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1 Introduction

The integrability problem, which consists of characterizing demand systems that can be ratio-

nalized and derived from utility functions, has long been a central issue in economic theory.

The earliest contributions date from Antonelli (1886), with applications to various fields, includ-

ing micro and macroeconomics, econometrics, industrial organization and international trade.

Theorists have provided broad sufficient and necessary conditions for demand patterns to be

integrable, notably Hurwicz and Uzawa (1971), who provide conditions based on the Slutsky

substitution matrix, which must be symmetric and negative semi-definite for all prices and

income levels.

While very general, the Hurwicz and Uzawa (1971) integrability conditions lack practicality.

Perhaps a consequence is that applied theorists and practitioners have often focused on less

general cases to ensure both tractability and rationality. In particular, one often focuses on

directly or indirectly additive preferences. An attractive feature of these preferences is that

demand depends only on a few variables, namely consumer income, a good’s own price, and

a single aggregator (scalar) that is itself a function of the vector of prices and income. Such

an aggregator can be, for instance, a price index (e.g. with constant elasticity of substitution

preferences) or the marginal utility of income (with directly-separable preferences).1 These

preferences, however, have properties that may be undesirable and too restrictive in terms of

income and price effects. For instance, direct separability implies that income elasticities and

price elasticities are proportional across goods (“Pigou’s law”), a testable prediction that has

been empirically rejected, e.g., by Deaton (1974).

This paper characterizes demand systems that are more general but retain a key practi-

cal property of the widely-used demand systems mentioned above: the existence of a price

aggregator that is common for all goods, a feature that is useful for demand estimation, wel-

fare analysis, applied models of monopolistic and oligopolistic competition, and many other

applications.

The paper aims to make three contributions. A first objective is to provide functional forms

of demand (i.e. necessary conditions) to satisfy Slutsky symmetry when demand for a good

depends only on its own price, income, and a common price aggregator. We also consider cases

where demand depends on utility in addition to the price aggregator. A second objective is to

provide sufficient conditions for such functional forms of demand to be rational, i.e. such that

they can be derived from a well-defined quasi-concave utility function. A third contribution is to

1In models with symmetric demand across product varieties with an upper bound in marginal utility for
each variety, there exists a finite reservation price (or choke price) that can also be used as a common price
aggregator (see e.g. Arkolakis et al., 2019).
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provide various examples of such demand systems, including some that have not been previously

discussed in the literature, and to illustrate how functional forms of demand determine market

size effects on firm size and prices in a simple general-equilibrium model.

Following Pollak (1972), we first consider “generalized separable” demand systems as those

that satisfy:

qi = q̃i(pi/w,Λ) (1)

for each good i, where pi refers to its price, w to consumer income (total outlays), and Λ is a

scalar (aggregator) that is a function of all prices and income. A key property of such demand is

that all cross-price effects operate through Λ, a practical property for modeling and estimation,

because the rank of the cross-price substitution matrix is then just one.

In fact, such a demand system can only take some specific functional forms in order to

be integrable. Providing the sketch of a proof that we complete here, Gorman (1972, 1995)

indicates that such a demand system can take either of two main forms2 if we impose symmetry

on the Slutsky substitution matrix:

qi =
Di(F (Λ)pi/w)

H(Λ)
(2)

qi = Ai(Λ)(pi/w)−σ(Λ) (3)

where Di, F and H are positive real functions and where, in both cases, Λ is a scalar variable

that adjusts so that the budget constraint is satisfied, and can thus be defined as an implicit

function of prices and income (under additional assumptions on differentiability and invertibil-

ity). The general forms of these demand systems have rarely appeared in the applied literature

so far in spite of their usefulness.3

In the first case (equation 2), sufficient conditions for integrability are expressed as con-

ditions on elasticities of functions H, F and Di, and ensure that demand qi is decreasing in

the aggregator Λ for any good i. We will refer to this case as a “Gorman-Pollak” demand

system. It corresponds to directly-additive utility (used e.g. in Krugman, 1979) when the

quantity shifter H(Λ) is constant; it corresponds to indirectly-additive utility when the price

shifter F (Λ) is constant. This also generalizes the results of Matsuyama and Ushchev (2017)

on homothetic single-aggregator demand (“HSA”, corresponding to F (Λ) = 1/H(Λ) = Λ).

This type of preferences can be used to rationalize many examples drawn from Mrázová and

Neary (2013), e.g. bi-power and inverse bi-power demand functions, as well as Bulow-Pfleiderer

2There are other cases that can be ruled out under additional restrictions on price sensitivity.
3There are a few recent exceptions, including Bertoletti and Etro (2022, 2021) for the first case, Comin et al.

(2021) and Matsuyama (2019) for the second case with homogeneous σ(Λ) = σ.
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demand (Weyl and Fabinger, 2013). For instance, with iso-elastic functions H and Di, the de-

mand system is “self-dual addilog” as described in Houthakker (1965). In this more general

demand system, income and price elasticities both depend on the functional form chosen for

Di, which can be very flexible; demand and price shifters H(Λ) and F (Λ) also influence income

effects and depend flexibly on the price aggregator. However, this formulation still imposes

some constraints on price and income effects, as it implies an affine relationship between price

and income elasticities of demand across goods for a given consumer.

In the second case (equation 3), with common price elasticities across goods, the aggregator

Λ coincides with indirect utility V (up to a one-to-one mapping). In that case, integrability

requires that the demand shifters Ai(Λ) increase quickly enough in Λ. While quasi-concavity is

easy to obtain in this case, conditions for rationalization need to ensure that indifference curves

do not cross and that utility is monotonically increasing in the consumption of each good. Notice

that the price elasticity σ(Λ) does not have to remain constant or monotonic across indifference

curves, i.e. indifference curves can become flatter or more convex as income goes up. We will

refer to that case as “generalized non-homothetic CES”. This second case features Allen-Uzawa

substitution elasticities that do not vary across goods but may vary with utility. Relative to

Gorman-Pollak demand, this case allows for more flexible income patterns, but requires rigid

price effects. It generalizes the implicitly-additive utility functions used by (Comin et al., 2021)

(who impose a constant elasticity of substitution σ(Λ) = σ) to model structural change and

sector-specific Engel curves across agriculture, manufacturing, and services. A similar demand

structure is used in Atkin et al. (2020) to estimate welfare and price indices from shifts in Engel

curves. With an elasticity of substitution that depends on utility, these preferences remain very

tractable and empirically relevant. Several studies (such as Handbury, 2021, Faber and Fally,

2020 and Auer et al., 2021) based on expenditure surveys and scanner data have shown that

price elasticities vary significantly with income.4

These two types of demand systems are appealing for their simplicity and tractability if

we focus on either price or income effects. However, greater flexibility can be obtained by

allowing demand to depend on utility in addition to the common aggregator Λ. This can be

seen as a combination of the two cases discussed above, and encompasses many other examples

of demand systems commonly used in the literature. We further extend the previous results to

show that such demand q̃i(pi/w,Λ, V ) must take the following functional form:

qi =
Di(F (Λ,V )pi/w , V )

H(Λ, V )
(4)

where real-valued functions Di, F and H now also depend on indirect utility V as a second

4Auer et al. (2021) in particular provide and estimate a convenient parameterization of such preferences.
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argument. Conversely, mild sufficient conditions on these functions ensure that such a demand

system is rational, and we show how to characterize direct and indirect utility functions as

implicit functions. While the first aggregator Λ must still affect demand only through common

price and quantity shifters H and F , as in the first case described above, demand Di for each

good i can be a very flexible function of both its own price pi and indirect utility V . Thus, the

shape of Engel curves (through utility V ) can be very different from the shape of the demand

curve as a function of the price pi.

The form of demand in (4) generalizes the previous forms (2) and (3) based on either aggre-

gator Λ or V , and can be used to generate a variety of new and more general demand systems.

This includes, for instance, directly and indirectly implicitly-additive separable preferences.

Conversely, it is easy to construct preferences with desired properties that could be useful in

specific settings. For instance, one can impose homotheticity while retaining very flexible price

and substitution effects. Again, this encompasses various examples of homothetic preferences

used in the literature, e.g. QMOR when Di is quadratic (Diewert, 1976; Feenstra, 2018), HDIA

when H is constant (Kimball, 1995) and HIIA when F is constant (Matsuyama and Ushchev,

2017).5

The single and double-aggregator demand systems can generate choke prices (as demand Di

for a good i equals zero at a finite price) that can be expressed as a simple function of income

and the price aggregator (as well as utility in the more general case), with a functional form

that is again more flexible than commonly used in macroeconomics and international trade. In

particular, these forms of demand can be used to generalize the results of Bertoletti and Etro

(2017) and Bertoletti et al. (2018) in which the choke price is proportional to income (see Fally,

2019). It can also rationalize the two-aggregator demand considered in Arkolakis et al. (2019),

which is particularly appealing for its tractability and its applications to international trade

models with heterogeneous firms. As shown by Thisse and Ushchev (2016), the latter can be

generated by aggregating over many rational consumers with random utility; here, we show

that such demand can be rationalized with a single representative consumer, which allows us to

use standard tools in consumer theory to make welfare statements (such as revealed preferences,

compensating variations, and other measures of welfare).

Demand systems with an aggregator are perhaps most useful in the case of monopolistic

competition. In the limit where each firm has a negligible market share, it chooses its price

by taking such an aggregator as given.6 With the first type of demand system (Gorman-

5QMOR refers to: quadratic mean of order r expenditure function; HDIA: homothetic directly implicitly
additive preferences; HIIA: homothetic indirectly implicitly additive.

6Recent work by Bertoletti and Etro (2022) formalizes this insight with asymmetric demand and covers the
Gorman-Pollak demand system as an example. See also Anderson et al. (2018) on aggregative games where Λ
could be used as an “aggregate”.
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Pollak form), the price aggregator Λ can be interpreted as an index of tightness of the budget

constraint, or alternatively as an index of the toughness of competition in a model with firms.

A change in the aggregator Λ can lead to a vertical and a horizontal shift of each demand curve,

with different implications for markups depending on the shape of these demand curves.

With a simple general-equilibrium model of homogeneous firms under monopolistic compe-

tition and free entry, a wide range of comparative statics can be qualitatively obtained with the

Gorman-Pollak single-aggregator demand system; all combinations of the signs of the effects of

population and income on firm size (and thus prices) appear both in the subconvex case (where

markups decrease with firm size) and in the superconvex case. On the contrary, some other

forms of separability based on two aggregators can be used to restrict the range of compara-

tive statics. For instance, with directly or indirectly “semi-separable” preferences (defined as a

weaker form of additive separability), firm output and prices are invariant to either income or

population. In many such cases, simple conditions on the functional form of demand can ensure

uniqueness of equilibrium; with Gorman-Pollak preferences in particular, the second-order con-

dition for profit maximization is sufficient.7 This analysis fits within the framework of Parenti

et al. (2017) based on general symmetric demand systems with a continuum of goods, and also

complements the earlier results of Bertoletti and Etro (2016) for general symmetric preferences,

Zhelobodko et al. (2012) based on directly-additive separable preferences, Bertoletti and Etro

(2017) on indirectly-additive separable preferences, and Bertoletti and Etro (2021) on Gorman-

Pollak demand. This illustrates the importance of the choice of functional forms of demand in

determining key outcomes in general-equilibrium models.

The paper further relates to many others studying functional forms of utility and demand

systems, with applications to demand estimation. In particular, Ligon (2016) focuses on cases

where the aggregator corresponds to the Lagrange multiplier λ associated with the budget

constraint, and shows that a form of separability in λ implies specific functional forms as well

as direct additive separability. Nocke and Schutz (2017) study the (“quasi-”) integrability of

quasi-linear demand systems, i.e. without income effects. Fabinger and Weyl (2016) examine

functional forms of demand and production functions that lead to closed-form solutions in

models imposing relationships between marginal and average effects. The discussion of the

existence of aggregators also mirrors the restrictions associated with the rank of a demand

system (Gorman, 1981; Lewbel, 1991; LaFrance and Pope, 2006; Lewbel and Pendakur, 2009),

which equals the number of price aggregators needed to recover Engel curves. Here, the number

of aggregators corresponds to the rank of the cross-price substitution matrix. The two notions

are thus distinct, and the demand systems studied here do not have restrictions in terms of the

7Uniqueness of equilibrium is however not guaranteed in the more general case where demand depend on
utility in addition to the price aggregator.
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rank of Engel curves.8 Finally, Blackorby et al. (1978) study functional forms implied by various

definitions of separability, and find that the same functional structure as with generalized non-

homothetic CES is obtained when imposing stronger forms of separability that imply equality

among Allen-Uzawa elasticities of substitution.

The remainder of the paper proceeds as follows. Section 2 examines the functional forms

imposed by generalized separability. Section 3 provides sufficient conditions for each type of

demand to be rationalized. Section 4 discusses various examples of these demand systems.

Section 5 examines an application to monopolistic competition and studies market size effects

in a simple general-equilibrium model.

2 Functional Forms under Generalized Separability

2.1 Single aggregator

Additively-separable utility yields demand as a simple function of a good’s own price pi and a

single aggregator, the Lagrange multiplier. While practical, both direct and indirect separability

put strong constraints on the structure of demand, such as a tight relationship between price

elasticity and income elasticity, with for instance the adverse consequence that preferences with

constant elasticity of substitution (CES) are the only directly-separable and indirectly-separable

preferences that are homothetic.

In an attempt to generalize the concept of separability, Gorman (1972) and Pollak (1972)

define “generalized separability” as demand that would take the form:

qi = q̃i(pi/w,Λ) (5)

where demand for each good i (in quantity) is a real function of its own normalized price and

the aggregator Λ, i.e. a mapping q̃i from R+ × R+ to R+, and where w > 0 refers to total

consumer expenditures and pi > 0 refers to the price of good i. Λ = Λ(p/w) a real function of

the vector of normalized prices p/w = (p1/w, ..., pN/w) ∈ RN+ , and N ∈ N denote the number

of goods. Without loss of generality, we assume that Λ is always positive.

We assume that the budget constraint holds for any vector of normalized prices p/w, which

implies that the aggregator Λ(p/w) must satisfy:

∑
piqi = piq̃i(pi/w,Λ(p/w)) = w.

8Demand systems such as PIGL, PIGLOG and AIDS aim to simplify income effects. Here the goal is rather
to simplify cross-price effects.
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Under the regularity assumption [A1]-i) made below, the solution to this equation in Λ is unique

and we can use the budget constraint to obtain the derivatives of Λ w.r.t. prices. Note that,

generally, Λ is not a Lagrange multiplier, except for the case where demand can be derived

from a directly-additive separable utility (Ligon 2016).

We say that the system of demand given by q̃i and Λ is integrable if there exists a differen-

tiable utility function U(q) such that marginal utility ∂U
∂qi

evaluated at q̃i (for a given vector of

prices and income) is proportional to prices pi across goods i.9 We further assume that utility

U is twice continuously differentiable, so that its cross-derivatives are symmetric. For the sake

of simplicity and exposition, we focus on demand that can be inverted and assume that for

each vector q ∈ RN+ , there exists a vector p/w ∈ RN+ such that qi = q̃i(pi/w,Λ(p/w)).10

In an unpublished note by Gorman (printed in Gorman, 1995) mentioned by Pollak (1972),

Gorman indicates that a demand system defined as above needs to take specific forms in order

to satisfy Slutsky’s symmetry condition. With a few additional restrictions, this result can be

formulated as follows:11

Regularity assumptions [A1] on functions q̃i:

i) q̃i(pi/w,Λ) is positive and twice continuously differentiable, with strictly negative

derivatives in both arguments;

ii) Holding Λ constant, piq̃i(pi/w,Λ) has a non-zero derivative in pi

iii) There are at least four goods (N ≥ 4);

iv) Invertibility: for each q ∈ RN+ , ∃p/w ∈ RN+ such that qi = q̃i(pi/w,Λ(p/w)) for all i.

Proposition 1 If demand is integrable and satisfies conditions [A1], it can be written as either:

case 1: q̃i(pi/w,Λ) =
Di(F (Λ)pi/w)

H(Λ)
for all goods i and all pi, w,Λ

case 2: q̃i(pi/w,Λ) = Ai(Λ)(pi/w)−σ(Λ) for all goods i and all pi, w,Λ

+ case 2’: q̃i(pi/w,Λ) = aiA(Λ)(pi/w)−σ0 for all but one good i

9A distinction is often made between integrability and rationalization, whereby the latter further requires
U to be quasi-concave. In other words, integrability imposes the Slutsky substitution matrix to be symmetric
while rationalization also requires that it be semi-definite negative.

10This assumption is made for convenience as the proof mostly focuses on the inverse demand. Most of the
arguments are local and would apply to subsets of prices and quantities where we have invertibility.

11Gorman’s sketch of proof had many shortcuts, as he himself noted: “Throughout this paper I have talked
as if my claims were definitely proven. Of course this is not so: my arguments are far from rigorous” (Gorman,
1995). Here I impose somewhat stronger assumptions on the form of demand and price effects in order to avoid
a few inelegant cases. In particular, the assumption that expenditure shares are not just a function of Λ allows
me to avoid what Gorman calls “the abnormal case”.
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or a combination of cases 2 and 2’ (depending on Λ), where ai, σ0 and ρ0 are positive constant

terms, and Di, F , H, A and Ai are differentiable real functions with a single argument.

To prove Proposition 1, it is actually easier to work with the inverse demand, i.e. express-

ing normalized prices as a function of quantities, as such objects are more directly related

to marginal utility. A key integrability condition comes from the symmetry of the Hessian

of the utility function. As inverse demand is proportional to marginal utility, its derivatives

also need to feature some symmetry, a condition equivalent to Slutsky symmetry for Marshal-

lian demand.12 When cross-price effects are captured by a single aggregator, these symmetry

conditions impose conditions on price elasticities that can then be integrated to provide the

functional forms in Proposition 1. As part of the proof of Proposition 1, we find that inverse

demand takes a very similar functional form in both cases. In the case 1, we can express inverse

demand as:
pi
w

=
D−1
i (H(Λ)qi)

F (Λ)
(6)

where Λ is now seen as a function of the vector of consumption and can be implicitly defined

as a solution to the budget constraint using inverse demand:
∑

i qiD
−1
i (H(Λ)qi)/F (Λ) = 1.13

Since the third case 2’ is relatively less interesting and elegant (CES for all but one good), the

remainder of the paper focuses on cases 1 and 2. Note that there may be alternative functional

forms under generalized separability if we allow for price-insensitive expenditures shares, which

Gorman calls “abnormal” goods. Assumption iii) allows us to exclude such cases. Also note

that functional forms are unique up to a constant term and a monotonic transformation of Λ,

both in cases 1 and 2. Moreover, as we will see later in Section 3.2 under additional restrictions,

aggregator Λ coincides in case 2 with indirect utility V (up to a monotonic transformation).

Before turning to more general demand systems and sufficient conditions for rationalization,

it is useful at this point to summarize some key properties implied by these two types of demand,

especially in terms of price and income effects.

Price and income elasticities in case 1. Let us denote by εDi = ∂ logDi
∂ log pi

, εH = ∂ logH
∂ log Λ

and

εF = ∂ logF
∂ log Λ

the elasticity of Di, H and F in their argument. In case 1, the price elasticity of

12A working paper version provides a proof based on direct demand, examining price effects and Slutsky
symmetry, which more closely follows the steps proposed by Gorman (1972) in his unpublished notes. Actually,
earlier literature on rationalization (e.g. Samuelson, 1950) puts more attention onto properties of inverse
demand than relatively more recent works that have placed a greater emphasis on the Slutsky substitution
matrix (following Hurwicz and Uzawa, 1971).

13In the Marshallian demand formulation, Λ is a function of prices and income. In the inverse demand
formulation, we redefine Λ as a function of quantities, where Λ can again be implicitly characterized by the
budget constraint. As an abuse of notation, we use the same notation in both approaches.
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Marshallian demand is:

∂ log qi
∂ log pj

= εDi .1(i=j) −
Wj(1 + εDj)(εH − εF εDi)

εH − εF ε̄D
(7)

where Wj is the expenditure share of good j, 1(i=j) is a dummy equal to one when i = j, and

ε̄D =
∑

iWiεDi. When that good has a negligible market share, the own price elasticity is

determined by the shape of function Di:
∂ log qi
∂ log pi

≈ εDi. Since we impose few constraints on εDi,

the shape of each demand curve and the patterns of price elasticities can be very flexible.

In turn, the income elasticity of demand is:

∂ log qi
∂ logw

= 1 +
(εH + εF )(ε̄D − εDi)

εH − εF ε̄D
. (8)

Using this expression, one can see that homotheticity implies that either εH = −εF or εDi = ε̄D

for all goods i (see Section 4.2).

As pointed out by Pigou (1910) and Deaton (1974), own-price elasticities and income elastic-

ities are colinear (across goods) when demand is derived from directly-additive utility (εH = 0)

when each good i’s expenditure share is small: ∂ log qi
∂ logw

= εDi
ε̄D

. With εH 6= 0, the relationship be-

tween income elasticity and price elasticity is affine. The relative rankings can even be flipped

if εF + εH > 0, with price-elastic goods being relatively less income elastic.14

Price and income elasticities in case 2. In the second case, price effects are simpler: the

own-price elasticity is constant for a given level of aggregator Λ, and we will see in Proposition

4 that in this case we can interpret aggregator Λ as indirect utility: Λ = V .

This demand system is most interesting and useful for its very flexible income effects. Com-

paring goods, first we can see that changes in Ai(Λ) in Λ need not be related to σ(Λ), thus

breaking away from the link between price and income elasticities discussed for the first case

above. Starting with the special case where σ(Λ) = σ is constant, we find that income elastic-

ities are: determined by the elasticity of each Ai w.r.t Λ:

∂ log qi
∂ logw

=
εAi
ε̄A
. (9)

where ε̄A is the average of elasticities εAi =
ΛA′i(Λ)

Ai(Λ)
weighted by expenditures shares. Hence,

good i is income-elastic if and only if εAi/ε̄A > 1.

In the more general case where σ(Λ) is not constant, function Ai plays a similar role and

dictates income effects, while σ(Λ) determines how the price elasticity varies with income.

14Note that we can obtain inferior goods (as it is already the case with indirectly-additive preferences).
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2.2 Generalization with indirect utility as an additional aggregator

The single-aggregator cases impose either a tight constraint on price elasticities (case 2 above)

or an affine relationship between price and income elasticities (case 1), and exclude several

demand systems examined in the literature that more generally require two aggregators. The

next objective is to examine a combination of cases 1 and 2, by studying demand systems that

depend on a common aggregator Λ as well as on utility V as a second aggregator. The goal is

to generate more flexible price and income effects that are not as tightly linked, and provide a

more general formulation that includes most demand systems used in practice. Hence, we now

suppose that demand takes the form:

qi = q̃i(pi/w,Λ, V ) (10)

where q̃i is now a mapping from R+ × R+ × R to R+, V = V (p/w) refers to the indirect utility

function evaluated at p/w, and Λ, as earlier, satisfies the budget constraint:

∑
i

piqi
w

=
∑
i

piq̃i(pi/w,Λ, V )

w
= 1.

Under conditions [A2] imposed for Proposition 2, inverse demand q̃i
−1 is well defined and can

be expressed as a function of quantity qi, the direct utility function U , and the aggregator Λ,

which we can alternatively express as a function of quantities q such that the budget constraint

holds (see Appendix for details). This gives:

pi/w = q̃−1
i (qi,Λ, U) (11)

where q̃−1
i denotes the inverse demand w.r.t. normalized prices, and where Λ = Λ(q) is now

implicitly defined as a function of quantities. We use the fact that the derivatives of the indirect

utility function and the direct utility function are proportional to demand qi across goods i.

We can generalize Proposition 1 under a set of similar regularity restrictions on differentia-

bility, minimum number of goods and price effects:

Regularity assumptions [A2] on functions q̃i:

i) q̃i(pi/w,Λ, V ) is positive and twice continuously differentiable, with a strictly negative

derivative in pi and Λ;

ii) Holding Λ and V constant, piq̃i(pi/w,Λ, V ) is not constant over the range of prices pi;

iii) There are at least four goods and, for any vector of normalized prices p/w (except for a

set of prices of measure zero), the price elasticity takes at least three values across goods.

iv) Invertibility: for each q ∈ RN+ , ∃p/w ∈ RN+ s.t. qi = q̃i(pi/w,Λ(p/w), V (p/w)) for all i.
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Proposition 2 If demand q̃i is integrable, depends on two aggregators as in equation (10) and

satisfies regularity conditions [A2], it can be written as:

q̃i(pi/w,Λ, V ) =
1

H(Λ, V )
Di

(
piF (Λ, V )

w
, V

)
(12)

where Di, F and H are mappings from R+×R to R, with indirect utility V as second argument.

This functional form is again imposed by symmetry conditions, and the proof of Proposi-

tion 2 follows very similar steps as for Proposition 1. Surprisingly, these symmetry conditions

do not impose strong constraints on functional forms in terms of how indirect utility, used as

a second aggregator, influences demand patterns. We can also verify that Proposition 1 is a

special case where demand depends on either V or Λ.15

This leads to considerably greater flexibility: indirect utility can influence partial demand

functions Di as well as functions F and H. In the single-aggregator case, we have seen that

the own-price elasticity is given by the elasticity of Di, and thus the shape of Di influences how

price elasticities (and thus markups in models of imperfect competition) vary along the demand

curve depending on the level of demand for a particular good i. With utility V as an additional

aggregator, the shape of demand curves can itself vary with utility, and allows for flexible good-

specific Engel curves unrelated to the effect of its own price. Moreover, interpreting aggregator

Λ as capturing the tightness of the budget constraint, its effect on the price shifter F and

quantity shifter H can now also depend on the level of utility of consumers (and indirectly on

their income).

Note also that inverse demand has a similar form, now as a function of direct utility U(q):

q̃−1
i (qi,Λ, U) =

1

F (Λ, U)
D−1
i (qiH(Λ, U) , U)

where D−1
i denotes the inverse of Di with respect to its first argument, and where Λ can instead

be seen as a function of quantities q (again implicitly defined by the budget constraint).

At this point, we only impose restrictions on Slutsky symmetry (integrability), but we will

see in the next section that fairly mild additional restrictions are sufficient to ensure that such

systems are rational, so that these considerations on price and income effects will remain valid.

