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Foreword

Technological change in agriculture has the 
potential to affect poor people positively 
and negatively, via different causal 
pathways. These include direct impacts on 
the incomes of poor farming households 
and indirect impacts via changes in food 
prices, labor market effects, and economic 
growth. How these various pathways play 
out in terms of their differential effects 
across diverse groups of households under 
different technology–environment combi-
nations is a complex phenomenon, and one 
that is poorly documented empirically. For-
tunately, a number of recent advances in 
micro- and macro-level empirical impact  
assessment can shed some light on the 
issue. These innovations include significant 
growth in the use of experimental and non-
experimental statistical methods in devel-
opment economics, advances in the amount 
and the quality of household data, new 
spatial maps of poverty at sub-national 
levels, and a range of applications of 
general equilibrium models.

The Consultative Group on International 
Agricultural Research’s (CGIAR’s) Standing 
Panel on Impact Assessment (SPIA) aims to 
capitalize on newly available data and 
methods and thereby to conduct rigorous 
assessment on the ways in which techno-
logical change in agriculture can affect the 
various indicators of well being, which 
include poverty, hunger, and food security. 
As a first step in this exercise, SPIA commis-
sioned Alain de Janvry, Andrew Dustan 
and Elisabeth Sadoulet at the University of 
California, Berkeley to: (i) review and 
provide a critical evaluation of previous 
empirical ex-post impact assessments 
within the CGIAR; and (ii) suggest options 
that could be used by the CGIAR in ex-post 
identification of the poverty impacts of 
technological change and the pathways 
involved in these impacts. In particular, the 
authors were asked to examine the poten-
tial for: (i) micro-level studies using house-
hold data (including experimental and 
non-experimental designs); and (ii) simula-
tions in general equilibrium models. This 
report argues for enhancing rigor in these 
assessments by making greater use of 

recent research designs and analytical 
tools. 

As the authors explain, one of the short-
comings of the commonly used approach in 
assessing economic impact is the assump-
tion that the extent of adoption and the 
existence and size of the treatment effect 
from adoption can be estimated separately.
The authors rightly argue that treatment 
effect is endogenous to adoption, due to 
both intervention placement and self-selec-
tion. The use of randomized controlled 
trials (RCTs) eliminates selection bias 
between treatment and control groups 
through random assignment. Thus, RCTs are 
being used increasingly in development 
programs for their strong counterfactual 
treatment and high internal validity. The 
authors provide a compelling analysis of 
the case for relying less on traditional esti-
mates of treatment effects (expert opinions 
and agronomic experiments) and even 
some newer methods (e.g., propensity score 
matching) for assessing the impact of 
CGIAR research, and for relying more on 
research designs such as RCTs. While RCTs 
appeal to many academics in development 
economics and to some donors, they are 
controversial and criticized by many in the 
evaluation field. Some concerns relate to 
cost: RCTs are expensive to implement, 
although the cost of getting the wrong 
answer using other methods is high. Other 
concerns relate to ethics: purposively 
denying access to control groups can be 
ethically problematic in some circumstanc-
es. While these concerns may be legitimate 
and should be taken seriously, there still 
remains – in SPIA’s view – considerable 
scope for strengthening the internal 
validity (and thereby credibility) of estimat-
ing the average treatment effect of a tech-
nology by using experimental methods as a 
component of impact assessment.  

From SPIA’s perspective, the potential value 
of relying on RCTs for conducting ex-post 
impact assessments lies in generating more 
rigorous estimates of the treatment effects 
on incomes, poverty, and nutrition from 
adoption of a given technology in a given 



vi — Recent Advances in Impact Analysis Methods for Ex-post Impact Assessments of Agricultural Technology

location (where the testing occurs), includ-
ing local spillovers to non-adopters. 
Whether the estimated treatment effect 
will be useful ultimately for documenting 
large-scale impacts from CGIAR research 
(SPIA’s primary interest), as opposed to es-
tablishing efficacy in a limited environment, 
depends on the validity of assumptions 
related to the ease of scaling up, the type 
of intervention considered (simple vs. 
complex), the number of years required to 
determine the extent of impacts across 
both adopters and non-adopters, and the 
representativeness of the selected environ-
ment in which the RCTs are conducted 
(relative to ultimate adoption domain). In 
this respect, the experimental approach 
may have more relevance for evaluation in 
the early adoption stage for pilot testing 
the economic and social impacts of a new 
technology on a relatively smaller and well 
defined scale, than for large-scale ex-post 
impact assessment.  

One major challenge in being able to utilize 
estimates of poverty-related outcomes effec-
tively from a specific innovation via the RCT 
approach is selecting beforehand a CGIAR 
research-derived technology that is ultimate-
ly going to be ‘successful’, i.e., adopted on a 
sufficiently large scale to justify the CGIAR 
investment. Given the cost of impact evalua-
tion, it is important to minimize the prob-
ability of investing in impact evaluations of 
technologies that may ultimately fail to 
diffuse widely. Unlike other development 
interventions (e.g., food-for-work programs), 
where the decision to scale up is made by 
the public sector, technology adoption is a 
private decision and there is no sure way to 
determine which technologies will justify the 
relatively large investment in a rigorous 
impact evaluation. Ultimately, only a few 
technologies among the vast number being 
tested by CGIAR Centers reach a large scale. 
Applying RCT approaches to all or most 
CGIAR products would become burdensome 
and introduce a very costly and inefficient 
impact evaluation process. Careful consider-
ation will therefore need to be given to de-
veloping criteria for selecting the technolo-
gies that are likely to be scaled up 
successfully and that could be evaluated rig-
orously.

Another concern in impact assessment 
relates to the ability to detect statistically 

significant differences in poverty-related 
outcome measures, or even incomes, when 
specific agricultural technologies generate 
only small increments in yield or profits. 
This occurs when the benefit is specific to 
seasonal conditions, when the share of 
specific crop technologies to total agricul-
tural income is relatively small, and when 
the adoption rate across villages (the unit 
of randomization) is relatively low. The 
authors are fully aware of these challenges 
and recognize the need to adjust sample 
sizes accordingly, although in some cases 
this will have costly resource implications.

The authors are candid about their focus on 
impacts that affect producers directly in the 
short to medium term and within the 
context of partial equilibrium effects, which 
may be appropriate in those cases when 
adoption does not significantly affect 
prices. But some of the most successful 
CGIAR technologies may have significant 
effects on prices; in which case the lion’s 
share of the long-term benefit will be 
captured by consumers. Ideally, we are 
looking for a model that estimates year-by-
year producer and consumer gains as well 
as losses, including both direct and indirect 
effects, as adoption rolls out. While the 
report recognizes that there is a flow of 
impacts resulting from technology introduc-
tion, the major discussion focuses on esti-
mating a snapshot of this flow, focusing 
mainly on early adopters and those who 
may be affected through spillover effects.

While it may be tempting to abandon 
previous methods for estimating treatment 
effects – for reasons justly criticized in this 
report – RCTs and other more rigorous 
methods will be unable to fill the gap im-
mediately, for they have their own limita-
tions. Finally, adoption level is often the 
most critical thing to get right, if accurate 
aggregate impacts are the goal of the eval-
uation. During the past decade, the CGIAR 
has neglected the process of routinely esti-
mating large-scale adoption and this is now 
constraining our ability to estimate ex-post 
impacts of agricultural research.

Notwithstanding these concerns and limita-
tions, SPIA believes the strongest and most 
compelling argument for exploring the use 
of RCTs is their ability to estimate economic 
and social impacts together in the domain 
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represented by the experiments, thereby 
enhancing credibility in the impact assess-
ments conducted by the CGIAR. Stronger 
internal validity may also serve as a good 
basis for estimating wider impacts at a later 
stage, when the technology has diffused to 
larger areas, thereby enhancing external 
validity. Clearly there is still much to learn 
about the value and role of RCTs in differ-
ent types of impact assessments and 
contexts. 

The SPIA team takes this opportunity to 
commend the authors for completing a 

thorough and insightful analysis of the 
issues, and we eagerly anticipate further 
interactions with them on exploring ways 
of enhancing the rigor of ex-post impact 
assessment.

Derek Byerlee

Chair, Standing Panel on Impact Assess-
ment, CGIAR

April 2011
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Summary

This paper analyzes the challenges faced by 
the Consultative Group on International 
Agricultural Research (CGIAR) in evaluating 
the impact of agricultural technologies and 
suggests avenues for improving the meth-
odology used in impact analyses. The focus 
is on technologies such as crop varieties, 
whose adoption is described easily as a 
binary choice rather than best practice or 
policy.

