
Structural Gravity and Fixed Effects

Thibault Fally
UC-Berkeley ARE∗

May 2015

Abstract

The gravity equation for trade flows is one of the most successful empirical models
in economics and has long played a central role in the trade literature (Anderson, 2011).
Different approaches to estimate the gravity equation, i.e. reduced-form or more struc-
tural, have been proposed. This paper examines the role of adding-up constraints as
the key difference between structural gravity with “multilateral resistance” indexes and
reduced-form gravity with simple fixed effects by exporter and importer. In particular,
estimating gravity equations using the Poisson Pseudo-Maximum-Likelihood Estimator
(Poisson PML) with fixed effects automatically satisfies these constraints and is consis-
tent with the introduction of “multilateral resistance” indexes as in Anderson and van
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1 Introduction

The gravity equation is one of the most successful empirical models in economics and has been

the focus of a very extensive literature in international trade (Anderson 2011). The very good

fit of the gravity equation for bilateral trade flows has long been recognized since Tinbergen

(1962) and the many papers that followed.1

Various ways to specify and estimate the gravity equation have been proposed (see Feenstra

2004, Head and Mayer 2014). Specifications vary broadly along two dimensions. A first di-

mension concerns the error term. The second is the degree of model structure that is imposed

on the estimation. Among the estimation approaches available, one possibility is to use the

Poisson pseudo-maximum likelihood method (Poisson-PML). Santos Silva and Tenreyro (2006)

show that Poisson-PML consistently estimates the gravity equation for trade and is robust to

different patterns of heteroskedasticity and measurement error, which makes it preferable to

alternative procedures such as ordinary least squares (using the log of trade flows) or non-linear

least squares (in levels).2

There are also different trends in the specification of supply-side and demand-side effects in

the gravity equation. Early papers have simply used total (multilateral) expenditures and total

output for supply- and demand-side terms. It has been recognized, however, that adjustments

are necessary to account for differences in market thickness across destinations (captured by

the “inward multilateral-resistance index” in Anderson and van Wincoop 2003) and source

countries (captured by the “outward multilateral resistance index”). There are now two main

ways to account for these adjustments. A set of papers introduces exporter and importer

fixed effects to capture both market-size effects and multilateral-resistance indexes in a simple

way (e.g. Harrigan 1996, Redding and Venables 2004). Another trend instead imposes more

structure on the gravity equation. This approach has been put forward by Anderson and van

Wincoop (2003), Anderson and Yotov (2010), and Balistreri and Hillberry (2007), with some

variations in the restrictions imposed on the demand side (e.g., Fieler 2012) or supply side (e.g.,

Costinot, Donaldson and Komunjer, 2012).3

In this paper, I show that estimating gravity with Poisson PML and fixed effects is con-

sistent with the equilibrium constraints imposed by more structural approaches such as those

of Anderson and van Wincoop (2003) and Anderson and Yotov (2010). In particular, the

1Note that most gravity equation estimates focus on the cross-section. Lai and Trefler (2002) is one of the
few exceptions; they find that the gravity equation framework does not perform as well in time series.

2Poisson-PML is also consistent with the presence of zero bilateral trade flows, which are highly prevalent
in disaggregated data. An alternative method by Helpman, Melitz and Rubinstein (2008) involves a 2-step
estimation to structurally account for zeros.

3A growing literature also uses the MPEC approach, as in Balistreri et al (2011).
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estimated fixed effects in the Poisson PML specification are consistent with the definition of

outward and inward multilateral resistance indexes and the equilibrium constraints that they

need to satisfy. Therefore, gravity regressions with fixed effects and Poisson PML can be used

as a simple tool to solve the estimation problem raised by Anderson and van Wincoop (2003).

More generally, the constraints imposed on multilateral-resistance indexes in the structural-

gravity framework are equivalent to imposing adding-up constraints on the sum of trade flows

for each source country and each destination. This result is valid for any estimator. However,

when the Poisson-PML estimator is used, these constraints are automatically satisfied as long

as we have exporter and importer fixed effects and consistent data. This adding-up property

is specific to Poisson-PML regressions and could also be useful for other applications where

we want to constrain the sum of fitted values to be fixed, because other estimators do not

automatically satisfy adding-up constraints.4

In the last section, I estimate gravity equations and provide quantitative examples to il-

lustrate these points. First, these results imply that the test of structural gravity performed

by Anderson and Yotov (2010) is bound to support structural gravity when Poisson-PML is

used. I verify this assertion using consistent data where outward trade flows sum up to out-

put and inward trade flows sum up to expenditures. Secondly, I find large deviations between

fitted output and observed output when gravity is estimated with importer and exporter fixed

effects, especially with ordinary least squares (OLS) and Gamma-PML estimators. I also find

large differences between multilateral-resistance indexes depending on whether they are con-

structed from importer or exporter fixed effects, unless we impose additional constraints on

these indexes. Thirdly, there are systematic biases depending on market size. With OLS and

Gamma-PML, the sum of fitted trade flows tends to be larger than observed output for large

countries and smaller than observed output for small countries. This points to undesirable

properties of OLS and Gamma-PML when no constraints on multilateral-resistance indexes are

imposed.

2 The gravity model

A wide range of trade models generate relationships in bilateral trade flows that can be ex-

pressed by the following set of equations. For each exporter i and importer j, trade flows Xij

should satisfy:

Xij =
Yi

Π−θi
. D−θij .

Ej

P−θj
(1)

4For instance, Poisson-PML could be useful in consumption choice models where the sum of expenditures is
fixed for given subsets of observations.
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In this equation, Yi refers to total output in country i; Ej refers to total expenditure in country

j; Dij captures trade costs from i to j; and the parameter θ reflects the elasticity of trade flows

to trade costs, which may have different structural interpretations depending on the model, as

described below. Finally, the terms P−θj and Π−θi are called “multilateral resistance” indexes by

Anderson and van Wincoop (respectively “inward” and “outward” resistance indexes). These

two resistance terms should satisfy the following constraints for consistency, which define the

“structural gravity” framework (Anderson 2011):

Definition: “structural gravity”: The patterns of trade flows Xij are consistent with the

“structural gravity” framework if they satisfy equation (1) with the following two constraints on

multilateral-resistance terms Pj and Πi:

P−θj =
∑
i

YiD
−θ
ij

Π−θi
(2)

Π−θi =
∑
j

EjD
−θ
ij

P−θj
(3)

These equations define Pj and Πi. Given output Yi, expenditures Ej and trade costs D−θij ,

the solution in P−θj and Π−θi to this system of two equations is unique, up to a constant (the

proof of uniqueness is provided with Lemma 3 in Appendix A). As noted by Anderson and

Yotov (2010), when P−θj and Π−θi satisfy equations (2) and (3), λP−θj and Π−θi /λ are also

solutions, for any number λ > 0. This indeterminacy calls for a normalization; we thus impose

P0 = 1 for a benchmark importer j = 0. These equations can also be defined at the industry

or product level. For convenience, I do not add industry subscripts but all results in the paper

hold within each industry (as in Anderson and Yotov, 2010 and 2012).