15In order to avoid a taxonomy of cases, condition [A2]-iii) above imposes enough heterogeneity in price
elasticities across goods. This excludes special cases that would resemble cases 2 and 2’ in Proposition 1. This
restriction does not lead to an important loss of generality given that a key motivation for Proposition 2 is to
examine more flexible demand systems in both income and price effects.
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3 Rationalization

Let us now examine the reciprocals of Proposition 1 and 2. Under which conditions these

demand systems can be rationalized, i.e. can be derived from maximizing a well-behaved quasi-

concave and monotone utility function? These functional forms, imposed by the symmetry

of the Slutsky matrix, do not necessarily lead to quasi-concavity or monotonicity of utility

functions (see Appendix for counter-examples in the single-aggregator case). We now explore

sufficient conditions to guarantee that the demand systems described in Proposition 1 and 2

are rational.

3.1 Rationalization of Gorman-Pollak Demand

Suppose that demand is given by:

qi =
Di(F (Λ)pi/w)

H(Λ)
(13)

where Di, F and H are mappings from R+ to R+, and where Λ is implicitly determined by the

budget constraint
∑

i piDi(F (Λ)pi/w)/H(Λ) = w, which can be rewritten:

H(Λ) =
∑
i

(pi/w)Di(F (Λ)pi/w). (14)

As before, we denote by εDi = ∂ logDi
∂ log pi

the elasticity of Di in its argument, and εF = ∂ logF
∂ log Λ

and

εH = ∂ logH
∂ log Λ

the elasticity of F and H in Λ. To ensure that (14) has a unique solution in Λ

and that this demand system is well-defined and rational, we impose the following regularity

restrictions on Di, F and H:

Regularity assumptions [A3] on functions Di, F and H:

i) Di is continuously differentiable, εDi < 0;

ii) H and F are continuously differentiable and εF εDi < εH for all i, Λ and pi/w

iii) For any good i and yi > 0, there exists Λ ∈ R+ such that: yiDi (yiF (Λ)) /H(Λ) = 1/N

Note that instead of condition [A3]-ii) we could assume that εF εDi − εH has the same sign for

all i, Λ and pi/w. If it is positive instead of negative (for all goods and prices), condition ii) is

satisfied if we consider the change in variable Λ′ = 1/Λ. Assumptions i) and ii) imply that the

solution in Λ to equation (14) is always unique, but they are also needed to show that utility

is quasi-concave and that the Slutsky substitution matrix is negative semi-definite. Condition

iii) ensures that equation (14) has a solution in Λ: in other words, the aggregator Λ can always

12



adjust in order to satisfy the budget constraint. It is automatically satisfied, for instance, if we

assume that the image of the mapping Λ 7→ Di(F (Λ)pi/w)
H(Λ)

is (0,+∞), conditional on pi/w.16

As with Proposition 1, it is useful to consider the inverse demand, which shares a similar

functional form. We can redefine Λ as an implicit function of q using the budget constraint:∑
i

qiD
−1
i (H(Λ)qi) = F (Λ) (15)

which, under conditions ii) and iii) has a unique solution in Λ for any q (see Appendix).

Under these conditions, we obtain:

Proposition 3 If H and Di satisfy the regularity conditions [A3], the demand described in

equations (13) and (14) can be rationalized and obtained from a continuous quasi-concave utility:

U(q) =
∑
i

∫ x=H(Λ(q))qi

q′=qi0

D−1
i (q′)dq′ −

∫ Λ(q)

l=Λ0

H ′(l)F (l)dl (16)

where Λ(q) satisfies (15) for each q, and Λ0, q0i ≥ 0 are constant terms.

Proposition 3 rationalizes such demand in a constructive way, by directly providing a util-

ity function (see Appendix for details).17 Note that this utility function is unique, up to a

monotonic transformation.

The least obvious part of the proof is to show that it is quasi-concave, accounting for how

the aggregator Λ responds to changes in q. Note that equation (15) can be seen as a first-order

condition such that the expression above for U has a zero derivative in Λ. As such, marginal

utility takes a simple form:
∂U

∂qi
= HD−1

i (Hqi). (17)

An alternative is to build on the proof provided by Matsuyama and Ushchev (2017) for the

homothetic case (HSA), and examine the Slutsky substitution matrix. Thanks to the functional

form obtained in Proposition 1, the Slutsky substitution matrix is symmetric, but conditions in

16Alternatively, in condition iii), one could replace the term 1/N on the left hand side by a term that varies
across goods i as long as this term sums up to unity across goods.

17This utility representation was pointed out by Gorman (1987) with a more restrictive formulation and
no formal proof that such utility function is well defined and quasi-concave. Gorman formulated this as a
maximization: U = maxΛ {

∑
i ui(Λqi)− Φ(Λ)} but this approach is equivalent to assuming H ′(Λ) > 0 in the

formulation provided here, and omits useful cases (such a continuum of cases providing a bridge between directly-
additive and homothetic-single-aggregator preferences) where the second order condition of this maximization
is not satisfied yet the utility function constructed above remains quasi-concave.
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Proposition 1 do not guarantee its semi-definite negativity. As one could expect, the conditions

needed for semi-definite negativity are the same as conditions [A3] above providing the quasi-

concavity of the utility function.

One can ask whether the set of conditions [A3] can be relaxed, but I argue here that all are

needed. First, the demand system would clearly not be well defined if it does not have a solution

in equation (14), so condition iii) is unavoidable. It is possible to impose simpler conditions to

ensure existence, but such conditions would be less general or practical. Second, restriction ii)

is the simplest and more direct way to ensure that the equation defining the price aggregator

has a unique solution. It is required for good i for a given level of prices when a good i has

a sufficiently large expenditure share. In the Appendix, I provide an example with two goods

where restrictions i) and iii) are met but the Slutsky matrix is no longer negative semi-definite

when εF εDi− εH does not have the same sign for the two goods. Finally, restriction i) ensures

that we have a negative effect of prices on demand when the expenditure share of a good is

small (a positive price effect would not be rational for small expenditure shares). Inverting Di

is also needed in equations (15) and (16) to retrieve utility.

Drawing from Pollak (1972), indirect utility can be expressed as:

V (p, w) = −
∑
i

∫ (pi/w)F (Λ)

yi0

Di(y)dy +

∫ Λ

Λ0

F ′(l)H(l)dl + g0 (18)

where yi0, g0 and Λ0 are constant terms (see details in the Appendix). Λ = Λ(p/w) can

either be implicitly defined by the budget constraint as above, or by taking the derivative

of expression (18) w.r.t. Λ. This expression can also be useful to compute equivalent and

compensating variations, implicitly defined such that V (p′, w − CV ) = V (p, w) and V (p, w +

EV ) = V (p′, w′). Taking the derivative w.r.t. income, one can interpret the product of the two

shifters as the marginal utility of income (in log):

∂V (p, w)

∂ logw
= F (Λ)H(Λ).

In terms of price and income effects, already discussed in Section 2.1 (expressions 7 and 8),

assumptions [A3] do not impose stark additional restrictions. Given that we assume εH > εF εDi,

note however that the own-price elasticity is always negative, which rules out Giffen goods (but

not inferior goods). Given that restriction, we can also see that the cross-price elasticity (i 6= j)

is positive if and only if εDj < −1.

Such demand is slightly more general than the one used in Pollak (1972) and more recently

in Bertoletti and Etro (2022) as it does not require either F (Λ) and H(Λ) to be monotonic in
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Λ. If F ′(Λ) > 0, an increase in Λ (tightness of the budget constraint) leads to a downward shift

in the partial demand curve Di. When F ′(Λ) < 0, we would instead have an upward shift in

Di, which needs to be compensated by a large enough decrease in the demand shifter H(Λ). If

F (Λ) is strictly monotonic (which is satisfied in practice for most applications, see e.g. Fally,

2019), then without loss of generality we can assume F (Λ) = Λβ with β ∈ {−1, 1}.

3.2 Rationalization of Generalized Non-Homothetic CES

Now, consider the case 2 of Proposition 1. Let us assume that expenditure shares are given by:

piqi/w = (Gi(Λ) pi/w)1−σ(Λ) (19)

where σ and each Gi is a continuous mapping from R+ to R+, where Λ(p/w) is itself a function

of the vector of normalized prices p/w. We assume that the budget constraint is satisfied, i.e.:∑
i

(Gi(Λ)pi/w)1−σ(Λ) = 1. (20)

To ensure integrability, we impose the following sufficient regularity restriction [A4]:

Regularity assumptions [A4] For each Λ, we have σ(Λ) 6= 1 and either one of the following

two conditions:

i) σ(Λ) is weakly increasing in Λ and Gi(Λ) is strictly increasing in Λ

ii) σ(Λ) is decreasing in Λ and, for each Λ0, there exists αi > 0 such that
∑

i αi = 1 and

such that Gi(Λ)α
1

σ(Λ)−1

i is strictly increasing in Λ in a neighborhood of Λ0

Continuity is sufficient for the main statement. However, when both σ(Λ) and Gi(Λ) are all

differentiable, condition ii) can be rewritten after solving for the minimum αi that would satisfy

this monotonicity condition. Condition ii) is formally equivalent to imposing:18

∑
i

exp

(
(σ(Λ)− 1)2G′i(Λ)

σ′(Λ)Gi(Λ)

)
< 1 (21)

(see Appendix for the proof of equivalence). Under these conditions, we obtain Proposition 4:

18In general, note that condition ii) need not hold for any set of αi’s, it is sufficient that it holds for a single
set of αi’s. In particular, using αi = 1/N (where N denotes the number of goods), a sufficient condition is that

Gi(Λ)N
1

1−σ(Λ) strictly increases in Λ.

15



Proposition 4 Suppose that demand can be written as in equation (19) where Gi and σ are

continuous and where Λ is implicitly defined by (20). This demand system is integrable if

conditions [A4] are satisfied. Under [A4], demand can be derived from a utility function that is

implicitly defined by: ∑
i

(qi/Gi(U))
σ(U)−1
σ(U) = 1 (22)

which has a unique solution in U , with Λ = U for the demand qi described above.

The constant elasticity case σ(Λ) = σ corresponds to implicitly additive utility as in Comin

et al. (2021). This is not equivalent to the standard CES since, even in that case, non-trivial

income effects through the demand shifter Gi(Λ) allow for very flexible Engel curves. The main

contribution of this proposition is to generalize to variable elasticity of substitution.

Notice that the expenditure function takes a simple form, as in Comin et al. (2021):

e(p, U) =

[∑
i

(Gi(U)pi)
1−σ(U)

] 1
1−σ(U)

.

The proof of Proposition 4 mainly consists in showing that Λ is well-defined, i.e. that

the budget constraint has a unique solution in Λ, and that utility is also uniquely defined by

equation (72). As the more general case allows for varying curvature of indifference curves, one

needs to ensure in particular that these indifference curves do not cross.

The proof proceeds as follows. First, notice that
[∑

i αix
ρ
i

] 1
ρ

is monotonically increasing

in ρ if
∑

i αi = 1 (“Generalized Mean Inequality”, Lemma 1 in Appendix). This allows us to

obtain comparative statics in the exponent in equations (72) and (20). We can then show that

the solutions to these equations are unique, for a given set of income and prices, or quantities.

Once we have uniqueness, it is easy to verify the quasi-concavity of the utility function (as in

Comin et al., 2021). The last step is to check that this utility maximum problem does yield

the demand system described above.

Again, as for Proposition 3, a potential concern is whether restrictions [A2] are necessary.

When neither condition i) nor ii) is satisfied, neither the demand system described above nor

the utility in Proposition 4 is well defined. Counter-examples in the Appendix further illustrate

the role of each condition, showing that equations (20) and (72) admit multiple solutions in Λ

and U if conditions i) and ii) are not satisfied. Incidentally, this shows that monotonicity in

demand shifters Gi(Λ) is not sufficient.19

One should also point out why we need different conditions depending on whether σ(Λ)

decreases or increases with Λ. In the first case, where σ(Λ) increases with Λ, indifference

19We can also have σ(Λ) = 1 for a discrete number of values of Λ.
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curves become flatter as we move away from the origin (with increases in income and Λ). In

that case, indifference curves are most likely to cross around the intercepts (when only one

good is consumed). Monotonicity in Gi(Λ) is then sufficient to ensure that indifference curves

do not cross. In the second case, where the elasticity of substitution σ(Λ) decreases with Λ, the

indifference curves are more curved as we move away from the origin. In this case, indifference

curves are most likely to be close to each other and intersect around their midpoint.

3.3 Rationalization with two aggregators Λ and V

Suppose that demand takes the form:

qi(pi/w,Λ, V ) =
1

H(Λ, V )
Di

(
piF (Λ, V )

w
, V

)
(23)

where Di, F and H all are positive continuously-differentiable mappings from R+ × R to R+,

with aggregator V as a second argument (which must coincide with indirect utility if such

demand is rational). Denote by εDi the elasticity of Di with respect to price pi (holding Λ and

V constant) and by εH and εF the elasticities of H and F in terms of Λ (holding V constant).

We then impose the following sufficient regularity restrictions:

Regularity assumptions [A5] on functions Di, F and H:

i) Di is continuously differentiable, with εDi < 0;

ii) H and F are continuously differentiable, with εF εDi < εH for all i, Λ, V and pi/w;

iii) For any good i, yi > 0, V ∈ R, ∃Λ ∈ R+ such that: yiDi (yiF (Λ, V ), V )/H(Λ, V ) = 1/N .

These conditions ensure that, for each V and p/w, there is a unique Λ such that the budget

constraint is satisfied, i.e. such that
∑

i(pi/w)qi(pi/w,Λ, V ) = 1 with demand defined in

equation (23) above. A similar result is obtained for the inverse demand. For any given vector

of quantities q and utility U , the following budget condition for inverse demand:∑
i

qiD
−1
i (qiH(Λ, U), U)/F (Λ, U) = 1 (24)

has a unique solution in Λ.

These conditions are very similar to those used in the single-aggregator case for Gorman-

Pollak demand in Proposition 3.20 Under these conditions, we obtain the following proposition

characterizing utility for more general demand systems with two aggregators including utility:

20Again, as in Proposition 3, in condition iii) one could replace the term 1/N by a series of good-specific
terms that sum up to unity across goods.
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Proposition 5 Suppose that demand can be written as in equation (23) satisfying regularity

assumptions [A5] above, where V is indirect utility and Λ is an aggregator such that the budget

constraint (24) holds. Then:

i) Utility U must satisfy:

∑
i

∫ qiH(Λ,U)

q=qi0

D−1
i (q, U) dq − G(Λ, U) = 0 (25)

for some constant terms qi0 ≥ 0 and a continuously differentiable real-valued function

G(Λ, U) such that ∂G
∂Λ

(Λ, U) = ∂H
∂Λ

(Λ, U)F (Λ, U).

ii) Conversely, if the left-hand-side of equation (25) is decreasing in U (with a strictly nega-

tive partial derivative in U), equations (25) and (24) uniquely characterize a well-behaved

utility (monotonic, continuous and quasi-concave) that yields demand as in equation (23).

Taken together, under conditions [A2] and [A5], Propositions 2 and 5 provide a characteri-

zation of rational demand functions with two aggregators Λ and V capturing cross-price effects,

and a characterization of their associated utility functions.

The proof of Proposition 5 (see Appendix) combines elements of Propositions 3 and 4. First,

the implicit solution for utility U must be monotonically increasing in qi for each good i. Here,

this property is obtained by assuming that the left-hand side of equation (25) is decreasing

in U (conditional on q and Λ), given that the left-hand side has a strictly positive derivative in

each qi and has a zero derivative in Λ.

Next, the proof that utility U is quasi-concave in q is similar to the one in Proposition 3 for

the single-aggregator case. Considering the left-hand-side of equation (25) as a function of q

and U , it suffices to show that it is quasi-concave in q (holding U constant) in order to obtain

that the implicit function for U is quasi-concave in q. Holding U constant, we can see that the

left-hand side of equation (25) has the same structure w.r.t. q and Λ as the right-hand side of

equation (16) for utility in the single-aggregator case in Proposition 3.

One must also ensure that Λ is well defined (implicitly defined such that the budget con-

straint holds). Condition [A5]-iii) leads to the existence of Λ, while condition ii) provides

uniqueness. As shown in the Appendix, the same two conditions also ensure the existence and

uniqueness of Λ as a function of quantities instead of normalized prices.

Proposition 5 does not provide precise criteria, e.g. as in Proposition 4, to determine when

the left-hand side of equation (25) is decreasing in U , but in practical cases this condition is

easy to check. For instance, if neither F nor H, nor G depend on U , as in several of the
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examples provided below in Section 4, a sufficient condition for the existence and monotonicity

in U is that Di(qi, U) is strictly decreasing in U (holding qi constant) and varies from +∞ to

zero in the limit over the range of U . Conversely, interesting cases also arise when only H and

F depend on U (e.g. semi-separable preferences, as discussed in Section 4.1), in which case

monotonicity is again not difficult to characterize.

Proposition 5 highlights how to characterize direct utility as a function of quantities q. As in

the single-aggregator case, we obtain a similar characterization of indirect utility as a function

of normalized prices p/w. Integrating by part, we show in the Appendix that the indirect utility

satisfies the following equation:

∑
i

∫ pi
w
F (Λ,V )

y=yi0

Di(y, V )dy = K(Λ, V ) (26)

where K is such that ∂K
∂Λ

(Λ, V ) = ∂F
∂Λ

(Λ, V )H(Λ, V ), and Λ can again be implicitly defined such

that the partial derivatives in Λ are equalized, or equivalently can be implicitly defined such

that the budget constraint holds (here as a function of normalized prices p/w). Using Roy’s

identity, we can obtain Marshallian demand directly from this expression, which is sometimes

simpler than using expression (25) in Proposition 5 (e.g. as in cases of indirect separability).

4 Special cases and examples

This section discusses additional examples where these results can be applied, including a

discussion of different forms of separability and several examples of homothetic preferences.

The remainder of the section examines demand systems with two aggregators as in Thisse and

Ushchev (2016), and shows that one of the two aggregators can be set equal to indirect utility

without loss of generalization. We also discuss extensions to demand with choke prices.

4.1 Forms of separability and non-homothetic examples

Direct and indirect additive separability Let us recall here the functional form taken in

one of the simplest cases discussed earlier —direct additive separability— as it will serve as a

reference for other generalizations. Preferences are directly separable if there is only a single

aggregator and function H is constant. In that case, we can write utility as:

U(q) =
∑
i

∫ qi

q=qi0

D−1
i (q)dq
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which also leads to a simple demand function: qi = Di(Λpi/w). Directly-separable preferences

have been used extensively in the literature, across many fields in economics. The main reason

for their wide use is their tractability, and they already offer flexible price effects along each

demand curve for each good. However, as pointed out for instance by Deaton (1974), assum-

ing direct separability comes at the cost of imposing strong restrictions on price and income

elasticities.

A first step away from directly separable preferences is to consider indirectly separable

preferences, for which indirect utility can be written as

V (p/w) =
∑
i

∫ pi/w

y=yi0

Di(y)dy,

which leads to a demand function even simpler than in the previous case: qi = Di(pi/w)/Λ

with Λ =
∑

j(pj/w)Dj(pj/w). However, these preferences still impose strong restrictions on

demand patterns and also a tight link between income and price elasticities. In particular, CES

demand is the only form of either directly or indirectly-additive preferences that is homothetic.

A parameterized version of non-homothetic CES Auer et al. (2021) propose a useful

parameterization of the generalized CES from Proposition 4 with demand specified as:

qi = αiU
γi(pi/w)−σ(U) with σ(U) = σ̄ + σ1 logU.

This can be derived from indirect and direct utility implicitly defined by:

∑
i

αiV
γi(pi/w)1−σ(V ) = 1 and

∑
i

(αiU
γi)

1
σ(U) q

σ(U)−1
σ(U)

i = 1.

When σ1 is negative, i.e. when the price elasticity decreases with utility, inequality (21) provides

a condition for rationalization that conveniently simplifies into the following:

∑
i

αi exp

[
γi

1− σ̄
σ1

]
< 1.

A set of sufficient conditions for rationalization is then:
∑

i αi = 1, σ̄ > 1, σ1 < 0 and γi < 0.

This parameterization allows for good-specific income elasticities, price elasticities that vary

with income, while keeping common price elasticities across goods. This provides a practical

framework for estimation, as shown by Auer et al (2020).
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Implicit additive separability A type of separability which has recently seen a gain in

interest is implicit (additive) separability, which again can be distinguished into direct and

indirect implicit separability. Preferences are directly implicitly separable if utility can be

characterized as the solution of an equation of the type:21

∑
i

∫ qi

q=qi0

D−1
i (q, U)dq = 1 (27)

where Di is a function of two arguments.

Such preferences are a special case of Proposition 5 but not Proposition 3. In fact, implicitly-

additive preferences depend on a single aggregator only when they are also directly separable

or when price elasticities are uniform (non-homothetic CES case). With two aggregators as in

Proposition 5, preferences are implicitly additively separable if and only if H does not depend

on Λ, and in this case it is without loss of generality to assume H = 1.

Similar results are obtained for the implicitly-indirectly-additive case, defined as when in-

direct utility can be characterized as the solution of:

∑
i

∫ pi/w

y=yi0

Di(y, V )dq = 1. (28)

It is a special case of Proposition 5 when F = 1. Implicit separability (direct or indirect)

can prove useful in order to generate price and income effects that are less tightly related as

with direct and indirect separability. In particular, for a given consumer, the ranking in price

elasticities across goods can be totally uncorrelated with the ranking of income elasticities.22

When such demand features a choke price (see Section 4.4), note that the choke price does not

depend on aggregator Λ and solely depends on income and utility.

Direct semi-separability Let us introduce a new class of preference, which we refer to as

“semi-separable” (a weaker form of additive separability), where we can express either direct

or indirect utility as a more simple function of quantities or prices as well as the aggregator.

First, let us define preferences as directly semi-separable if we can write utility as:

U(q) =
1

G(Λ)

∑
i

∫ H(Λ)qi

q=0

D−1
i (q)dq (29)

21Blackorby et al. (1991) provide yet another generalization of implicit separability.
22Implicit separability, resp. direct and indirect, offers less flexibility than the general form of Proposition 5

for how demand can shift, resp. horizontally and vertically (with shifts that can only depend on utility).
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where H, G and Di are twice continuously-differentiable, with G′ > 0, H ′ > 0, Di > 0 and

D′i < 0. As with Gorman-Pollak demand, we define Λ such that the derivative w.r.t. Λ of the

expression above is null, i.e. such that:∑
i qiD

−1
i (H(Λ)qi)∑

i

∫ H(Λ)qi
q=0

D−1
i (q)dq

=
F (Λ)

G(Λ)
(30)

where F (Λ) ≡ G′(Λ)/H ′(Λ) is assumed to be a positive and continuously differentiable.23

This demand system is a special case of Proposition 5. Conditions [A5] required by Propo-

sition 5 are met if Di(F (Λ)yi)/H(Λ) has a strictly negative derivative in Λ and goes from +∞
to 0 (in the limit) as Λ increases, holding yi fixed. In this case, the system of equations (29)

and (30) has a unique solution in the aggregator Λ and utility U , and define a well-behaved

utility for any q. Demand for good i is then:

qi =
Di(V F (Λ)pi/w)

H(Λ)
(31)

where V = V (p/w) refers to indirect utility and Λ satisfies equation (30).

These preferences provide a generalization of directly-additive separability, and also retain

some of the properties associated with direct separability. Directly-separable preferences cor-

respond to the limit case where both H and G are constant and F (Λ) = Λ. These preferences

offer a similar degree of flexibility as Gorman-Pollak preferences with a single aggregator (the

multiplicative specification of utility, equation (29) mirrors the additive specification in Propo-

sition 3). For a given consumer, there is again an affine relationship between income elasticities

and price elasticities across goods. Moreover, as will be discussed in Section 5.2, another reason

to introduce this new type separability is to highlight a more general class of preferences with

similar implications for market size effects as additively-separable preferences.

Indirect semi-separability We can obtain a similar functional form for indirect utility if

we make the same functional form assumptions as above for D−1
i instead of Di. Suppose that

indirect utility can be expressed as:

V (p/w) =
1

L(Λ)

∑
i

∫ ∞
y=F (Λ)pi/w

Di(q)dq (32)

where F , L and Di are twice continuously differentiable, with F ′ > 0, L′ < 0, Di > 0 and

D′i < 0. We define Λ such that the derivative w.r.t. Λ of the expression above is null, i.e. such

23Since both G and H are strictly monotonic functions of Λ, it is without loss of generality to impose either
H = 1 or G = 1, whichever is more practical.
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that: ∑
i(pi/w)Di(F (Λ)pi/w)∑
i

∫∞
y=F (Λ)pi/w

Di(q)dq
=
H(Λ)

L(Λ)
(33)

where we denote H(Λ) = −L′(Λ)/F ′(Λ), a positive and continuously-differentiable function of

Λ. Note that this equation in Λ does not involve indirect utility V . Again, this is a special case

of Proposition 5. The conditions for integrability are the same as above (in terms of Di, F and

H) for directly semi-separable preferences. In this case, Marshallian demand takes the form:

qi =
Di(F (Λ)pi/w)

V H(Λ)
. (34)

As the name suggests, such preferences provide a generalization of indirectly-additive separa-

bility, which corresponds to the limit case where F and L are constant. Such preferences yield

similar properties as indirectly-additive preferences in terms of market size effects in general-

equilibrium models with economies of scale, as we will discuss in Section 5.2.

Bi-power demand. A prominent type of demand studied in Mrázová and Neary (2013) is

the bi-power form, where demand for good i takes the form: qi = γip
−νi
i + δip

−σi
i in partial

equilibrium, i.e. holding other prices and income constant.24 This example includes not only

iso-elastic demand curves as special cases, but also a variety of other demand curves used in

the literature, such as the PIGL family, the Pollak family, and QMOR.

In general equilibrium, other prices and income may potentially affect all four determinants

of the demand curve: γi, νi, δi and σi.
25 Allowing for Λ and indirect utility as aggregators,

Proposition 2 indicate that bi-power demand must then take the form:

qi =
αi(V )[F (Λ, V )pi/w]−νi(V ) + βi(V )[F (Λ, V )pi/w]−σi(V )

H(Λ, V )

where αi, βi, νi and σi are now functions of utility. As utility (or income) increases, different

goods i may be associated with smaller or larger demand, and may be associated with higher

or smaller price elasticities.

