as the GMM and 

BMOM. 

3.2.  GME-α Estimator 

We can extend the ME or GME approach by replacing the Shannon entropy measure with 

the Renyi or Tsallis entropy measure.   

We now extend the GME approach5.  For notational simplicity, we define eHα , e= 

                                                 

5 In the appendix, we derive the generalization of the ME estimator. 
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R (Renyi) or T (Tsallis), to be the entropy of order α.  The order of the signal and the 

noise entropies, α and α’, may be different. We define ( )e
kHα β and ' ( )e

iHα ε  for each 

coordinate k = 1, 2, …, K and each observation i =1, 2, …, N  respectively.  Then, the 

GME-α model is 

 GME-α =

( ) ( ){ } ( ) ( )e e e e
' '

km ij

Max   β ε  

s.t. 
= XZ , ,  

= 1, = 1 for all  and 

k i
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p p k i
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p w

p,w

y p 0 w 0, 
 (3.8) 

where Z is a matrix representation of the K  M-dimensional support vectors zk, and V is a 

matrix of the N J-dimensional support space v. 

 For example if α = α’, the Tsallis GME-α Lagrangean is 
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and the first and second order conditions are 
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Given Eqs. (3.11), (3.12), (3.14), and (3.15), the Hessian has negative values along the 

diagonal and zero values off the diagonal, so an interior solution would be unique, if one 

exists6. 

                                                 

6 We reformulated this problem making α endogenous.  We normalized the α-

entropy measures so that they were elements of  [0, 1], thereby making the entropy 

measures comparable across various values of α.  Unfortunately, two problems arose.  

First, any normalization involves constructing a new objective that is also a function of α, 

so that some of the entropy properties discussed in Section 2 do not hold.  Second, the 

normalized objective functions had multiple local maximum points under plausible 

conditions.  Thus, we henceforth treat α as exogenous. 

 

 



 11

4.  Axiomatic Derivation 

We next show that the GME approach is consistent with our convexity assumptions C1 

and C2 and five additional axioms.   Then we demonstrate that each of our more general 

estimation models violates one of these axioms. 

Our axiomatic approach is an extension of the axiomatic approaches to the 

Classical ME by Shore and Johnson (1980), Skilling (1988, 1989), and Csiszar (1991).  

We start by characterizing the properties (axioms) that we want our method of inference 

to possess.   Then, we determine which estimation approaches possess those properties.   

4.1. Axioms 

Our five axioms represent a minimum set of requirements for a logically consistent 

method of inference from a finite data set.  Following Skilling, we start by defining a 

distribution f(x) as a positive, additive distribution function (PADF).  It is positive by 

construction:  f(xi) = pi ≥ 0 for each realization ,  1, 2, ...,ix i N= and strictly positive for 

at least one ix .  It is additive in the sense that the probability in some well-defined domain 

(e.g., B and V) is the sum of all the probabilities in any decomposition of this domain into 

sub-domains.  A PADF lack the property of proper distribution that is always 

normalized: pi
i
� = 1.7  The inference question can be viewed as a search for those 

PADFs that best characterize the finite data set.  Working with PADFs allows us to avoid 

the complexity of dealing with normalizations, which simplifies our analysis.    

                                                 

7  We can work with improper probability distributions, p*, that sum up to some number 
s<1, by normalizing so that ( ) ( )spppp ii iii // *** == � . 
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 Following Shore and Johnson and Skilling, we want to identify an estimate that is 

the best according to some criterion.  We want a transitive means of ranking estimates so 

that we can determine which estimate maximizes (or minimizes) a certain function.  We 

use the following axioms to determine the exact form of that function, while requiring 

that that function be independent of the data.  Let f(I, q), or similarly ββββ̂ [I, q], be the 

estimates provided by maximizing some function H with respect to the available data I 

(y, X) given some prior model q.  

 The five axioms are: 

A1.  “Best” Posterior: Completeness, Transitivity, and Uniqueness.  All 

posteriors can be ranked, the rankings are transitive, and, for any given prior and 

data set, the “best” posterior (the one that maximizes H) is unique. 

A2. Permutation or Coordinate Invariance.  Let H be any unknown criterion 

and f(I, q) is the estimate that obtained by optimizing H given the information set I 

(data) and prior model q. For ∆,  a coordinate transformation, ∆f(I, q) = 

f(∆I, ∆q).  (This axiom states that if we solve a given problem in two different 

coordinate systems, both sets of estimates are related by the same coordinate 

transformation.) 