This system of equations can be derived from various types of models. It is consistent with

models based on Armington (1979) and Krugman (1980) with a constant elasticity of substitu-

tion in consumer preferences (Anderson and Van Wincoop, 2003, Redding and Venables, 2004,

Fally, Paillacar and Terra, 2010, among many others). In these models, θ + 1 corresponds to

the elasticity of substitution. Models based on Melitz (2003), such as Chaney (2008), can also

generate gravity equations, as above. In this case, the equivalent of θ would be the coefficient of

the Pareto distribution of firm productivity; the coefficient is inversely related to productivity

dispersion. As shown by Eaton and Kortum (2002), Ricardian models of trade are also fully

consistent with gravity. In this case, the trade-cost elasticity θ corresponds to one of the coeffi-

cients of the Frechet distribution of productivity across product varieties (again, the coefficient
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is inversely related to productivity dispersion).5 In all of the above-mentioned models, the

inward multilateral resistance index P−θj can be expressed as a function of the price index in

the importing market. In turn, Π−θi captures the degree of competition faced by exporter i.

Various theoretical features have been used to generate structural gravity equations, includ-

ing a constant elasticity of substitution, Pareto distributions of productivity (Chaney, 2008,

Costinot et al., 2012) and Frechet distributions (Eaton and Kortum, 2002). The key ingredient

is that trade flows can be written as a product of an exporter term, an importer term and

a term reflecting trade costs (separability condition). Another key ingredient is a consistent

definition of output and expenditures.

Formally, Head and Mayer (2014) define “general gravity” when trade flows can be written

as Xij = exp[ei − θ logDij + mj] where ei is invariant across importers and mj is invariant

across importers j. “General gravity” is in fact equivalent to “structural gravity” when output

equals the sum of outward trade Yi =
∑
j Xij and expenditures equal the sum of inward trade

Ej =
∑
iXij. When trade satisfies the “general gravity” condition, we can re-express trade as in

equation (1) with a unique set of inward and outward multilateral-resistance indexes satisfying

equations (2) and (3). This is shown formally in Lemma 3 in Appendix A. This equivalence

has important empirical implications, which are illustrated with Lemma 1A and 1B in the next

section.

3 Gravity with fixed effects

To estimate equation (1), there are broadly two approaches which differ in the treatment of

exporter terms Yi
Π−θ
i

and importer terms Ej

P−θ
j

.

A first approach, the reduced-form, simply introduces exporter and importer fixed effects ei

and mj without imposing any constraints on these terms. This approach ignores the structure

proposed by equations (2) and (3). The estimated equation can then be written:

Xij = exp [ei − θ logDij +mj] . εij (4)

where εij denotes an error term. Note that the two full sets of exporter and importer fixed

effects are not of full rank.6 In the remainder of the paper, the restriction m̂0 = 0 is imposed for

the benchmark country j = 0. The trade cost variable, logDij, is often assumed to be a linear

combination of the log of physical distance, dummies for common language, colonial links and

5Gravity equations can also be motivated by Heckscher-Ohlin and specific-factor models (see Evenett and
Keller, 2004).

6The sum of importer dummy variables equals the sum of exporter dummy variables.
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free trade agreements, etc.7 The use of fixed effects makes the gravity equation very easy to

estimate. Various estimators have been used: ordinary least squares (in log), non-linear least-

squares, Poisson-PML, Gamma-PML and negative binomial estimators have been employed to

estimate equation (4). The results in this section apply to any of these estimators while the

next section highlights particular properties of Poisson-PML.

Instead of using dummy variables, a more structural approach pioneered by Anderson and

van Wincoop (2003) is to define exporter and importer terms as ei = log
(

Yi
Π−θ
i

)
and mj =

log
(
Ej

P−θ
j

)
and impose the following conditions on estimated multilateral resistance indexes Π̂−θi

and P̂−θj (along with the normalization P0 = 1):8

P̂−θj =
∑
i

YiD̂
−θ
ij

Π̂−θi
(5)

Π̂−θi =
∑
j

EjD̂
−θ
ij

P̂−θj
(6)

where Ej refers to observed expenditure by country j, Yi refers to observed output in i, and D̂−θij

is the estimated term for trade cost. Anderson and van Wincoop (2003) minimize the sum of

squared errors in log while imposing equations (5) and (6) as constraints in the minimization.

Anderson and Yotov (2010) estimate equation (4) with fixed effects in a first step to obtain D̂−θij

and then solve equations (5) and (6) in a second step to obtain inward and outward resistance

indexes. Head and Mayer (2014) propose estimating gravity with “structurally reiterated least

squares” (SILS) by: i) estimating equation (4) with fixed effects to obtain D̂−θij ; ii) solving

equations (5) and (6) to obtain inward and outward resistance indexes (which depend on

D̂−θij ); iii) reiterating the first step using the second-step estimates of multilateral resistance

indexes instead of fixed effects to obtain an updated estimate of D̂−θij . Steps ii) and iii) are then

reiterated until convergence is achieved.

While the structural approach exploits additional restrictions on multilateral-resistance in-

dexes, these two approaches are not very different. In fact, the fixed-effect estimation is con-

sistent with the structural-gravity framework if we use fitted output Ŷi ≡
∑
j X̂ij and fitted

expenditures Êj ≡
∑
i X̂ij instead of observed output and expenditures (where X̂ij refers to

7Note that θ cannot be identified from the coefficients for physical distance and usual trade costs variables.
What is estimated is the product of θ with the elasticity of trade costs w.r.t these variables. A special case
would be to use tariffs (as in Caliendo and Parro, 2011), for which the coefficient should in principle equal θ.

8Anderson and van Wincoop (2003) focus on a special case with symmetric trade costs and output being
equal to expenditures. The results here allow for asymmetry so that they are also valid at the industry level
where output and expenditures can largely differ. See e.g., French (2014) for potential aggregation issues.
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fitted trade flows from the estimation of equation 4 with fixed effects). We can then redefine

the system of equations (5) and (6) (where P−θj and Π−θi are the two unknowns) in terms of

fitted output and expenditures Ŷi and Êj instead of observed values Yi and Ej:

P−θj =
∑
i

ŶiD̂
−θ
ij

Π−θi
(7)

Π−θi =
∑
j

ÊjD̂
−θ
ij

P−θj
(8)

Thus, we obtain Lemma 1A:

Lemma 1 A) Substituting fitted output and expenditures:

If equation (4) is estimated with importer and exporter fixed effects, the terms P̃−θj and Π̃−θi de-

fined by P̃−θj ≡
Êj

Ê0
exp(−m̂j) and Π̃−θi ≡ Ê0Ŷi exp(−êi) are the unique solutions of equations (7)

and (8) (using fitted output, fitted expenditures and estimated trade costs D̂−θij ).9

In other words, fitted values from the fixed effects regressions are consistent with the two

general-equilibrium conditions imposed by the gravity model if we use fitted expenditures and

output instead of solving for multilateral-resistance indexes with observed expenditures and

output.10 Another illustration of the role adding-up constraints and separability is the following

equivalence. The estimation of structural gravity (using observed output and expenditures) is in

fact equivalent to including fixed effects and imposing the sum of fitted trade to equal observed

output and expenditures for each source and each destination:

Lemma 1 B) Imposing observed output and expenditures:

If equation (4) is estimated with importer and exporter fixed effects êi and m̂j, imposing∑
j X̂ij = Yi and

∑
i X̂ij = Ej is equivalent to imposing êi = log

(
Yi

Π̂−θ
i

)
and m̂j = log

(
Ej

P̂−θ
j

)
and the restrictions (5) and (6) using observed output Yi and expenditures Ej.