In particular, it may be convenient to restrict to iso-elastic demand shifters: F (Λ) = Λ

and H(Λ) = Λ−η. For the “demand manifold” to remain invariant to utility (see Mrázová and

Neary, 2013), one must also assume that the exponents νi and σi are constant, which yields:

24We can also examine bi-power inverse demand in a similar fashion.
25A property highlighted by Mrázová and Neary (2013) is that the relationship between the price elasticity

and the curvature of demand (the “demand manifold”) depends only on the exponents νi and σi, and is invariant
to shocks in the demand shifters, γi and δi.
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qi = αi(V )Λη[Λpi/w]−νi + βi(V )Λη[Λpi/w]−σi . (35)

Applying Proposition 5, such demand system can be rationalized if either min{νi, σi} > η or

max{νi, σi} < η, and if the expression above is strictly decreasing in V .26

A non-homothetic generalization of QMOR. An interesting special case of (35) is when

the coefficient η is equal to one of the two exponents for prices. This happens to provide a

generalization of symmetric QMOR studied in Section (4.2). A convenient feature is that we

can solve explicitly for the aggregator Λ as a function of indirect utility. Borrowing a similar

functional form as homothetic QMOR, we can obtain a more general specification where price

effects are very similar to QMOR, yet allow for more flexible Engel curves. Such generalization

remains a special case of the two-aggregator demand systems described in Proposition 5.

Suppose that νi = ν > 1 and σi = σ > 1 are identical across all goods and that σ < ν, and

suppose that η = ν, we can obtain an explicit solution for the aggregator Λ as a function of

prices, utility and income:

Λσ−1 =
∑
i

βi(V )
(pi
w

)1−σ
.

Indirect utility can then be seen as an implicit solution of an equation that no longer involves Λ:

∑
i

αi(V )
(pi
w

)1−ν
+
(∑

i

βi(V )
(pi
w

)1−σ ) 1−ν
1−σ

= 1.

If αi(V ) and βi(V ) are positive, assuming that they strictly decrease with V provides a sufficient

condition for this indirect utility function to coincide with rational consumer preferences.

Such demand system then yields a demand that features substitution and price effects that

are very similar to homothetic QMOR:

qi = αi(V )
(pi
w

)−ν
+ βi(V )

(pi
w

)−σ (∑
j

βj(V )
(pj
w

)1−σ )σ−ν
1−σ

and now allows for richer income effects through the functions αi and βi which can both

flexibly demand on indirect utility. This demand system also provides a generalization of non-

homothetic CES preferences described in Proposition 4 in the limit case where ν = σ. As

noted previously, we could even allow ν and σ to be functions of indirect utility V , but the

combination of αi(V ) and βi(V ) already provide a way to parameterize how income affects the

curvature of indifference curves.

26If αi(V ) and βi(V ) are positive, a sufficient condition is that they both decrease with V . We can also allow
βi(V ) to be negative, which leads to choke prices as discussed in Section 4.4.
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Modeling richer income effects. More generally, suppose that demand qi for product i is

provided by a demand curve D̃i(pi) in partial equilibrium, holding utility and other aggregates

constant. Mrázová and Neary (2013) indicate that any of such demand curve can be obtained

from a directly-additive utility function, in which case demand can be specified as qi = D̃i(Λpi)

where Λ captures the response to all other changes in prices and income. However, our results

indicate many other ways to rationalize such demand curves with more flexible Engel curves

and richer income effects. First, using Proposition 3, we can derive such demand curve from

a Gorman-Pollak demand system qi = D̃i(F (Λ)pi)/H(Λ) where changes in other prices and

income influence both the price shifter F and the quantity shifter H. Going one step further,

Proposition 5 shows that we can make such demand system even more flexible by specifying

qi = D̃i(F (Λ, V )pi, V )/H(Λ, V ). The non-homothetic versions of QMOR and bi-power demand

(above) provide two examples. Additional examples are described in the Appendix, e.g. based

on linear demand.

4.2 Homotheticity

There are many reasons for which one may want to impose homotheticity, e.g. to allow for

simple aggregation properties across consumers with heterogeneous income levels, to provide a

straightforward interpretation of price indices, or to model balanced growth paths with multiple

sectors. The homothetic double-aggregator specification described in this section offers a par-

simonious yet flexible framework that encompasses various examples of homothetic preferences

that have been used in the literature.

In the double-aggregator homothetic case, the demand shifters F and H can be expressed

as a function of the aggregator Λ only, while demand depend on both Λ and the ideal price

index P :

qi =
w

H(Λ)P
Di

(
F (Λ)pi
P

)
(36)

where aggregator Λ can be implicitly defined by the budget constraint as in equation (24).

The ideal price index P is then implicitly defined by the following equation:

∑
i

∫ piF (Λ)

P

y=yi0

Di(y)dy −
∫ Λ

λ=Λ0

F ′(λ)H(λ)dλ = c0. (37)

Similarly, utility U can be implicitly defined as the solution of:

∑
i

∫ qiH(Λ)

U

q=qi0

D−1
i (q)dq −

∫ Λ

λ=Λ0

H ′(λ)F (λ)dλ = c1 (38)

25



where c0, c1 and Λ0 are constant terms. Note that Λ is such that the partial derivative of the

left-hand side w.r.t Λ is null for both (37) and (38). It is also straightforward to check that the

implicit solution for utility in (38) is homogeneous of degree one in quantities q.

In spite of imposing homotheticity, this specification offers rich price effects, especially if we

compare them to CES preferences: it allows for a flexible specification of each demand curve

thanks to Di, and allows for competition (through the aggregator Λ) to shift demand curves

vertically (through the price shifter F ) or horizontally (through the quantity shifter H).

Below we review several special cases of the homothetic demand described in (36), including

the three cases presented in Matsuyama and Ushchev (2017) and Feenstra (2018)’s QMOR:

Homothetic Single Aggregator. This Gorman-Pollak demand system is homothetic if and

only if H(Λ)F (Λ) is constant or if it is CES. In the former case, without loss of generality we

assume that F (Λ) = 1/H(Λ) = Λ. A homogeneous utility representation is then given by:

logU(q) = log(Λ) +
∑
i

∫ qi/Λ

x=xi0

D−1
i (x)dx

where Λ is such that
∑

i(qi/Λ)D−1
i (qi/Λ) = 1, and xi0 are constant terms. In this case, the

single aggregator Λ is homogeneous of degree one in quantities qi in the primal version. We

can also express Λ as a function of prices pi, and write expenditure shares as:

piqi/w = Λpi Di (Λpi) . (39)

This specification is particularly attractive for empirical purposes, as it allows for flexible de-

mand curves Di and yet a single aggregator Λ to capture income as well as all other prices.

Homothetic Direct Implicit Additivity. When H(Λ) = 1 is constant, utility can be de-

fined implicitly with a simple expression that does not involve aggregator Λ. In the homothetic

case, this yields: ∑
i

∫ qi
U

q=qi0

D−1
i (q)dq = 1. (40)

This case is described in Matsuyama and Ushchev (2017), and also corresponds to Kimball

(1995) when D−1
i is identical across goods. Demand for good i corresponds to:

qi = (w/P )Di (Λpi/P ) (41)

where Λ can again be defined implicitly by the budget constraint.
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Homothetic Indirect Implicit Additivity. Symmetrically, when F (Λ) = 1, indirect utility

and the price index can be defined implicitly without involving aggregator Λ. For the ideal

price index, we obtain: ∑
i

∫ pi
P

y=yi0

Di(y)dy = 1. (42)

In this case, demand corresponds to:

qi =
wDi (pi/P )∑
j pjDj (pj/P )

. (43)

Homothetic semi-separability. In the case of semi-separable preferences, we obtain explicit

expressions for both the price index and utility. Suppose that the price index is defined by:

P−η = ηΛη
∑
i

Si(Λpi) = Λη
∑
i

(Λpi)Di(Λpi)

with Di = −S ′i and η > 0, and with Λ implicitly defined by the second equality. The integra-

bility condition on elasticities imposes that price elasticities εDi are either always greater or

always smaller than −(η + 1) across all goods and price levels.27 Based on this specification,

demand for good i is then:

qi = wP ηΛη+1Di(Λpi).

In this homothetic case, an interesting property is that direct semi-separability is equivalent to

indirect semi-separability, and utility can alternatively be defined by:

U
η

1+η = Λ
η

1+η

∑
i

∫ qi/Λ

0

D−1
i (q)dq

where Λ can be defined as a function of q such that the derivative of the expression above is

null. Note also that the three special cases of homothetic preferences discussed above (HSA,

HDIA and HIIA) are distinct from this type of demand. The invariance properties of such a

demand system can be useful for tractability (see Proposition 8 in Section 5.2).

Symmetric QMOR. QMOR preferences have first been studied by Diewert (1976) and

more recently studied by Feenstra (2018) imposing some symmetry in the price effects. Take

Di(y) = αiy
r−1 + βiy

κr−1 and F (Λ) = Λ and H(Λ) = Λr−1 with r < 0 and κ ∈ (0, 1). In this

27In the later case, apply Proposition 5 with a change in variable Λ′ = 1/Λ.
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case, we can obtain an explicit expression both for the price index and the aggregator Λ:

P r =
∑
i

αip
r
i +

(∑
i

βip
κr
i

) 1
κ

; Λ−κr =
∑
i

βi

(pi
P

)κr
.

Demand is then:

qi =
w

P

(pi
P

)r−1
[
αi + βi

(
Λpi
P

)−r(1−κ)
]
.

Note that this is a special case of the non-homothetic QMOR presented earlier. With κ = 1/2,

symmetric αi = α and βi = β, we obtain the symmetric QMOR specification as in Feenstra

(2018). When α > 0 and β < 0, note that we get a finite reservation price (choke price). We

discuss such possibility below in Section 4.4.

Other examples. Yet other examples of homothetic demand with two aggregators are the

homothetic translog and linear demand, discussed below in Section 4.4 and in the Appendix.

4.3 Double-shifter demand system

Thisse and Ushchev (2016) show that the following demand system can be obtained by aggre-

gating over many consumers who make indivisible consumption choices among horizontally-

differentiated product varieties:

qi = Q(p/w)Di(F (p/w)pi/w) (44)

where Q and F are two aggregators, i.e. two continuously-differentiable mappings from R
N
+ to

R
N
+ , and Di is a continuously-differentiable mappings from R+ to R+. Note that the budget

constraint implies: Q(p/w) = 1/
∑

j(pj/w)Dj(F (p/w)pj/w).

For instance, aggregate consumption that mimics indirectly-additive preferences can be

obtained by aggregating over consumers with multinomial logit idiosyncratic utility terms. As

discussed in Thisse and Ushchev (2016), more general aggregate consumption patterns can be

obtained with alternative distributions of random utility terms across consumers.

The demand system specified in equation (44) is easy to manipulate, estimate, and provides

a natural extension of directly-additive and indirectly-additive preferences which only include

one of the two demand shifters. For instance, this specification of demand is used in Arkolakis

et al. (2019) to obtain a so-called “gravity equation” for aggregate trade between countries,

in a model with heterogeneous firms and asymmetric countries. Arkolakis et al. (2019) give

examples of demand with such structure but do not provide a micro-foundation for the more
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general functional form.

At first sight, this does not appear to be a special case of the demand systems used in

Proposition 2 and 5, which assume that the indirect utility V to be one of the two aggregators.

However, with symmetry and rank arguments, we can show that the triplet of gradients of

F , Q and V cannot have a rank higher than two if the demand system is integrable. Hence,

such demand can actually be re-expressed using shifters that are functions of just utility V and

another aggregator Λ.

Proposition 6 Suppose that the demand system takes the form given by (44), that it is inte-

grable, and that the pair of gradients
{

∂Q
∂ log p

, ∂F
∂ log p

}
has rank two for all (p, w). Demand can

then be written as:

qipi/w = Q̃(Λ, V )Di(F̃ (Λ, V )pi/w) (45)

for some functions Q̃ and F̃ of indirect utility V and a common aggregator Λ.

Hence, when such demand is integrable (with a representative consumer) it can be seen as

a special case of the demand systems examined in Proposition 5.

Such a demand system correspond to Gorman-Pollak demand with a single aggregator when

Q and F can be written as a function of a single aggregator Λ instead of two aggregators (Λ, V ),

but in this case the gradients of the two aggregators, ∂Q
∂ log p

and ∂F
∂ log p

, must be colinear.

4.4 Demand with choke prices

In various applications, demand from a consumer may be equal to zero if the price of a good

is too high. Such upper bound is called a choke price or reservation price. This is an often

desired feature for estimation, as zeros are prevalent in microdata at the finest level, and for

applied modeling, e.g. to generate non-trivial extensive margins and explain selection across

markets.28 One would want such choke price to be an equilibrium outcome, and depend on

consumer income and the toughness of competition. For instance, there is substantial evidence

(see e.g. Hummels and Klenow, 2005) that richer consumers buy a larger variety of products.

The Gorman-Pollak and double-aggregator demand system studied above can be accommo-

dated to yield such choke prices. With a demand structure as in Proposition 5, suppose that

Di(yi, V ) = 0 for all yi ≥ ai(V ) in the double-aggregator case —this becomes Di(yi) = 0 for

28Choke prices are particularly useful in international trade to explain why less efficient firms are less likely
to export to a specific market (without having to rely on export fixed costs) and to obtain gravity equations as
shown in Melitz and Ottaviano (2008) and Arkolakis et al. (2019) among others.
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all yi ≥ ai in the single-aggregator case (Gorman-Pollak demand, Proposition 3). Most of the

results shown previously hold if, with a slight abuse of notation, we define D−1
i (0, V ) = ai(V ).

In this framework, the choke price p∗i depends on income, utility and the aggregator Λ. For

a consumer with income w, aggregator Λ and utility V , demand for good i is null if and only if:

pi ≥ p∗i =
ai(V )w

F (Λ, V )
.

With a single aggregator, the choke price has a more restrictive functional form: p∗i = aiw
F (Λ)

.

The choke price is proportional to income when preferences are indirectly additive since

the terms ai and F are constant in this case. Bertoletti et al. (2018) exploit this property to

obtain a tractable model of trade and argue that it fits key patterns of how prices vary with

income and population across markets. 29 A similar property can be obtained with implicitly

indirectly additive preferences (see Section 4.1) as the choke price would then just depend on

income and utility.

The most simple case of demand with choke prices is one that is linear in its own price.

As shown in the Appendix, there are various ways to generate such demand with one or two

aggregators that influence how other prices and income shift demand vertically and horizontally.

Another tractable example used in the macroeconomic and trade literature is the Translog

expenditure function (Feenstra, 2003; Novy, 2013). A typical assumption is that the cross-

price elasticities are symmetrical. Demand associated with Translog can then be expressed as

a function of a single aggregator Λ even when some varieties are not consumed (see Appendix),

with expenditure shares taking the form:

piqi/w = αi − γ log(Λpi/w)

with a choke price p∗i = exp(αi/γi)w/Λ.

Yet another example of preferences with two aggregators generating choke prices is QMOR

and its non-homothetic extension described earlier, with choke prices arising with βi(V ) < 0.

5 An application to monopolistic competition

Summarizing other prices by a one or two aggregators is particularly useful for applications

to imperfect competition, because such aggregators synthetise all relevant information on a

firm’s competitors. Under monopolistic competition, assuming that each firm has a negligible

29See Fally (2019) for a generalization of Arkolakis et al. (2019) and Bertoletti et al. (2018) on the gains from
trade, using demand with a single aggregator and a choke price.
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market share (as in Dixit and Stiglitz, 1977), this aggregator can be taken as given by a specific

firm.30 This facilitates theoretical analysis of the equilibrium as well as empirical estimation,

while allowing for flexible equilibrium outcomes and comparative statics. This section discusses

additional restrictions needed for such applications with a continuum of goods, then examines

a simple general-equilibrium model with free entry under monopolistic competition to illustrate

the role of modeling choices on the demand side.

5.1 With a continuum of goods

Models of monopolistic competition typically assume a continuum of product varieties,31 where

each variety accounts for a measure zero of aggregate expenditures. Here we discuss additional

assumptions that should be imposed on the structure of demand such that it is well defined

and well behaved on a continuum.

The discussion provided here fits within the framework of Parenti et al. (2017). A first

assumption is that the set of potential varieties is compact and is included in [0, N̄ ]; such

assumption is typically not restrictive and this upper bound N̄ not binding in equilibrium if

there is a fixed cost of producing a new variety and if N̄ is large enough. A consumption

profile q is now defined as a mapping from [0, N̄ ] to R≥0 that belongs to L2([0, N̄ ]), i.e. such

that its square has a finite integral sum.32 In this framework, utility and the aggregator Λ

are two functionals, i.e. real valued functions defined over L2([0, N̄ ]). They are assumed to be

symmetric over [0, N̄ ], i.e. that consumers are indifferent to switching labels across products i;

here, this implies that function Di = D is identical across all goods i.

While strict quasi-concavity implies that consumers exhibit love for variety, we need to

assume that utility does not drop too much when the quantity consumed qi = 0 is zero for

a non-trivial measure of goods. To be more precise, here we assume
∫ a

0+ D
−1(x)dx < ∞ (a

finite integral sum around zero). This implies that the expenditure share on a range of goods

is zero in the limit if the quantity for these goods goes to zero (i.e. no good is essential):

limqi→0+ qiD
−1(qiH(Λ, U), U) = 0. A sufficient condition for these properties to hold is that

30The tools developed by Anderson et al. (2018) could be used in this case, using Λ as an aggregate. Under
Bertrand competition, a firm with non-negligible market share would account for the effect of its own price
on Λ, holding other prices as given. Under Cournot competition, a firm would account for the effect of its
own production quantity on Λ, holding other quantities as given, using the inverse demand formulation and
specifying Λ as a function of quantities instead of prices.

31The use of a continuum mostly originated from Industrial Organization (e.g. Vives, 1990) , and is popular
in macroeconomics and international trade (e.g. Romer (1990), Grossman and Helpman, 1991, Melitz, 2003).

32L2([0, N̄ ]) is a natural space on which to define consumption profiles as it is a Hilbert space and includes all
bounded consumption profiles. Parenti et al. (2017) use this property to prove existence of an equilibrium. A
less elegant alternative to obtain completeness would be to assume an uniform upper bound on the consumption
profile q within a consumer’s budget set if such upper bound is not binding in equilibrium.
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the elasticity of D is strictly larger than unity (or infinite) in the limit where the quantity of a

good goes to zero.

Extending Proposition 5 to a continuum, utility U(q) needs to satisfy:∫ N̄

i=0

∫ qiH(Λ,U)

q=0

D−1(q, U) dq di − G(Λ, U) = 0 (46)

where aggregator Λ is itself an implicit solution to:∫ N̄

i=0

qiD
−1(qiH(Λ, U), U)di = F (Λ, U) (47)

and where D−1, H, F and G are continuously differentiable real functions with ∂G
∂Λ

= ∂H
∂Λ
F .

Uniqueness of (Λ, U) is ensured by assuming that εDεF < εH and that the left-hand-

side of (46) has a negative partial derivative in U . A sufficient condition for existence of Λ

(conditional on U) is that D−1(qiH(Λ,U),U)
F (Λ,U)

takes on values from +∞ to 0 over the range of Λ.

Existence of utility is then guaranteed if we combine the following two conditions: i) we assume

that
∫ qiH(Λ,U)

q=0
D−1(q, U)/G(Λ, U)dq spans from +∞ to 0 as utility decreases (holding Λ and qi

constant); ii) we assume that it goes to zero as Λ tends to zero, for a any given U and qi.

Finally, a key assumption imposed by Parenti et al. (2017) is that utility is Frechet-

differentiable in any q ∈ L2[0, N̄ ], which provides a rigorous definition of marginal utility

in this context with a continuum of goods. Conditions to ensure Frechet-differentiability of U

and Λ are discussed in the Appendix.33

While we focus here on symmetric demand, we refer to Bertoletti and Etro (2022) for a

discussion of the assumptions and approximations required under monopolistic competition

when preferences are asymmetric across product varieties.34

5.2 Market size effects

To illustrate the role of the demand side and in particular how assumptions and modeling choices

influence key outcomes, the remainder of this section examines a simple general-equilibrium

model with free entry under monopolistic competition with homogeneous firms. In particular,

the goal is to examine how changes in market size (either from changes in population or income)

affect firm size, prices, and the number of firms, depending on functional form assumptions on

the demand side. A more elaborate study with heterogeneous firms, several markets, and richer

33Here one might be able to relax the requirement of Frechet differentiability given the existence of one or
two aggregators summarizing all cross-price effects.

34Alternatively, one could also examine competition over a discrete number of goods, and take the limit to
infinity, as in Vives (1987). Income effects would decline at a rate 1/

√
N , or faster, with the number of goods.
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interactions, is however beyond the scope of the present paper.

Model setup. Consider a single economy with a population L of identical consumers. There

is a continuum of products, each of them produced by a single firm, where N denotes the mea-

sure of active firms. There is free entry of firms, who compete under monopolistic competition.

Consumer preferences are described by those in the previous sub-section, with utility U and

aggregator Λ satisfying equations (46) and (47).

There is only one factor of production, labor. We assume that w is the efficiency of each

worker, and L is the number of workers, so that Lw is the supply of labor in efficiency units.

We normalize the return of a unit of labor to unity, so that individual income is w.

All firms have access to the same technology and cost structure, so firms are homogeneous.

Q denotes total production by firm, while q = Q/L is the quantity consumed by variety and

by worker. For each firm, the cost of producing Q is given by a constant marginal cost c and a

fixed cost f , hence total costs equal C(Q) = cQ+ f in terms of efficiency units of labor. With

a continuum of firms under monopolistic competition, each firm takes aggregates as given and

unaffected by its decisions, including utility U and the aggregator Λ.

In all cases below, we assume that the price elasticity of demand is strictly larger than

unity (in absolute terms), to ensure finite markups, and that the second order condition in

profit maximization is satisfied. In terms of inverse demand, this implies that QD−1(Q,U) is

concave and has a negative second derivative in Q.

Equilibrium conditions. Two equilibrium conditions describe the supply side. First, firms

maximize profits. Sales for each firm are equal to production Q = Lq times the price p =

wD−1(HQ/L,U)/F where F and H themselves depend on aggregator Λ and utility U . Profits

are thus: π = maxQ{Qw D−1(HQ/L,U)/F − cQ − f}. Maximizing over Q (taking Λ and U

as constant under monopolistic competition) leads to the usual first order condition relating

markups and the inverse of the price elasticity of demand:

p− c
p

= −(HQ/L) (D−1)′(HQ/L,U)

D−1(HQ/L,U)
≡ 1/σ (48)

with p/w = D−1(HQ/L,U)/F . The right-hand side is the inverse of the price elasticity of

demand, σ(HQ/L,U), which can be expressed as a function of utility U as well as consumption

quantity Q/L multiplied by the quantity shifter H(Λ, U).

Next, free entry implies that firms make zero profits in equilibrium: π = 0. Hence, the price
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p is equal to the average cost for each firm:

p = wD−1(HQ/L,U)/F = (cQ+ f)/Q. (49)

Two equilibrium conditions describe the demand side: equations (46) and (47) described

above. With symmetry across product varieties, utility U is such that:

N

∫ H(Λ,U)Q/L

q=0

D−1(q, U)dq = G(Λ, U) (50)

while the budget constraint can be written:

(NQ/L) D−1(H(Λ, U)Q/L , U) = F (Λ, U). (51)

Note that combining the budget constraint (51) and the free entry condition (49) leads to

N(cQ + f) = Lw (regardless of the demand system), which we will refer to as the “resource

constraint”.

We define an equilibrium as a set (Q,N,U,Λ) satisfying conditions (48), (49), (50) and (51).

Market size effects across preferences specifications. A central question, with implica-

tions for various fields in economics, is how prices and firm size depend on market size, where

market size itself can be thought of as the product of population and per capita income. As

shown in e.g. Parenti et al. (2017), in such a model we already know that price p and firm size

Q are independent of income w when preferences are directly additively separable; independent

of population L when preferences are indirectly additively separable; and fully determined by

total GDP when preferences are homothetic.

Here, first we show that single-aggregator demand can generate a wide range of comparative

statics in terms of key outcomes. Conversely, we can construct various demand systems that

maintain independence of firm size and prices with respect to population L or income w. Finally,

even with the most general form of demand in aggregator Λ and utility V , we still obtain sharp

welfare comparisons to the first-best allocation.

In all these cases, comparative statics depend crucially on whether demand is “superconvex”

or “subconvex” (see e.g. Mrázová and Neary, 2013). We say that demand is superconvex if the

price elasticity of demand σ increases with sales (i.e. if εσ > 0), and subconvex if σ decreases

with sales (if εσ < 0). As earlier, εF and εH denote the elasticity of F and H in Λ. We start

with Gorman-Pollak demand with a single aggregator Λ:

Proposition 7 Suppose that demand is Gorman-Pollak with a single aggregator and that the

second-order condition for profits maximization is satisfied:
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i) For any value of fixed and marginal costs, an equilibrium exists and is unique.

ii) Comparative statics in firm size Q (with opposite effects on prices p) are described in

Table 1, with all possible combinations of signs depending on the sign of εσ, εH and εF .

Table 1: Comparative statics: market size effects on production Q

Sign of effect on Q Subconvex case (εσ < 0) Superconvex case (εσ > 0)

Effect of L Effect of w Effect of L Effect of w
εH = 0 & εF > 0 (DA) (+) (0) (–) (0)
εH > 0 & εF = 0 (IA) (0) (–) (0) (+)
εH < 0 & εF < 0 (–) (+) (+) (–)
εH < 0 & εF > 0 (+) (+) (–) (–)
εH > 0 & εF < 0 (–) (–) (+) (+)
εH > 0 & εF > 0 (+) (–) (–) (+)

Notes: Sign of the effect of an increase in population L and income w on produc-
tion Q in the single-aggregator case (Gorman-Pollak demand); effects on prices are
opposite; effects of increases in L and w on the aggregator Λ are always positive.
DA: directly-additive; IA: indirectly-additive separable preferences

This proposition (see proof in the Appendix) highlights the usefulness of demand with a

single aggregator. First, having demand depend on just a single aggregator Λ, aside from the

price or quantity, greatly simplifies the analysis of the market equilibrium and automatically

implies uniqueness. Thanks to an envelope theorem argument, the free entry condition implies

a tight positive relationship between market size proxies (L and w) and the aggregator Λ, which

can be used as an indicator for the toughness of competition.