A3.  Scaling.  If no additional information is available, the posterior should equal 

the prior.8  

                                                                                                                                                 

 
8 Following Skilling, we use this axiom for convenience only.  It guarantees that the 
posterior’s units are equivalent (rather than proportional) to those of the priors.  If we use 
proper probability distributions instead of PADFs, this axiom is not necessary, but the 
resulting proof is slightly more complicated. 
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A4. Subset Independence.  Let I1 be a constraint on ( )f x  in the domain x B∈ 1 .  

Let I2 be another constraint in a different domain x B∈ 2 .  Then, we require that 

our estimation (inference) method yield 

1 1 2 2 1 2 1 2f B I f B I f B B I I∪ = ∪ ∪� � � � � �� � � � � � , 

 where f B I� �� �  is the chosen PADF in the domain B, given the information I.  

(Our estimation rule produces the same results whether we use the subsets 

separately or their union.  That is, the information contained in one subset of the 

data, or a specific data set, should not affect the estimates based on another subset 

if these two subsets are independent.) 

A5.  System Independence. The same estimate should result from optimizing 

independent information (data) of independent systems separately using their 

different densities or together using their joint density.  

4.2.  Theorems 

The following theorem holds for the GME method of inference (and hence for the 

classical ME, which is a special case of the GME). 

Theorem 1.  For the linear model (3.1) satisfying C1 and C2 with a finite and limited 

data set, the set of N K×  PADFs in (3.5) that satisfy (A1-A5), that are defined on the 

convex sets B and V, and that result from an optimization procedure (with respect to the 

N observed data points) contains only the GME. 
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Proof of Theorem 1.  Given convexity assumptions C1 and C2, each coefficient and 

error point estimate can be represented as an expected value of the support B and V for 

some N × K PADFs.  To simplify our notation, we present the results for the discrete case 

in terms of a MK × matrix P and a 1×NJ  vector w where pk is an M-dimensional PADF 

and wi is a J-dimensional PADF.  Similarly, we define the prior models as P0 and w0 with 

dimensions equal to P and w.  For simplicity, we assume that both sets of priors are 

uniform (within their support spaces) so that we can ignore them for the rest of the proof.  

Given A2 and A4, we choose the PADFs P and w by maximizing over the pair {P, w} 

some function (the “sum rule”) of the form 

)()(),(*
, ,
� �+=

mk ji
ijijkmkm whpgPH w     (4.1) 

for some unknown functions )( kmkm pg  and )( ijij wh .  By imposing these axioms, we 

eliminate all cross terms between the different domains.  This result yields the required 

independence between ββββ and εεεε. 

Next, we impose the system independence (A5) and scaling (A3) axioms to obtain  

, ,

* ( , ) ( ) ( ) log log ( , )k i km km ij ij
k m i j

H P g h p p w w H P= + = − − =� � � �w w wp ,  (4.2) 

which is the sum of the joint entropies of the signal and noise defined over B x V.   This 

equation is of the same functional form as the objective function in the GME.  Moreover, 

the axioms can lead to no other function.   We can complete the proof by showing that 

(4.2) satisfies A1-A5, which we do by applying Theorem IV of Shore and Johnson (1980) 

within the support spaces Z and V (or use assumptions C1-C2).  

Theorem 2.  For the linear model (3.1) satisfying C1-C2 with a finite and limited data, 
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the set of N K×  PADFs resulting from optimizing (with respect to the N observed data 

points) the Renyi GME-α on the convex set B V× , satisfies axioms A1- A3 and A5. 

Proof of Theorem 2.   Transitivity and uniqueness (A1) follow directly from taking the 

second derivative of the Lagrangean for the Renyi GME-α [which is analogous to Eq. 

(3.9) for the Tsallis GME-α] and the first-order conditions.  Axiom A2 holds trivially.  

We know that Axiom A5 holds from the additivity property discussed in Section 2, which 

is a necessary and sufficient condition for any function H to satisfy the system 

independence requirement.  Finally, imposing A3 completes the proof. 

Theorem 3.  For the linear model (3.1) satisfying C1 and C2 with a finite and limited 

data, the set of N K×  PADFs resulting from optimizing (with respect to the N observed 

data points) the Tsallis-GME-α on the convex set B V× , satisfies axioms A1-A3 and A4. 

Proof of Theorem 3.   Transitivity and uniqueness (A1) follow directly from (3.11) and 

(3.12).  Axiom A2 holds immediately.  Axiom A4 follows from the property of Shannon 

additivity (see Section 2), where we use the relevant weights.  Finally, imposing A3 

completes the proof.9 

4.4.  Discussion 

Given Theorem 1, if one wishes to choose a post-data distribution (PADF) for each 

coordinate K and N, that satisfies C1-C2 and A1-A5,10 the appropriate rule is the GME.  