It is important to note that, in general, the sum of fitted trade does not add up to observed

output and expenditures unless such a constraint is explicitly added in the estimation. Hence,

9The normalization P̃−θ0 = 1 is satisfied given that we impose m̂0 = 0 in the estimation.
10Note that the fixed effects should not be held constant for counter-factual simulations (such as the border

removal in Anderson and van Wincoop, 2003). While fixed effects may be consistent with estimated trade costs,
fitted output and expenditures, multilateral-resistance indexes need to be recomputed and fixed effects adjusted
accordingly if trade costs are changed in the counter-factual exercise.
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it is important to either redefine output and expenditures (Lemma 1A) or impose fitted trade

to sum up to observed expenditures and output (Lemma 1B). In Section 5, I illustrate the

deviations between observed output and fitted output with various estimators. Section 5 shows

that there are systematic deviations between fitted output and observed output depending on

market size, which constitutes an argument for estimating structural gravity and imposing the

sum of fitted trade. As shown in the next section, the Poisson-PML estimator is an exception:

fitted output and expenditures always equal observed output and expenditures as long as

exporter and importer fixed effects are included.

4 Structural fit of Poisson PML

A now widely-used strategy (following Santos Silva and Tenreyro 2006) is to estimate equa-

tion (4) using Poisson pseudo-maximum-likelihood. The Poisson-PML estimator identifies the

coefficients using the same first-order conditions that are used by the maximum-likelihood es-

timator derived from the Poisson distribution. However, Poisson-PML does not require the

dependent variable to be Poisson distributed. The estimation procedure is fairly easy to im-

plement and robust to misspecifications (Gourieroux, Monfort and Trognon, 1984). As shown

by Santos Silva and Tenreyro (2006), the first-order conditions associated with Poisson-PML

provide a natural estimator, whether or not trade flows follow a Poisson distribution.11

In addition, the Poisson-PML estimator has special properties if we compare fitted output

and expenditures to their observed counterparts. When there are no missing observations,12

we obtain the following result:

Lemma 2 If equation (4) is estimated using Poisson PML with exporter fixed effects, fitted

production equals observed production. Similarly, when importer fixed effects are included, fitted

expenditures by importer and product equal observed expenditures:

∑
j

X̂ij =
∑
j

Xij = Yi and
∑
i

X̂ij =
∑
i

Xij = Ej

This lemma is directly derived from the first-order conditions associated with the Poisson-

PML approach (see Appendix for details).13

11Poisson-PML does not require the dependent variable to be an integer and is consistent with over-dispersion
(i.e. with a conditional variance larger than the conditional expectation). Santos Silva and Tenreyro (2011)
provide additional evidence on the good performance of PPML by also allowing for a large fraction of zeros.
For more details, see also: http://privatewww.essex.ac.uk/˜jmcss/LGW.html

12The case of missing observations for internal trade flows is discussed in Appendix B.
13Independent work by Arvis and Shepherd (2013) uncovers a similar property of Poisson-PML estimators
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According to Lemma 1B, imposing consistency of the multilateral-resistance indexes with

the structural gravity framework is equivalent to imposing the sum of fitted trade to equal

output and expenditures for each country. Because these constraints are systematically satisfied

with Poisson-PML, we obtain this very practical result:

Proposition 1 If equation (4) is estimated using Poisson PML with exporter and importer

fixed effects, the two multilateral-resistance terms defined by P̂−θj ≡ Ej
E0

exp(−m̂j) and Π̂−θi ≡
E0Yi exp(−êi) are the unique solutions of equations (5) and (6), where Ej and Yi refer to

observed expenditures and output.

Anderson and Yotov (2012) suggest comparing unconstrained fixed effects and theory-

consistent multilateral-resistance indexes (solving equations 5 and 6) as a “test” of structural

gravity. Unfortunately, Proposition 1 shows that such a test is bound to succeed if the Poisson-

PML is used as an estimator; it is therefore not a test of structural gravity. Anderson and Yotov

(2012) do not actually find a perfect fit. An explanation is that trade flows do not perfectly

add up to output Yi and expenditures Ej in the data (information on output and international

trade flows generally comes from different sources). I do find a perfect fit using GTAP data

with harmonized information on trade, output and expenditures (see Section 5).

Proposition 1 adds to other advantages of using fixed effects and Poisson PML, and com-

plements the arguments provided by Santos Silva and Tenreyro (2006). An important point to

note is that Lemma 2 and Proposition 1 hold even if the dependent variable does not actually

follow a Poisson distribution. No assumption is needed on the distribution of trade flows except

that the conditional mean of trade flows is positive (Poisson-PML also allows for zero trade

flows).

Moreover, these properties are specific to Poisson-PML, which is the only PML estimator

that yields Lemma 2. If we estimate the gravity equation in logs with OLS and fixed effects,

we obtain:
∑
j log X̂ij =

∑
j logXij and

∑
i log X̂ij =

∑
i logXij, which do not imply equality

between the sums in level. If we estimate gravity by taking trade flows in levels and minimizing

the sum of squared errors (NLLS), the inclusion of exporter and importer fixed effects implies∑
j X̂ijXij =

∑
j X

2
ij and

∑
i X̂ijXij =

∑
iX

2
ij. For Gamma-PML, the inclusion of fixed effects

implies that the ratio Xij

X̂ij
averages to unity for each exporter and each importer. None of these

equalities implies equality between
∑
j X̂ij and

∑
j Xij or between

∑
i X̂ij and

∑
iXij.

14

as preserving the total sum of the dependent variable. They do not, however, examine applications to the
structural gravity framework. Arvis and Shepherd (2013) also argue that this property is unique to Poisson-
PML, but their argument implicitly relies on an assumption that a solution always exists, which is not true for
PPML.

14Moreover, this property is not satisfied if we use trade shares
Xij

Ej
(share of imports from i for each importer

j) with Poisson-PML. The sum of fitted trade for each exporter would not sum up to output in general.
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This specificity of Poisson-PML is stated formally in Proposition 2 below. In a more general

setting, let us denote by yi the left-hand-side variable for observations indexed by i, with

yi ∈ R+, and by ŷi ∈ R+∗ the fitted value. A pseudo-maximum-likelihood estimator maximizes

the following objective function:

max
λi

∑
i

log f(yi, λi)

where, for each λ > 0, f(y, λ) is the p.d.f. of a random variable with mean λ. We further

impose that λ depends log-linearly on K independent variables x
(k)
i indexed by k where the

coefficients bk have to be estimated:

λi = exp

(∑
k

bkx
(k)
i

)

Hence ŷi = λi when λi is the solution of the above maximization. For any subset A of obser-

vations, we define the dummy variable DA as having a value 1 for observations in A and zero

otherwise. We can now uniquely characterize the Poisson-PML estimator as follows:

Proposition 2 The Poisson-PML estimator is the only pseudo-maximum-likelihood estimator

such that, for any subset A of observations and its associated dummy variable DA, the inclusion

of DA in the set of right-hand-side variables implies that the sum of fitted values
∑
i∈A ŷi equals

the sum of observed values
∑
i∈A yi over the set A.