In the meantime, such demand is sufficiently flexible to generate a wide range of comparative

statics, thanks to the different effects of the aggregator on the price shifter F and the demand

shifter H. Those respectively determine the signs of the effects of population and income on

firm size, with all combinations possible. These signs are switched in subconvex (εσ < 0) vs.

superconvex cases (εσ > 0). In particular, this offers more flexibility than direct and indirect

additive separability (first two rows of Table 1).

With increasing returns to scale, the effects on prices are always opposite to those on firm

size. Moreover, given the resource constraint cQ + f = Lw/N , changes in firm size dictate

whether entry increases or decreases relative to total income Lw. In the case where an increase

in market size leads to larger firm size, it is actually possible that the number of firms N

decreases (with an increase in either population L or income w).

In a more detailed analysis, Bertoletti and Etro (2021) also study market size effects within a

similar model and demand structure, imposing either εH = 1 or εF = 1, and examine extensions

with heterogeneous firms.
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Analysis with demand that depends on both aggregator Λ and utility V is more difficult,

because both can be influenced by the toughness of competition. In particular, the equilibrium

is not always unique with more general demand patterns. We discuss several cases below where

simple sufficient conditions for uniqueness can still be obtained.

For instance, a variety of comparative statics can also be achieved with (directly or indi-

rectly) implicitly-additive preferences. Based on the specification of equation (27), the price

elasticity of substitution can be a flexible function of both quantities Q/L and the level of

utility U , which itself depends on the number of firms N . As shown by Parenti et al. (2017),

flexibility with respect to these two arguments allows generating a wide gallery of comparative

statics (see Appendix). In the empirically-relevant case where the price elasticity is decreasing

with firm size (subconvex demand) and decreasing with utility (as estimated in Faber and Fally,

2020 and Auer et al., 2021), the equilibrium is unique, and firm size Q decreases with income

while prices increase with income. Qualitatively, a larger population L can lead to either larger

or smaller firms in equilibrium, depending on the shape of demand and income effects.

Conversely, for tractability, one may ask whether firm size and prices can remain indepen-

dent of either population or income with preferences that are neither directly nor indirectly-

additive. The following proposition extends these convenient properties to the semi-separable

preferences described in Section 4.1:

Proposition 8 Suppose that preferences are semi-separable, as defined in Section 4.1, and that

demand is either subconvex or superconvex (i.e. the sign of εσ does not flip):

i) If preferences are directly semi-separable, firm size Q and price p do not depend on

income w. If εH < 0, the equilibrium is unique (sufficient condition). If, in addition,

demand is subconvex (εσ < 0), firm size increases with population L.

ii) If preferences are indirectly semi-separable, firm size Q and price p do not depend on

population L. If εF > 0, the equilibrium is unique (sufficient condition). If, in addition,

demand is subconvex (εσ < 0), firm size decreases with income w.

With both direct and indirect semi-separability, we can also easily show (see Appendix)

that existence of an equilibrium is guaranteed when the demand for a good (conditional on its

own normalized price) spans from zero to infinity over the range of the aggregator Λ, as we

assume here.

In the case of directly semi-separable preferences (i), uniqueness can be shown by expressing

firm size Q as a function of Λ using the markup equation and expressing aggregator Λ as a
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function of Q by combining equations (50) and (51); the latter yields a condition such as

equation (30) that is independent of utility and the number of firms N . As shown in the

Appendix, a simple condition such as εH < 0 ensures that these two relationships have a

unique fixed point.35 Moreover, income (or utility) does not appear in these relationships,

which implies that equilibrium firm size does not depend on income w. If firm size does not

change as income increases, the number of firms must then increase proportionally with income,

given the resource constraint N(cQ+ f) = Lw.

The case of indirectly semi-separable preferences (ii) is similar but relies on the dual. Using

the markup equation for prices instead of quantities, one can uniquely express prices as a

function of aggregator Λ. In turn, equation (33) characterizes the aggregator as a function of

prices and income. Neither equation depends on population L, and a simple condition such

as εF > 0 ensures that these relationships have a unique fixed point. The equilibrium is then

unique and firm size does not depend in population L. Again, the resource constraint implies

that the number of firms N is proportional to population.

Finally, another type of independence is obtained for homothetic preferences. In this case,

the results of Parenti et al. (2017) also apply: production Q, the number of firms N and prices

p (relative to the unit cost of labor) depend only on total GDP (i.e. Lw) and do not depend

on L and w individually, conditional on total GDP.

Proposition 9 Suppose that preferences are homothetic, as defined in Section 4.1, and that

the second-order condition for profits maximization is satisfied:

i) If demand is subconvex (εσ < 0) and εH < 0, the equilibrium is unique and firm size

increases with market size.

ii) If demand is superconvex (εσ > 0) and εH + εF < 0, the equilibrium is unique but an

increase in market size does not necessarily lead to an increase in firm size.

iii) If preferences are homothetic and semi-separable, firm size and prices depend on neither

population nor income.

The case of homothetic semi-separable preferences is noteworthy (iii), as it leads to firm

size, markups and prices that are independent of market size (both income w and population

L) in equilibrium. This property is the same as with CES demand, except that it allows for

more flexible demand curves and variable markups. It can be practical in situations where one

would want to shut down such adjustment channels on firm size for simplicity and tractability.

35See Appendix for weaker sufficient conditions and additional comparative statics.
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Taken together, these examples illustrate how functional form assumptions made on the

demand side influence key results on market size effects related to firm size, entry, and prices

in general equilibrium models. These results highlight the need for flexible forms (unless we

want to purposefully shut down some specific channels) and show how demand with one or two

aggregators (Λ and U) can provide a rich and tractable framework.

Entry relative to the first-best allocation. Last but not least, a central question is

whether entry is welfare maximizing, excessive, or insufficient. Following the insights from

Matsuyama and Ushchev (2020), one can obtain a clear and simple answer even in the most

general case with both aggregators Λ and V (as in Proposition 5), depending on whether

demand is subconvex or superconvex.

Looking first at the demand side, one can see that the relative welfare gains from increased

variety d logN vs. increased consumption d logQ (per variety) are determined by:

dU
d logN

dU
d logQ

= v
(
H(Λ)Q/L , U

)
where v(q) is the inverse of the elasticity of

∫ q
q′=0

D−1(q′, U) dq′ w.r.t q. We can interpret v(q)

as capturing the relative gains from product variety. At the first-best allocation, i.e. optimal

entry N and production Q given the resource constraint cQ + f = Lw/N (total costs across

all firms equal total GDP), the indifference curve in terms of N and Q must be tangent to the

manifold in N and Q implicitly defined by the resource constraint, and thus the relative gains

from variety must equal the ratio of average costs to marginal costs:36

v
(
H(Λ)Q/L , U

)
=

cQ+ f

cQ
. (52)

The market equilibrium, however, imposes that the ratio of average cost over marginal cost

must be equal to the relative markup p/c (zero profit condition), which itself is determined by

the price elasticity of demand:
cQ+ f

cQ
=

σ

σ − 1
(53)

where σ = σ
(
H(Λ)Q/L , U

)
is a function of utility U , production Q and the price aggregator.

Hence, entry is excessive (resp. insufficient) when the gains from variety v is smaller (resp.

larger) than the markup σ
σ−1

. As discussed for instance in Vives (1999),37 markups capture the

36Note that, given the resource constraint, inefficient entry N is equivalent to inefficient firm size Q.
37Vives (1999) uses Spence (1976) quasi-linear preferences in partial equilibrium but the comparison between

markups and gains from variety plays a similar role in such setting.
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gains from variety on the supply side and must equal the gains from variety on the demand

side if we are in a welfare-maximizing allocation.

As Matsuyama and Ushchev (2020) pointed out, one cannot rank these two statistics in

general without additional structure. In their analysis, they focus on three cases of homothetic

preferences (discussed in Section 4.2). Here, we extend their insight by considering the prefer-

ences described in Proposition 5 (in U and Λ), where movements along indifference curves can

still be expressed as changes in a single scalar variable Λ. As in Matsuyama and Ushchev (2020),

this allows us to rank markups and the gains from variety depending on whether demand is

subconvex or superconvex. We obtain the following proposition:

Proposition 10 Suppose that demand is as in Proposition 5. Comparing the market equilib-

rium to the first-best allocation:

i) If demand is subconvex (εσ < 0), there is excessive entry (v < σ
σ−1

).

ii) If demand is superconvex (εσ > 0), there is insufficient entry (v > σ
σ−1

).

This result crucially relies on having a synthetic price aggregator (conditional on utility) and

would not be obtained if demand depended on two or more aggregators in addition to utility.

6 Concluding remarks

Economists have often focused on demand systems where prices are conveniently summarized by

a single aggregator, and where demand depends solely on such an aggregator, total expenditures

and a good’s own price (“generalized separability”, following the terminology of Pollak 1972).

Here I show that such a demand system can take only one of two forms when price effects are

not trivial. This result was already known by Pollak (1972) and Gorman (1972) but has not

been formally demonstrated and is not well known today in spite of its usefulness. Furthermore,

I show that these two types of demand systems can be rationalized (i.e. can be derived from

well-behaved utility functions) under fairly mild regularity restrictions that guarantee a well-

behaved quasi-concave utility.

The first case of demand allows for flexible price effects but more restricted income effects.

This case encompasses directly and indirectly additive preferences, and homothetic demand

with a single aggregator described in Matsuyama and Ushchev (2017).

The second case of demand allows for flexible income effects (Engel curves) but more re-

stricted price effects; Allen-Uzawa substitution elasticities have to be constant across goods to

ensure the symmetry of the Slutsky matrix but they may increase or decrease with utility, and
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thus vary indirectly with income. In that second case, the aggregator actually coincides with

indirect utility.

This paper further extends these results to demand systems that allow for a price aggre-

gator as well as indirect utility (which can be interpreted as an additional aggregator), thus

allowing for combinations of the two cases of demand mentioned above. We can again charac-

terize the functional form that such demand must take, provide sufficient conditions to ensure

that it can be rationalized, and characterize the utility function associated with such demand

systems. This allows for greater flexibility and encompasses a wider set of demand systems fre-

quently used in the literature, thus providing a unified general structure. Special cases include

implicitly-additive preferences, all three types of homothetic demand described in Matsuyama

and Ushchev (2017), QMOR preferences as in Feenstra (2018), and double-aggregator demand

as in Thisse and Ushchev (2016) and Arkolakis et al. (2019).

There can be numerous applications and uses of such demand systems with a price aggre-

gator. Recent research in macroeconomics, international trade, industrial organization, and

development economics has highlighted in different contexts the crucial role of the demand

side and its interactions with income disparities, fostered by an increased availability of precise

micro-data on consumption baskets across households, such as scanner data. This paper aims

to provide useful tools to model richer price and income effects in a tractable manner, for both

theoretical and empirical applications. For instance, we show that having a single-aggregator

helps in obtaining uniqueness of equilibrium, providing simple criteria for comparative statics,

and drawing sharper conclusions in terms of excessive entry relative to a first-best allocation,

in spite of allowing for richer demand patterns.
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Appendix: Proofs and additional derivations

Proposition 1

Preliminaries: Inverse demand Consider the demand system:

qi = q̃i(pi/w,Λ(p/w)).

Following condition [A1]-iv), for the sake of exposition we assume for the most part that for any
q ∈ RN+ , there exists a vector of normalized prices p/w ∈ RN+ that generates demand q, i.e. such that
qi = q̃i(pi/w,Λ(p/w)).38

First, note that Λ can be seen an implicit function of normalized prices pi/w such that the budget
constraint holds, i.e. such that: ∑

i

(pi/w) q̃i(pi/w,Λ) = 1.

If we assume that each qi(pi/w,Λ) is strictly decreasing in Λ (here we assume a strictly negative
derivative), the solution in Λ is unique and continuously differentiable.

Since we assume that expenditure shares (pi/w) qi(pi/w,Λ) monotonically decreases or increases
with prices (holding Λ constant), demand can be inverted such that expenditure shares can be obtained
as a function of qi and the aggregator Λ:

qipi/w = Wi(qi,Λ)

i.e. such that (pi/w)q̃i(pi/w,Λ) = Wi(q̃i(pi/w,Λ),Λ) for any Λ = Λ(p/w) and p/w ∈ RN+ . As demand
q̃i(pi/w,Λ) has a strictly negative derivative in Λ (by assumption), by the implicit theorem we can
also conclude that Wi has a strictly negative derivative in Λ. Then we can also redefine Λ as an
implicit differentiable function Λ(q) of the vector of quantities such that the budget constraint holds,
i.e. such that:

∑
iWi(qi,Λ) = 1. As an abuse of notation, Λ denotes the aggregator both as a function

of normalized prices and as a function of quantities q given that they coincide when q is the demand
associated with normalizes prices p/w.39

In the remainder of the proof, since we focus on inverse demand, Λ primarily refers to such a
function of quantities q rather than normalized prices p/w.

Proof of Proposition 1

As described just above, the proof of Proposition 1 relies on the inverse demand function (using
expenditures shares Wi(q,Λ) as functions of quantities and the aggregator Λ) rather than direct
demand, and Λ is defined as a function of quantities q), where Wi(qi,Λ) is twice differentiable with a
negative derivative in Λ and non-zero derivative in qi

Differentiating the budget constraint
∑

iWi(qi,Λ) = 1 w.r.t. qi implies:

εj(qj ,Λ) =
S(q)

Wj

∂Λ

∂ log qj
(54)

38Alternatively, Proposition 1 applies to the image Q =
{
q ; qi = q̃i(pi/w,Λ(p/w)) > 0, p/w ∈ RN+

}
⊂ R

N
+ .

39As a side note, we can also show that iso-Λ curves are connected, which implies that if any differentiable
function of q that have a gradient that is proportional to the gradient of Λ (w.r.t. q) can be expressed as a
function of Λ.
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where εj(qj ,Λ) ≡ ∂ logWj

∂ log qj

∣∣∣
Λ

denotes the elasticity w.r.t. own quantity qj , holding aggregators constant,

and where S(q) ≡
∑

i
∂Wi
∂Λ (q,Λ(q)) is strictly negative.

For such a demand system to be integrable and satisfy Slutsky symmetry, there must exist a utility
function U(q) and another real function λ such that λ(q) > 0 and:

∂U

∂ log qi
= λ(q)Wi(qi,Λ(q))

for any q. As mentioned in the text, we further assume that U is twice continuously differentiable.
Differentiating again, we obtain:

∂U

∂ log qi∂ log qj
=

∂λ

∂ log qj
Wi + λ

∂Wi

∂Λ

∂Λ

∂ log qj
.

The existence and continuity of the derivatives imply that the cross derivative is symmetric, hence:(
1

Wj

∂ log λ

∂ log qj

)
+
∂ logWi

∂Λ

(
1

Wj

∂Λ

∂ log qj

)
=

(
1

Wi

∂ log λ

∂ log qi

)
+
∂ logWj

∂Λ

(
1

Wi

∂Λ

∂ log qi

)
Incorporating the expression from 54, this is equivalent to:(

S

Wj

∂ log λ

∂ log qj

)
+

∂ logWi

∂Λ
εj =

(
S

Wi

∂ log λ

∂ log qi

)
+

∂ logWj

∂Λ
εi.

holds for any i 6= j. Define Ai(q) = S(q)
Wj

∂ log λ
∂ log qj

(q), we obtain a key symmetry requirement that we will

exploit below:

Aj(q) +
∂ logWi

∂Λ
(qi,Λ) εj(qj ,Λ) = Ai(q) +

∂ logWj

∂Λ
(qj ,Λ) εi(qi,Λ). (55)

Next, we we can see that we will be in either of these three cases (almost everywhere) in a
neighborhood of any q:

• Q1 is the set of vectors of quantities q such that εi(qi,Λ) takes at least two different values
across goods i even if we exclude any one good.

• Q2 is the set of vectors of quantities q such that εi(qi,Λ) are identical across goods i.

• Q3 is the set of vectors of quantities q such that all εi(qi,Λ) are identical for all but one good.

For a neighborhood around q, suppose that ∂εi
∂qi

(qi,Λ)
∣∣∣
Λ
6= 0 and ∂εi

∂qj
(qj ,Λ)

∣∣∣
Λ
6= 0 for at least

two goods i and j. In that case, we can see that εi, εj and εk will differ almost everywhere in a
neighborhood of q for i, j and any third good k; hence we are in Q1 almost everywhere around q.
This is the first case considered below.

Next, suppose that ∂εi0
∂qi0

(qi0,Λ)
∣∣∣
Λ
6= 0 for just one good i0, i.e. εj(qj ,Λ) does not depend on qj for

goods other than i0 in the neighborhood of q. If εj(qj ,Λ) takes two different values across goods j,
we are in case 1. If εj(qj ,Λ) is identical across all goods j 6= i0, we are in case 3 below.
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Finally, if ∂εi0
∂qi0

(qi0,Λ)
∣∣∣
Λ

= 0 in a neighborhood of q, we are either in case 1 below (if εi takes on

at least two values even if we exclude a single good), in case 2 (if εi is identical across all goods), or
in case 3 (if εi is identical across all but one good).

Case 1 In an open set of q, suppose that εi(qi,Λ) takes at least two different values across goods i,
even if we exclude any one good.

In this case, even if we exclude a single good j, there exists a vector xi(q) such that
∑

i xi = 0 and∑
i εixi 6= 0. Multiplying Equation (55) by xi(q) and summing up across goods i (for a given j), we

obtain: (∑
i

xi
∂ logWi

∂Λ

)
εj =

(∑
i

xiAi

)
+

(∑
i

xiεi

)
∂ logWj

∂Λ
.

As
∑

i εixi 6= 0, we obtain that there exists two functions h(q) and m(q) such that:

∂ logWj

∂Λ
= h(q) εj(qj ,Λ) + m(q).

In particular, this holds also for any pair of goods i and j. Taking the difference, we get:

∂ logWj

∂Λ
− ∂ logWi

∂Λ
= h(q)

(
εj(qj ,Λ)− εi(qi,Λ)

)
.

In particular, take two goods for which εi 6= εj . Note that the left-hand side only depends on qj , qi
and Λ. This implies that h(q) can be written as a function of qj , qi and Λ only.

If we’re not in case 3, we can also find a third good i′ such that εi′ 6= εi and εi′ 6= εj . Applying
the same argument, it must be that h can be written as just a function of Λ, so we now denote h as:
h = h(Λ).

Taking again a derivative in log qj , holding Λ constant, and noticing that the cross derivative is

symmetric,
∂εj
∂Λ =

∂ logWj

∂ log qj∂Λ =
∂ logWj

∂Λ∂ log qj
, we obtain:

∂εj
∂Λ

= h(Λ)
∂εj

∂ log qj
=

∂ logH

∂Λ

∂εj
∂ log qj

(56)

where we define logH as the integral of h:

H(Λ) = exp

(∫ Λ

Λ∗
h(t)dt

)
taking any fixed reference point Λ∗. We would have then H(Λ∗) = 1 by definition (it’s also important
to notice that H does not depend on j and qj).

Using this, let’s show that differential equation (66) implies:

εj(qj ,Λ) = εj(qjH(Λ),Λ∗) (57)

To show this result, consider the function

ej(x) = εj(qjH(Λ)/H(x), x).

Taking all other variables Λ and qj as fixed, only varying x between Λ∗ and Λ. We find that the
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derivative of ej(x) w.r.t. x is zero:

e′j(x) =
∂εj
∂Λ

(qjH(Λ)/H(x), x) − ∂ logH

∂Λ
(x)

∂εj
∂ log qj

(qjH(Λ)/H(x), x) = 0.

Hence ej does not depend on x. Moreover, ej(Λ) corresponds to: ej(Λ) = εj(qj ,Λ), while ej(Λ
∗) is

such that:
ej(Λ

∗) = εj(qjH(Λ)/H(Λ∗),Λ∗) = εj(qjH(Λ),Λ∗)

given that H(Λ∗) = 1 by definition of H. Hence we get the equality between the last two expressions:
εj(qj ,Λ) = εj(qjH(Λ),Λ∗), which holds for any qj . Hence we have proven equation (57).

Integrating over qj from a reference point q∗j in the region where equality (57) holds, we obtain
that demand can be written as:

Wj(qj ,Λ)

Wj(q∗j ,Λ)
= exp

[∫ qj

q∗j

εj(q,Λ)
dq

q

]

= exp

[∫ qj

q∗j

εj(qH(Λ),Λ∗)
dq

q

]

= exp

[∫ qjH(Λ)

q∗jH(Λ)
εj(q,Λ

∗)
dq

q

]

=
Wj(qjH(Λ),Λ∗)

Wj(q∗jH(Λ),Λ∗)
.

It shows that the effect of qj on Wj is independent of Λ, provided that we adjust for the shifter H(Λ).
Next, take a fixed reference q∗j as given and define Fj as:

Fj(Λ) ≡
Wj(q

∗
jH(Λ),Λ∗)

Wj(q∗j ,Λ)
.

Taking any two goods i and j, we obtain:

log(Fj/Fi)

∂Λ
= h(Λ)

(
εj(q

∗
jH(Λ),Λ∗)− εi(q∗iH(Λ),Λ∗)

)
− ∂ logWj

∂Λ
(q∗j ,Λ) +

∂ logWi

∂Λ
(q∗i ,Λ)

= h(Λ)
(
εj(q

∗
j ,Λ)− εi(q∗i ,Λ)

)
− ∂ logWj

∂Λ
(q∗j ,Λ) +

∂ logWi

∂Λ
(q∗i ,Λ)

= 0.

Since Fj(Λ
∗) = 1 for all goods j, this implies that these functions Fj = Fi = F (Λ) is identical across

all goods.
Starting with Equation (68) and combining with the properties of F above, we finally obtain:

Wj(qj ,Λ) =
Wj(q

∗
j ,Λ)

Wj(q∗jH(Λ),Λ∗)
Wj(qjH(Λ),Λ∗)

=
1

F (Λ)
Wj(qjH(Λ),Λ∗)
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Dividing by qi, this implies that normalized price must equal:

pi
w

=
1

qiF (Λ)
Wj(qjH(Λ),Λ∗).

As we assume that demand is strictly monotonic in prices, holding Λ constant, it can be inverted such
that we can express qi as a function of pi/w and Λ. Denoting Di the inverse of 1

qi
Wj(qj ,Λ

∗) (holding
Λ∗ fixed), we obtain:

qi =
1

H(Λ)
Dj(F (Λ)pj/w). (58)

Case 2 is the simplest. Suppose that εi is the same across i’s. Since each εi(qi,Λ) depends only on
qi and Λ, it must be that these elasticities only depend on Λ, i.e.:

εj(qj ,Λ) = 1− 1/σ(Λ)

for some function σ(Λ) 6= 1.
Integrating, this implies that demand can be written as:

Wj(qj ,Λ) = Aj(Λ)
− 1
σ(Λ) q

1− 1
σ(Λ)

j (59)

for some good-specific functions Aj(Λ). This leads the demand function in the text:

q̃i(pi/w,Λ) = Ai(Λ)(pi/w)−σ(Λ).

Case 3 Suppose that εi is the same across i’s except for a single good i0. Again, since each εi(qi,Λ)
depends only on qi and Λ (except good i0), it must be that these elasticities only depend on Λ, i.e.:

εi(qi,Λ) = ε̄(Λ)

for each good i 6= i0, for some function ε̄(Λ) 6= 0. In that case, Equation (55) can be rewritten:

Aj +
∂ logWi0

∂Λ
ε̄(Λ) = Ai0 +

∂ logWj

∂Λ
εi0

for any good j 6= i0. For i 6= j and i 6= i0, we have:

Aj +
∂ logWi

∂Λ
ε̄(Λ) = Ai +

∂ logWj

∂Λ
ε̄(Λ).

Taking the difference, we obtain for any two goods j, i 6= i0:(
∂ logWi0

∂Λ
− ∂ logWi

∂Λ

)
ε̄(Λ) = (Ai0 −Ai) +

∂ logWj

∂Λ
(εi0 − ε̄(Λ)).

Taking again the difference with the same expression with a fourth good k instead of j, we obtain:

0 =

(
∂ logWj

∂Λ
(qj ,Λ)− ∂ logWk

∂Λ
(qk,Λ)

)
(εi0(qi0,Λ)− ε̄(Λ)).
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Since εi0(qi0,Λ) 6= ε̄(Λ), it implies that
∂ logWj

∂Λ (qj ,Λ) = ∂ logWk
∂Λ (qk,Λ), which must hold for any pair

of good k and j except i0. This implies that there exist some functions A(Λ) and W̃j(qj) such that

Wj(qj ,Λ) = W̃j(qj)A(Λ) for all j 6= i0. Since
∂ logWj

∂ log qj
= −ε̄(Λ), we can also conclude that ε̄(Λ) is

constant and does not depend on Λ. Thus, denoting ε̄ = 1− 1/σ, we obtain:

Wj(qj ,Λ) = wjq
1− 1

σ
i A(Λ). (60)

for some constant terms wj for each j 6= i0. We obtain the functional form in the text by inverting
and expressing qi as a function of Λ and pi/w.

Combinations of cases: Locally, for a given Λ and around it, one must be in one of these three
cases. A remaining question is whether demand can be a mixture of these three cases as Λ varies. To
finish the proof of Proposition 1, we show that we cannot combine case 1 with cases 2 and 3, hence
the functional form of case 1 needs to hold globally across all Λ’s.

Combination of cases 1+2 Here we show that we cannot have a combination of cases 1 and 2
globally. First, note that for a given Λ, case 1 and 2 are mutually exclusive by definition. Hence, if
we have a mixture of cases 1 and 2, it must occur along different Λ’s. By contradiction, suppose that
there exists Λ∗ such that, at least locally,

Wi(qi,Λ) = Wj(qjH(Λ),Λ∗)/F (Λ) if Λ < Λ∗

Wi(qi,Λ) = Ai(Λ)
− 1
σ(Λ) q

1− 1
σ(Λ)

i if Λ > Λ∗

By continuity, at the limit where Λ = Λ∗, we must have:

∂ logWi

∂ log y
= 1− σ(Λ∗).

Since it must hold for any i and any y, it implies that ∂ logWi

∂ log y = 0, which contradicts our assumption
that Wi(yi,Λ) is not locally constant across yi for any given Λ.