The dynamic nature of technology 
adoption and diffusion defines two sharply 
contrasting types of analyses: (i) the ‘micro-
economic’ analyses that attempt to 
measure the impact of adoption on indi-
vidual adopters in a context of limited dif-
fusion, where there are considerable 
numbers of non-adopters and general equi-
librium effects have not taken place; and 
(ii) measurements of the aggregate impact 
of a continuously evolving line of variety 
improvements. The paper focuses mainly on 
issues and methods appropriate to the mi-
croeconomic impact analyses, an area in 
which there have been numerous recent 
methodological developments that are not 
used widely or appropriately in the practice 
of impact assessment of agricultural tech-
nology adoption. A short section, however, 
recaps current practices in aggregate and 
long-term impacts.  

The key quantity that impact evaluation 
studies attempt to estimate is the average 
effect of adoption on outcomes for those 
who have adopted, known as the average 
treatment effect on the treated (ATT). 
Because of the selection effect (the 
presence of systematic differences between 
comparison groups in ways that affect both 
treatment status and the outcomes from 
treatment), the main challenge is to estab-
lish the proper counterfactual group 
against which to compare adopters. This 
paper argues that research stations and 
on-farm trials are not appropriate, because 
they are unlikely to reflect the conditions 
faced by actual adopters, or their behavior 
in terms of the choice of complementary 
inputs, for instance. The authors also 
question the validity of selection on observ-

able designs (regression methods or pro-
pensity score matching, PSM) that attempt 
to control for selection bias using data col-
lected as part of a survey. This is because 
adopters and non-adopters certainly differ 
in both their observable and their non-ob-
servable characteristics (such as entrepre-
neurship or ingenuity), and it is these key 
characteristics that determine whether or 
not they adopt the new technology and 
which outcomes are of interest. While ‘dif-
ference-in-differences’ (DD) methods are an 
improvement on single difference methods, 
they are based on the non-trivial assump-
tion that outcomes should be evolving simi-
larly for those who choose to adopt and 
those who do not.  

An additional and closely related issue is 
that of spillovers from adoption, which 
affect both adopters and non-adopters. 
Spillovers complicate the search for coun-
terfactuals, since true counterfactuals 
should not be affected by adopters. 
However, spillovers (positive or negative) 
also need to be accounted for in assessing 
the impacts of adoption. It is also important 
to understand that the ATT varies over 
time. This is because adopters change their 
usage of the new technology as they use it 
and learn more about it, and the set of 
adopters of a new technology almost cer-
tainly changes with time.

The broad suggestion made here is that, 
whenever possible, microeconomic impact 
analysis should have explicit research 
designs that allow the effect of the new 
technology to be estimated without relying 
exclusively on the observable characteristics 
of the potential adopters. While random-
ization offers a solution to the selection 
problem, the design needs to be such that 
the treated producers would be adopters in 
a non-experimental set-up, and that there 
is no constraint on their behavior. Hence 
randomization of technology over plots 
within a farm is not suitable. Neither are 
encouragement designs that induce a 
random sample of those who would 
normally be non-adopters to adopt; this 
would estimate a local average treatment 
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effect (on those induced to adopt) rather 
than the desired ATT. With spillovers, even 
a scheme of randomization over house-
holds within a village will leave many unre-
solved problems.  

To overcome these problems, this paper 
makes the following suggestions:
1. Researchers should use either natural or 

randomized experiments in which the 
village or the community is the unit of 
randomization. This will ensure the 
issue of spillovers is neither ignored nor 
discounted, and will acknowledge them 
as potentially important results of 
adoption that are incorporated into the 
measured effect of the new technology.  

2. When using randomization, researchers 
should pursue supply-side interventions 
in which the new technology is 
introduced to entire villages. These 
villages should not have been exposed 
to the technology before, and the 
technology should be sold at its market 
price, not subsidized. Adopters can then 
be defined as the set of farmers who 
choose to adopt when the technology is 
available for purchase under ‘real 
world’ economic conditions.

3. Research designs should not be limited 
to randomized controlled trials (RCTs). 
Natural experiments can yield reliable 
estimates of impact even in the absence 
of controlled, explicit randomization. 
Rollouts of a technology that were 
arguably random, even if they were not 
explicitly randomized, can be analyzed 
in a similar way to that of RCTs. Since 
the assumption of randomness in the 
rollout cannot be fully tested, 
knowledge of the institutional context 
of the rollout and verification of some 
statistical properties will be required. 
Rollouts allow for the analysis of 
technologies that have already been 
diffused and often allow use of very 
large administrative databases. This is a 
distinct advantage over RCTs, which can 
only be used for new technologies. 

Other kinds of natural experiments 
(e.g., geographic discontinuity) may also 
be usable.

4. There may be opportunities to use 
public–private–civil society partnerships 
(e.g., agro-dealers) to perform supply-
side interventions.

5. Researchers should plan the evaluation 
before, and conduct it during, diffusion 
of a new technology. The fact that impact 
analysis is referred to as ex-post should 
not suggest that the evaluation should be 
planned and performed after the fact.

The paper provides illustrations of these 
principles in three sketches showing plau-
sible impact analysis designs for genetically 
improved farm tilapia, treatment for 
internal parasites in goats, and drought- 
tolerant crop varieties.  

The final section addresses the analysis of 
long-term and aggregate effects, with the 
objective of measuring ex-post the aggre-
gate benefit of a technology that has 
diffused over a large area. The challenge 
is, of course, that there is no observable 
counterfactual situation. In such a case,  
researchers have resorted to several differ-
ent types of analyses. One is to focus on 
smaller units of observation (such as 
villages) on the presumption that markets 
are not well integrated and therefore each 
unit represents a small ‘economy’. In this 
case, econometric analyses of observations 
over time are presumed to identify the 
causal effect of an uneven development of 
technological change. The second type of 
analysis uses simulation models to extrapo-
late impacts measured at the micro-level 
(most often increases in yields) to the level 
of aggregate effects. This includes the 
economic surplus method and the comput-
able general equilibrium (CGE) simulation 
models. While these are useful simulations, 
they are not impact estimations. This 
paper emphasizes the need for the CGIAR 
to focus on generating rigorous impact  
estimates.
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1. Introduction

This paper analyzes the challenge faced by 
the Consultative Group on International 
Agricultural Research (CGIAR) in evaluating 
the impacts of agricultural technologies 
and suggests avenues for improving the 
methodology used in impact analysis. It 
complements other initiatives, particularly 
the Standing Panel on Impact Assessment’s 
(SPIA’s) recent review of the topic (Walker 
et al., 2008) and further work by Maredia 
(2009). This paper addresses issues similar 
to those covered in the above papers, 
albeit with a different perspective and dif-
fering conclusions, while also reviewing 
recent impact analyses performed by 
CGIAR research centers and proposing 
some ways to proceed with future 
research. As with the aforementioned 
papers, the focus is on the effect of specific 
technologies on outcomes such as con-
sumption, income, and poverty. This con-
trasts with another kind of impact analysis, 
which focuses on the effect of the CGIAR’s 
research expenditures on similar 
outcomes.1 Furthermore, the paper does 
not discuss the related but different 
question, which is the analysis of the 
extent or the determinants of adoption.  

In order to place this paper amongst the 
vast literature available on the impact of 
technology adoption, it is necessary to 
consider the dynamic nature of technology 
adoption and diffusion, because it defines 
some sharply contrasting types of analyses. 
When new technologies are made avail-
able, some individuals choose to adopt 
them and expectedly benefit from the 
adoption. As time passes, these individual 
adoptions result in diffusion of the technol-
ogy and its benefits across the population 
and, importantly, the nature of the impacts 
changes fundamentally. Broadly speaking, 
the benefits of a technology tend to diffuse 
within the economy to consumers and 
workers, remaining only partially with pro-
ducers. The share of benefits accruing to 
each set of actors in the economy varies as 
markets adjust to the effects of the new 
technology on outputs and demand for 
production inputs. The extent to which pro-
ducers retain the benefits from adoption, 

and how these benefits vary with time, 
depends on the specific technology and the 
good being considered, and includes the 
rules of price formation on the correspond-
ing markets. This creates a sharp contrast 
between two types of questions and impact 
analyses.