Since maximum-likelihood estimators can be considered as a special case of PML (when

the likelihood function to maximize is derived from the assumed distribution of the dependent

variable), Proposition 2 also implies that no ML-estimator other than Poisson-ML satisfies this

adding-up property.15

The proof (in the appendix) is organized in two steps. First, such an estimator is necessarily

from the linear-exponential family, i.e. estimators for which ∂ log f
∂ log λ

is a linear function of y. I

show that this is the only class of estimators for which regressing a variable yi on a constant

term yields the average ȳ = 1
N

∑
i yi as the fitted value (Lemma 4 in Appendix A). The second

step shows that ∂ log f
∂ log λ

must also be linear in λ to satisfy the properties of Proposition 2; this

corresponds to the Poisson-PML estimator.

15In turn, PML estimators can be seen as a special case of generalized-moment-method (GMM) estimators
where moment conditions are exactly identified.
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5 Illustrations

To what extent does the estimation of structural gravity differ from reduced-form gravity with

fixed effects? In this section, I examine various specifications to illustrate the previous findings.

I compare output and expenditures to the sum of fitted trade flows for each country, as well as

multilateral-resistance indexes implied by either importer or exporter fixed effects.

5.1 Data

Data on trade flows come from the Global Trade Analysis Project (GTAP).16 The dataset has

the main advantage of providing harmonized information on production, consumption and

international trade flows by country and sector. It is micro-consistent to the extent that

domestic and international trade flows sum up to output for each source country and sum

up to expenditures for each destination country. This is an important property since Lemma 2

and Proposition 1 would not apply otherwise. If such equalities were not satisfied in the data,

the multilateral-resistance indexes implied by the fixed effects with Poisson-PML would not

satisfy the structural gravity constraints based on actual output and expenditures.17

As usual in the gravity equation literature, I regress trade flows on various trade-cost prox-

ies. In addition to the fixed effects or multilateral-resistance indexes, right-hand-side variables

include the log of distance, a border-effect dummy (equal to one for international flows), conti-

guity, as well as dummies for colonial ties and common language. Data on distance and other

trade costs are provided by the CEPII.

5.2 Specifications

Table 1 below describes the trade costs coefficients for various specifications using aggregate

data across country pairs (excluding services). In column (1), I regress trade flows on importer

and exporter fixed effects as well as on trade cost proxies using Poisson-PML. In column (2),

I redo the same exercise with OLS using the log of trade flows as the dependent variable. In

column (3), I minimize the sum of the squared error term, defined as the difference between

observed trade flows and fitted trade flows (in log), by simultaneously imposing the structural

constraints on multilateral-resistance indexes (equations 5 and 6 using observed output and

expenditures). In column (4), I follow the “structurally-iterated-least-squares” approach devel-

16GTAP data version 7 (Narayanan and Walmsley, 2008). Another excellent dataset with consistent infor-
mation on trade flows is provided by the CEPII (Head and Mayer 2014). The key results presented here are
robust to using CEPII and Comtrade data.

17Because of missing observations, this requirement was not met by the data used in Anderson and Yotov
(2010), which explains the discrepancy in our results.
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Table 1: Gravity equation: trade cost coefficients

Dependent variable: Trade flows
(1) (2) (3) (4) (5) (6)

Log or level: Level Log Log Log Level Level
Specification: PPML OLS OLS+MR SILS NLLS Gamma

Distance (log) -0.818 -1.106 -1.225 -1.362 -1.251 -1.189
[0.072] [0.028] [0.029] [0.032] [0.193] [0.037]

Border effect 2.740 4.331 2.353 3.472 1.882 4.823
[0.218] [0.271] [0.118] [0.109] [0.354] [0.295]

Contiguity 0.404 1.029 3.534 0.266 -0.009 0.929
[0.120] [0.120] [0.080] [0.128] [0.221] [0.133]

Common language 0.502 0.737 -0.189 0.716 0.288 0.663
[0.146] [0.067] [0.078] [0.089] [0.252] [0.096]

Colonial link 0.036 0.539 0.376 1.383 -0.122 0.745
[0.146] [0.111] [0.108] [0.127] [0.280] [0.160]

Imposing MR constraints / No Yes Yes No No
Countries 94 94 94 94 94 94
Observations 8836 8836 8836 8836 8836 8836

Notes: The dependent variable is bilateral trade, either in log or level; Columns (1), (2), (5) and (6) include
simple fixed effects by importer and exporter while columns (3) and (4) impose additional constraints on
multilateral-resistance indexes (equations 5 and 6 using observed output and expenditures); bootstrap standard
errors in brackets; in bold: coefficients significant at 5%.

oped by Head and Mayer (2014).18 Finally, I use non-linear least squares in column (5) and

the Gamma-PML estimator in column (6), using trade flows in levels without imposing fur-

ther structural constraints. I provide bootstrap standard errors for all specifications. Beyond

the constraints imposed on multilateral-resistance indexes, an important source of differences

across these specifications is the weight each of them places on small versus large trade flows

(Santos Silva and Tenreyro 2006, Head and Mayer 2014). Poisson-PML and especially least

squares in level (NLLS) put relatively more weight on large trade flows than do least squares

in log (OLS and SILS) and Gamma-PML.

As already known in the literature, the trade cost coefficients differ across specifications. In

particular, the Poisson-PML estimator yields the smallest distance coefficient while the largest

coefficient is obtained with OLS and SILS (column 2 and 4). As illustrated in Head and

18In column (3), the sum of squared errors (in log) is minimized by simultaneously imposing structural
constraints. In column (4), trade costs coefficients are obtained by minimizing the sum of squared errors
(in log) conditional on multilateral-resistance indexes. Multilateral-resistance indexes are then recomputed
conditional on estimated trade costs. These two operations are repeated until convergence is achieved. As a
result, the trade costs proxies are orthogonal to the error term with SILS (as in simple OLS) but not with the
simultaneously-constrained least squares (OLS + MR). However, the R-squared is lower for the simultaneously-
constrained least squares (OLS + MR) than for SILS. Hence, the second method (SILS) is more robust if we
focus on the trade costs coefficients but less robust if the primary goal is to estimate MR indexes.
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Mayer (2014), this difference can potentially be explained by a non-linear effect of distance,

with a stronger effect on small trade flows (captured by OLS, SILS and Gamma-PML) and a

weaker effect on large trade flows (captured by NLLS and Poisson-PML). Poisson-PML also

yields a relatively small border effect. The estimated border effect is largest with Gamma-

PML and OLS when simple fixed effects are used (reduced-form gravity). As in Anderson and

Van Wincoop (2003), the border effect dramatically decreases when structural constraints on

multilateral-resistance indexes are added (columns 3 and 4 for OLS). Other differences between

specifications include a small colonial link coefficient for Poisson-PML, a negative language

coefficient for OLS when MR constraints are simultaneously imposed, and larger standard

errors with non-linear least squares (NLLS).