Combinations of cases 1+3 Here we show that we cannot have a combination of cases 1 and 3
globally, using the same arguments as above. Note again that for a given Λ, case 1 and 3 are mutually
exclusive by definition. Hence, if we have a mixture of cases 1 and 3, it must occur along different Λ’s.

By contradiction, suppose that there exists Λ∗ such that, at least locally, such that for all but one
good we have:

Wi(qi,Λ) = Wj(qjH(Λ),Λ∗)/F (Λ) if Λ < Λ∗

Wi(qi,Λ) = wjH(Λ)q
1− 1

σ
i if Λ > Λ∗.

Again, by continuity, at the limit where Λ = Λ∗, we must have:

∂ logDi(F (Λ∗)y)

∂ log y
= 1− σ.

Again, since it must hold for any i and any y, it implies that ∂ logWi

∂ log y = 0, which contradicts our
assumption that Wi(yi,Λ) is not locally constant across yi for any given Λ.
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Proposition 2

Preliminaries. As for Proposition 1, it is easier to prove Proposition 2 by examining the inverse
demand, i.e. normalized prices as a function of quantities q (here with two aggregators Λ and U).

Consider the demand system:
qi = q̃i(pi/w,Λ, V )

where V = V (p/w) is indirect utility and Λ is an implicit function of normalized prices pi/w such that
the budget constraint holds, i.e. such that:∑

i

(pi/w) q̃i(pi/w,Λ, V (p/w)) = 1.

If we assume that each q̃i(pi/w,Λ, V ) is monotonically decreasing in Λ (here we assume a strictly
negative derivative), the solution in Λ is unique.

Since we also assume that expenditure shares (pi/w) q̃i(pi/w,Λ, V ) monotonically decreases or
increases with prices (holding Λ and V constant), and since we assume that for each qi there exist
a vector of normalized prices such that q̃i(pi/w,Λ(p/w), V (p/w)), such demand can be inverted such
that there exist functions Wi such that:

qipi/w = Wi(qi,Λ, U)

i.e. such that (pi/w)q̃i(pi/w,Λ(p/w), V (p/w)) = Wi(q̃i(pi/w,Λ(p/w), V (p/w)),Λ(p/w), V (p/w)) for
any p/w. By definition, note also that direct and indirect utility are equal, V (p/w) = U(q), when
demand q is evaluated at normalized prices p/w.

As demand q̃i(pi/w,Λ, V ) has a strictly negative derivative in Λ (holding qi and V constant), by
the implicit theorem we can also conclude that Wi has a strictly negative derivative in Λ. As in the
single-aggregator case (Proposition 1), we can thus redefine Λ as an implicit function of the vector
of quantities such that the budget constraint holds, i.e. such that:

∑
iWi(qi,Λ, U(q)) = 1 when V

coincides with utility U(q).
Again, in the remainder of the proof of Proposition 2, Λ refers to a function of quantities q rather

than normalized prices.

Proof of Proposition 2

For such a demand system to be integrable (and satisfy Slutsky symmetry), there must exist a utility
function U(q) and another scale function such that:

∂U

∂ log qi
= λ(q)Wi(qi,Λ(q), U(q)). (61)

We further assume that such utility function is twice continuously differentiable. Differentiating the
budget constraint

∑
iWi(qi,Λ(q), U(q)) = 1 implies:

∂ logWj

∂ log qj

∣∣∣∣
Λ

= −
∑
i

∂Wi

∂Λ

∂Λ

∂ log qj
−
∑
i

∂Wi

∂U

∂U

∂ log qj
. (62)
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Using ∂U
∂ log qj

= λWj , we obtain:

SΛ(q)

Wj

∂Λ

∂ log qj
= εj(qj ,Λ) − SU (q)λ(q) (63)

where εj(qj ,Λ) ≡ ∂ logWj

∂ log qj

∣∣∣
Λ

denotes the elasticity w.r.t. own quantity qj , holding aggregators constant,

where SΛ(q) ≡ −
∑

i
∂Wi
∂Λ is different from zero by assumption, and where SU (q) ≡ −

∑
i
∂Wi
∂U .

Next, differentiating equation (61), we obtain:

∂U

∂ log qi∂ log qj
=

∂λ

∂ log qj
Wi + λ

∂Wi

∂Λ

∂Λ

∂ log qj
+ λ2∂Wi

∂U
Wj .

The cross derivative is symmetric as we assume that U is twice continuously differentiable. Hence,
dividing by λWiWj we obtain:(

1

Wj

∂ log λ

∂ log qj

)
+

∂ logWi

∂Λ

(
1

Wj

∂Λ

∂ log qj

)
+ λ

∂ logWi

∂U
=

(
1

Wi

∂ log λ

∂ log qi

)
+

∂ logWj

∂Λ

(
1

Wi

∂Λ

∂ log qi

)
+ λ

∂ logWj

∂U
.

Incorporating the expression from (63), this is equivalent to:(
SΛ

Wj

∂ log λ

∂ log qj

)
+

∂ logWi

∂Λ
(εj − SUλ) + λ

∂ logWi

∂U
=

(
SΛ

Wi

∂ log λ

∂ log qi

)
+

∂ logWj

∂Λ
(εi − SUλ) + λ

∂ logWj

∂U
. (64)

Define Ai(q) = SΛ
Wi

∂ log λ
∂ log qi

+ ∂ logWi

∂Λ − λ∂ logWi

∂U we get an expression that is very similar to the single-
aggregator case:

Aj(q) +
∂ logWi

∂Λ
(qi,Λ, U) εj(qj ,Λ, U) = Ai(q) +

∂ logWj

∂Λ
(qj ,Λ, U) εi(qi,Λ, U) (65)

and holds for any i 6= j.

Unlike the previous Proposition, here we directly assume that εi(qi,Λ, U) takes at least two different
values across goods i, almost everywhere, even if we exclude any one good.

In this case, even if we exclude a single good j, there exists a vector xi(q) such that
∑

i xi = 0 and∑
i εixi 6= 0. Multiplying Equation (65) by xi(q) and summing up across goods i (for a given j), we

obtain: (∑
i

xi
∂ logWi

∂Λ

)
εj =

(∑
i

xiAi

)
+

(∑
i

xiεi

)
∂ logWj

∂Λ
.

As
∑

i εixi 6= 0, we obtain that there exists two functions h(q) and m(q) such that:

∂ logWj

∂Λ
(qj ,Λ, U) = h(q) εj(qj ,Λ, U) + m(q).
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In particular, this holds also for any pair of goods i and j. Taking the difference, we get:

∂ logWj

∂Λ
(qj ,Λ, U)− ∂ logWi

∂Λ
(qi,Λ, U) = h(q)

(
εj(qj ,Λ, U)− εi(qi,Λ, U)

)
Take two goods for which εi 6= εj . Note that the left-hand side only depends on qj , qi and Λ. This
implies that h(q) can be written as a function of qj , qi, Λ and U only.

We can also find a third good i′ such that εi′ 6= εi and εi′ 6= εj . Applying the same argument, it
must be that h can be written as just a function of Λ and U , so we now denote h as: h = h(Λ, U).

Taking again a derivative in log qj , holding Λ and U constant, and noticing that the cross derivative

is symmetric,
∂εj
∂Λ =

∂ logWj

∂ log qj∂Λ =
∂ logWj

∂Λ∂ log qj
, we obtain:

∂εj
∂Λ

= h(Λ, U)
∂εj

∂ log qj
=

∂ logH

∂Λ

∂εj
∂ log qj

(66)

where we define logH as the integral of h, for a given U :

H(Λ, U) = exp

(∫ Λ

Λ∗
h(t, U)dt

)
taking any fixed reference point Λ∗. We would have then H(Λ∗, U) = 1 by definition (it’s also
important to notice that H does not depend on j and qj).

Using this, let’s show that differential equation (66) implies:

εj(qj ,Λ, U) = εj(qjH(Λ, U),Λ∗, U) (67)

To show this result, consider the function

ej(x) = εj(qjH(Λ, U)/H(x, U), x, U)

Taking all other variables Λ, U and qj as fixed, only varying x between Λ∗ and Λ. We find that the
derivative of ej(x) w.r.t. x is zero:

e′j(x) =
∂εj
∂Λ

(qjH(Λ, U)/H(x, U), x, U) − ∂ logH

∂Λ
(x, U)

∂εj
∂ log qj

(qjH(Λ, U)/H(x, U), x, U) = 0

Hence ej does not depend on x. Moreover, ej(Λ) corresponds to: ej(Λ) = εj(qj ,Λ, U), while ej(Λ
∗) is

such that:
ej(Λ

∗) = εj(qjH(Λ, U)/H(Λ∗, U),Λ∗, U) = εj(qjH(Λ, U),Λ∗, U)

given that H(Λ∗, U) = 1 by definition of H. Hence we get the equality between the last two expres-
sions: εj(qj ,Λ, U) = εj(qjH(Λ, U),Λ∗, U), which holds for any qj . Thus we have proven equation (67).

Integrating over qj from a reference point q∗j in the region where equality (67) holds, we obtain
that demand can be written as:

Wj(qj ,Λ, U)

Wj(q∗j ,Λ, U)
= exp

[∫ qj

q∗j

εj(q,Λ, U)
dq

q

]

= exp

[∫ qj

q∗j

εj(qH(Λ, U),Λ∗, U)
dq

q

]
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= exp

[∫ qjH(Λ,U)

q∗jH(Λ,U)
εj(q,Λ

∗, U)
dq

q

]

=
Wj(qjH(Λ, U),Λ∗, U)

Wj(q∗jH(Λ, U),Λ∗, U)
.

It shows that the effect of qj on Wj is independent of Λ and U , provided that we adjust for the shifter
H(Λ, U).

Next, take a fixed reference q∗j as given and define Fj as:

Fj(Λ, U) ≡
Wj(q

∗
jH(Λ, U),Λ∗, U)

Wj(q∗j ,Λ, U)

Taking any two goods i and j, we obtain:

log(Fj/Fi)

∂Λ

= h(Λ, U)
(
εj(q

∗
jH(Λ, U),Λ∗, U)− εi(q∗iH(Λ, U),Λ∗, U)

)
− ∂ logWj

∂Λ
(q∗j ,Λ, U) +

∂ logWi

∂Λ
(q∗i ,Λ, U)

= h(Λ, U)
(
εj(q

∗
j ,Λ, U)− εi(q∗i ,Λ, U)

)
− ∂ logWj

∂Λ
(q∗j ,Λ, U) +

∂ logWi

∂Λ
(q∗i ,Λ, U)

= 0.

Since Fj(Λ
∗, U) = 1 for all goods j, this implies that these functions Fj = Fi = F (Λ, U) are identical

across all goods.
Starting with Equation (68) and combining with the properties of F above, we finally obtain:

Wj(qj ,Λ, U) =
Wj(q

∗
j ,Λ, U)

Wj(q∗jH(Λ, U),Λ∗, U)
Wj(qjH(Λ, U),Λ∗, U)

=
1

F (Λ, U)
Wj(qjH(Λ, U),Λ∗, U).

Dividing by qi, this implies that normalized price must equal:

pi
w

=
1

qiF (Λ, U)
Wj(qjH(Λ, U),Λ∗, U).

As we assume that demand is strictly monotonic in prices, holding Λ and U constant, it can be inverted
such that we can express qi as a function of pi/w and Λ. Denoting Di the inverse of 1

qi
Wj(qj ,Λ

∗, U)
w.r.t. qi (holding U constant and holding Λ∗ fixed), we obtain the expression in Proposition 2:

qi =
1

H(Λ, V )
Dj(F (Λ, V )pj/w, V ). (68)
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Proof of Proposition 3

Define Ũ(q,Λ) as:

Ũ(q,Λ) =
∑
i

ui(H(Λ)qi) −
∫ Λ

Λ0

F (Λ)H ′(Λ)dΛ

where:40

ui(qi) =

∫ qi

q=0
D−1
i (x)dx

and u′i = D−1
i . Next, Λ can be defined as an implicit function of q such that:∑

i

qiu
′
i(H(Λ)qi)/F (Λ) = 1 (69)

As in Propositions 1 and 2, the remainder of the proof refers to Λ as a function of q rather than
normalized prices p/w.

We proceed in three steps. First we show that equation (69) admits a solution Λ(q) for each q and
that this solution is unique. Second we show that utility defined as U(q) = Ũ(q,Λ(q)) is well-behaved
and quasi-concave. Finally, we show that maximizing U leads to the demand function in the text,
and that the single aggregator Λ is also well defined and coincides with Λ for optimal consumption
baskets.

Step 1: Implicit function Λ(q). Here we show that for any vector q of consumption, there is a
unique Λ such that equation (69) holds.

First, using part ii) of restrictions [A3], we can see that the elasticity of Di(F (Λ)yi)/H(Λ) w.r.t.
Λ is given by εF εDi − εH which is assumed to be negative, hence it strictly decreases with Λ. Sym-
metrically, we obtain that u′i(H(Λ)qi)/F (Λ) also strictly decreases with Λ: its elasticity w.r.t. Λ is
εH/εDi − εF , which is also negative given that εDi is negative and εH − εDiεF is positive. Adding
up across goods, we obtain that the left-hand side of equation (69) decreases strictly with Λ. This
implies that the solution to equation (69) is unique (if it exists).

Existence is then guaranteed using condition [A3]-iii), which we can symmetrically reformu-
late in terms of quantities. We assume that, for any good i and yi > 0, there exists Λ ∈ R

such that: yiDi (yiF (Λ)) /H(Λ) = 1/N . Using u′i = D−1
i , note that this equality is equivalent to

1/N = 1/(Nyi)u
′
i (1/(Nyi)H(Λ)) /F (Λ). Hence, denoting qi = 1/Nyi, we obtain that for any good i

and qi > 0, there exists Λ ∈ R such that:

qiu
′
i (qiH(Λ)) /F (Λ) = 1/N.

For a given vector of quantities q, for each good we obtain a Λ such that the equality above holds.
Taking the maximum of the Λ’s obtained across the N goods (and using the monotonicity property
in Λ described just above), we obtain a Λmax such that∑

i

qiu
′
i (qiH(Λmax)) /F (Λmax) ≤ 1.

40Recall that Di is strictly decreasing unless Di = 0. As noted in the text, as an abuse of notation, we define
D−1
i (0) = ai if Di(y) = 0 for all y ≥ ai (which yields a choke price) and D−1

i (x) = 0 for all x ≥ bi if Di(0) = bi.
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For the same vector q, by taking the minimum of such Λ’s across goods, we obtain a Λmin such that∑
i

qiu
′
i

(
qiH(Λmin)

)
/F (Λmin) ≥ 1.

As the left hand side of this expression is continuous in Λ, the intermediate-value theorem ensures
that a solution to equation (69) exists between Λmin and Λmax.

Finally, note that the derivative of the left-hand side of equation (69) is strictly negative. Using
the implicit function theorem, we can thus obtain the derivatives of Λ w.r.t. q as described below.

Step 2: Quasi-concavity. The second step is to show that utility defined as U(q) = Ũ(q,Λ(q))
is quasi-concave. First, we need to compute the first and second derivatives.

Derivatives of the aggregator Λ. Here we consider the properties of Λ(q), the solution of
equation (69). Taking the derivative of equation (69), we get:∑

i

qiu
′
i(H(Λ)qi)/F (Λ) = 1

∂Λ

∂qi

H ′∑
j

q2
ju
′′
j − F ′

 + [u′i +Hqiu
′′
i ] = 0

and thus:
∂Λ

∂qi
=
u′i +Hqiu

′′
i

∆(q)

with ∆(q) ≡ F ′ −H ′
∑

i q
2
i u
′′
i .

We can verify that ∆(q) is positive. Note that
u′i

u′′i Hqi
= εDi, the elasticity of function Di. Thus,

we obtain:

∆(q) = F ′ −H ′
∑
i

q2
i u
′′
i

= (F/Λ)

(
εF − εH

∑
iHq

2
i u
′′
i∑

i qiu
′
i

)
= (F/Λ)

(
εF − εH

∑
i qiu

′
i(1/εDi)∑
i qiu

′
i

)
.

Recall that u′i > 0 and that assumption [A3]-ii) imposes: εF εDi < εH for all i. Since we also assume
downward slopping demand, εDi < 0, this implies εF > εH/εDi for all i and therefore ∆ > 0. This
implies that the derivatives of Λ are always well defined. Also, knowing that ∆ is positive will be
useful again below.

Derivatives of utility U. The first derivatives are:

∂U

∂qi
= H u′i(Hqi) +

∂Λ

∂qi

[
H ′
∑
i

qiu
′
i(Hqi)−H ′F

]
= H u′i(Hqi)

55



where the term in brackets is null for any q, thanks to condition (69). Second derivatives are then:

∂2U

∂q2
i

=
∂Λ

∂qi
(u′i +Hqiu

′′
i )H

′ + H2 u′′i

∂2U

∂qi∂qj
=

∂Λ

∂qj
(u′i +Hqiu

′′
i )H

′

and thus, incorporating the derivatives in Λ, we obtain:

∂2U

∂q2
i

= (u′i +Hqiu
′′
i )

2H ′/∆ + H2 u′′i

∂2U

∂qi∂qj
= (u′i +Hqiu

′′
i ) (u′j +Hqju

′′
j )H

′ /∆.

Negative semi-definiteness. To show that utility is quasi-concave, we need to show that the
bordered Hessian is semi-definite negative, i.e we need to show:

∑
i,j

titj
∂2U

∂qi∂qj
=

(∑
i

ti (u′i +Hqiu
′′
i )

)2

H ′ /∆ +
∑
i

t2i H
2 u′′i < 0

for any vector t ∈ RN such that: ∑
i

ti
∂U

∂qi
=
∑
i

tiHu
′
i = 0.

The objective function above is homogeneous of degree 2. We can thus normalize the sum
∑

i ti(u
′
i +

Hqiu
′′
i ) up to any constant without loss of generality.

The first step is to find the optimal vector of ti’s that maximizes the left-hand side of the inequality
above. It is equivalent to consider the maximization:

max

{∑
i

t2i u
′′
i

}

under the constraint:
∑

i ti(u
′
i + Hqiu

′′
i ) = constant and

∑
i tiu

′
i = 0. The first-order condition is:

2u′′i ti = µ1u
′
i + µ2(u′i +Hqiu

′′
i ) where µ1 and µ2 are the Lagrange multipliers for the two constraints.

This leads to ti being proportional to:

ti ∼
u′i
Hu′′i

+ µqi

for some µ (note that the second-order conditions are satisfied as the objective function is concave:

u′′i < 0 for all goods i). Given that we must have 0 =
∑

i tiu
′
i =

∑
i
u′2i
Hu′′i

+µ
∑

i qiu
′
i, µ must correspond

to:

µ = −

∑
i
u′2i
Hu′′i∑
i qiu

′
i
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= −

∑
i qiu

′
i

u′i
qiHu′′i∑

i qiu
′
i

= −
∑

i qiu
′
i εDi∑

i qiu
′
i

= −ε̄D

where εDi =
u′i

qiHu′′i
and ε̄D is its weighted average (weighted by qiu

′
i).

Next, using the optimal ti =
u′i
Hu′′i
− ε̄Dqi = qiεDi − qiε̄D, a sufficient and necessary condition for

negative semi-definiteness is:(∑
i

(qiεDi − qiε̄D)(u′i + qiHu
′′
i )

)2

H ′ /∆ + H2
∑
i

(qiεDi − qiε̄D)2 u′′i < 0.

Since ∆ > 0, this condition can be rewritten:(∑
i

(qiεDi − qiε̄D)(u′i + qiHu
′′
i )

)2

H ′ < − H2 ∆
∑
i

(qiεDi − qiε̄D)2 u′′i

⇔

(∑
i

(qiεDi − qiε̄D)qiHu
′′
i

)2

H ′ < − H2 ∆
∑
i

(qiεDi − qiε̄D)2 u′′i

⇔

(∑
i

qiu
′
i − ε̄DH

∑
i

q2
i u
′′
i

)2

H ′ < − H2 ∆
∑
i

(qiεDi − qiε̄D)2 u′′i

⇔

(∑
i

qiu
′
i − ε̄DH

∑
i

q2
i u
′′
i

)2

H ′ < − H2 ∆

(∑
i

q2
i ε

2
Diu
′′
i − 2ε̄D

∑
i

q2
i εDiu

′′
i + ε̄2

D

∑
i

q2
i u
′′
i

)

⇔

(∑
i

qiu
′
i − ε̄DH

∑
i

q2
i u
′′
i

)2

H ′ < − H ∆

(∑
i

qiεDiu
′
i − 2ε̄D

∑
i

qiu
′
i + ε̄2

DH
∑
i

q2
i u
′′
i

)

⇔

(∑
i

qiu
′
i − ε̄DH

∑
i

q2
i u
′′
i

)2

H ′ < − H ∆

(
−ε̄D

∑
i

qiu
′
i + ε̄2

DH
∑
i

q2
i u
′′
i

)

⇔

(∑
i

qiu
′
i − ε̄DH

∑
i

q2
i u
′′
i

)2

H ′ < ε̄D H ∆

(∑
i

qiu
′
i − ε̄DH

∑
i

q2
i u
′′
i

)
.

The term in parentheses is the same on the left and on the right. This term is negative iff:

∑
i

qiu
′
i − ε̄DH

∑
i

q2
i u
′′
i < 0 ⇐⇒

∑
i

qiu
′
i <

(∑
i qiu

′
iεDi∑

i qiu
′
i

)(∑
i

qiu
′
i/εDi

)

⇐⇒
∑

i qiu
′
i∑

i qiu
′
i

1
(−εDi)

<

∑
i qiu

′
i(−εDi)∑
i qiu

′
i

This last inequality is satisfied as long as price elasticity are not equal across all goods: the left hand
side corresponds to a harmonic average while the right-hand-side corresponds to an arithmetic average
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of a positive variable −εDi > 0.
Hence, using

∑
i qiu

′
i−ε̄DH

∑
i q

2
i u
′′
i < 0 and also that ∆ ≡ F ′−H ′

∑
i q

2
i u
′′
i the previous inequality

is equivalent to:

⇔ H ′

(∑
i

qiu
′
i − ε̄DH

∑
i

q2
i u
′′
i

)
> ε̄D H ∆

⇔ H ′

(∑
i

qiu
′
i − ε̄DH

∑
i

q2
i u
′′
i

)
> ε̄D H

(
F ′ −H ′

∑
i

q2
i u
′′
i

)
⇔ H ′

∑
i

qiu
′
i > ε̄D H F ′.

Given that F =
∑

i qiu
′
i, this inequality is equivalent to:

⇔ H ′ F > ε̄D H F ′

⇔ εH > ε̄DεF .

This holds, given that ε̄D is a weighted average of εDi, and εDiεF < εH is assumed in part ii) of
restrictions [A3] for each good i.

Step 3: Marshallian demand and price aggregator. Maximizing U(q) under the budget
constraint

∑
i piqi = w leads to:

∂U

∂qi
= H(Λ)u′i(H(Λ)qi) = µpi

where µ henceforth denotes the Lagrange multiplier associated with the budget constraint. Summing
across goods, we can see that µ is such that:

µ =
1

w

∑
i

µpiqi =
1

w

∑
H qi u

′
i(Hqi) =

H(Λ)F (Λ)

w
.

Using H(Λ)u′i(H(Λ)qi) = µpi, we obtain:

u′i(H(Λ)qi) =
µpi
H(Λ)

=
F (Λ)pi
w

and thus, given the definition of u′i:

H(Λ)qi = Di(µpi/H(Λ)) = Di(F (Λ)pi/w)

and:
qi = Di(F (Λ)pi/w)/H(Λ)

The final step is to show that Λ can be implicitly defined as a function of all normalized prices pi/w.
To see this, notice that qi must satisfy the budget constraint:

w =
∑
i

qipi =
∑
i

piDi(F (Λ)pi/w)/H(Λ)
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which can be rewritten: ∑
i

(pi/w)Di(F (Λ)pi/w)/H(Λ) = 1.

The solution of this equation in Λ is unique, which shows that we can alternatively define Λ as a
function of normalized prices p/w. To prove that there is a unique solution, we can follow the same
approach and assumptions as in Step 1 above: condition [A3]-ii) ensures uniqueness while condition
[A3]-iii) provides existence.

Alternative proof of Proposition 3 using the Slutsky Matrix Alternatively, it is possible
to prove Proposition 3 by showing that the Slutsky matrix is symmetric and negative semi-definite,
and then apply Hurwicz and Uzawa (1971) theorem. This is the approach taken by Matsuyama
and Ushchev (2017) for the homothetic case. A similar approach can be extended here to the non-
homothetic case (see a previous working paper version, Fally 2018).

From direct to indirect utility We start from the following geometric equality that applies to
any strictly monotonic mapping T :∫ q1

q0

T−1(q)dq + T−1(q0)q0 = −
∫ y1

y0

T (y)dy + T (y1)y1

with q0 = T (y0) and q1 = T (y1). Applying this formula to T = Di, q1 = H(Λ)qi and y1 = F (Λ)pi/w,
we obtain:∫ H(Λ)qi

q0i

D−1
i (q)dq = −

∫ F (Λ)pi/w

y0i

Di(y)dy + Di(F (Λ)pi/w)F (Λ)pi/w − y0iq0i

with y0i = Di(q0i) for each i. Moreover, note that we have:∑
i

(pi/w)Di(F (Λ)pi/w) = H(Λ).

Applying these equalities to the expression for direct utility provided in the text, we obtain (indirect)
utility as a function of normalized prices:

U =
∑
i

ui(H(Λ)qi) −
∫ Λ

Λ0

F (Λ)H ′(Λ)dΛ

=
∑
i

∫ H(Λ)qi

q=0
D−1
i (x)dx −

∫ Λ

Λ0

F (Λ)H ′(Λ)dΛ

= −
∑
i

∫ F (Λ)pi/w

y0i

Di(y)dy +
∑
i

Di(F (Λ)pi/w)F (Λ)pi/w −
∫ Λ

Λ0

F (Λ)H ′(Λ)dΛ −
∑
i

y0iq0i

= −
∑
i

∫ F (Λ)pi/w

y0i

Di(y)dy + F (Λ)H(Λ) −
∫ Λ

Λ0

F (Λ)H ′(Λ)dΛ −
∑
i

y0iq0i

= −
∑
i

∫ F (Λ)pi/w

y0i

Di(y)dy +

∫ Λ

Λ0

F ′(Λ)H(Λ)dΛ + F (Λ0)H(Λ0) −
∑
i

y0iq0i
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= −
∑
i

∫ F (Λ)pi/w

y0i

Di(y)dy +

∫ Λ

Λ0

F ′(Λ)H(Λ)dΛ + g0

where g0 = F (Λ0)H(Λ0)−
∑

i y0iq0i is a constant term.