                                                 

9 We know that THα  does not obey system independence, because it violates the additivity 
property, as we discussed in Section 2. 
10 We note here that Csiszar uses a more relaxed version of the subset and system 
independent axioms. For lack of space we do not provide here a full comparison of the 
three sets of axioms developed by Shore and Johnson (1980), Skilling (1988, 1989), and 
Csiszar (1991). This discussion is available upon request from the authors. 



 16

Equivalently, the GME is the appropriate method of assigning probability distributions 

within the set B V× given the available data and our axioms.  If one is willing to give up 

either axiom A4 or A5, the Renyi or Tsallis GME-α estimator may be used respectively.  

However, one might want to use a GME-α estimator, rather than the GME rule, with a 

small and ill-conditioned data set due to the GME-α’s faster rate of shrinkage.11  In the 

following section we provide several examples. 

As a closing remark, we note that an important extension of this work would be to 

develop an axiomatic framework that covers a larger class of information-related 

estimation rules, such as the (generalized) empirical likelihood, relevant GMM methods, 

and the BMOM (e.g., Owen, 1991; Qin and Lawless, 1994; Imbens, Johnson, and Spady, 

1998; Kitamura and Stutzer, 1997; Zellner, 1997).  By doing so, one could show how 

these estimation approaches differ in terms of desirable (axiomatic) properties, as we 

compared the GME and the GME-α methods. 

5.  Sampling Experiments  

The following sampling experiments illustrate that the mean squared error (MSE) may be 

lower for a GME-α estimator than for the GME (α = 1).  Our objective is to provide 

examples showing that the GME-α may outperform the GME rather than to provide a full 

comparison of these estimation techniques relative to the GME and other information-

theoretic methods.  

                                                 

11 Because they are shrinkage estimators, all GME and GME-α estimators may be bias in 
small samples.  In future work, it may be possible to correct for the bias in a small sample 
using a method similar to that in Holste et al. (1998). 
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We conduct four sets of experiments based on the linear model, Eq. (3.1).  The 

first set uses a well-posed orthonormal experimental design with four covariates.  The 

second set replaces the orthonormal covariates with four covariates, each of which was 

generated from a standard normal.  The third set adds outliers to our second experimental 

design, as described in Ferretti et al. (1999).  The fourth set of experiments uses an ill-

conditioned design matrix with condition number of 90.  For each of these designs, we 

vary the number of observations.   

In all experiments and for all rules, we use the empirical three-standard-deviations 

rule (for each sample) to determine the errors’ supports and with J = 3.  For the first three 

sets of experiments we use the same support space, z = (-100, 0, 100)’, for each 

coefficient. 

5.1.  Example 1: Well-Conditioned, Orthonormal Design Matrix 

We consider the orthonormal design (condition number of one), three different numbers 

of right-hand side variables (K = 2, 4, and 5) and two sample sizes (N = 10 and 30), and 

with 250 replications.  Because we impose β β β β = 0, the linear model 

is ii
k

ikki xy εεβ =+= � .  Figure 1 graphs the mean squared error (MSE) against α for a 

sample size of 30 and K=4.  Here, because the model fits the data so well, the bias is 

practically zero, so the total variance equals the MSE.  Both GME-α models have lower 

MSEs than does the GME (α=1) for some values of α greater than 1.  The Renyi rule 

dominates both the Tsallis and the GME rules for all examined values of α greater than 1.  

To save space, we do not report the figures for the other cases as they are qualitatively the 

same. 
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5.2.  Example 2: Well-Conditioned Normal Design Matrix 

The second experiment is a variant of the first one, where the orthonormal exogenous 

variables are now generated from a N(0,1), K = 4, and N = 10 (Figure 2a) or 40 (Figure 

2b).  Again, for some values of α > 1, both GME-α estimators dominate the GME.  

Again, the bias is nearly zero, so that the total variance is virtually identical to the MSE.  

The Renyi GME-α dominates the Tsallis when N = 40, however, the Tsallis GME-α 

dominates the Renyi when N = 10.  

5.3.  Example 3: Outliers 

We now add outliers to our linear model.  We use the influential-outlier experimental 

design of Ferretti et al. (1999), which uses a linear model (3.1) without an intercept.  As 

before, we consider three different values of K (= 2, 4, and 5) and two sample sizes 

(N=10 and 40).  Here we used 100 replications.  Each kx  is drawn from a N(0, 1) and 

ii
k

ikki xy εεβ =+= �  for N(1-δ) observations and 6=iy  and 101 =ix  for Nδ 

observations, separately for each δ = 0.5, 0.1, 0.2 and 0.3. Thus, each sample has a 

proportion δ of influential outliers, each with a value equal to six standard deviations 

from the mean. 