Given these differences in trade costs estimates, it is important to gauge the relative merit

of each specification. I show in the remainder of this section that traditional gravity estimates

relying on OLS or Gamma-PML with fixed effects (without imposing multilateral-resistance

constraints) have undesirable properties in terms of predicted output and expenditures.

5.3 Output and multilateral-resistance indexes

While equations (7) and (8) are automatically satisfied across all specifications when we use

fitted output and expenditures (Lemma 1A), I examine here quantitatively to what extent the

traditional multilateral-resistance equations (5) and (6) are violated when they are not imposed

in the estimation procedure (with observed output and expenditures). Using estimates on trade

costs and fixed effects, we can construct implied multilateral-resistance indexes in various ways,

using either exporter or importer fixed effects. For instance, the inward multilateral-resistance

index P̂−θj implied by importer fixed effects m̂j can be constructed as follows:

(
P̂−θj

)FM
= exp[−m̂j]

Ej
EUSA

which satisfies the normalization imposed on the reference country (PUSA = 1). Alternatively,

we can use exporter fixed effects19 combined with estimated trade costs D̂−θij :

(
P̂−θj

)FX
=
∑
i

exp[êi]D̂
−θ
ij E

−1
USA

The two approaches are equivalent with Poisson-PML or with additional constraints on the

multilateral-resistance indexes (columns 1, 3 and 4 of Table 1 and Table 3). In other cases,

there are large differences between the two definitions, comparing indexes based on importer

19Redding and Venables (2004) use exporter fixed effects to construct “Market Access” P̂−θj .
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Figure 1: Comparing fitted output (using OLS) and observed output

fixed effects versus exporter fixed effects. An indicator of this misalignment is the interquartile

range of log
[(
P̂−θi

)FX
/
(
P̂−θi

)FM]
. It is zero for structural gravity (columns 3 and 4) and

Poisson-PML (column 1), but it equals 2.769 for OLS with fixed effects (column 2), 0.369 for

NLLS (column 5) and 2.290 for Gamma-PML (column 6) when only simple fixed effects are

included. I find very similar results by comparing the outward multilateral-resistance index

constructed with exporter fixed effects:
(
Π̂−θi

)FX
to the one constructed with importer fixed

effects:
(
Π̂−θi

)FM
.

As Lemma 1B suggests, the violations of the constraints on multilateral resistance indexes

(using observed output and expenditures) imply that fitted output Ŷi ≡
∑
j X̂ij also largely

differs from observed output Yi =
∑
j Xij. To be more precise, we can link the difference

between fitted and actual output (in log) to the difference between the two outward multilateral-

resistance indexes
(
Π̂−θi

)FX
and

(
Π̂−θi

)FM
:

∆log Yi = log
(
Π̂−θi

)FM
− log

(
Π̂−θi

)FX
(9)

with a similar expression for actual and fitted expenditures:

∆logEj = log
(
P̂−θi

)FX
− log

(
P̂−θi

)FM
(10)

where ∆log Yi ≡ log
[
Ŷi/Yi

]
denotes the bias in fitting output and ∆logEj ≡ log

[
Êj/Ej

]
denotes the bias in fitting expenditures. Hence, the large differences between

(
Π̂−θi

)FX
and

14



(
Π̂−θi

)FM
translate into equally large differences between fitted and actual output. This also

illustrates the point of Lemma 1B: imposing equations (5) and (6) on the multilateral-resistance

indexes implies that Ŷi = Yi and Êj = Ej.

Table 2: Do gravity equations inflate large countries? ∆log Y , ∆logE and country size:

Dependent variable: ∆log Yi ∆logEi
(1) (2) (3) (4) (5) (6)

Log output 0.738 -0.069 0.544 0.688 -0.083 0.539
[0.065] [0.021] [0.066] [0.061] [0.014] [0.065]

First-stage gravity: OLS NLLS Gamma OLS NLLS Gamma
Imposing MR constraints No No No No No No
Countries 94 94 94 94 94 94

Notes: OLS regressions; dependent variables: ∆log Yi (see Equation 9) and ∆logEi (see Equation 10); robust
standard errors in brackets; all coefficients are significant at the 1% level; each column corresponds to a different
specification of the gravity equation estimation in the first stage to construct ∆log Yi and ∆logEi. Note that
the dependent variables ∆log Yi and ∆logEi equal zero when we use Poisson-PML to estimate gravity or when
we impose MR constraints.

These differences are far from innocuous as the bias varies systematically with country

size. For instance, OLS estimates inflate trade for large markets and reduce trade for small

markets. This is illustrated in Figure 1: fitted output exceeds output for the largest countries

(points above the diagonal line) and tends to be smaller than observed output for the smallest

markets.20 As shown in Table 2, regressing the bias ∆log Yi ≡ log Ŷi− log Yi on observed output

(in log) yields a coefficient that is large and significant for OLS and Gamma-PML (columns 1

and 3), which confirms that fitted output tends to be overinflated for larger economies. The

coefficient is negative for NLLS (column 2). Similar results are obtained for ∆logEi.

Concretely, this means that importer and exporter fixed effects tend to be biased downward

for large countries and upward for small countries. These biases have important implications

for multilateral-resistance indexes. With OLS and Gamma-PML, the inward multilateral-

resistance term
(
P̂−θi

)FM
and the outward multilateral-resistance term

(
Π̂−θi

)FX
tend to be

underestimated for large markets and overestimated for small markets. Table 3 illustrates this

point: log
(
P̂−θi

)FM
is positively correlated with (log) output for Poisson-PML and structural

gravity estimations (columns 1, 3 and 4). When OLS or Gamma-PML is used without impos-

ing any constraint on multilateral-resistance indexes, it is slightly negatively correlated with

log output (columns 2 and 6). If we instead use exporter fixed effects to construct P̂−θi , these

20I find the same results when I examine trade within each sector: these deviations are driven by market size
rather than by per capita income or other country characteristics.
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results are reversed for OLS and Gamma-PML, with much larger correlations with market size

than with other specifications (columns 7 and 9).21

Table 3: Regressing constructed inward MR indexes on observed output

Dependent Var: log
(
P̂−θi

)FM
log

(
P̂−θi

)FX
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Log output 0.263 -0.096 0.228 0.369 0.345 0.039 0.591 0.262 0.578
[0.018] [0.028] [0.045] [0.049] [0.043] [0.023] [0.048] [0.034] [0.056]

First-stage PPML OLS OLS+MR SILS NLLS GPML OLS NLLS GPML
MR constraints / No Yes Yes No No No No No
Countries 94 94 94 94 94 94 94 94 94

Notes: OLS regressions; dependent variable: log inward MR based on importer fixed effects (columns 1 to 6)
or exporter fixed effects (columns 7 to 9); robust standard errors in brackets; all coefficients are different from
zero at a 1% significance level except in column (6); each column corresponds to a different specification of the
gravity equation estimation in the first stage to construct the inward multilateral resistance index.