A counter-example when condition [A3]-ii) fails.

Here I show that we can find a case where conditions ii) fails and where the Slutsky substitution
matrix is not semi-definite negative, thus proving that condition ii) cannot be entirely waived.

Suppose that F (Λ) = Λ (no problem arises when F is locally constant) and that we have two
goods 1 and 2, where εD1 < εH while εD2 > εH for the other good, i.e. εH ∈ (εD1, εD2). In particular,
to fix ideas, supposed that all elasticities are constant, with εH = εD2+εD1

2 ≡ −κ < 0 and denote
δ ≡ εD2 − εH = εH − εD1 > 0. Denote by the expenditure share of product 1 as 1−ε

2 and the
expenditure share of good 2 as 1+ε

2 such that ε̄D − εH = εδ. While elasticities are constant, we can
still adjust the demand shifter for each good to obtain the desired market shares (hence ε can be
chosen independently from the elasticities).

The off-diagonal coefficients of the Slutsky substitution matrix are then:

s12p1p2/w = −a1a2(εD1 − εH)(εD2 − εH)

ε̄D − εH
+ a1a2εH = −(1− ε2)δ2

4εδ
− (1− ε2)κ

4

where ai denotes the expenditure share of good i. The diagonal coefficients are:

s11p
2
1/w = a1εD1 −

a2
1(εD1 − εH)2

ε̄D − εH
+ a2

1εH = −(1− ε)(κ+ δ)

2
+

(1− ε)2δ2

4εδ
− (1− ε)2κ

4

s22p
2
2/w = a2εD2 −

a2
2(εD2 − εH)2

ε̄D − εH
+ a2

2εH = −(1 + ε)(κ− δ)
2

+
(1 + ε)2δ2

4εδ
− (1 + ε)2κ

4
.

One can see that the substitution coefficients become very large as ε approach zero (because some
of the terms have ε in the denominator). Moreover, if we denote by Σ the matrix with coefficients
sijpipj/w, we obtain:

lim
ε→0+

4εΣ =

(
+δ −δ
−δ +δ

)
.

This matrix is semi-definite positive: xT 4εΣx = δ2(x1 − x2)2 ≥ 0. By continuity, when ε is small
enough, the substitution matrix with coefficient sij is semi-definite positive, which is not consistent
with a rational demand system.

Proof of Proposition 4

Suppose that demand can be written:

qi = Gi(Λ)1−σ(Λ) (pi/w)−σ(Λ)

with Λ implicitly defined by
∑

i[Gi(Λ)pi/w]1−σ(Λ) = 1.
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The goal is to to show that these equations:[∑
i

(Gi(Λ) pi/w)1−σ(Λ)

] 1
1−σ(Λ)

= 1 (70)

[∑
i

(Gi(U)/qi)
1−σ(U)
σ(U)

] σ(U)
1−σ(U)

= 1 (71)

have a unique solution in Λ and U respectively. To do so, we show that the left-hand side of each of
these equations strictly increase in Λ and U around the solution, showing that the left-hand side can
be equal to unity only once.

We distinguish two cases, depending on whether elasticity σ(Λ) increases with Λ. If the first case
we assume that Gi(Λ) strictly increases with Λ. In the second case, we impose condition ii).

1) In the first case, suppose that σ(Λ) increases with Λ and that Gi(Λ) strictly increases with Λ.
The equation above in Λ is equivalent to:∑

i

(Gi(Λ) pi/w)1−σ(Λ) = 1.

If σ(Λ) ∈ (0, 1), each term Gi(Λ) pi/w in the summation increases in Λ and has to be smaller than
unity. Hence, if 1 − σ(Λ) decreases with Λ, the left-hand side of this expression is strictly increasing
with Λ. The same holds if we raise the whole expression on the left-hand side to the power 1

1−σ(Λ) .

If σ(Λ) > 1, each term Gi(Λ) pi/w in the summation increases in Λ and has to be larger than unity.
Hence, if 1− σ(Λ) decreases with Λ (i.e. becomes more positive), the left-hand side of this expression
is strictly decreasing in Λ. The inverse holds if we raise the whole expression on the left-hand side to
the power 1

1−σ(Λ) < 0.
Now consider the equation: ∑

i

(
Gi(U)/qi

) 1−σ(U)
σ(U)

= 1.

If σ(Λ) ∈ (0, 1), the exponent 1−σ(U)
σ(U) is positive and decreases with U . The term within parenthesis

increases in U . Moreover, each summation term has to be smaller than unity. Hence, as U increases,
each summation term increases (strictly) with U . The same holds if we raise the whole expression on

the left-hand side to the power σ(U)
1−σ(U) .

If σ(Λ) > 1, the exponent 1−σ(U)
σ(U) is negative and decreases with U . The term within parenthesis

increases in U . Moreover, each summation term has to be larger than unity. Hence, as U increases,
each summation term decreases (strictly) with U . If we raise the whole expression on the left-hand

side to the power σ(U)
1−σ(U) , we obtain a strictly increasing function of U .

2) In the second case, we assume that σ(Λ) decreases with Λ and that, around each solution Λ0 of

equation (70), there exists a set of αi such that
∑

i αi = 1 and such that Gi(Λ)α
− 1

1−σ(Λ)

i increases in
Λ.
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Define Ki(Λ) = Gi(Λ)α
− 1

1−σ(Λ)

i The left-hand side of equation (70) can then be rewritten:[∑
i

αi(Ki(Λ) pi/w)1−σ(Λ)

] 1
1−σ(Λ)

.

To show that it strictly increases in Λ, we use Lemma 1 discussed in the next appendix section. We
obtain that the left-hand side of the above equation decreases with σ, which itself decreases with Λ.
Moreover, the term Ki(Λ) strictly increases in Λ, by assumption, hence the whole left term strictly
increases with Λ.

We can again use the same approach to show that the left-hand side of (76) increases strictly with
U . This is equivalent to showing that the following expression strictly increases in U :[∑

i

αi

(
Ki(U)/qi

) 1−σ(U)
σ(U)

] σ(U)
1−σ(U)

.

Each exponent 1−σ(U)
σ(U) increases in U and each term Ki(U) strictly increases with U . With Lemma 1

again, we obtain that the whole term strictly increases with U .

Hence, in both cases, Λ and U are well defined by equations (70) and (76) which admit no more
than one solution. This implicitly defines utility U as a function of qi. It is straightforward to see that
such utility function is quasi-concave in q: indifference curves have the same shape as CES indifference
curves, holding σ = σ(U) constant.

Consumption quantities q chosen to maximize U would satisfy the following first-order conditions:

(σ(U)− 1)

qiσ(U)

( qi
Gi(U)

)σ(U)−1
σ(U)

= µpi

where µ is a constant term (combination of the Lagrange multiplier associated with the equation in U

and the budget constraint multiplier). To satisfy the budget constraint, (σ(U)−1)µ
σ(U) has to equal 1/w.

In other words,
(

qi
Gi(U)

)σ(U)−1
σ(U)

corresponds to the budget share of good i in consumption baskets:

( qi
Gi(U)

)σ(U)−1
σ(U)

=
(σ(U)− 1)µ

σ(U)
piqi =

piqi
w
.

This leads to the demand qi:
qi = Gi(U)1−σ(U) (pi/w)−σ(U)

which is the same expression as above, with Λ corresponding to utility. Moreover, we can see that

utility U is such that
∑

i

(
qi

Gi(U)

)σ(U)−1
σ(U)

= 1 which, using the demand for qi just above, can be written
as: ∑

i

[Gi(U)pi/w]1−σ(U) = 1

which is the same equation as the one determining Λ, which proves that Λ = U .
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Proof of equivalence between condition ii) and inequality (21) We mention in the text
that condition ii) of Proposition 4 is equivalent to inequality (21) in the main text when both σ and
Gi are differentiable.

Taking the derivative of the log of Gi(Λ)α
− 1

1−σ(Λ)

i with respect to Λ, we find that it is positive if
and only if:

G′i(Λ)

Gi(Λ)
− (logαi) .

∂

∂Λ

(
1

1− σ(Λ)

)
> 0.

Hence, for each good i, the minimum αi such that it is positive is:

α∗i = exp

(
(σ(Λ)− 1)2G′i(Λ)

σ′(Λ)Gi(Λ)

)
.

One can see that inequality
∑

i α
∗
i < 1 corresponds to inequality (21) in the main text.

Note: one can also verify that this condition is equivalent to imposing that Gi(Λ) and σ(Λ) are
such that: [∑

i

(Gi(Λ) pi/w)1−σ(Λ)

] 1
1−σ(Λ)

increases for any set of pi/w.

Lemma 1: “Generalized Mean” inequality: For any given set of xi ≥ 0 and αi ≥ 0 such that∑
i αi = 1, the following expression is monotonically increasing in ρ ∈ (−∞,+∞):[∑

i

αix
ρ
i

] 1
ρ

Proof of Lemma 1: A complete proof is provided in Hardy, Littlewood and Polya (Inequali-
ties, Cambridge University Press, 1934), see equation (2.9.1) on p.26, and is also referred to as the
“Generalized Mean” inequality (e.g. on Wikipedia).

For convenience, here I report the proof for the case where both ρ and ρ′ are positive. The same
approach works for the case where they are negative. Consider two values 0 < ρ < ρ′ and consider

the mapping m(x) = x
ρ′
ρ , which is convex in x. Jensen’s inequality implies that:

m
(∑

i

αiyi

)
≤
∑
i

αim(yi)

and thus: (∑
i

αiyi

) 1
ρ ≤

(∑
i

αiy
ρ′
ρ

i

) 1
ρ′
.

Choosing yi = [xi]
ρ, we obtain: [∑

i

αix
ρ
i

] 1
ρ ≤

[∑
i

αix
ρ′

i

] 1
ρ′
.
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Note that these terms are well defined when ρ converges to zero (on both sides):

lim
ρ→0

[∑
i

αix
ρ
i

] 1
ρ

=
∏
i

xαii

hence the findings above also apply to ρ = 0.

Counter-examples when condition [A4] fails.

Here I provide counter-examples to show that Λ or U are not well defined if the assumptions of
Proposition 4 are not satisfied.

• First, suppose that σ(Λ) increases in Λ. In this case, the elasticity of substitution increases
with income and issues are more likely to arise when consumption is concentrated in one or few
goods.

When Gi(Λ) is not monotonic in Λ for a good i, the budget constraint can be written:

Gi(Λ)pi/w = 1

when the consumption of all other goods become negligible, i.e. when (pj/w)1−σ(Λ) = 0. If
there exists Λ1 6= Λ2 such that Gi(Λ1) = Gi(Λ2), one can see that the equation above has at
least two solutions when pi/w = 1/Gi(Λ1).

Conversely, utility is not well defined by the implicit equation provided in Proposition 4 when

Gi is not monotonic for a good. Suppose that q
σ(U)−1
σ(U)

j is zero (or close to zero) for other goods

j. In that case, we can see that
(

qi
Gi(U)

)σ(U)−1
σ(U)

= 1⇔ Gi(U) = qi has several solutions in U for

some qi if Gi is not monotonic, potentially violating the monotonicity of U w.r.t. quantities.

We also need G′i to have the same sign for all goods. If it is not the case, we can obtain
situations where Λ and U are not well defined, or where U would decrease with quantities qi for
some goods.

• Counter-examples for the second case are more difficult to construct. Here we will assume here
that σ(Λ) and Gi(Λ) are differentiable. Let us examine what happens when inequality (21) is
not satisfied, i.e. when: ∑

i

exp

(
(σ(Λ)− 1)2G′i(Λ)

σ′(Λ)Gi(Λ)

)
> 1

for a given Λ = U0. In that case, we can show that it is possible to find a set of quantities qi
such that U0 is the solution of this equation (equation 22 in the main text):∑

i

(qi/Gi(U))
σ(U)−1
σ(U) = 1 (72)

but where implicit utility would depend negatively on some of the quantities. This amounts to
showing that the following expression:[∑

i

(
Gi(U)/qi

) 1−σ(U)
σ(U)

] σ(U)
1−σ(U)
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decreases with U and for at least some of the qi’s.

Suppose that U0 is the solution of equation (72) for a given set of qi. We can always rearrange
the qi to match a given set of consumption shares while still having U0 as the solution of
equation (72) . In particular, choose q∗i such that U0 is still the solution of (72) and such that:

(
Gi(U0)/q∗i

) 1−σ(U0)
σ(U0)

=
1

A
exp

(
(σ(U0)− 1)2G′i(U0)

σ′(U0)Gi(U0)

)
where A ≡

∑
i exp

(
(σ(U0)−1)2G′i(U0)
σ′(U0)Gi(U0)

)
> 1, strictly larger than unity if condition ii) is not

satisfied. Consider the function:

f(U, q) =
[∑

i

(
Gi(U)/qi

) 1−σ(U)
σ(U)

] σ(U)
1−σ(U)

which corresponds to the left-hand side of equation (72). One can see that the derivative in U
at U = U0 and q = q∗ is negative:

fU (U0, q
∗) =

∑
i

G′i(U0)

Gi(U0)

(Gi(U0)

q∗i

) 1−σ(U0)
σ(U0)

+
σ′(U0)

(1−σ(U0))2

∑
i

(Gi(U0)

q∗i

) 1−σ(U0)
σ(U0)

log
(Gi(U0)

q∗i

) 1−σ(U0)
σ(U0)

=
σ′(U0)

(1−σ(U0))2
logA < 0

while the derivative fqi(U0, q
∗) in each qi is also negative. This leads to an implicit utility

function U of q that decreases with quantities.

Proof of Proposition 5

About Λ . Before we prove parts i) and ii) of Proposition 5, note that conditions [A5] ensure that
Λ can be implicitly defined by the budget constraint as either a function of quantities q or normalized
prices p/w. Focusing on characterizing Λ as a function of quantities, we can follow the same approach
as in Step 1 of the proof of Proposition 3.

First, using part ii) of restrictions [A5], we can see that the elasticity of Di(F (Λ, U)yi)/H(Λ, U)
w.r.t. Λ is given by εF εDi − εH which is assumed to be negative, hence it strictly decreases with Λ.
Symmetrically, we obtain that D−1

i (H(Λ, U)qi, U)/F (Λ, U) also strictly decreases with Λ: its elasticity
w.r.t. Λ is εH/εDi − εF , which is also negative given that εDi is negative and εH − εDiεF is positive.
Note that the budget constraint can be written as:∑

i

qiD
−1
i (qiH(Λ, U), U)/F (Λ, U) = 1. (73)

Adding up across goods, we obtain that the left-hand side of equation (73) decreases strictly with Λ.
This implies that the solution in Λ to equation (73) is unique (if it exists).

Existence is then guaranteed using condition [A5]-iii), which we can symmetrically reformulate in
terms of quantities. We assume that, for any good i, yi > 0 and V , there exists Λ ∈ R such that:
yiDi (yiF (Λ, V ), V ) /H(Λ, V ) = 1/N . Denote by D−1

i the inverse with respect to the first argument
of Di). Note that this equality is equivalent to 1/N = 1/(Nyi)D

−1
i (1/(Nyi)H(Λ, V ), V ) /F (Λ, V ).
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Hence, denoting qi = 1/Nyi, we obtain that for any good i, qi > 0 and U , there exists Λ ∈ R such
that:

qiD
−1
i (qiH(Λ, U), U) /F (Λ, U) = 1/N.

For a given vector of quantities q, for each good we obtain a Λ such that the equality above holds.
Taking the maximum of the Λ’s obtained across the N goods (and using the monotonicity property
in Λ described just above), we obtain a Λmax such that∑

i

qiD
−1
i (qiH(Λmax, U), U) /F (Λmax, U) ≤ 1

For the same vector q, by taking the minimum of such Λ’s across goods, we obtain a Λmin such that∑
i

qiD
−1
i

(
qiH(Λmin, U), U

)
/F (Λmin, U) ≥ 1.

As the left hand side of this expression is continuous in Λ,the intermediate-value theorem ensures that
a solution to equation (73) exists between Λmin and Λmax.

Hence the budget constraint, i.e. equation (73), can be used to uniquely define Λ as a function of
q and U , or just as a function of q when we evaluate U at U(q). Moreover, as in Proposition 3, since
the left-hand side of equation (73) has a strictly non-zero (negative) derivative in Λ, we can use the
Implicit Function Theorem to compute the derivatives of Λ. Here, we now have an equation that also
depend on U , but we can still use the results as before (see Proposition 3) to compute the derivative
∂Λ
∂qi

∣∣∣
U

w.r.t. qi for each goods i along an indifference curve, i.e. holding U constant. This partial

derivative will be useful for the proof of quasi-concavity of U , as discussed in part ii) further below.

i) Characterizing utility

The first part of Proposition 5 provides an equation that must be satisfied if demand can be rationalized
and takes the form:

qi(pi/w,Λ, V ) =
1

H(Λ, V )
Di

(
piF (Λ, V )

w
, V

)
or in terms of inverse demand:

pi
w

=
D−1
i (H(Λ, U)qi , U)

F (Λ, U)

satisfying equation (73). If demand can be rationalized with a differentiable utility function U(q),
there exists a function λ(q) (real mapping from R

N
+ to R+, such that

∂U

∂qi
= λ(q)

1

H(Λ, U)
Di

(
piF (Λ, U)

w
, U

)
.

Define a function M(q,Λ, U) as:

M(q,Λ, U) =
∑
i

∫ qiH(Λ,U)

q=qi0

D−1
i (q, U)dq −

∫ Λ

Λ′=Λ0

∂H

∂Λ
(Λ′, U)F (Λ′, U)dΛ′ (74)
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The partial derivative of M w.r.t. q is:

∂M

∂qj
= H(Λ, U)D−1

j (qjH(Λ, U), U)

The partial derivative of M w.r.t. Λ is:

∂M

∂Λ
=

∂H

∂Λ
(Λ, U)

∑
i

qiD
−1
i (qiH(Λ, U), U)dq − ∂H

∂Λ
(Λ, U)F (Λ, U)

=
∂H

∂Λ
(Λ, U)

[∑
i

qiD
−1
i (qiH(Λ, U), U)dq − F (Λ, U)

]
.

Note that this partial derivative null at Λ = Λ(q) and U = U(q) if the budget constraint is satisfied
(condition 73).

Now, define M̃(q) = M(q,Λ(q), U(q)), i.e. equal to M where U and Λ are evaluated at U(q) and
Λ(q) respectively rather than treated as arguments. Note that, if demand is rational, marginal utility
must be itself proportional to inverse demand and thus:

H(Λ, U)D−1
j (qjH(Λ, U), U) = H(Λ, U)D−1

j (qjH(Λ, U), U) =
H(Λ, U)F (Λ, U)

λ(q)

∂U

∂qj

where λ is the Lagrange multiplier associated with the budget constraint, and where U and Λ are
evaluated at U(q) and Λ(q). We obtain that the gradient of M̃ is proportional to the gradient of
utility:

∂M̃

∂qj
=

∂M

∂qj
+

∂M

∂Λ

∂Λ

∂qj
+

∂M

∂U

∂U

∂qj

= H(Λ, U)D−1
j (qjH(Λ, U), U) + 0 +

∂M

∂U

∂U

∂qj

=

[
H(Λ, U)F (Λ, U)

λ
+

∂M

∂U

]
∂U

∂qj
.

Given that indifference curves are connected, this implies that there exist a function
˜̃
M(U) of utility

such that: M̃(q) =
˜̃
M(U(q)) for all q (see e.g. Lemma 1 of Goldman and Uzawa, 1954, for a proof of

this statement). Hence, combining with equation (74), we obtain that U(q) satisfies:

˜̃
M(U(q)) =

∑
i

∫ qiH(Λ(q),U(q))

q=qi0

D−1
i (q, U(q))dq −

∫ Λ(q)

Λ′=Λ0

∂H

∂Λ
(Λ′, U(q))F (Λ′, U(q))dΛ′. (75)

Defining G(Λ, U) as:

G(Λ, U) =
˜̃
M(U) +

∫ Λ(q)

Λ′=Λ0

∂H

∂Λ
(Λ′, U(q))F (Λ′, U(q))dΛ′.
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As described in Proposition 5, we obtain that U(q) must satisfy:

∑
i

∫ qiH(Λ(q),U(q))

q=qi0

D−1
i (q, U(q))dq − G(Λ(q), U(q)) = 0. (76)

ii) Properties of the utility function

We now examine the converse of part i): assuming that such equation admits a solution in U , does it
yield a well-behaved utility function that is monotonic in each qi, continuous and quasi-concave?

First, continuity is ensure by the fact that the left-hand side of equation (76) is continuous in q,
Λ and U , and is assumed to strictly decrease with U (and Λ is itself a differentiable function of q).
Hence we can solve for U as a continuous function of q.

Second, note that the left-hand side of equation (76) is strictly increasing in qi, with a partial
derivative (holding U constant) given by: ∂M

∂qj
= HD−1

j (qjH,U) > 0 (with the partial derivative in

Λ being null). As we assume that the left-hand side of equation (76) strictly decreases with U , the
solution for U must be strictly increasing in qi for each good i.

Quasi-concavity of U . Third and least obvious, we need to prove that the solution for utility
U is quasi-concave in q. To do so, we can however build up on Step 2 of the proof of Proposition 3
provided earlier. In Proposition 3, we have already shown the quasi-concavity of the following function
B, holding U constant:

B(q, U) =
∑
i

∫ qiH(Λ∗(q,U),U)

q=qi0

D−1
i (q, U)dq −G(Λ∗(q, U), U)

(function B replaces the former utility function U in Proposition 3) with Λ∗(q, U) defined such that
the following condition holds: ∑

qiD
−1
i (qiH(Λ(q), U), U) = F (Λ, U)

again for a given U , where F is such that ∂G
∂Λ (Λ, U) = ∂H

∂Λ (Λ, U)F (Λ, U).
We can then use the quasi-concavity of B (holding U constant) to prove the quasi-concavity of

U , defined implicitly by B(q, U(q) = 0 (this implicit definition is equivalent to equation 76). The
quasi-concavity of B implies that for any q and q′ such that B(q, U) = B(q′, U) = 0, we must have:

B(αq + (1− α)q′, U) ≥ B(q, U) = 0.

We can check also that the derivative of B in U is negative if B(q, U) = 0. Hence we obtain that:
utility U ′ evaluated at (αq + (1− α) is larger than U(q) = U(q′):

U ′ ≡ U(αq + (1− α)q′) ≥ U

for any α ∈ (0, 1), since B is strictly decreasing in U and since U ′ must satisfy:

B(αq + (1− α)q′, U ′) = 0.

The fact that U(αq + (1 − α)q′) ≥ U(q) whenever U(q) = U(q′) means that U is quasi-concave. We
can also check that U is strictly quasi-concave if B is quasi-concave.
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Indirect utility for the two-aggregator case

As for the single-aggregator case, we obtain:∫ H(Λ,U)qi

q0i

D−1
i (q, U)dq = −

∫ F (Λ,U)pi/w

D−1
i (q0i,U)

Di(y, U)dy+Di(F (Λ, U)pi/w,U)F (Λ, U)pi/w−D−1
i (q0i, U)q0i

which holds for a given level of utility U . Moreover, note that we have:∑
i

(pi/w, V )Di(F (Λ, V )pi/w, V ) = H(Λ, V ).

Hence, summing across goods, we obtain:

∑
i

∫ H(Λ,U)qi

q0i

D−1
i (q, U)dq = −

∑
i

∫ F (Λ,U)pi/w

Di(q0i,U)
Di(y, U)dy + H(Λ, U)F (Λ, U) −

∑
i

Di(q0i, U)q0i.

Applying these equalities to the expression for direct utility provided in the text, we obtain a similar
condition characterizing (indirect) utility as a function of normalized prices:

∑
i

∫ H(Λ,U)qi

q0i

D−1
i (q, U)dq = G(Λ, U)

⇔
∑
i

∫ F (Λ,U)pi/w

D−1
i (q0i,U)

Di(y, U)dy = −G(Λ, U) + H(Λ, U)F (Λ, U) −
∑
i

D−1
i (q0i, U)q0i.

Next, using our definition of G (using function
˜̃
M(U) defined above in the proof of Proposition 5) and

integrating by parts, note that we have:

G(Λ, U) =
˜̃
M(U) +

∫ Λ

Λ′=Λ0

∂H

∂Λ
(Λ′, U)F (Λ′, U)dΛ′

=
˜̃
M(U) + H(Λ, U)F (Λ, U) − H(Λ0, U)F (Λ0, U) −

∫ Λ

Λ′=Λ0

∂F

∂Λ
(Λ′, U)H(Λ′, U)dΛ′

and thus the equality above is equivalent to:

∑
i

∫ F (Λ,V )pi/w

y0i

Di(y, V )dy = K(Λ, V )

where function K is defined as:

K(Λ, V ) ≡
∫ Λ

Λ′=Λ0

∂F

∂Λ
(Λ′, V )H(Λ′, V )dΛ′

−
∑
i

D−1
i (q0i, V )q0i −

˜̃
M(V ) + H(Λ0, V )F (Λ0, V ) +

∑
i

∫ D−1
i (q0i,V )

y0i

Di(y, V )dy.

Notice that the second line only depends on V , not Λ, hence: ∂K
∂Λ (Λ, V ) = ∂F

∂Λ (Λ, V )H(Λ, V ).
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Section 4) Practical cases and applications

Different forms of separability as special cases

Implicit separability If H does not depend on the aggregator Λ, we have: ∂G
∂Λ (Λ, U) = 0, hence

G(Λ, U) = G(U). Without loss of generality, we can rescale function Di by 1/G and impose G(U) = 1
after scaling. Utility U is then implicitly defined by∑

i

∫ qi

q=qi0

D−1
i (q, U) dq = 1. (77)

In this case, F must be a monotonic function of the aggregator Λ. It is also without loss of generality
to assume F (Λ, U) = Λ.

Then, if D−1
i (qi, U) is strictly decreasing in U , and takes values from the full interval (+∞, 0) as

U decreases (conditional on qi), the utility function defined implicitly by this equation is uniquely
defined, for any q, and well-behaved.