1. Relatively early adopters
This sort of analysis is performed typically in 
a context in which adoption can be de-
scribed as a binary decision and where large 
numbers of non-adopters remain. The chal-
lenge is to find a good counterfactual 
among the non-adopters that will provide a 
valid comparison with the adopters. Much 
progress has taken place over the last 
10 years in this type of impact analysis, with 
the development of methods based exten-
sively on strategies for constructing a com-
parative sample of non-adopters. Applica-
tions are well developed in the fields of 
education and health, from which there is 
much to learn, but less so in the field of 
technology. For lack of a better term, this 
type of analysis will be referred to as  
‘microeconomic’. 

2. Longer-term impacts
Measuring the longer-term impact (say, 20 
years) of improvement and diffusion of a 
particular line of technology development 
presents a substantially different problem. 
Firstly, there is continuous evolution of the 
technology over the years; secondly, there is 
unlikely to be a suitable counterfactual (still 
using the technology from 20 years ago) 
available for comparison with the current 
adopters; and thirdly, many benefits of the 
technology will have diffused to consumers 
and workers through changes in prices and 
general equilibrium effects. Rigorous esti-
mation of impact in this context relies on 
standard econometric techniques that can 
exploit the progressive and heterogeneous 
diffusion of the technology over time and 
space, provided one can identify sufficient 
units that can be treated independently. 
The particular challenges with this method 
are to address the endogeneity of the diffu-
sion process and the existence of compa-
rable information over time and space on 
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the outcomes of interest, which include 
profit, income, poverty, etc. A very different 
hybrid approach to this question combines 
some estimation of microeconomic impact 
(as defined above) with observed patterns 
of diffusion and a model for changes in 
prices and general equilibrium effects, and 
produces simulated aggregate and long-
term effects. Because of the extreme diffi-
culty of carrying out a rigorous and credible 
estimation of long-term aggregate effects 
of a stream of technological change, this 
hybrid approach is the most commonly used 
in impact assessments of technology under-
taken by the CGIAR.

This paper focuses almost entirely on the 
microeconomic methods of impact analysis 
for two reasons. Firstly, this is an area that 
has witnessed numerous recent method-
ological developments that are still not 
widely or appropriately used in the practice 
of impact assessment of agricultural tech-
nology change. Secondly, even if one is in-
terested mostly in the long-term macroeco-
nomic impact of technology change, these 
microeconomic estimates serve as an impor-

tant element of the hybrid approach men-
tioned above, so it is worthwhile to 
estimate them correctly. For the sake of 
completeness, the paper presents a short 
section addressing aggregate and long-
term approaches, although the authors are 
not aware of significant recent advances in 
this type of analysis nor do we make sug-
gestions that justify more extensive treat-
ment of these methods.

Section 2 presents some preliminary reflec-
tions on the objectives of and challenges to 
impact analysis. Section 3 sets out a simple 
analytical framework for analyzing 
adoption and its effects at the microeco-
nomic level. Section 4 reviews impact 
analysis methods used in recent studies and 
offers critiques of those methods. Section 5 
offers suggestions for improving impact 
studies, while section 6 gives examples of 
the applications of these suggestions. 
Section 7 departs from the focus on micro-
economic analysis used in most of this 
paper and discusses methods for addressing 
the long-term and aggregate effects of a 
technology.
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2.1 Agricultural technologies under 
consideration

Before defining impact analysis and discuss-
ing its implementation, it is worthwhile to 
consider the different kinds of agricultural 
technologies that are likely to be evaluated. 
Each type of technology has unique limita-
tions that must be kept in mind when 
setting expectations about what we can 
learn from impact analysis and the chal-
lenges that will arise when implementing 
evaluations.

1. Yield-increasing and cost-saving 
technologies
Examples of yield-increasing technologies 
include new seed varieties (main advantage 
is in output per hectare), fertilizers, and 
certain new cultivation practices. Cost- 
saving technologies may also include new 
seed varieties that require fewer comple-
mentary inputs, as well as cultivation prac-
tices that produce equal results with less 
effort. Both yield-increasing and cost-saving 
technologies reduce the cost per unit of 
output, with the possible difference that 
yield-increasing technologies actually allow 
for higher gross output if some inputs (es-
pecially land) are limited. These technolo-
gies are often presented or recommended 
to producers as packages, including a seed 
variety and the associated best manage-
ment practice. This paper focuses on the 
‘seed’ component of the technology for 
two reasons. Firstly, much CGIAR-funded 
research consists of the development of 
new varieties.2 Secondly, the choice of com-
plementary inputs is itself an endogenous 
response to the adoption of the new 
variety, and hence it is an integral part of 
determining the impact of adopting a new 
variety. 

In microeconomic impact analysis, we 
compare adopters with counterfactual non-
adopters, thereby measuring the marginal 
effects of the adoption of a new variety 
over the variety still in use by the non-
adopters. This suggests that the method is 
best used for relatively large technological 
jumps that are likely to have a large impact. 

In the case that the technology being evalu-
ated may have only incremental increases in 
yield or decreases in production cost when 
compared to the prevailing variety, estimat-
ing the (potentially small) marginal impact 
of the new technology probably requires 
large sample sizes, or else lacks the power 
to precisely estimate the effect. This is an 
important practical consideration. 

Measuring the effect of the new variety 
over the unimproved (i.e., not the next-
best) one if there is no counterfactual 
group using the unimproved seed requires 
being able to find the counterfactual in the 
past and controlling for everything else 
that may have happened over time. This is 
discussed in section 7, which presents 
methods for retrospective estimation of the 
aggregate impact of a lengthy research 
program that has released many successive 
outputs, such as those discussed in Byerlee 
and Traxler (1995) and Morris (2002).   

2. Risk-mitigating technologies 
These technologies might not raise yields in 
times where conditions are favorable, but 
they reduce the risk of very bad outcomes 
when negative shocks occur. Drought- and 
pest-resistant seed varieties and livestock 
vaccines are good examples of risk- 
mitigating technologies.

Evaluating risk-mitigating technologies is 
difficult. While adoption may impact 
expected outcomes, these effects may not 
always be observed. For example, consider 
a drought-resistant variety that minimizes 
yield losses in years of low rainfall but is 
otherwise the same as other varieties. 
Adoption increases expected yield, but if 
the farm survey takes place in a year with 
good rains, no benefit is observed. If the 
survey takes place during a drought year, 
the yield gain is observed, and the research-
er might mistakenly generalize this as a 
benefit that is realized annually. A similar 
problem applies to livestock vaccines, 
where inoculation could insure against dev-
astating herd losses due to contagious 
diseases (see e.g., Catley et al., 2009). But if 
the risk of disease outbreak in the region is 

2. Impact analysis: objectives and challenges
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relatively low, then even an evaluation of 
outcomes over a number of years would 
find no benefit. Little can be done about 
this problem; if shocks are required for the 
benefit of the technology to manifest itself, 
and the shocks do not occur, then there is 
no way to estimate impact (in the absence 
of a well-understood insurance market that 
prices production risk).

3. Quality-improving technologies
These technologies result in outputs that 
are of higher quality in some respect, even 
if yield does not improve. Perhaps the best 
example of such a technology is quality 
protein maize (QPM). Improved sweet 
potatoes (see Low et al., 2007) provide 
another illustration. This class of technolo-
gies differs from the previous two in that 
the main benefits accrue to consumers.

The impact of quality-improving innova-
tions is difficult to evaluate, in part because 
the channel of transmission from the avail-
ability of the new variety to the manifesta-
tion of benefits involves several actors. 
‘Adoption’ by consumers requires that pro-
ducers have already adopted and produced 
the variety so that it is available to consum-
ers, and that consumers have chosen to 
consume it.

Two polar cases are presented here: the first 
is when the commodity can be identified 
clearly and there is an effective demand for 
what is now a differentiated product. With 
market forces at work, the commodity will 
command a higher price than the unim-
proved variety. An obvious way to estimate 
the economic valuation of quality gains in a 
commodity is to see how the price of the 
improved variety compares to that of the 
traditional one. With knowledge of supply 
and demand curves, one can calculate 
welfare gains from its introduction. 