Tables 2 and 3 focus on correlations between market size and either ∆log Yi, ∆logEi or

P̂−θi to illustrate the differences between specifications, but similar results are obtained if per

capita income or other country characteristics are substituted for market size. In light of these

results, one should be wary of trade costs coefficients and should be cautious in interpreting

multilateral-resistance indexes with an estimator other than Poisson-PML if structural gravity

constraints are not imposed. Imposing these constraints or using Poisson-PML appear to be

good practices especially when the multilateral-resistance indexes are used in a second step

for other empirical purposes (e.g., to explain wages, as in Redding and Venables 2004, or final

demand, as in Caron et al. 2014). There are still large differences in coefficients among Poisson-

PML and other specifications that do impose the full structure. It is beyond the scope of the

paper to argue for a specific estimator, but Poisson-PML seems particularly appealing because

structural gravity constraints are automatically satisfied and the method is easy to implement.

6 Concluding remarks

This paper shows that Poisson-PML regressions exhibit interesting properties that can be

particularly useful for the estimation of gravity equations for trade flows. Specifically, the

estimation of gravity with Poisson-PML and exporter and importer fixed effects is consistent

21The results presented in Table 2 focus on the inward multilateral-resistance index P̂−θi but the same results

hold for the outward multilateral-resistance index Π̂−θi .

16



with a more structural approach (as in Anderson and van Wincoop, 2003) that imposes further

restrictions on exporter and importer terms (“multilateral resistance” indexes). Furthermore,

the inclusion of exporter and importer fixed effects in the Poisson-PML estimation of gravity

implies that fitted output and expenditures (defined as the sum of fitted outward and inward

trade flows for each country) perfectly match observed output and expenditures, respectively.

This property is unique to the Poisson-PML estimator.

When other estimators are used, estimating gravity with simple fixed effects is no longer

consistent with the structural gravity framework defined by Anderson and Van Wincoop (2003),

unless multilateral-resistance indexes are redefined using fitted output and expenditures instead

of observed output and expenditures. In practice, however, there are large differences between

observed output and fitted output implied by gravity equations with simple fixed effects, espe-

cially with OLS and Gamma-PML: total output and expenditures are biased upward for large

economies and downward for smaller economies. Similarly, inward and outward multilateral-

resistance indexes appear to be biased with OLS and Gamma-PML, with the sign of the bias

depending on market size and on whether these indexes are constructed using importer or ex-

porter fixed effects. Given these results, one should put more trust in specifications of gravity

equations where either Poisson-PML is used or the full gravity structure is imposed.
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Appendix A: Proofs of propositions

Before proving the two lemmas and propositions from the main text, Lemma 3 (below) formally
states the equivalence between separability with adding-up constraints and “structural gravity”
(see Section 2 on the theory background):

Lemma 3: Suppose that trade flows satisfy:

logXij = ei − θ logDij +mj (11)

such as θ is a constant parameter, ei is invariant across importers and mj is invariant across
importers j. Suppose also that output and expenditures are consistent with the sum of outward
and inward trade flows: Yi =

∑
j Xij and Ej =

∑
iXij. There exists a unique pair of variables

Pj and Πi (with P0 = 1) such that Xij is consistent with the “structural gravity” framework.

Proof of Lemma 3:
Suppose that Xij can be written as a function of exporter and importer effects as well as

bilateral trade costs:
Xij = exp

[
ei + logD−θij +mj

]
Suppose also that output and expenditures are defined by Yi ≡

∑
j Xij and Ej ≡

∑
iXij. These

two equalities can be rewritten as:
∑
j exp

[
ei + logD−θij +mj

]
= Yi∑

i exp
[
ei + logD−θij +mj

]
= Ej

or equivalently: { ∑
j D
−θ
ij E0 exp(mj) = E0Yi exp(−ei)∑

iD
−θ
ij E

−1
0 exp(ei) = E−1

0 Ej exp(−mj)
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After defining P−θj ≡ E−1
0 Ej exp(−mj) and Π−θi ≡ E0Yi exp(−ei), and incorporating into the

previous two equations, we obtain equations (2) and (3):

∑
j

D−θij
Ej

P−θj
= Π−θi and

∑
i

D−θij
Yi

Π−θi
= P−θj (12)

This proves that Π−θi and P−θj are solutions of equations (2) and (3). Moreover, we can check

that P−θ0 = 1 for j = 0.

We still need to prove uniqueness: for a given set of trade costs D−θij , output Yi and ex-

penditures Ej, the solution in P−θj and Π−θi to equations (2) and (3) is unique, up to the

normalization P−θ0 = 1.
Suppose that Π−θi and P−θj , as well as (Π′i)

−θ and (P ′j)
−θ are two solutions to equations (2)

and (3). Let us define xi as the ratio of (Π′i)
−θ to Π−θi and yj as the ratio of (P ′j)

−θ to P−θj . To
prove that the solution is unique, we need to show that xi = 1 and yj = 1 for all i and j.

Using equation (3), we can re-write yj as:

yj =

∑
i YiD

−θ
ij (Π′i)

θ∑
i YiD

−θ
ij Π−θi

Given that xi is defined as the ratio of (Π′i)
−θ to Π−θi , we can rewrite yj as an average of 1/xi

with weights YiD
−θ
ij Πθ

i :

yj =

∑
i YiD

−θ
ij Πθ

i

(
1
xi

)
∑
i YiD

−θ
ij Πθ

i

Similarly, we can express xi as a weighted average of 1/yj:

xj =

∑
iEjD

−θ
ij P

θ
j

(
1
yj

)
∑
j EjD

−θ
ij P

θ
j

Let us now proceed by contradiction and suppose that yj differs from unity for at least one
country. Since y0 = 1 for j = 0 with our normalization, it means that the y’s are strictly
different between at least two countries j. Let us denote the minimum value by y∗ = minj{yj}.
If there are at least two yj with strictly different values, the same holds for 1/yj and there is
at least one country j for which 1/yj < 1/y∗. Since xi is a weighted average of all the 1/yj’s,
it implies that all xi’s are strictly smaller than 1/y∗. This inequality is strict as long as the
weights EjD

−θ
ij P

θ
j are all strictly positive, which is implicitly assumed here (zero weights for

country j would imply zero inward trade for country j).
Since all xi’s are strictly smaller than 1/y∗, we obtain that mini

1
xi

is strictly larger than y∗.
In turn, since all y’s correspond to a weighted average of 1/xi’s, we obtain that yi is strictly
larger than y∗ for all i. The strict inequality contradicts the assumption that the lower bound
y∗ is reached for at least one country and that at least two values of y differ. It proves that
yj = 1 for all j, and we can also conclude that xi = 1.
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Proof of Lemma 1A:
Let us denote:

X̂ij = exp
[
êi + log D̂−θij + m̂j

]
where hats refer to the fitted variable in the gravity equation (4) estimated with fixed effects.
We define fitted output and fitted expenditures by Ŷi ≡

∑
j X̂ij and Êj ≡

∑
i X̂ij.