 Because the results are qualitatively the same for all the parameter values we 

examined, we illustrate our results with only two sets of results.  Figure 3a presents the 

MSEs and variances for α � (0, 6.5) when N = 40, K = 4, and δ = 0.2.  Unlike in the 

previous examples, the bias in this example is large due to the effects of the outliers.  

Here, the Tsallis GME-α has virtually the same MSE for all values of α as does the GME, 

though the GME-α slightly outperforms for very low and very high values of α.  The 
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Renyi GME-α slightly dominates the GME for values of α < 1, but is much worse for 

larger values of α.   

Figure 3b reports the results of the experiment where K = 4, N = 10, δ = 0.3 but 

instead of having xi1 = 10 for the outliers, we generate xi1 from a standard normal, so all 

exogenous variables are generated from a N(0,1).  Both GME-α estimators have lower 

MSEs for some values of α > 1.  The Tsallis GME-α dominates the GME and the Renyi 

GME-α for all α > 1.  We also show the variance in this figure because there is a 

measurable bias. 

5.4.  Example 4: Ill-Conditioned Design Matrix 

Finally, we use an ill-conditioned design matrix experiment from Golan, Judge and Miller 

(1996) where N = 10, K = 4, δ = 0, condition number is 90.  Here, we use a tighter 

support space for each k: z = (-10, 0, 10)’.  The results are summarized in Figure 4.  Both 

GME-α models have lower MSE than does the GME for some values of α greater than 1.  

The Renyi rule dominates both the Tsallis and the GME rules for all examined values of 

α greater than 1.  Because there are no outliers, the bias is practically zero for both rules 

over the entire range of α.  Similar experiments with more observations yielded the same 

results and are not reported here. 

6. Summary and Conclusions 

Renyi (1970) and Tsallis (1988) independently generalized the Shannon entropy measure.  

Each of their indexes uses a single parameter, α, to nest many entropy measures, and each 

includes the Shannon measure as a special case when α = 1.  We showed that each of 

these GME-α entropy measures can be used as an objective in an estimation procedure in 
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much the same way as Golan, Judge, and Miller (1996) used the Shannon entropy 

measure to formulate the GME estimation method. 

We then demonstrated that the GME estimation approach is the only one that is 

consistent with a set of five basic axioms: completeness, transitivity, and uniqueness, 

permutation or coordinate invariance, scaling, subset independence, and system 

independence.  We showed that the Renyi GME-α models is consistent with all of the 

axioms except subset independence, and the Tsallis GME-α is consistent with all except 

system independence.   Thus, to employ either of the GME-α estimators, one must be 

willing to give up one axiom. 

 We then noted that one might be interested in using the GME-α estimator despite 

the loss of a desirable property when dealing with an ill-posed, or a small-sample 

problem.  We illustrated that the GME-α has lower mean squared error than does the 

GME for some values of α in a set of experiments involving small samples, possibly 

influential outliers and ill-conditioned data matrix. 
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Appendix:  ME-αααα Estimator 

We extend the classical ME approach (Jaynes, 1957a, 1957b; Levine, 1980) using the 

Renyi and Tsallis general entropy measures to obtain ME-α estimators.  Let y = Xp, 

where p is a K-dimensional proper probability distribution.  For K >> N, the number of 

observations, the ME-α, is 

 
{ }

k k

arg max   

 
s.t. = , =1  and 0 , 

e

k

H

ME
X p p

α

α

� =�
�− = �
� ≥
��

�

�
ep

y p
  (A1) 

where e = R (Renyi) or T (Tsallis).   

For example, the ME-α estimator based on the RHα  measure is 
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(We now omit the superscript R for notational simplicity.)  The Lagrangean is  
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The optimal conditions are 
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Solving for µ, we find that µ
α

α
λ=

−
− �1 m

m
my .  We assume that Eq. A5 holds with 

equality, substitute for µ, and rearrange the equation to obtain 
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If α = 2, the exact solution is 
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  Fig. 1.  MSE for the two GME-α estimators for the orthonormal case with 30 observations. 
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 Fig. 2a.  MSE for the two GME-α estimators for the well-posed case (all X’s are from standard normal) with 10 observations. 
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  Fig. 2b.  MSE for the two GME-α estimators for the well-posed case (all X’s are from standard normal) with 40 observations. 
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   Fig. 3a.  MSE for the two GME-α estimators for experiment 2 with 20% outliers and 40 observations. 
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  Fig. 3b.  MSE for the two GME-α estimators for experiment 2 with 30% outliers and 10 observations. 
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   Fig. 4.  MSE for the two GME-α estimators for the ill-conditioned case (condition number 90). 
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