Indirect implicit separability If F does not depend on the aggregator Λ, we can rescale function
Di such that it is without loss of generality to assume that F = 1. This also implies that function K
obtained in equation (26) (in the main text) only depends on V , since ∂K

∂Λ (Λ, V ) = H(Λ, V )∂F∂Λ (Λ, V ) =
0. Hence, indirect utility can then be seen as the implicit solution of

∑
i

∫ pi/w

y0i

Di(y, V )/K(V )dy = 1.

Again, by rescaling Di by K, it is without loss of generality to assume K = 1.
If Di(y, V ) is strictly decreasing in V , and takes values from the full interval (+∞, 0) as V decreases

(conditional on qi), the indirect utility function defined implicitly by this equation is uniquely defined
for all sets of prices p/w and well-behaved.

Parameterized non-homothetic CES Suppose that demand is in Proposition 4, with the
following parameterization:

qi = αiU
γi(pi/w)−σ(U) with σ(U) = σ̄ + σ1 logU

This can be derived from indirect and direct utility implicitly defined by:

∑
i

αiV
γi(pi/w)1−σ(V ) = 1 and

∑
i

(αiU
γi)

1
σ(U) q

σ(U)−1
σ(U)

i = 1

In these summations, each term corresponds to the expenditure share on good i, in the primal or dual.
To verify the equivalence, we start with qi = αiV

γi(pi/w)−σ(V ) and see that:

∑
i

(αiU
γi)

1
σ(U) q

σ(U)−1
σ(U)

i =
∑
i

(αiU
γi)

1
σ(U)

(
αiU

γi(pi/w)−σ(U)
)σ(U)−1

σ(U)

=
∑
i

(αiU
γi)

1
σ(U) (αiU

γi)
σ(U)−1
σ(U) (pi/w)1−σ(U) =

∑
i

αiU
γi(pi/w)1−σ(U) = 1
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To show that such demand is rational, we need to show:∑
i

exp

(
(σ(U)− 1)2G′i(U)

σ1Gi(U)/U

)
< 1 (78)

When σ1 is negative and σ′(U) = σ1/U < 0, inequality (78) provides a condition for rationalization

that conveniently simplifies. With Gi(U) = (αiU
γi)

1
1−σ(U) and σ(U) = σ̄ + σ1 logU , we take logs and

obtain:

G′i(U)/Gi(U) =
1

U

1

1− σ(U)
[γi + σ1 logGi(U)]

Hence the terms in the summation are:

(1− σ(U))2UG′i(U)/[σ1Gi(U)] = (1− σ(U))γi/σ1 + log(αiU
γi)

The inequality is then equivalent to:∑
i

exp

(
(σ(U)− 1)2G′i(U)

σ1Gi(U)/U

)
< 1

⇐⇒
∑
i

exp [(1− σ̄ − σ1 logU)γi/σ1 + log(αiU
γi)] < 1

⇐⇒
∑
i

αi exp

[
γi

1− σ̄
σ1

]
< 1

If we assume σ̄ > 1, σ1 < 0 and γi < 0, the term in brackets is negative. Hence, this inequality is
satisfied if we also assume

∑
i αi = 1.

Direct semi-separability Preferences as directly semi-separable if utility is:

U(q) =
1

G(Λ)

∑
i

Ri(H(Λ)qi) (79)

where H, G and Ri are twice continuously-differentiable, with G′ > 0, H ′ > 0, R′i > 0 and R′′i < 0
and where Λ is such that: ∑

i qiR
′
i(H(Λ)qi)∑

iRi(H(Λ)qi)
=
F (Λ)

G(Λ)
(80)

where F (Λ) ≡ G′(Λ)/H ′(Λ). Again, it may be useful though not necessary to assume Ri(0) = 0 (i.e.
that there is no gain from a new variety when its consumption is zero).

This demand system is a special case of Proposition 5, as this corresponds to defining Di(yi, V ) =
R′−1
i (V yi) and specifying F , G, and H as functions of Λ only. Here I provide again a derivation of

demand for this special case.
First, note that the derivative of the right-hand-side of (79) is equal to:

1

G(Λ)2

[∑
i

qiR
′
i(H(Λ)qi)H

′(Λ)G(Λ)−
∑
i

Ri(H(Λ)qi)G
′(Λ)

]

which is null if condition (79) is satisfied. Hence marginal utility is given by the derivative of (79)
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holding Λ constant. This yields:

λpi/w =
∂Ũ

∂qi
=
H(Λ)

G(Λ)
R′i(H(Λ)qi).

The budget constraint implies:

λ = λ
∑
i

qipi/w =
H(Λ)

G(Λ)

∑
i

qiR
′
i(H(Λ)qi) =

H(Λ)

H ′(Λ)G(Λ)2

∑
i

Ri(H(Λ)qi)G
′(Λ) =

H(Λ)G′(Λ)U

H ′(Λ)G(Λ)

And thus we obtain the following expression for inverse demand:

pi/w =
H(Λ)R′i(H(Λ)qi)

λG(Λ)
=
H ′(Λ)R′i(H(Λ)qi)

UG′(Λ)
=
R′i(H(Λ)qi)

UF (Λ)

where F (Λ) = G′(Λ)/H ′(Λ). Re-inverting, we obtain Marshallian demand for good i:

qi = R′−1
i (V F (Λ)pi/w)/H(Λ)

Conditions [A5]-ii) required by Proposition 5 is met if R′−1
i (F (Λ)yi)/H(Λ) has a strictly negative

derivative in Λ. Conditions iii) is met if this expression goes from +∞ to 0 (in the limit) as Λ increases.
Hence equation (30) in the main text has a unique solution in the aggregator Λ.

Written as in Proposition 5, the condition characterizing utility is:∑
iRi(H(Λ)qi)

UG(Λ)
= 1.

In this case, it is obvious that it is strictly decreasing in U (holding Λ and q constant), and that a
solution in U exists.

Indirect semi-separability Preferences as indirectly semi-separable if indirect utility can be
written:

V =

∑
i Si(F (Λ)pi/w)

L(Λ)
(81)

where F , L and Si are twice continuously-differentiable, with F ′ > 0, L′ < 0, S′i < 0, S′′i > 0, and
where Λ is such that: ∑

i(pi/w)Di(F (Λ)pi/w)∑
i Si(F (Λ)pi/w)

=
H(Λ)

K(Λ)
(82)

where we define Di(yi) = −S′i(yi) and H(Λ) = −L′(Λ)/F ′(Λ). Again, it may be useful though not
necessary to assume limy→+∞ Si(y) = 0 (i.e. that there is no gain from a new variety when its price
is prohibitive).

Such indirect utility function is again a special case of the dual-aggregator form that we studied in
Proposition 5, with Di(yi, V ) = −S′i(yi)/V and specifying F and H as functions of Λ only. Condition
[A5]-ii) required by Proposition 5 is met if Di(F (Λ)yi)/H(Λ) has a strictly negative derivative in Λ.
Condition [A5]-iii) is met if this term goes from +∞ to 0 (in the limit) as Λ increases.

Using Roy’s identity, we can check that demand for good i equals:

qi =
Di(F (Λ)pi/w)

V H(Λ)
.
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We can switch for a characterization of indirect utility to a characterization of direct utility by
integrating by part.

From equation (81), we obtain: ∑
i

Si(D
−1
i (UHqi)) = LU.

From the budget constraint, we get:∑
i

(UHqi)D
−1
i (UHqi)) = UHF.

Adding up the previous two equalities, we obtain:∑
i

Si(D
−1
i (UHqi)) +

∑
i

(UHqi)D
−1
i (UHqi)) = LU + UHF.

Denote by S0i = limp→+∞ Si(p), which is well defined since Si is positive and decreasing. For each
good i, we have the following geometric equality (integration by part):

Si(D
−1
i (q)) + qD−1(q) = S0i +

∫ q

0
D−1(q′)dq′.

Plugging this into the previous equality and dividing by U , we obtain:

∑
i

[
S0i

U
+

1

U

∫ UHqi

0
D−1(q′) dq′

]
− (L+HF ) = 0.

This equation in U corresponds to the characterization of utility in Proposition 5, with G(Λ) =
L(Λ) + H(Λ)F (Λ). Note that the left-hand side is strictly decreasing in U so that the solution in U
is unique.

Homothetic semi-separability An interesting case of semi-separability is the homothetic case.
This happens when G(Λ) and H(Λ) are iso-elastic (see earlier for the case of direct semi-separability).
In particular, suppose that utility is defined (with Q as an aggregator) as:

U(q)
η
η+1 =

η
η+1 Q

η
η+1

∑
i

Ri(qi/Q) (83)

with η > 0, and denote Di(q) = R′i, with the same assumptions on Ri and Di as above.
Suppose also that aggregator Q is such that the partial derivative of the RHS in Q is null, so that:∑

i

(qi/Q)R′i(qi/Q) =
η
η+1

∑
i

Ri(qi/Q) = (U/Q)
η
η+1 (84)

Marginal utility is proportional to R′i(qi/Q), so expenditure shares must be proportional to
(qi/Q)R′i(qi/Q). Given equality (84) above and given the budget constraint, we must have:

piqi/w = (qi/Q)R′i(qi/Q)(U/Q)
− η
η+1
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Denote:
Di(q) = R′i

−1
(q)

Marshallian demand is then:
qi = QDi

(
(U/Q)

η
η+1Qpi/w

)
These preferences are well defined and satisfy the rationality conditions above if

η + 1 < −εDi

is satisfied for all goods and all consumption baskets.
If instead we have: η+1 > −εDi across all goods and baskets, we can consider a change in variable

Q′ = 1/Q to safisfy the conditions for rationality above in aggregator Q′ instead of Q.

Defining Λ = (U/Q)
η
η+1Q/w, so that Q = (wΛ)η+1U−η, we obtain:

qi = (wΛ)η+1U−ηDi

(
Λpi

)
= wΛη+1P ηDi

(
Λpi

)
with U = w/P , where P denotes the price index. This corresponds to the equation in the text.

An alternative way is to define the price index as:

P−η = ηΛη
∑
i

Si(Λpi)

with Λ implicitly defined as a function of prices by:

η
∑
i

Si(Λpi) =
∑
i

(Λpi)Di(Λpi)

with Di = −S′i > 0. Since expenditure shares are proportional to (Λpi)Di(Λpi) and since:

P−ηΛ−η = η
∑
i

Si(Λpi) =
∑
i

(Λpi)Di(Λpi)

expenditure shares must coincide with (Λpi)Di(Λpi)P
ηΛη, and thus again we obtain:

qi = wP ηΛη+1Di(Λpi)

Symmetric homothetic QMOR

Taking Di(y) = αiy
r−1 + βiy

κ−1 and F (Λ) = Λ and H(Λ) = Λr−1, we obtain that the ideal price
index P is then implicitly defined by:∑

i

αi

(
piΛ

P

)r
+

1

κ

∑
i

βi

(
piΛ

P

)κr
− Λr = c0.

for some constant term c0, and where aggregator Λ satisfies:∑
i

αi

(
piΛ

P

)r
+
∑
i

βi

(
piΛ

P

)κr
= Λr.
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Taking the difference between the previous two equations leads to:

(P/Λ)κr =
1

c0

(
1

κ
− 1

)∑
i

βip
κr
i .

Normalizing 1
c0

(
1
κ − 1

)
= 1 so that Λ−κr =

∑
i βi
(pi
P

)κr
, we obtain a price index of such form:

P r =
∑
i

αip
r
i +

(∑
i

βip
κr
i

) 1
κ
.

Taking the log derivative w.r.t. log price pi, we obtain the expenditure share in good i (Shepard’s
Lemma):

piqi
w

= αi

(pi
P

)r
+ βi

(pi
P

)κr
Λ−r(1−κ)

and thus:

qi =
αiw

P

(pi
P

)r−1
[

1 +
βi
αi

(
Λpi
P

)−r(1−κ)
]

=
w

P

(pi
P

)r−1

αi + βip
−r(1−κ)
i

(∑
j

βjp
κr
j

) 1−κ
κ

 .
With κ = 1/2, αi = α and βi = β, we get symmetric QMOR used in Freenstra (2010). When αi > 0
and βi < 0, note that we get a finite reservation price (choke price).

A non-homothetic version of QMOR

Here we adopt the notation from Mrazova and Neary (2013). The notation used previously for
homothetic case corresponds to r = 1− ν and κ = (σ − 1)/(ν − 1).

We have then:∑
i

αi(V )
(pi
w

Λ
)1−ν

+
ν − 1

σ − 1

∑
i

βi(V )
(pi
w

Λ
)1−σ

− Λ1−ν = c0

where aggregator Λ satisfies:∑
i

αi(V )
(pi
w

Λ
)1−ν

+
∑
i

βi(V )
(pi
w

Λ
)1−σ

− Λ1−ν = 0.

Taking the difference between the last two equations, we obtain:(
ν − σ
σ − 1

)∑
i

βi(V )
(pi
w

Λ
)1−σ

= c0.

Hence, setting c0 =
(
ν−σ
σ−1

)
, we get:

Λσ−1 =
∑
i

βi(V )
(pi
w

)1−σ
.
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Plugging into the previous equation for Λ, we get:

∑
i

αi(V )
(pi
w

)1−ν
+

(∑
i

βi(V )
(pi
w

)1−σ
) 1−ν

1−σ

= 1.

Demand for good i is then:

qi = αi(V )
(pi
w

)−ν
+ βi(V )Λν−σ

(pi
w

)−σ
.

We obtain the equation in the main text by plugging the expression for Λ.

Linear demand

Even with a simple linear demand in partial equilibrium, there are multiple ways to rationalize such
demand functions with one or two aggregators.

Suppose that demand is linear for each good i (with the caveat that preferences are satiated above
a certain level). In the most general case with two aggregators Λ and V , we obtain that demand must
take the form:

qi =
αi(V ) − F (Λ, V )pi/w

H(Λ, V )γi(V )

(or zero if the latter is negative), where V is indirect utility and where Λ satisfies:∑
i

(pi/w) max

{
0 ,
αi(V ) − F (Λ, V )pi/w

H(Λ, V )γi(V )

}
= 1

and which can be obtained from a utility that satisfies:∑
i

[
αi(U)H(Λ, U) qi −

1

2
γi(U)H(Λ, U)2 q2

i

]
− G(Λ, U) = 0

where each qi must not exceed αi(U)
H(Λ,U)γi(U) . Λ is uniquely defined if H and F are both increasing in

Λ, and a solution in Λ always exists if H and F span from 0 to +∞ at the limit. In turn, the solution
in U is unique if we have the following monotonicity conditions (sufficient conditions), with strict
monotonicity for at least one of them: αi(U) decreases in U , γi(U) increases in U , H(Λ, U) decreases
in U and G(Λ, U) increases in U .

To illustrate the versatility of this approach and the many ways to specify the demand shifters,
several special cases are worth noting:

• Directly-additive preferences can generate such linear demand and yield: qi = αi−Λpi/w
γi

• Indirectly-additive preferences yield: qi = αi− pi/w
Λγi

• Single aggregator preferences yields: qi = Λαi−Λ2pi/w
γi

• Homothetic preferences yield: qi = w
P .

αi−F (Λ)pi/P
H(Λ)γi

• Directly implicitly-separable preferences yield: qi = αi(V )−Λpi/w
γi(V )
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• Indirectly implicitly-separable preferences yield: qi = αi(V )− pi/w
Λγi(V )

• Directly semi-separable preferences yield: qi = αi−F (Λ)V pi/w
H(Λ)γi

• Indirectly semi-separable preferences yield: qi = αi−F (Λ)pi/w
V H(Λ)γi

Translog cost function

Translog costs functions have been studied in a variety of contexts, from consumer theory to produc-
tivity estimation. While a general formulation specifies the price index as:

logP = α0 +
∑
i

αi log pi +
1

2

∑
i,j

γij log pi log pj

with αi > 0,
∑

i αi = 1 and γij = γji required for rationalization, applications often typically impose
a symmetric parameterization across the γ’s, i.e. assume γii = γ/N − γ and γij = γ/N if i 6= j, with
γ > 0.

As shown by Bergin and Feenstra (2009), the Symmetric Translog case leads to the following
expenditure shares once we account for unavailable goods (or, equivalently, goods with prices above
the choke price):

piqi
w

= αi + (1− nᾱ) + γ
[
log p− log pi

]
where log p denotes the average price across available varieties and α is the average shifter αi across
available varieties, and n is the number of available varieties with qi > 0. Defining the aggreagtor as
log Λ = −log p− (1− nᾱ)/γ, we can reformulate the expenditure share as:

piqi
w

= αi − γ log(Λpi/w).

This corresponds to demand in Proposition 3 with Di(y) = αi − γ log y, F (Λ) = 1/H(Λ) = Λ, and is
well defined even if such demand has a choke price. One can then notice that aggregator Λ is uniquely
determined by the budget constraint:∑

i

max {0, αi − γ log(Λpi/w)} = 1

and that the price index can be obtained as:

logP =
∑
i

αi log(Λpi/w) − γ

2

∑
i

(
log(Λpi/w)

)2
− log Λ.

Proof of Proposition 6

Suppose that demand take the form:

qi = QDi(Fpi/w) (85)

where Q and F are two aggregators that are functions of normalized prices p/w (i.e. functions
homogeneous of degree zero of prices and income). Suppose also that utility is strictly quasi-concave
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and that the functions Di are invertible.
As a first step, we can see that similar properties applies to inverse demand. Inverting expres-

sion (86), we obtain that we can write expenditure shares Wj as a function of own quantity qj and
the two aggregators Q and F by defining:

Wi(qi, Q, F ) = (Q/F ) ri(qi/Q) (86)

where we define ri as:
ri(q) = qD−1

i (q).

Aggregators Q and F are initially defined as functions of vector of normalized prices, p/w. But since
utility is assumed to be strictly quasi-concave, p/w can be expressed as a function of the vector of
quantities q. Hence Q and F can also be viewed as aggregators that are functions of quantities q, so
that expenditure shares can be written as Wi(qj , Q(q), F (q)) = (Q(q)/F (q)) ri(qi/Q(q)).

As stated, suppose that the set of gradients
{

∂Q
∂ log pi

, ∂F
∂ log pi

}
is of rank two for all (p, w). Invertibil-

ity of demand (q as a function of p/w and vice-versa) also ensures that the rank of:
{

∂Q
∂ log pi

, ∂F
∂ log pi

}
(as a function of normalized prices) is the same as the rank of

{
∂Q

∂ log qi
, ∂F
∂ log qi

}
(as a function of

quantities) evaluated at q = q(p/w).
Differentiating the budget constraint

∑
i ri(qi/Q) = F/Q implies:

∂rj
∂ log qj

−

(∑
i

∂ri
∂ log qi

)
∂ logQ

∂ log qj
=

∂(F/Q)

∂ log qj
.

Hence,
∂rj

∂ log qj
is colinear to the gradients ∂Q

∂ log qj
and ∂F

∂ log qj
:

∂rj
∂ log qj

=
1

Q

∂F

∂ log qj
+

(∑
i

∂ri
∂ log qi

)
1

Q

∂Q

∂ log qj
− F

Q2

∂Q

∂ log qj
. (87)

If demand is rational and can be derived from utility maximization, we must have:

∂U

∂ log qi
= (λQ/F ) ri(qi/Q) ≡ Λ ri(qi/Q)

where we define the new aggregator Λ = λQ/F as a function of marginal utility λ and the two
aggregators Q and F . Differentiating, we get:

∂U

∂ log qi∂ log qj
=

∂Λ

∂ log qj
ri − Λ

∂ri
∂ log qi

∂ logQ

∂ log qj
.

The cross derivative must be symmetric, hence, dividing by Λ we obtain:

1

Λ

∂Λ

∂ log qj
ri −

∂ri
∂ log qi

∂ logQ

∂ log qj
=

1

Λ

∂Λ

∂ log qi
rj −

∂rj
∂ log qj

∂ logQ

∂ log qi
.

Rearranging, and using again Λri = ∂U
∂ log qi

, we obtain:

1

Λ2

∂Λ

∂ log qj

∂U

∂ log qi
+

∂rj
∂ log qj

∂ logQ

∂ log qi
=

1

Λ2

∂Λ

∂ log qi

∂U

∂ log qj
+

∂ri
∂ log qi

∂ logQ

∂ log qj
. (88)
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Incorporating (87) into (88) and simplifying, we obtain:

1

Λ2

∂Λ

∂ log qj

∂U

∂ log qi
+

1

Q2

∂F

∂ log qj

∂Q

∂ log qi
=

1

Λ2

∂Λ

∂ log qi

∂U

∂ log qj
+

1

Q2

∂F

∂ log qi

∂Q

∂ log qj
. (89)

The remainder of the proof exploits this symmetry condition (89) to show that (Λ, U) can provide
an alternative set of aggregators to (Q,F ).

Take a vector x such that
∑

i xi
∂Λ

∂ log qi
= 0. Multiplying equation (89) by xi and summing across

goods i, we obtain:

1

Λ2

∂Λ

∂ log qj

(∑
i

xi
∂U

∂ log qi

)
+

1

Q2

∂F

∂ log qj

(∑
i

xi
∂Q

∂ log qi

)
=

1

Q2

(∑
i

xi
∂F

∂ log qi

)
∂Q

∂ log qj
(90)

If for all x, we also get
∑

i xi
∂U

∂ log qi
= 0, then we can see that the gradients of Q and F are colinear,

which contradicts the assumption that they are not. Hence there exists x such that
∑

i xi
∂U

∂ log qi
6= 0

while we still have
∑

i xi
∂Λ

∂ log qi
= 0. We can see from equation (90) that is implies that the gradient

of U is colinear with the gradients of F and Q.
Similarly, since the gradients of U and Λ are not colinear, we can find a vector z such that∑

i zi
∂U

∂ log qi
= 0 and

∑
i zi

∂Λ
∂ log qi

6= 0. Multiplying equation (89) by zi and summing across goods i,
we obtain:

1

Q2

∂F

∂ log qj

(∑
i

zi
∂Q

∂ log qi

)
=

1

Λ2

∂Λ

∂ log qj

(∑
i

zi
∂U

∂ log qi

)
+

1

Q2

(∑
i

zi
∂F

∂ log qi

)
∂Q

∂ log qj
(91)

This implies that the gradient of Λ is also colinear with the gradients of F and Q. Since the gradients
of Λ and U are not colinear with each other, we obtain that the gradients of Λ and U offers an
alternative basis on which we can project the gradients of F and Q.

Aggregates F and Q can thus be written as functions of U(q) and such an aggregate Λ(q). Con-
versely, coming back to Marshallian demand instead of inverse demand, this also proves that we can
express F and Q as a function of indirect utility V (p/w) and an aggregate Λ(p/W ) that is function
of normalized prices p/w. Hence, such demand system is a special case of Proposition 2 and 5.

Section 5) Application to monopolistic competition

Frechet differentiability with a continuum of goods

The continuum of goods is [0, N̄ ], and a consumption profile is defined as q ∈ L2[0, N̄ ]. From here
onward, we denote the Lebesgue space Ln[0, N̄ ] by Ln to simplify notation.

We would like to define utility implicit as a mapping from L2 to R that satisfies:∫ N̄
i=0

∫ qiH(Λ,U)
q=0 D−1(q, U) dq di

G(Λ, U)
= 1 (92)

where aggregator Λ is itself a solution to:∫ N̄
0 qiD

−1(qiH(Λ, U), U)di

F (Λ, U)
= 1. (93)

79



For utility to be well-defined and Frechet differentiable in q ∈ L2, the following conditions are needed:

• First, note that the two integral sums in equations (92) and (93) are well-defined and finite for
any q ∈ L2. For the first one, we have:∫ N̄

i=0

∫ Hqi

q=0
D−1(q, U)dqdi <

∫ N̄

i=0

∫ HA

q=0
D−1(q, U)dqdi+D−1(HA,U)

∫ N̄

i=0
(qi−A)1{qi>A} di < +∞

for any constant term A > 0, since D−1(q, U) is decreasing in q. This integral is finite as we
already assume that

∫ qi
q=0D

−1(q, U) dq is finite, and q ∈ L2 (which implies that q ∈ L1 since we

are working over a bounded segment [0, N̄ ]). For the second one, note that we already assume
limqi→0 qiD

−1(qi, U) = 0 (i.e. the marginal utility form a good increases by less than 1/q when
q decreases).∫ N̄

0
qiD

−1(qiH,U)di <

∫ N̄

0
qiD

−1(qiH,U)1{qi>A}di+D−1(AH,U)

∫ N̄

0
qi1{qi>A}di < +∞

• Next, as we define U implicitly as the solution of the system of equations (92) and (93), we need
the Jacobian of the LHS to be well defined. The derivatives w.r.t. U depend on:∫ N̄

i=0

∫ qi

q=0

∂D−1

∂U
(q, U) dq di and

∫ N̄

i=0
qi
∂D−1

∂U
(qi, U) di.

We need to assume that those are well-defined and finite for any q ∈ L2, a property that is not
necessarily implied by the other assumptions made above.

The derivatives w.r.t. Λ are
∫ N̄
i=0 qiD

−1(qi, U) di and
∫ N̄
i=0 q

2
i
∂D−1

∂q (qi, U) di. The former one is is

finite, as shown above. The latter is finite if
∣∣∣∂D−1

∂q

∣∣∣ is bounded among large enough values of q

and if it does not exceed A/q2
i for some constant term A in the limit qi → 0.

Note also that the Jacobian is triangular and invertible thanks to the assumptions that the
derivative of LHS of equation (92) is strictly negative in U , zero in Λ (this is implied by the
budget constraint), and derivative of the LHS of equation (92) is strictly negative in Λ.