The second case is where market failures 
may prevent the internalization of quality 
differences into prices, either because the 
product is not discernible visually from the 
unimproved varieties and there is no 
labeling system to differentiate it on local 
markets, or because the potential beneficia-
ries do not command an effective demand. 
The challenge then is to put into place a 
supply chain and induce consumer demand, 
before thinking of a strategy to evaluate 

the impact of the development of the new 
variety. (For example, the variety needs to 
offer the producer benefits over the tradi-
tional one, and consumers have to be 
aware of and willing to consume the com-
modity.) In the meantime, however, one can 
focus on one link of this chain of causality 
and measure the impact of the ‘availability 
of the new variety’ to the consumers. This 
requires a research approach that focuses 
on these consumers rather than the produc-
ers as the unit of interest, and the outcome 
of interest will be measures of nutrition or 
health, for example, rather than monetary 
values. (Note that not all consumers stand 
to benefit from the enhanced variety; for 
example, only the under-nourished popula-
tion will benefit from a nutritionally 
enhanced variety, so it is necessary to 
define the proper target population.)

As an example of a quality-improving tech-
nology, QPM has been shown to have nutri-
tional benefits (Gunaratna et al., 2010). 
Current impact analyses have randomized 
the supply of QPM to consumers, initially 
providing food to the children directly 
(which makes it more of a biological experi-
ment), but now more often supplying the 
household with grains, therefore avoiding 
the issue of uptake at the household level, 
but maintaining the behavioral compo-
nents in the use of these grains that affect 
the impact. A further step would be to 
offer labeled QPM for purchase by house-
holds at various prices, in order to estimate 
the impact when consumers face an 
adoption decision. Much of the discussion 
in this paper can be applied to such an 
exercise by considering consumers instead 
of producers as the unit of analysis.

4. Technologies that alter environmental 
externalities 
New cultivation and livestock management 
techniques may fall into this category, as 
may fertilizers. These are differentiated 
from technologies that improve or maintain 
plot-level soil quality in that they prevent 
negative externalities on neighboring 
property or public resources, for example 
through groundwater contamination.

Potential roadblocks to successful impact 
analysis for these technologies are fairly 
obvious. Very little of the effect of the tech-
nology can be observed at the level of the 
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adopter. The impacts on public resources 
can be hard to measure, and such impacts 
could take a long time to manifest. Yet, 
without taking into account these external 
effects, the social value of the technology 
can be vastly under-estimated. Indeed, 
CGIAR returns from investing in technolo-
gies that alter environmental externalities 
have frequently been found to be low.

2.2 Short-term microeconomic 
versus long-term and aggregate 
effects
The goal in performing an impact analysis 
for a technological innovation or interven-
tion is to estimate the total effect of the 
new technology on a set of outcome vari-
ables, after some amount of diffusion has 
taken place (Maredia, 2009). Maredia lays 
out the steps pursued by existing impact 
evaluations to estimate this total effect. 
Here we summarize her exposition and 
maintain her notation. In Maredia’s frame-
work, two key quantities must be estimated 
in order to arrive at the total impact of a 
new technology: the extent of adoption 
(Ec) and the average effect that adoption 
has on outcomes for those who have 
adopted (Es). For example, Es may be the 
average increase in annual profits per 
hectare for a farmer adopting a new variety 
of maize and Ec may be the total number 
of hectares planted with the new variety. 
Or, Es may be the change in poverty head-
count for a village that received a techno-
logical intervention and Ec the number of 
villages that received the intervention.

There is an intimate relationship between 
the process of diffusion and the appropri-
ate average effect that needs to be estimat-
ed. Due to this dynamic process, Es cannot 
be measured separately from the time and 
location of the adoption, and most 
probably not after diffusion has taken 
place. Thus, current approaches for estimat-
ing Es and Ec may be appropriate in some 
cases but not in others, for a variety of 
reasons. 

The principal reason that Es is not static is 
that general equilibrium effects relating to 
diffusion of a technology change its impact 
over time. This can be extremely important 
for an impact analysis and the interpreta-
tion of its results. Cochrane (1979) points 

out that when a new agricultural technol-
ogy increases output, aggregate supply of 
the commodity increases and prices (of a 
good with imperfect tradability) must fall 
for markets to clear. As their yields increase, 
early adopters may experience large 
positive impacts from the technology on 
outcomes such as income and profit, but as 
there are few adopters, overall prices fall 
only a little. This is essentially a short-term 
effect of the new technology, because low 
levels of adoption mean that market prices 
have yet to be affected.

As more farmers adopt, the increased 
output may drive down economy-wide 
output prices to the extent that adoption 
fails to raise farmers’ profits (this is known 
as ‘Cochrane’s Technological Treadmill’). 
Input prices may also change as the new 
technology results in different demands for 
factors of production. The decline in profit-
ability does not indicate that farmers are 
irrational: no (small-scale) farmer accounts 
for his own adoption’s impact on prices, as 
they simply maximize profits while taking 
prices as given. In the end, the majority of 
the benefits accruing from the technology 
may go to consumers, who benefit from 
lower commodity prices. Thus the long-
term/post-diffusion general equilibrium 
effect in which output and input prices 
adjust at the macro level can be quite dif-
ferent from the short-term partial equilib-
rium effect. In addition, once diffusion has 
taken place, even in the absence of general 
equilibrium effects, it remains difficult to 
find valid counterfactual non-adopters, 
since those that remain non-adopters are 
likely to be very different from the 
adopters in meaningful ways.

Keeping in mind the dynamic nature of 
adoption and the potential for important 
long-term general equilibrium effects, how 
should the researcher proceed in estimating 
the total effect of a new technology? 

1. The short-term impact measure is itself 
interesting. It may prove a useful tool 
for informing researchers of the value 
of the technology to at least the first 
wave of adopters. The average effect of 
adoption for adopters (Es) is probably 
the most interesting. But even the 
extent (or lack of extent) of adoption 
(Ec) is informative. As we will argue, 
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however, these results may not be 
extrapolated to infer total impact when 
adoption expands.

2. There are also cases where one can 
expect general equilibrium effects to be 
small. A seed variety that addresses a 
particular type of disease affecting only 
a certain region may be extremely 
important for that region without 
necessarily affecting the aggregate 
supply of the commodity in ways that 
generate changes in prices. Similarly, 
one may think of a variety that caters to 
one type of producer (a variety that 
performs well with limited input use, 
but would be suboptimal for farmers 
who have resources to use inputs). Even 
an important technological change that 
increases the domestic production of a 
crop may not induce price changes if 
the country is open to imports and 
exports. In these cases, the aggregate 
effect of the technology may be 
measured by the simple product Es × Ec 

provided that the estimated effect size 
Es corresponds to the estimated area of 
adoption Ec. It is still the case that 
finding counterfactual non-adopters is a 
major challenge under these 
circumstances.  

3. On the other hand, once the diffusion 
process is well advanced and prices have 
adjusted, it is not clear that a currently 
measured Es has relevance for inferring 
the impact that may have occurred in 
the past. Nor is it clear how one would 
be able to observe any non-adopters 
that would form a valid counterfactual 
for measuring an impact, however large 
it remains. We therefore address this 
type of analysis separately in section 7.

Estimates of the extent of adoption (Ec) can 
be obtained from an adoption survey that 
samples the population under consider-
ation. The principal data necessary for esti-
mating Ec include indicators to identify 
whether the household has adopted (if the 
adoption decision is binary) or measures of 
the extent of adoption (if a household’s 
adoption may be incomplete). Measuring 
the extent of adoption itself may present 
challenges, especially if it is the case (as in 
the use of a specific variety) that varieties 
are crossed, that their names vary over geo-
graphical areas, and/or that farmers may 
not even know the exact varieties they are 

growing.3 This is however a fundamental 
observational problem, not an estimation 
or measurement problem, and hence it will 
be ignored here as it does not pertain to 
the questions raised in this paper. Adoption 
studies abound and generally go far 
beyond simply estimating Ec; they also 
attempt to study the determinants of 
adoption. This undertaking is complex and 
presents its own set of challenges (see, e.g., 
the Agricultural Technology Adoption Ini-
tiative, 2010). While in the end, studies of 
the determinants of adoption may use 
econometric methods that are similar to 
those reviewed here, the issues raised are 
not the same as those we will raise in mea-
suring the impact of adoption. Hence 
neither criticism of commonly used 
methods or suggestions made for designing 
randomized controlled trials (RCTs) made in 
this paper should be applied directly to the 
estimation of technology adoption.

Estimating the average impact on adopters 
from adoption (Es) is generally difficult and 
requires careful attention. Thus the remain-
der of this paper focuses almost entirely on 
this task and its complications. The key chal-
lenges to be addressed are:
1. Estimating effects for the correct 

population: obtaining the effect of the 
technology for farmers that actually 
adopt.