The proof of Lemma 1A follows exactly the same steps as the proof of Lemma 3 by using
fitted trade, fitted output and fitted expenditures, where the solution of equations (7) and (8)
would be the same as for Lemma 3 (above) using fitted expenditures and fixed effects:

P̃−θj ≡ Ê−1
0 Êj exp(−m̂j) and Π̃−θi ≡ Ê0Ŷi exp(−êi)

instead of P−θj ≡ E−1
0 Ej exp(−mj) and Π−θi ≡ E0Yi exp(−ei).

Given fitted output, fitted expenditures and fitted expenditures, we can show that P̃−θj and

Π̃−θi are the unique solutions. The proof is the same as above in Lemma 3 using fitted values.

Proof of Lemma 1B:
The proof is again similar to Lemma 3 (above in Appendix) and Lemma 1A. Let us denote:

X̂ij = exp
[
êi + log D̂−θij + m̂j

]
where the hats refer to estimated coefficients. If we use observed output Yi and observed

expenditures Ej to define P̂−θj ≡ E−1
0 Ej exp(−m̂j) and Π̂−θi ≡ E0Yi exp(−êi), the above

equation becomes:

X̂ij =
Yi

Π̂−θi
D̂−θij

Ej

P̂−θj

where Π̂−θi and P̂−θj replace fixed effects.

In the estimation, imposing
∑
j X̂ij = Yi and

∑
i X̂ij = Ej is equivalent to imposing:


∑
j

Yi

Π̂−θ
i

D̂−θij
Ej

P̂−θ
j

= Yi∑
i
Yi

Π̂−θ
i

D̂−θij
Ej

P̂−θ
j

= Ej

which, in turn, is equivalent to the constraints (5) and (6):
∑
j D̂
−θ
ij

Ej

P̂−θ
j

= Π̂−θi∑
i D̂
−θ
ij

Yi

Π̂−θ
i

= P̂−θj

Again, the proof of uniqueness is the same as for Lemma 3 above.
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Proof of Lemma 2:
As shown in Gourieroux, Monfort and Trognon (1984), the maximization of the log-likelihood

associated with Poisson distributions yields simple first-order conditions and the solution is
unique. They show that, if a variable yi is regressed on a set ofK variables x

(k)
i with k = 1, ..., K,

the first-order conditions are: ∑
i

x
(k)
i (yi − ŷi) = 0

for each variable k, where ŷi denotes the fitted value and takes the functional form: ŷi =
exp[

∑
k b̂kx

(k)
i ].

When one of the independent variables x
(k)
i is a dummy variable DA

i equal to one for a subset
of observations i ∈ A, the first-order condition associated with this variable can be written:∑

i

DA
i (yi − ŷi) =

∑
i∈A

(yi − ŷi) = 0

which also implies that the sum of fitted values equals the sum of observed values on this
subset:

∑
i∈A yi =

∑
i∈A ŷi. Using this result for the gravity equation, Lemma 2 is obtained by

simply writing this first-order condition for exporter and importer fixed effects. When one of
the independent variables is a dummy variable that takes the value 1 for a given exporter i and
zero otherwise the first-order condition related to this dummy variable can be written:∑

j

(Xij − X̂ij) = 0

which proves the first part of Lemma 2. The second part of Lemma 2 is obtained by looking
at the first-order condition related to importer fixed effects when we include a dummy variable
that takes the value 1 only for a given importer j.

Proof of Proposition 1: Proposition 1 follows from Lemma 1B using the additional result
that Ŷi = Yi and Êj = Ej when Poisson-PML is used (Lemma 2).

Proof of Proposition 2: To prove Proposition 2, I use of the following lemma which provides
a simple characterization of PML estimators from the linear-exponential family:

Lemma 4: With a PML estimator from the linear-exponential family, the average ȳ ≡ 1
N

∑
i yi

is the fitted value when regressing the dependent variable yi on a constant term. Conversely,
if a PML estimator always yields the average as the fitted value of a regression on a constant
term, then this estimator is from the linear-exponential family.

Proof of Lemma 4:
Let us denote by log f(y, λ) the log-likelihood function and by ϕ(y, λ) = ∂ log f

∂ log λ
its first

derivative w.r.t λ. The linear-exponential family of PML estimators corresponds to the special
case where:

ϕ(y, λ) = g(λ) . (y − λ)
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(see Gourieroux et al. 1984).22 With this family of estimators, it is simple to verify that the
average ȳ ≡ 1

N

∑
i yi satisfies the first-order condition associated with the constant term since

we would have:
N∑
i=1

ϕ(yi, ȳ) =
N∑
i=1

g(ȳ)(yi − ȳ) = g(ȳ)
N∑
i=1

(yi − ȳ) = 0

The reciprocal part of Lemma 4 is also useful to prove Proposition 2. It mirrors Theorem
2 in Gourieroux et al. (1984) stating that strongly-consistent PML estimators are necessarily
from the linear-exponential family.

Suppose that, for a PML-estimator, the average ȳ is always the fitted value when regressing
yi on a constant term. The primary goal is to prove that ϕ(λ, y) is linear in y.

For any given pair (y, λ) with y > 0 and λ > 0, and for n sufficiently large, y′ ≡ nλ
n−2
− 2y

n−2

is also positive. I apply the property for y1 = y − ε, y2 = y + ε and yi = nλ
n−2
− 2y

n−2
for all

i = 3, ..., n. One can check that λ is the arithmetic average of the yi’s and therefore we should
have:

ϕ(y − ε, λ) + ϕ(y + ε, λ) + (n− 2)ϕ( nλ
n−2
− 2y

n−2 , λ) = 0

I apply again the above property to the same set of y’s and λ’s with ε = 0 instead. I obtain:

2ϕ(y, λ) + (n− 2)ϕ( nλ
n−2
− 2y

n−2 , λ) = 0

Combining with the previous equation, we obtain:

ϕ(y, λ) =
ϕ(y − ε, λ) + ϕ(y + ε, λ)

2

which is true for any λ and y > 0 and any small enough ε > 0. Further assuming that g is
twice differentiable in y with a continuous second derivative, the above equality implies that g
is linear in y. Hence there exist two real functions g(λ) and h(λ) such that:

ϕ(y, λ) = g(λ) y − h(λ)

Since ϕ(y, λ) = 0 for λ = y, we also obtain that h(λ) = g(λ)λ and ϕ(y, λ) = g(λ)(y − λ).

Proof of Proposition 2 (continued):
Since the constant term is a dummy for the full set of observations, the assumptions in

Proposition 2 implies that a PML estimator satisfying the adding-up properties also yields
the arithmetic average as the fitted variable of a regression on a constant term. Hence, using
Lemma 4, such an estimator is from the exponential family. The exponential family is however
quite large (Gaussian, Poisson, Gamma, Binomial, etc.). Now, we need to show that only the
Poisson-PML estimator satisfies the adding-up properties of Proposition 2.