• Finally, for utility and Λ to be Frechet differentiable, we need to assume that
∫ N̄
i=0

∫ qi
q=0D

−1(q, U)dqdi

and
∫ N̄
i=0 qiD

−1(qi, U)di are Frechet differentiable in q. The derivatives are
∫ N̄
i=0D

−1(qi, U)hidi

and
∫ N̄
i=0

(
D−1(qi, U) + qi

∂D−1

∂q

)
hidi respectively, for any h ∈ L2. Hence Frechet differentiability

requires that: ∫ N̄

i=0

∫ qi+hi

qi

D−1(q, U)dqdi−
∫ N̄

i=0
D−1(qi, U)hidi = o(||h||2)

and ∫ N̄

i=0
(qi+hi)

(
D−1(qi+hi, U)−D−1(qi, U)

)
di−

∫ N̄

i=0
qi
∂D−1

∂q
hidi = o(||h||2)

as h converges to zero, where || · ||2 denotes the L2 norm.
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Proof of Proposition 7

Uniqueness and existence Suppose that demand is Gorman-Pollak with:

q = Q/L = D(F (Λ)p/w)/H(Λ)

Firms choose Q = Lw to maximize profits:

π = Q(p− c)− f = Q[wD−1(H(Λ)Q/L)/F (Λ)− c]− f

Assuming a unique quantity level to maximize profits (second order condition), we obtain that optimal
profits can be expressed as a function of Λ (after optimizing over p or q). Moreover, we can show
that profits strictly decrease with Λ. This can be seen by applying the envelop theorem and noticing
that D−1(H(Λ)Q/L)/F (Λ) must have a negative partial derivative in Λ as one of our assumption for
rationalizing Gorman-Pollak demand, conditions [A3]:

∂π

∂Λ
= Qw

∂

∂Λ

{
D−1(H(Λ)Q/L)/F (Λ)

}
< 0

Hence, the zero-profit condition uniquely pins down Λ = Λ∗. From the profit maximization, we also
obtain Q(Λ) as a function of Λ, hence we obtain a unique firm size Q∗ = Q(Λ∗). Then, prices as
obtained as a function of Q and Λ, so we also have a unique equilibrium price p∗. Finally, the budget
constraint (or equivalently the resource constraint) uniquely determines the equilibrium number of
firms N∗, given Q∗ and Λ∗.

To prove existence, we can see that QD−1(HQ/L) is null in the limit cases where Q is zero and
infinite, while D−1(HQ/L) goes to infinity at Q ≈ 0. Thus, along with the second-order condition,
profit maximization leads to a unique and finite Q∗(Λ) > 0 that maximizes profits, for any given Λ.
As we assume that D−1(H(Λ)Q/L)/F (Λ) spans 0 to +∞ when Λ goes from +∞ to zero for any given
Q, we also obtain that variable profits with Q = Q∗(Λ) can take all values from 0 to +∞ (for any
given c) and thus can equal any value of fixed costs f .

Comparative statics It is again useful to denote:

r(q) = qD−1(q)

as well as ρ(q) = εr the elasticity of r(q) w.r.t q. The price elasticity of demand (in absolute value) is
then σ = 1

1−ρ .
The second-order condition for profit maximization can then be simply stated as r having a negative

second derivative, which is equivalent to assuming a negative elasticity of r′:

Profit SOC ⇐⇒ εr′ < 0

As shown above, equilibrium conditions on maximized profits being zero determine Λ and Q. First,
we can see that:

ρ(H(Λ)Q/L) =
cQ

cQ+ f

Hence, differentiating w.r.t Q, Λ and L, we obtain:

(1− ρ)d logQ = ερd log(HQ/L)
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Note that ερ = εr′ + 1− ρ, so this is equivalent to:

−εr′d logQ = ερεHd log Λ− ερd logL (94)

Note that εr′ < 0 (SOC in profits) hence this uniquely characterizes how Q changes depending on Λ
and population L.

Next, consider the zero-profit condition:

wQD−1(H(Λ)Q/L)/F (Λ) − (cQ+ f) = 0

Given that Q maximizes profits, the derivative in Q is null. Hence we obtain how a change in
population L and income w affects aggregator Λ: Differentiating the zero profit condition yields:

[εF + (1− ρ)εH ]d log Λ = (1− ρ)d logL+ d logw

where again ρ is the elasticity of r(q) = qD−1(q). Rationalization of the demand system and the
definition of the aggregator Λ requires that εF + (1− ρ)εH is positive, so we obtain that Λ increases
with population L and income w. Plugging into equation (94) describing the changes in firm size Q,
and multiplying by εF + (1− ρ)εH , we obtain:

−εr′ [εF + (1− ρ)εH ]d logQ = ερεH [εF + (1− ρ)εH ]d log Λ− ερ[εF + (1− ρ)εH ]d logL

= [−ερ[εF + (1− ρ)εH ] + ερεH(1− ρ)]d logL + ερεHd logw

= − ερεFd logL + ερεHd logw

So we find that firm size Q increases with L if and only if ερεF is negative and increases with income w
if and only if ερεH is positive. Since the sign of ερ is the same as the sign of εσ, we obtain Proposition
7.

Lemma 2

For Propositions 8, 9 and 10, we rely on the following Lemmas linking sub/superconvexity and the
sign of ρ− r/R, governing whether markups exceed the gains from variety (see Proposition 10).

Denote r(q, U) = qD−1(q, U) and its elasticity ρ = εr w.r.t q as well as:

R(q, U) =

∫ q

0
D−1(q′, U)dq′

which is well defined according to our assumptions from Section 5.1. Note that we also have ρ = εr ∈
(0, 1), R(0, U) = 0, r(0, U) = 0, r(q, U) > 0 for any U and q > 0. The price elasticity of demand
corresponds to 1

1−ρ (in absolute terms), hence demand is superconvex if ερ > 0 and subconvex if ερ < 0
(where ερ refers to the elasticity in q).

Lemma 2a: Suppose ερ < 0 (subconvex demand), then ρ < r/R.

Given the definition of ρ, we have ρ = xr′/r and thus:

r/x = r′/ρ (95)
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hence, since ρ decreases in x (ερ < 0):

R(q, U) =

∫ q

0
[r(x, U)/x]dx =

∫ q

0

∂r

∂x

1

ρ(x, U)
dx < [

∫ q

0

∂r

∂x
dx]/ρ(q, U) = r(q, U)/ρ(q, U)

Lemma 2b: Suppose ερ > 0 (superconvex demand), then ρ > r/R.

We start again from equation (95). Since ρ increases with q, we obtain:

R(q, U) =

∫ q

0
[r(x, U)/x]dx =

∫ q

0

∂r

∂x

1

ρ(x, U)
dx > [

∫ q

0

∂r

∂x
dx]/ρ(q, U) = r(q, U)/ρ(q, U)

Now consider the dual, looking here just at demand D with a single argument for the sake of
simplicity, and define:

S(y) =

∫ +∞

y′=y
D(y′)dy′

(assumptions on the integrability of D−1 around zero implies that the integral above is also well
defined). Assuming also that the price elasticity is larger than one, yD(y) has a derivative yD′ + D
that is negative, and thus yD(y) is decreasing in y. We also assume that it converges to 0 as y goes
to infinity (this is the dual equivalent to assuming that qD−1(q) converges to zero at q ≈ 0). Define
µ as:

µ(y) =
yD′(y)

yD′(y) +D(y)

As µ = σ/(σ − 1), µ increases in y if and only if the price elasticity σ = −yD′(y)
D(y) decreases in y.

Demand is subconvex if εµ > 0 and superconvex if εµ < 0.

Lemma 2c: Suppose εµ > 0 (subconvex demand), then εS > 1 + εD.

Note that:

µ(y)− 1 = − D(y)

yD′(y) +D(y)

hence we have D = (−yD′ −D)(µ− 1) and thus, for any y < y0:

S(y)− S(y0) =

∫ y0

y
D(x)dx =

∫ y0

x=y
(−xD′(x)−D(x))(µ(x)− 1) dx

Since µ(y) increases in y, we obtain:

S(y)− S(y0) > (µ(y)− 1)

∫ y0

y
[−xD′ −D]dx = (µ(y)− 1)[yD(y) − y0D(y0)]

As y0 goes to infinity, S(y0) = 0 and y0D(y0) = 0, so we obtain:

S(y) > yD(y)(µ(y)− 1)
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and thus, noticing that 1/(µ− 1) = σ − 1, we obtain:

εS = −yD(y)/S(y) > −1/(µ− 1) = 1− σ = 1 + εD

Lemma 2d: Suppose εµ < 0 (superconvex demand), then εS < 1 + εD.

As above, we have

S(y)− S(y0) =

∫ y0

y
D(x)dx =

∫ y0

x=y
(−xD′(x)−D(x))(µ(x)− 1) dx

Hence, since µ(y) now decreases in y, we have:

S(y)− S(y0) < (µ(y)− 1)

∫ y0

y
[−xD′ −D]dx = (µ(y)− 1)[yD(y) − y0D(y0)]

As y0 goes to infinity, S(y0) = 0 and y0D(y0) = 0, so we obtain:

S(y) < yD(y)(µ(y)− 1)

and thus, noticing that 1/(µ− 1) = σ − 1, we obtain:

εS = −yD(y)/S(y) < −1/(µ− 1) = 1− σ = 1 + εD

Combining Lemma 2c and 2d, we can also see that εµ(1 + εD − εS) < 0 with both subconvex and
superconvex demand.

With implicitly-additive preferences

With directly-implicitly-additive preferences based on equation (27) in the main text, and with sym-
metric demand over a continuum of goods, utility satisfies:

N

∫ q

0
D−1(q′, U)dq′ = 1

where D−1 is strictly decreasing in q and U . This implicitly determines how utility U depends on N
and q.

This leads to prices:
p = wD−1(q, U)/Λ

with Λ determined by the budget constraint:

r(q, U)/Λ = 1/N

Free-entry condition leads to:

r(q, U)/Λ =
cLq + f

Lw

We get: ∫ q

0
D−1(q′, U)dq′ =

cLq + f

Lw
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From this, we obtain utility U as a function of q, a function that is increasing in q if and only if εR > ρ.
This is the case for subconvex demand (Lemma 2a).

The optimal pricing condition leads to:

ρ(q, U) =
cLq

cLq + f

Assuming the profit maximization second order condition, this can be used q as a implicit function of
U , decreasing with U if ρ(q, U) decreases with U . Combining with the previous equation, we therefore
obtain a unique equilibrium in q and U in the case of subconvex demand if the price elasticity of
demand σ(q, U) = 1/(1− ρ) decreases with utility U .41

Proof of Proposition 8

Directly semi-separable preferences Suppose that utility is given by: U = NR(H(Λ)q)
G(Λ) and Λ

by:
r(H(Λ)q)

R(H(Λ)q)
=
H(Λ)G′(Λ)

H ′(Λ)G(Λ)
≡ F (Λ)H(Λ)

G(Λ)

where we denote F (Λ) = G′(Λ)
H′(Λ) which we assume to be positive, and with:

R(q) =

∫ q

0
D−1(q′)dq′ r(q) = q D−1(q)

Also denote by ρ = εr the elasticity of r (which must be between 0 and 1). The first-order condition
of profit maximization yields:

ρ(H(Λ)Q/L) =
cQ

cQ+ f

Assume r′ < 0 (SOC in profit maximization) and note ερ = εr′ + 1− ρ.
Equilibrium in Q and Λ can be summarized by these two conditions:

ρ(H(Λ)Q/L)

(
1 +

f

cQ

)
= 1

r(H(Λ)Q/L)

R(H(Λ)Q/L)

G(Λ)

F (Λ)H(Λ)
= 1.

The left-hand side of the first equation is decreasing in Q given the profit maximization second order
condition: ερ + ρ − 1 = εr′ < 0, and thus the first equation has a unique solution in Q as a function
of Λ and population L:

Q = Q∗(Λ, L)

with:
−εr′d logQ∗ = ερεHd log Λ− ερd logL

So Q∗(Λ, L) increases with Λ if ερεH > 0; decreases with Λ if ερεH < 0. Moreover, Q∗(Λ, L) increases

41Conversely, in the case of superconvex demand, a sufficient condition for uniqueness is that the price
elasticity of demand increases with utility.
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with L (conditional on Λ) if and only if ερ is negative (subconvex demand).
For the demand system to be well-defined, recall that we assume that the left-hand side of the

second equation is decreasing in Λ, i.e. εF + (1− ρ)εH > 0. This leads to Λ as a unique solution as a
function Q/L.

Λ = Λ∗(Q/L)

with:
(εF + (1− ρ)εH)d log Λ = (εr − εR)d log(Q/L)

so Λ∗(Q/L) increases in Q/L if and only if εr − εR = ρ− r/R > 0.
Suppose that εH is negative and that demand is subconvex (ερ < 0). Lemma 2a implies ρ−r/R < 0.

In this case, we obtain that Q∗(Λ, L) strictly increases with Λ while Λ∗(Q/L) strictly decreases with
Q/L. A solution in (Q,Λ) is thus unique. From Q and the resource constraint, we obtain the number
of firms,and we obtain utility from the definition of utility above. The equilibrium is thus unique.
Moreover, in this case, Q∗(Λ, L) increases with L (while Λ∗(Q/L) decreases in Q/L), so an increase
in L leads to an upward shift (towards larger firm size) for both curves, and a larger firm size Q in
equilibrium.

Suppose that εH is negative and that demand is superconvex (ερ > 0). Lemma 2b implies ρ−r/R >
0. In this case, we obtain that Q∗(Λ, L) strictly decreases with Λ while Λ∗(Q/L) strictly increases
with Q/L. A solution in (Q,Λ) is thus unique. Again, using the resource constraint and the definition
of utility, N and U are also unique.

Thus, the equilibrium is unique when εH is negative and demand is either subconvex or supercon-
vex, as the latter implies ερ(εr − εR) > 0. When εH is positive, a sufficient condition for uniqueness
of equilibrium is obtained by comparing the slopes of Λ∗ and Q∗ defined just above. In the case of
superconvex demand (ερ > 0), both curves are upward-slopping. Plotting both with Q on the vertical
axis and Λ on the horizontal axis, curve Q∗ is steeper than Λ∗ if and only if:

εHερ(εr − εR) > (−εr′)(εF + (1− ρ)εH)

With subconvex demand (ερ < 0), both curves are downward slopping and the same condition indicates
that the Q∗ curve is steeper than Λ∗. A sufficient condition for uniqueness is that the sign of εHερ(εr−
εR)− (−εr′)(εF + (1− ρ)εH) does not change in equilibrium.

Finally, assuming that inverse demand goes from zero to infinity as Λ goes from infinity to zero
(conditional on its own quantity), the curve Λ = Λ∗(Q/L) defining Λ necessarily intersect the other
curve dictated by profit maximization, Q∗(Λ, L). For any given Q, we can then obtain N = Lw/(cQ+
f) and then obtain utility U conditional on any N , Q and Λ. Hence an equilibrium exists.

Indirectly semi-separable preferences Suppose that indirect utility can be expressed as:

V =
N

L(Λ)
S(F (Λ)p/w)

where we denote:

S(y) =

∫ ∞
y′=y

D(y′)dy′

and where F , L and D are twice continuously differentiable, with F ′ > 0, L′ < 0, D > 0 and D′ < 0
(assumptions on the integrability of D−1 around zero implies that the integral above is also well
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defined). Suppose that Λ is such that:

(p/w)D(F (Λ)p/w)

S(F (Λ)p/w)
=
H(Λ)

L(Λ)
(96)

where we denote H(Λ) = −L′(Λ)/F ′(Λ) (assumed to be positive). We assume that the left-hand side
of equation (96) is decreasing in Λ (this assumption is needed to ensure that such indirect utility
function is well-behaved, as in Proposition 5), with εH − εDεF > 0. We obtain Λ(p/w) implicitly
defined by this equation, with:

(εH − εDεF )d log Λ = (1 + εD − εS)d log(p/w) (97)

Profits are given by:

π = Q(p− c)− f = L(p− c)D(Fp/w)

V H(Λ)
− f

So maximizing profits w.r.t. p leads to:

(p− c)/p = −D(Fp/w)/[(Fp/w)D′(Fp/w)] ≡ 1/σ(Fp/w)

or equivalently, using relative markups p/c:

p

c
=

(Fp/w)D′(Fp/w)

(Fp/w)D′(Fp/w) +D(Fp/w)
≡ µ(Fp/w)

Note that SOC in profit maximization implies that εµ < 1. Moreover, demand is subconvex if εµ < 0
and superconvex if εµ > 0.

Differentiating w.r.t. p, Λ and w, we obtain:

d log p = εµd log(p/w) + εµεFd log Λ

Hence we get:
(1− εµ) d log p = −εµd logw + εµεFd log Λ

Comparing how p depends on Λ to maximize profits with how Λ depends on p/w (equation 97), we
obtain that the equilibrium is unique if one curve is always steeper, i.e. if the sign of:

(εH − εDεF )(1− εµ) − (1 + εD − εS)εµεF

never flips in equilibrium. On the one hand, the second-order condition in profits and the condition
for integrability imply that (εH − εDεF )(1 − εµ) is positive. On the other hand, Lemma 2c and 2d
imply that the sign of (1 + εD − εS)εµ is always negative with both the subconvex and superconvex
demand. Hence, a sufficient condition for uniqueness is that F increases with Λ.

If demand is subconvex, εµ is positive and profit maximization implies that prices increase with
income w, conditional on Λ. In turn, since 1 + εD − εS is negative when demand is subconvex, equa-
tion (97) implies that Λ increases with w, conditional on prices (and decreases in prices, conditional
on w). Hence equilibrium prices increase with income.

As for direct semi-separability, assuming that demand goes from zero to infinity as Λ goes from
infinity to zero (conditional on its own normalized price), we can always find a pair (Λ, p) that satisfy
the definition of Λ and profit maximization. Then, for any given price, we obtain firm size Q and
thereby obtain N = Lw/(cQ+ f). Finally, we obtain utility U conditional on any value of N , Q and
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Λ. Hence an equilibrium exists.

Proof of Proposition 9

We adopt the same notation as in Proposition 7. Suppose that preferences are homothetic, as described
in Section 4.2, and that U satisfies:

NR(qH(Λ)/U) = G(Λ)

where R is such that:

R(x) =

∫ x

q=0
D−1(q)dq

This leads to demand proportional to D−1(qH(Λ)/U). Demand is then:

p/w = D−1(H(Λ)q/U) / [UF (Λ)]

with G′ = H ′F . Denote r(q) = qD−1(q). The budget constraint can be written:

Nr(qH(Λ)/U) / [H(Λ)F (Λ)] = 1

The free-entry condition (zero profits) yields:

Lw

N
= cLq + f

which we can combine with the budget constraint to obtain:

r(qH(Λ)/U)

F (Λ)H(Λ)
=
cLq + f

Lw
(98)

Since the left-hand side is strictly decreasing in Λ, this can be used to implicitly define Λ = Λ∗(q, U, L,w).
Notice that, in equilibrium, q maximizes profits which implies that the derivative of Λ∗(q, U, L,w) w.r.t
q is null.

Taking differentials, equation (98) yields:

[εF + (1− ρ)εH ]d log Λ∗ = −ρd logU + (1− ρ)d logL+ d logw

Maximizing profits leads to the first-order condition:

ρ(H(Λ)q/U) =
cLq

cLq + f
(99)

where ρ = εr is the elasticity of r w.r.t q. The second order condition implies that the derivative in
q of the left-hand side is strictly smaller than the RHS. Hence this equality can be used to implicitly
define q as a function of U,Λ and L around an equilibrium. Differentiating, we obtain:

−εr′d log q∗ = −ερd logU + ερεHd log Λ − (1− ρ)d logL

where εr′ is strictly negative (profit maximization second order condition).
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Finally, we can also combine the free-entry condition with the equation defining utility to obtain:

R(qH(Λ)/U)

G(Λ)
=

cLq + f

Lw
(100)

Note that the derivative of the left-hand-side w.r.t Λ is null if Λ also satisfies equation (98). As the
left-hand side is strictly decreasing in U , this can be used to implicitly characterize U as a function
U∗ of q, Λ and L. Differentiating equation (100) yields:

(r/R)d logU∗ = −(ρ− r/R)d log q + (1− ρ)d logL+ d logw

Conditions for uniqueness. Assume for now that L and w remain fixed. Combining with q = q∗

and Λ = Λ∗ based on equations (98) and (99), we obtain:

d logU∗ = −(R/r)(ρ− r/R)/(−εr′) [−ερd logU + ερεHd log Λ]

= −(R/r)(ρ− r/R)/(−εr′) [−ερd logU + ερεH (−ρd logU) /(εF + (1− ρ)εH)]

The equilibrium is unique if the derivative in U in the RHS is always smaller or larger than unity.
This happens when the sign of:

Θ0 ≡ 1 + (R/r)(ρ− r/R)/(−εr′) [−ερ + ερεH (−ρ) /(εF + (1− ρ)εH)]

is either always positive or negative. Rearranging, we find:

sign(Θ0) = sign [(−εr′)(r/R)(εF + (1− ρ)εH) − ερ(ρ− r/R)(εF + εH)] (101)

Note that ερ(ρ − r/R) is positive when demand is subconvex or superconvex (Lemma 2a and 2b).
Moreover, both (−εr′) and εF + (1 − ρ)εH are positive (profit SOC and definition of Λ). Hence the
first term is always positive. The second term is also positive if εF +εH is negative, hence εF +εH < 0
is a sufficient condition to ensure that Θ0 is positive and that the equilibrium must be unique.

Now, suppose instead that demand is subconvex (ερ < 0) and that εH is negative. We obtain:

sign(Θ0) = sign [(1− ρ)(r/R)(εF + (1− ρ)εH) − ερρ(εF + (1− ρ)εH) − ερ(ρ− r/R)ρεH ]

The first term is positive given that ρ < 1 and εF + (1−ρ)εH > 0 (to ensure a well-defined aggregator
Λ). The second term is positive if demand is subconvex. The third term is also positive if we assume
εH < 0, given that ερ(ρ − r/R) is positive in the subconvex case (Lemma 2a). Hence, εH < 0 is a
sufficient condition for uniqueness of equilibrium in the subconvex case.

Comparative statics. If we now examine how changes in population L and w influence equi-
librium outcomes, we can again use equations (98), (99) and (100). Incorporating q = q∗ into the
equation defining utility, we obtain:

(r/R)d logU∗ = −(ρ−r/R)/(−εr′) [−ερd logU + ερεHd log Λ − (1− ρ)d logL] + (1−ρ)d logL+d logw.

Incorporating Λ = Λ∗ and rearranging, we obtain:

d log(LU∗) = ΘUd log(Lw)
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with

ΘU =

[
1− (ρ− r/R)ερεH

(−εr′)[εF + (1− ρ)εH ]

]
/Θ0

Using equation (98), differentiated:

[εF + (1− ρ)εH ]d log Λ∗ = −ρd log(LU) + d log(Lw)

we obtain the changes in aggregator Λ:

d log Λ∗ = ΘΛd log(Lw)

with

ΘΛ =
1− ρΘU

εF + (1− ρ)εH

Finally, thanks to equation (99):

−εr′d log(Lq∗) = −ερd log(LU) + ερεHd log Λ

we obtain the changes in firm size Q = Lq:

d log(Lq∗) = ΘQd log(Lw)

with

ΘQ =
−ερΘU + ερεHΘΛ

−εr′
After much simplifying, we obtain:[

− ερ(ρ− r/R)[εF + εH ]− εr′(r/R)[εF + (1− ρ)εH ]
]
d logQ

= −ερ
[
[εF + (1− ρ)εH ] + (ρ− r/R)εH

]
d log(Lw)

As shown in equation (101) and below, the coefficient in front of d logQ is positive when demand is
subconvex and εH is negative. In that case, we can also see that the coefficient in front of Lw is also
positive, since −ερ > 0, εF + (1− ρ)εH > 0 and ρ− r/R < 0 (Lemma 2a).

In the superconvex case ερ > 0 with εF + εH < 0, the effect of market size on firm size is positive
if and only if:

εF + εH < r/RεH

This does not necessary hold, even under the sufficient assumption εF + εH < 0 for uniqueness of
equilibrium.

Homothetic semi-separability. Item iii) of Proposition 9 is a direct corrolary of proposition
8. When preferences are homothetic, firm size depends on just Lw. If preferences are also directly
semi-separable, we know that firm size does not vary with w, hence it does not also vary with w.

Also, as we noted earlier in Section 4, homothetic direct semi-separability is equivalent to homo-
thetic indirect semi-separability.
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Proof of Proposition 10

Gains from variety Suppose that U satisfies:

NR(qH(Λ, U), U) = G(Λ, U)

with R(x, U) =
∫ x

0 D
−1(x′, U)dx′. Denote r(x) = xD−1(x). The budget constraint is then:

Nr(qH(Λ, U), U)/H(Λ, U) = G′(Λ, U)/H ′(Λ, U) ≡ F (Λ, U)

with G′ = H ′F and where the d́enotes the derivative w.r.t Λ.
Assuming identical demand across goods, what are the benefits of increased consumption q per

good relative to increased number of product varieties? This is obtained by how much we need to
change q and N jointly to keep utility constant (slope of indifference curves in terms of q and N).
Differentiating the first equation, given that the derivative in Λ is null, we obtain:

d logN + εRd log q = βdU

with εR = r/R, for some β > 0, and thus we obtain:

∂U
∂ logN

∂U
∂ log q

= 1/εR ≡ v

which is the inverse of the elasticity of R(x, U) =
∫ x

0 D
−1(x′, U)dx′, evaluated at x = H(Λ, U)q (with

q = Q/L is individual consumption).

First best entry and production Suppose that total resources are fixed (total costs are given
by total GDP Lw), so that:

Nf + NcLq = Lw

Differentiating (holding Lw constant), we obtain:

(f + cLq) dN + NcLdq = 0

Thus, at optimum, maximizing utility U as function of q and N under that constraint, the FOC of
the first-best allocation implies:

∂U
∂N
∂U
∂q

=
cLq + f

NcL

which is equivalent to:
∂U

∂ logN

∂U
∂ log q

=
cLq + f

cLq

Hence, at the first best allocation we must have:

cLq + f

cLq
= v

where v = R/r = 1/εR refers to the gains from variety.
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Market equilibrium

In the market equilibrium, firms follow the pricing rule:

ρ(H(Λ, U)q , U) =
cLq

cLq + f

where ρ = εr = (σ − 1)/σ is the elasticity of r w.r.t q, and where σ refers to the price elasticity of
demand. In addition, the zero profit condition is equivalent the resource constraint N(f + cLq) = Lw
as above.

Hence the market equilibrium is not the first-best allocation as long as ρ differs from εR, or
equivalently σ/(σ − 1) = 1/ρ differs from v = 1/εR.

Moreover, if demand is subconvex, Lemma 2a implies that ρ < εR and entry is inefficiently large:

cLq + f

cLq
<

∂U
∂ logN

∂U
∂ log q

(marginal utility from increased q relative to marginal utility from increased entry N is too high).
If demand is superconvex, Lemma 2b implies that ρ > εR and entry is inefficiently low:

cLq + f

cLq
>

∂U
∂ logN

∂U
∂ log q
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