2. Establishing causality: isolating 
differences in observed outcomes that 
are due to adoption.

3. Accounting for spillovers: including the 
spillovers from adoption in estimates of 
a technology’s impact.

2.3 Impacts to be considered

Farm-level restricted profits are the natural 
place to start when looking for the immedi-
ate impacts of a new technology.4 These 
represent the expected profitability that 
drives farmers to adopt a new production 
technology and provides the channel 
through which adoption increases producer 
welfare. Yield is another, apparently 
simpler, measure of impact for agricultural 
technologies. While this may be an interest-
ing impact to measure, it does not in itself 
reveal the extent of the producer’s welfare 
affected by the technology. As Foster and 
Rosenzweig (2010) state, adoption can be 
accompanied by input adjustment by 
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farmers, so that the positive impact of yield 
increases on profits could be mitigated to 
some extent by increased expenditures on 
inputs. On the other hand, a labor-saving 
innovation might not change yield per 
hectare but instead give the same amount 
of output with less work, whether supplied 
by the farmer or by hired labor. Profits 
account for both changes in revenues from 
increased output and changes in expenses 
from input adjustment, and in so doing 
they give us a measure of the first-order mi-
croeconomic impact of the new technology.

It is also important to estimate impacts on 
household income, expenditure, and 
poverty because this gives a measure of the 
extent to which the technology actually 

affects household welfare. Compared to 
farm profits, however, these impacts may be 
mitigated substantially. For example, while 
a new technology may have a large propor-
tional impact on profitability, farm income 
from the crop in question may form a only a 
small portion of total household income 
and therefore have only a marginal overall 
effect with little chance of pulling families 
out of poverty. (Furthermore, exit from 
poverty may take place through a slow ac-
cumulation of assets due to increased 
profits, which would take a long time to 
manifest and become observable to the re-
searcher.) Thus these measures add substan-
tial information to estimates of profitability 
and may paint a different picture of the im-
portance of a new technology.
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3.1 Conceptual framework for 
adoption

Coherent impact analysis should place 
technology adoption within a conceptual 
framework that treats potential adopters 
as agents who make decisions in their own 
best interest. Foster and Rosenzweig 
(2010) point out that “adoption and input 
use are the outcomes of optimizing by het-
erogeneous agents”. This optimization 
takes place in the presence of constraints 
on the budget, information, credit access, 
and the availability of both the technology 
and other inputs. Viewing adoption 
through the lens of constrained optimiza-
tion by rational agents implies that house-
holds should adopt a technology only if:  
(i) adoption is actually a choice that can be 
taken (i.e., the technology is available and 
affordable); and (ii) adoption is expected 
to be profitable or otherwise advanta-
geous.

A simple model of adoption and its result-
ing effect on outcomes can illustrate this 
idea more precisely. What follows is a 
variant of the well-known Heckman (1979) 
selection model, in which selection into 
‘treatment’ (adoption) is made by farmers 
on the basis of expected profitability. For 
now, it is assumed that farmers have access 
to the technology. There are two sets of 
variables that determine the expected prof-
itability of adoption for farmer i at time t: 
one that is observable by the researcher (Zit) 
and one that is not (Uit). Rule (1) below 
characterizes the adoption decision; where 
T is a binary indicator of adoption, Eπ* is 
the maximized value of a restricted general 
expected profit function, and εit is an inde-
pendent and identically distributed (i.i.d.) 
error term. The adoption decision is 
modeled as binary here for simplicity, as 

well as to make it comparable with the 
familiar Heckman selection model and 
easily applicable to the propensity score 
matching methods that have become so 
popular in impact analysis in recent years. 
The analysis can be extended to continuous 
adoption choices while retaining its key 
results. Adoption of a specific technology, 
such as a seed variety, can often be thought 
of as binary, even if the farmer does not 
fully adopt the technology ‘package’ by 
making self-selected adjustments to inputs 
and farm management practices. Manage-
ment and input use are endogenously 
adjusted by the farmer in response to seed 
variety adoption, which is dichotomous 
unless the new variety is used alongside an 
old variety on the same plot. The profit 
function is restricted because fixed factors 
such as land are not taken into account.

When εit is zero, adoption takes place only 
if maximized expected profits with the new 
technology exceed maximized expected 
profits from non-adoption. Larger variance 
in ε will cause more farmers to mistakenly 
adopt or not adopt in spite of expected 
profitability. (Here we are setting aside the 
issue of risk and any other factors that 
make profit maximization inadequate for 
characterizing the adoption decision, but 
they can be conceptualized by replacing the 
profit function with a utility function.) 
Unless εit is large, the farmers observed to 
be adopting are in large part those who 
expected the technology to be profitable.

The outcome variable (e.g., household con-
sumption, poverty status, or profits) Yit is a 
function of observed variables Xit, unob-
served variables Vit, adoption status Tit, and 
an i.i.d. error term ηit (see Rule 2 at the top 
of the next page); where X and Z can share 
elements and U and V can share elements.

3.  Microeconomic impact analysis

(1)
   1 if Eπ* (Zit, Uit; Tit = 1) – Eπ* (Zit, Uit; Tit = 0) + εit > 0

Tit (Zit, Uit, εit) =  

   0 otherwise
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3.2 Estimating the effect of 
adoption for adopters
The selection model in (1) and (2) shows 
why it is important for impact analyses to 
focus on estimating the effect of adoption 
for those who actually adopt, rather than 
for the entire population of potential 
adopters. Using the terminology of treat-
ment effects, our interest is in the average 
treatment effect on the treated (ATT) 
rather than the average treatment effect 
(ATE: the average effect from adoption for 
the entire population under consideration, 
whether or not adoption takes place and 
the effect is actually realized). 

Looking at (1), we see that adopters and 
non-adopters are fundamentally different 
in the benefits they would experience from 
using the technology. Adopters have char-
acteristics, both observed and unobserved, 
that make adoption profitable in expecta-
tion. On the other hand, non-adopters 
refrain from using the technology because 
they expect to lose money by doing so. In 
this simple model, then, the ATT for profits 
is positive because it includes only adopters, 
while the ATE could be positive, negative, 
or zero because it also includes non- 
adopters. The outcome of interest is not 
always profit, but since profits are positively 
correlated with such measures as consump-
tion and poverty, this relationship between 
the ATT and ATE can be expected to hold 
for these outcomes.

Extending this simple model, though, one 
can find situations in which the ATE does 
not necessarily give a lower bound for the 
(absolute value of the) ATT. When some 
non-adopters would have higher gains 
from the technology than the adopters, the 
ATE can exceed the ATT. Sunding and Zil-
berman (2001) review the literature on risky 
technologies and present a model in which 
technologies may not be adopted fully even 
when they raise expected profits. For 
example, in developing countries, richer 
farmers may be already using an intermedi-
ate technology that is superior to that avail-
able to the poor, and that helps a new tech-

nology to increase expected profits to a 
greater extent for them than it would for 
the poor. However, it may also increase risk. 
Since the poor are usually unable to insure 
against risk through insurance or credit 
markets, the rich could be more likely to 
adopt despite their lower gains from 
adoption, so that the ATE on expected 
profit may exceed the ATT (see Agricultural 
Technology Adoption Initiative, 2010 for 
more examples of constraints on adoption). 
The ATE could also exceed the ATT if those 
with the highest returns cannot adopt due 
to credit or other supply constraints.

Thus, while the ATE of a technology is inter-
esting in its own right, it is not useful in the 
context of an impact analysis where selec-
tion into adoption may be important. The 
ATT – the effect of adoption for adopters 
– is the quantity that should be estimated.

3.3 Selection and the counterfactual

In addition to the potential returns to 
adoption, adopters usually differ from non-
adopters in the variables that determine 
the outcomes of interest. The obvious 
problem is selection bias: if the unobserv-
able variables in U (which determine 
adoption) and V (which determine 
outcome) are correlated, then estimating 
(1) and (2) will give a biased estimate of the 
effect of adoption on the outcome. The 
extent of this bias depends on the impor-
tance of the unobservable variables in their 
respective equations, as well as the strength 
of the correlation between the unobserv-
ables determining adoption and those de-
termining outcomes.