More specifically, we need to show that the function g(λ) is constant and does not depend
on λ. If g(λ) is constant, the estimator would then be equivalent to the Poisson-PML estimator.

22Gourieroux et al. (1984) define the exponential family by f(y, λ) = exp [A(λ) +B(y) + C(λ)y] where A(λ)
has to satisfy: A′(λ) = −C ′(λ)y (Property 1 in Gourieroux et al. 1984). These two definitions are equivalent.
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We want to prove by contradiction that g′(λ) = 0 for all λ > 0. To do so, suppose that
g′(a) > 0 for a given a (the proof works the same way if we assume instead that g′(a) < 0).
There exists b strictly greater than a but sufficiently close to a such as g′(λ) > 0 and g(λ)
is strictly increasing on λ ∈ [a, b]. Without loss of generality, we can also assume that g(λ)
never equals zero on the segment [a, b].23 We then construct a dependent and an independent
variable based on these two values a and b, and show that the first-order conditions imply a
contradiction.

Given these two distinct values a and b, we define a dependent and an independent variable
for four observations:

• Dependent variable: y1 = y2 = a+b
2

, y3 = a and y4 = b

• Independent variable: x1 = x3 = log a and x2 = x4 = log b

Let us then regress y on x with two dummy variables: a dummy equal to one for the first two
observations and a dummy equal to one for the last two observations (note that a constant
term would be redundant). Let us denote by λi the predicted value for yi, by α the coefficient
for xi, by γ12 the coefficient for the dummy variable for the first two observations and by γ34

the coefficient for the dummy variable for the last two observations. The fitted values are then:

λ1 = exp[α log a+ γ12] λ2 = exp[α log b+ γ12]

λ3 = exp[α log a+ γ34] λ4 = exp[α log b+ γ34]

Given the assumptions made in Proposition 2, having a dummy for the first two observations
implies that the sum of the fitted values equals the sum of the dependent variables for the first
two observations:

exp[α log a+ γ12] + exp[α log b+ γ12] = a+ b

Similarly, for the last two observations:

exp[α log a+ γ34] + exp[α log b+ γ34] = a+ b

These two conditions imply that the coefficient for the dummy variable is the same for both
subsets of observations: γ12 = γ34 ≡ γ and imply also that λ1 = λ3 and λ2 = λ4.

The first-order condition for the dummy for the first two observations gives:

g(λ1)
(a+ b

2
− λ1

)
+ g(λ2)

(a+ b

2
− λ2

)
= 0 (13)

In turn, the first-order condition for the dummy for the last two observations gives:

g(λ3)(a− λ3) + g(λ4)(b− λ4) = 0 (14)

Taking the difference between the two conditions, and using the fact that λ1 = λ3 and λ2 = λ4,
we obtain:

g(λ1)
(
a− a+ b

2

)
+ g(λ2)

(
b− a+ b

2

)
= 0

23Otherwise, we can restrict our attention on an interior segment [a′, b′] that satisfies this property.
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which also implies that g(λ1) = g(λ2). To obtain a contradiction, the next step is to show that
the two fitted values λ1 and λ2 are distinct and lie on the [a, b] segment.

The first-order condition in α (with λ1 = λ3 and λ2 = λ4) gives:

(log a) g(λ1)
(3a+ b

4
− λ1

)
+ (log b) g(λ2)

(a+ 3b

4
− λ2

)
= 0

while the sum of equations (13) and (14) gives:

g(λ1)
(3a+ b

4
− λ1

)
+ g(λ2)

(a+ 3b

4
− λ2

)
= 0

Given that g(λ1) and g(λ2) are non-zero, these two equations imply the following fitted values:

λ1 =
3a+ b

4
and λ2 =

a+ 3b

4

Hence, combining with the results above, we obtain that: g(3a+b
4

) = g(a+3b
4

) which contradicts
the strict monotonicity of g on the [a, b] segment.

Appendix B: Estimation of gravity with missing values

What happens when internal trade flows are missing? Or, equivalently, when output data have
missing observations? Internal trade flows are often imputed as the difference between output
and total exports. Output data are largely available at the aggregate level but industry-level
data are more scarce at the industry level for developing countries.

If internal trade flows are missing for country i, then total fitted trade flows (i.e. total
fitted exports) perfectly match total observed exports when exporter fixed effects are included
in a Poisson-PML estimation of gravity. The same result holds for imports when importer
fixed effects are included. For each exporter i for which internal flows Xii are missing, the
Poisson-PML estimator imposes:∑

j, j 6=i
X̂ij =

∑
j, j 6=i

Xij = X tot
i and

∑
j, j 6=i

X̂ji =
∑
j, j 6=i

Xji = M tot
i .

We could then use fixed effects estimates êi and m̂i and trade costs estimates D̂−θii to infer
missing internal trade flows X̂ii and then reconstruct output and expenditures as: Ŷi ≡ X̂ii +
X tot
i =

∑
j X̂ij and Êi ≡ X̂ii + M tot

i =
∑
j X̂ji. Using Lemma 1A, inferred trade flows, output

and expenditures would then be consistent with the multilateral resistance indexes implied by
the fixed-effects estimates. Moreover, fitted output would still equal observed output in all the
cases where output data are not missing.

Appendix C: Inclusion of border dummies

In general, the estimation of equation (4) involves a dummy for international trade flows as one
of the variables to proxy for trade costs (dummy variable Bij being equal to one if i 6= j). Such
a dummy can be identified when data on internal trade flows (Xii) are available. Estimates
typically exhibit large border effects (“home-bias puzzle” raised by McCallum 1995).
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With Poisson-PML, the inclusion of a border effect in the gravity equation also has im-
portant implications for the sum of fitted exports. In particular, the Poisson-PML first-order
condition associated with the border effect implies that the sum of fitted exports across all
countries equals the sum of observed exports:∑

i,j, i6=j
X̂ij =

∑
i,j, i6=j

Xij

The proof is similar to Lemma 2. Given Lemma 2, it also means that the ratio of total fitted
cross-border trade over total fitted output equals the ratio of total observed cross-border trade
over total observed output in the data:

(∑
i,j, i6=j X̂ij

)
/
(∑

i,j X̂ij

)
=
(∑

i,j, i6=j Xij

)
/
(∑

i,j Xij

)
.

(1) (2) (3) (4) (5) (6) (7)
Log or level: Level Log Log Log Level Level
Specification: PPML OLS OLS+MR SILS NLLS Gamma DATA

Ratio 0.728 0.961 0.531 0.889 0.703 0.982 0.728

The table below shows this ratio for the same estimators as in Table 1. The first column
is the ratio for Poisson-PML, which is the same as in the data. With other estimators, this
fitted ratio can widely differ from the data even if further constraints on multilateral-resistance
indexes are imposed. OLS, SILS and Gamma-PML do not put a large weight on large trade
flows, which could explain why it does not do a good job at matching international trade
and output sums. It is interesting to see that simultaneously imposing the constraints on
multilateral-resistance indexes (OLS+MR) has a very different outcome compared to iterating
OLS and adjustments of multilateral-resistance indexes (SILS).
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