There are many plausible reasons why U 
and V should be correlated, relating to 
farmer and plot characteristics and also to 
temporal shocks. One example is farmer 
ability, which cannot be accounted for 
entirely by observable characteristics such 
as age and education. When all else is 
equal, the more effective farmers probably 
have higher profits (so ability is in V), while 
they are also likely to have higher returns 
to the technology because they are more 
‘savvy’ in their implementation (so ability is 
in U). In the case of fertilizer adoption, 
Foster and Rosenzweig (2010) use the 
example that good soil quality (often unob-
served) increases yields regardless of fertil-

(2)

Yit = Yit  [Xit, Vit, Tit (Zit, Uit, εit ), ηit ]
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izer use as well as increasing the return to 
fertilizer use. Thus, soil quality is in U since 
it affects returns and therefore influences 
the decision to adopt, and it is also in V 
since it affects the outcome (yield, income, 
profit) directly. Even plot-level rainfall 
shocks can enter both U and V if the tech-
nology is adopted after some of the 
season’s rainfall takes place; for example 
with some types of fertilizers or cultivation 
techniques. None of these examples are 
trivial; in fact, one or more are likely to 
apply to most agricultural technologies.

Discussion of the selection problem leads 
into that of a major challenge in impact 
analysis: how to establish a proper counter-
factual group against which to compare 
adopters. To estimate the effect of a tech-
nology, it is necessary to know the outcome 
for the adopting farmers if they had not 
adopted. The fact that adoption is the result 
of optimization creates a potentially serious 
problem with selection into treatment on 
the basis of unobservable characteristics, as 
explained above. Thus two farmers who are 
observationally equivalent in every way 
except for adoption (and outcomes) are 
probably not equivalent on unobservables. 
Because of this, it is inadequate to use the 
observationally identical non-adopter as the 
‘without’ comparison for the adopter. The 
inadequacy of ‘selection on observables’ ap-
proaches (those in which equivalence on ob-
servable characteristics is assumed to imply 
equal probability of adoption) will be dis-
cussed further in section 4.3 in the review of 
recent impact analyses.

To arrive at a reasonable counterfactual 
group of non-adopters, it is necessary to 
take into account the possibility of very sig-
nificant selection on unobservables arising 
from farmers’ profit maximization problems. 
This asks the researcher to move beyond se-
lection on observables and towards research 
designs that establish an explicit and plau-
sible counterfactual group for comparison 
with the adopters. Careful research designs 
are almost certainly more difficult to plan 
and implement than the ubiquitous selec-
tion on observables evaluations. They usually 
require advanced planning before diffusion 
of the technology, and the implementation 
or identification of a mechanism that influ-
ences adoption independent of unobserv-
able characteristics. Suggestions for such 

designs (in section 5), as well as examples of 
projects in which they could be implement-
ed (in section 6), are provided later in this 
paper.

3.4 Understanding spillovers from 
adoption

Thus far, it has been assumed that when a 
farmer adopts a new technology, only his 
own outcomes are affected. In reality, 
adoption can have local impacts on the 
outcomes of other adopters and non-
adopters, even in the absence of economy-
wide general equilibrium effects.5 House-
holds interact in local factor and 
commodity markets in which prices and 
quantities can change as a result of 
adoption by some of the participants. Ad-
ditional output due to adoption can, firstly, 
increase the demand for labor in the local 
market, potentially raising wages (if there 
is no excess labor supply) but almost cer-
tainly increasing the level of employment 
and income for laborers. Secondly, it can 
increase or decrease the demand for other 
scarce inputs, changing prices locally and 
thus altering the parameters of farmers’ 
profit maximization problems. Thirdly, if 
the local market is not well integrated with 
outside markets, increased local output can 
lead to lowering prices for all buyers and 
sellers. When a farmer adopts, this may 
have spillovers for other adopters, such as 
providing the opportunity to learn from his 
experience (e.g., Conley and Udry, 2010), 
thereby increasing the realized return to 
adoption. There may also be effects for 
non-adopters beyond changing local prices 
and wages if they are affected directly by 
the existence of the technology. For 
example, a technology with negative envi-
ronmental externalities could affect nearby 
households and farms.

The existence of spillovers may be an im-
portant consequence of the diffusion of a 
technology, so spillovers need to be 
included when estimating impacts. At first 
it might appear preferable to estimate the 
ATT separately from the spillovers; after all, 
the stated goal of impact evaluation so far 
has been to find the effect of adoption for 
adopters. In the presence of spillovers, 
however, it is necessary to qualify this state-
ment. The quantity we need to evaluate for 
Es is (ATT + average spillover), because this 
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gives the average effect of the technology 
when taken up by actual adopters.

Spillovers from adoption complicate the 
necessary task of identifying the non- 
adoption counterfactual. Even if the coun-
terfactual group is defined perfectly in the 
absence of spillovers, introducing spillovers 
between the adopters and counterfactual 
farmers will invalidate the comparison 
between them. This is the well-known 
problem of control group contamination. 
The control group is supposed to represent 
the outcome in the absence of the technol-
ogy, but if adoption indirectly changes 
outcomes for the control farmers, then 
their outcomes no longer reflect the coun-
terfactual. This can lead to either over- or 
under-estimation of the technology’s 
impact. If spillovers between adopters and 
the counterfactual non-adopters are 
positive, then the technology will appear 
less effective because the control group will 
be better off than it would have been in 
the absence of adoption. If the spillovers 
are negative, then the technology will 
appear more effective. Failing to account 
for spillovers will result in an estimate that 
does not bound the true effect. Thus it is 
necessary to account explicitly for spillovers 
in the research design. In some cases this 
may lead to changing the unit of observa-
tion from, for example, individual produc-
ers to villages. 

3.5 Dynamics of adoption

When estimating the average impact of a 
technology on adopters (Es), it is important 
to understand that Es varies over time, even 
when long-term general equilibrium effects 
are disregarded. Because of this, the timing 
of the evaluation has an effect on the esti-
mated impact of the technology and needs 
to be considered carefully. The extent to 
which the dynamics of adoption matters 
depends upon the characteristics of the tech-
nology, particularly its pattern of diffusion 
and the importance of learning in utilizing 
the technology effectively. The dynamics of 
adoption is important even in the short-term 
when economy-wide prices are unchanged 
by adoption, as discussed above.

One reason that Es varies over time is that 
adopters change their usage of the new 
technology as they use and learn about it. 

When adopters learn to use a technology 
more effectively, its impact on outcomes 
such as yield should increase. Conley and 
Udry (2010) provide an example in the 
context of pineapple farmers in Ghana, 
where farmers change their usage of fertil-
izer based on the results of previous efforts 
(both their own and those of others). The 
effect of the introduction of pineapple 
farming on profits and consumption in a 
farmer’s first year would be expected to be 
different from that in his second or tenth 
year, as he calibrates the fertilizer usage to 
his own plot. Thus, even when the set of 
adopters stays constant across years, Es 
should evolve over time.

The set of adopters of a new technology 
almost certainly changes with time. 
Sunding and Zilberman (2001) make this 
point clearly in their review of agricultural 
technology adoption. One reason for the 
change in adopters is that while some 
farmers may choose not to adopt initially, 
when they observe other farmers using the 
technology, they learn about it (how to im-
plement it and the expect profits) and 
adopt later on. Farmers with large land-
holdings might adopt first because they can 
experiment with and learn about it on a 
portion of their land and expand its use 
later, while smallholders tend to adopt later 
after learning from the larger-scale farmers. 
Another explanation is that high interest 
rates can make adoption prohibitively ex-
pensive. This could be particularly impor-
tant in developing countries where, if all 
else is equal, wealthy farmers have resourc-
es to self-finance adoption or can access 
credit at lower rates, and will adopt first. 
Poorer farmers may adopt later, as they 
learn by observing adopters that the tech-
nology is sufficiently profitable to justify 
borrowing, if the price of the technology 
falls, or when lenders become more willing 
to finance the technology cheaply after 
seeing that it is profitable.

The evolving set of adopters is important 
because, even if farmer-specific effects of 
adoption never change, these effects differ 
by farmer. Large landholders and entrepre-
neurial farmers, often the first to adopt, 
could have the highest returns from 
adoption. Hence the average impact of the 
technology in the first year (when it is used 
by only the most effective farmers who are 
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often less constrained in their ability to 
utilize complementary inputs) could be 
higher than in subsequent years when less-
efficient and more-constrained farmers 
have adopted.

It is clear that the effect of a technology on 
adopters evolves over time, both because of 
within-individual changes in returns and 
the continuous adoption by new adopters 
with heterogeneous returns from the new 
technology. Impact analyses using identical 
methodologies, but taking place at differ-
ent intervals after introduction, will arrive 
at different estimates of the technology’s 
average impact, even in the absence of 
general equilibrium effects. This is because 
the impact of a technology is not a static 
measure. Rather, it is a flow of impacts that 

changes continuously. The total realized 
impact is the integral of this flow, from the 
time of the technology introduction until 
the present. Estimating a snapshot of the 
flow using an impact evaluation may 
provide an adequate approximation of the 
technology’s effects, but it is necessary to 
consider the dynamics of adoption and how 
this affects the usefulness of such estimates 
(see section 7 for further discussion). The 
snapshot may not provide a good estimate 
of such measures as farm profit if farmers 
take a loss in the first years of adoption 
while they adjust their farm management 
techniques and capital stock to optimize 
use of the new technology, and when 
negative returns from adoption in one year 
may be outweighed by subsequent positive 
returns.
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Much of the recent microeconomic impact 
analysis literature, both within the CGIAR 
and elsewhere, draws on a common set of 
tools to estimate the effect of technological 
innovations. In addition to qualitative 
methods (addressed here briefly), the most 
prevalent methods used are research 
station or on-farm trials, selection on ob-
servables such as propensity score matching 
(PSM) and regression adjustment, and dif-
ference-in-differences or double difference 
(DD) analysis (sometimes combined with 
PSM). Because these methods are ubiqui-
tous, it is worth looking more closely at 
each of them for the specific objective of 
measuring the impact of technological 
change and considering their strengths and 
weaknesses.

4.1 Qualitative methods

Qualitative methods of technology impact 
evaluation use such tools as interviews and 
focus groups rather than quantitative data 
to arrive at their conclusions.6 Qualitative 
studies are useful because they typically 
elicit information on the impacts of a new 
technology directly from the people 
affected. This gives researchers an idea of 
which impacts to look for in a quantitative 
analysis. For example, interviews might 
suggest that people who adopted also 
hired many more laborers for the harvest, 
leading researchers to collect detailed em-
ployment data among both agricultural 
and non-agricultural households. Once a 
causal effect has been established quantita-
tively at the level of reduced form equa-
tions, qualitative methods can be useful to 
suggest the mechanisms at play, which may 
not be revealed in the quantitative analysis.

Such methods, however, are insufficient to 
rigorously characterize the impact of a 
technology. It goes without saying that in-
terview responses do not always match 
with the story told by the data. Also, while 
qualitative results might suggest that some 
impact is present, they cannot describe the 
scale of the impact. When the goal is to 
quantify impacts with any level of accuracy, 
qualitative methods must play a secondary 

role to that of careful quantitative analysis, 
informing researchers about the data they 
should collect and the likely impacts on 
which to focus as they perform statistical 
analyses.

4.2 Research station and on-farm 
trials

An approach used widely in ex-ante impact 
assessment of new agricultural technolo-
gies, but also in ex-post estimations, is that 
of piloting the technology on test plots. 
Typically, the new technology is employed 
alongside the traditional technology, either 
in a research station or on farms in areas 
where the technology is being or will be 
used.7 The average difference in yields 
between plots using the different technolo-
gies is taken to be the effect of adoption 
on yield. This estimate can be used to make 
inferences about changes in farm-level 
profitability due to adoption as well as  
aggregate changes in output and surplus 
after diffusion has taken place.

A number of recent impact analysis studies 
use the results from trials to estimate the 
effects of a wide range of technologies. For 
example, Alene et al. (2009) used on-farm 
trial data from various sources to estimate 
yield gains from improved varieties of 
maize in West and Central African coun-
tries, then projected these gains into the 
adopted area to arrive at total yield growth 
attributable to improved varieties. Laxmi et 
al. (2007) used both on-station and on-farm 
trials to evaluate the impact of zero tillage 
on rice and wheat yields in India, as well as 
on water use and other outcomes. An 
analysis by the Asian Development Bank 
(Operations Evaluation Department, 2005) 
on a project involving the WorldFish Center, 
estimated the impact of genetically 
improved farmed tilapia on yields with 
both types of trials. SPIA’s recent publica-
tion: Strategic Guidance for Ex-post Impact 
Assessment of Agricultural Research 
(Walker et al., 2008), considers the use of 
experimental plots for ex-post impact 
analysis to be a “good practice” in many 
cases.

4. Current approaches to microeconomic impact analysis: 
summary and critiques
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On-station trials have an obvious limitation 
in the set of effects that can be estimated, 
primarily that of the change in yields that 
are due to the new technology. Impacts on 
even relatively simple measures such as 
income and profitability cannot be obtained 
without making a number of assumptions. 
Firstly, assumptions about input and output 
prices must be made; secondly – and perhaps 
more importantly – the experimenter must 
decide how to alter the other inputs (e.g., 
fertilizer and labor) in conjunction with 
using the new technology, which may not 
resemble farmers’ solutions to the profit 
maximization problem. Foster and Rosenz-
weig (2010) point out that accounting for 
even small changes in the use of inputs can 
drastically change the estimated effect of a 
new technology on profits.

Furthermore, research stations may not 
reflect the actual conditions faced by po-
tential adopters. Plot characteristics, such as 
soil quality and access to irrigation, may 
differ substantially between the station and 
the farm. If the advantage provided by the 
new technology varies with such character-
istics, then the estimated impact may be 
overstated or understated in comparison 
with farmers’ own experiences. Real-world 
farms may also be managed differently 
from on-station plots in terms of farming 
techniques, input provision, and skillful im-
plementation of the technology. Each of 
these factors is likely to affect the returns 
to the technology.8

While on-farm trials may ameliorate some 
of these problems to some degree, a serious 
drawback remains: there is typically no 
reason to be certain that the farmers and 
farms participating in a trial are representa-
tive of those who actually adopt the tech-
nology. To illustrate this issue, consider the 
‘ideal’ case of an RCT in which a set of 
households is chosen randomly to adopt a 
new high-yielding variety (HYV) of seed 
and another set is chosen randomly to act 
as a control, continuing to use the tradi-
tional seed variety. Suppose the objective is 
simply to measure the change in yield due 
to the HYV, and further suppose that there 
are two types of farms in each group, those 
whose soil is well suited to HYV seeds and 
those whose soil is not (i.e., with no gains 
from HYV use). At harvest, the measured 
change in average yield from HYV seeds 

can be expressed as ΔῩ = ῩT – ῩC, where ῩT 
is the average yield on those farms receiv-
ing the HYV seed ‘treatment’ and ῩC is the 
average yield on the control farms. This ex-
pression can be decomposed into the 
change due to HYV seed on farms with 
suitable (S) and unsuitable (U) soil for HYV: 
ΔῩ = ῩT – ῩC = pS ( ῩST – ῩSC ) + (1 – pS) (ῩUT – ῩUC),
where pS is the proportion of households 
with suitable soil. 

Once the technology is actually released, it 
is unlikely that type-U farmers will adopt 
the HYV seeds because they offer no advan-
tage over traditional seed. If type-S farmers 
do adopt (we assume it is profitable to do 
so), then the change in yield for adopters is 
ΔῩS = ( ῩST – ῩSC ) ≠ ΔῩ. Note that this is the 
quantity in which we are interested (Es) 
because it corresponds to the average gain 
realized due to actual adoption rather than 
the predicted gain for a random, possibly 
non-adopting, household. In the terminol-
ogy of treatment effects, the on-farm trial 
gives the ATE while the quantity of interest 
is the ATT.

In the given example, an on-farm trial 
would understate the yield gains accruing 
from adoption because it includes house-
holds who would not gain from the new 
technology and thus not adopt. However, 
the bias need not be downward. If, for 
example, the households with the highest 
gains from adoption were also the most 
credit-constrained and consequently unable 
to adopt, then the RCT could overstate the 
real-world ATT. Because the direction of the 
bias from an on-farm trial (whether ran-
domized or not) is ambiguous, such an 
exercise is unable to give a firm lower or 
upper bound on the effects of the new 
technology under real-world conditions.

Both types of trials are unable to account 
for the potentially important role of spill-
overs arising from the introduction of a 
new technology. This issue is addressed 
further below.

Hence, while on-station and on-farm trials 
may be useful in some capacity, especially 
for ex-ante analysis, they do not offer a 
reliable estimate of the effects of a technol-
ogy on such simple measures as yields, and 
especially not for such complicated 
outcomes as profits.
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4.3 Selection on observables 
designs

In contrast with research station and 
on-farm trials, selection on observables ap-
proaches attempt to recover Es by observ-
ing outcomes after households have 
already chosen whether or not to adopt the 
new technology. The main problem faced 
by such methods is finding an appropriate 
group of non-adopters with whom to 
compare the adopters (see section 3.3). Se-
lection on observables designs, whether 
using regression adjustment or PSM, 
attempts to solve this problem by assuming 
that adoption is ‘as good as random’ after 
conditioning on some set of observable 
household, plot, and/or community charac-
teristics. Returning to equations (1) and (2), 
this implies that after controlling for Zit, Uit 
(the set of unobserved determinants of 
adoption) is uncorrelated with Vit (the un-
observed determinants of the outcome 
variable). 

A regression adjustment model (linear re-
gression that controls for observables af-
fecting selection) assumes that a linear 
combination of the observables is sufficient 
to control for all factors simultaneously af-
fecting both the adoption decision and the 
outcome variable (this assumption is relaxed 
when using difference-in-differences, as ex-
plained below). There is often some confu-
sion about how much PSM relaxes this as-
sumption. By matching adopters and 
non-adopters on the basis of the propensity 
score generated by a first-stage logit or 
probit model, PSM basically allows for a 
somewhat arbitrary non-linear combination 
of the observables to control for factors af-
fecting both adoption and outcomes 
(Rosenbaum and Rubin, 1984). It does not 
alter the basic assumption that the observ-
able explanatory variables are sufficient to 
characterize all determinants of adoption 
that also affect the outcome variable.

A plethora of recent impact analysis papers 
are willing to make this assumption in a 
wide range of evaluations. Kumar and 
Quisumbing (2010) use PSM to study the 
effect of adopting new fishpond manage-
ment technologies and vegetable varieties 
on household-level economic and nutrition-
al outcomes in Bangladesh. Dillon (2008) 
uses PSM to try to control for endogenous 

placement of groundwater wells for agri-
cultural irrigation in Northern Mali. Dey et 
al. (2010) apply PSM to investigate the 
economic impacts of adopting integrated 
agriculture-aquaculture systems in Southern 
Malawi. Kassie et al. (2010) compare 
adopters and non-adopters of improved 
groundnut varieties in Uganda in terms of 
crop income.9 

If the assumption of selection on observ-
ables holds (and the logit or probit func-
tional form approximates the true selection 
equation adequately) then PSM gives the 
ATT (Es), as desired. For this to be true, it 
must also be the case that there are no 
spillover effects between the adopters and 
non-adopters (discussed below). Selection 
on observables is clearly a strong assump-
tion in the context of technology adoption 
and, of course, is fundamentally untestable. 
Returning to Foster and Rosenzweig’s 
(2010) assertion that adoption (or non-
adoption) is a choice that results from opti-
mization, we can reconsider the adoption 
and outcome equations in the context of 
PSM to show how PSM can fail to establish 
a viable comparison group of non-adopters 
against which to measure changes in 
outcomes.

To simplify the illustration, we will suppose 
that there is only one observable factor, x, 
and one unobservable factor, u, and that 
these factors affect both the profitability of 
adoption and the outcome variable. We can 
also rewrite the change in profitability due 
to adoption as B (xi, ui) so that adoption 
occurs only if B (xit, uit) + εi > 0 
(suppressing the time subscript). Finally, we 
assume without loss of generality that 
  δB > 0  and  δY > 0,
  δu          δu
where Y is the outcome under consider-
ation, such as yield or profit.

Suppose that there are two farmers with 
equal values of x, but that farmer A adopts 
and farmer N chooses not to adopt. Then 
PSM will use farmer N as the counterfactual 
for A since their observables are the same. 
But because A adopted while N did not, 
B (xA, uA) + εA > 0 > B (xN, uN) + εN. Then it 
must be true that uA > uN and/or εA > εN. 
In the former case, the assumption that 
 δY > 0
 δu          implies that if neither farmer had 
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adopted, farmer A would have a higher 
expected outcome than farmer N. That is, 
EYA (x, uA, TA = 0) > EYN (x, uN, TN = 0). Hence 
the non-adopter was not a valid counter-
factual for the adopter because they would 
have had different expected outcomes in 
the absence of treatment.

Minimal assumptions about the relationship 
between unobservable attributes, 
adoption, and outcomes were necessary to 
arrive at this breakdown in PSM. It was  
sufficient for δB  and   δY 
          δu  δu   to be nonzero 
(i.e. the unobservable factor affects both 
the profitability of adoption and the 
outcome variable itself), which is not only 
plausible but also probable in most cases of 
technology adoption. Intuitively, the 
problem is that PSM assumes that observa-
tionally similar farmers are on average the 
same, even when one of them has chosen 
rationally to adopt and the other has not. It 
is highly unlikely that this is the case, pre-
cisely because farmers are choosing to 
maximize profit or otherwise optimize some 
outcome. By employing PSM, we virtually 
guarantee that there will be an imbalance 
of unobservables after balancing on observ-
ables between adopters and non-adopters. 
This is the standard selection bias problem 
and is discussed often in the context of 
linear regression models. If linear regression 
models do not solve the selection bias 
problem, then PSM does not either. The ad-
vantage offered by PSM is that it models se-
lection on observables more flexibly; but 
like linear regression, it does not address se-
lection on unobservables.

Existing impact analyses rarely consider the 
adoption process carefully when applying 
PSM and fail to ask seriously whether the 
available observational data are sufficient 
to characterize the adoption decision as a 
rational business choice in the face of con-
straints. Ravallion (2005) notes, in the 
context of antipoverty programs, that the 
performance of PSM relies heavily on the 
adequacy of the data collected in character-
izing adoption. In this case, where the 
rollout of an antipoverty program is still 
highly incomplete, selection is made from 
among households that were not offered 
the option to participate in the program, 
hence the selection bias does not occur. In 
the case of technology adoption, it is diffi-

cult or even impossible to collect sufficient 
data to predict adoption reasonably. For 
example, Kumar and Quisumbing (2010) 
predict adoption of new fishpond manage-
ment technologies and vegetable varieties 
using farm size, household composition and 
education level, and whether various shocks 
were experienced during the study period. 
It is unlikely that these factors exhaust the 
true determinants of adoption (keeping in 
mind the decision as one of profit or utility 
maximization), such as land quality, farm 
characteristics, available assets and credit 
access at baseline, and farmer skill. Indeed, 
it is unlikely that many of the important de-
terminants of adoption could be collected 
or quantified even if significant monetary 
resources were available to the researcher.

It is difficult to imagine that farmers decide 
whether or not to adopt technologies in a 
way that is largely random in relation to 
farm- or household-level outcomes. Yet 
unless the adoption equation is strongly 
predictive of the adoption decision, we are 
left to believe just that. For this reason it is 
important to know the strength of the 
adoption equation, for example its pseudo-
R2, in order to know whether the observ-
able variables predict adoption adequately. 
Many impact analysis studies do not report 
this statistic, while those that do (e.g., 
Kassie et al., 2010) tend to indicate that the 
adoption equation is quite weak, leaving 
much of the decision attributable to unob-
served factors.

A final technical note on PSM is in order. 
Many studies rightfully ‘trim’ the adopting 
and non-adopting observations to ensure 
overlap of the propensity score between 
the two groups. Ravallion (2005) makes an 
important point on this subject: if trimming 
the dataset results in the dropping of some 
adopters (i.e., those with the highest prob-
ability of adoption), then the resulting 
estimate of the impact of adoption is not 
the true ATT. Adopters with the highest 
propensity score may be those with the 
highest gains from adoption, in which case 
trimming them from the sample means that 
the benefit of adoption for adopters (the 
ATT) is understated. Of course this does not 
suggest that researchers employing PSM 
should not trim their dataset; the problem 
is that those with exceptionally high pro-
pensity scores simply do not have a valid 
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counterfactual counterpart, even on the 
basis of observables.

4.4 Difference-in-differences 
methods

There is a growing and welcome trend in 
impact analysis in the application of DD 
methods using panel data. DD has the ad-
vantage of allowing the researcher to 
control for the time-invariant characteristics 
of individuals or households when compar-
ing adopters and non-adopters of a tech-
nology. This weakens the key assumption 
required for the validity of comparisons 
between adopters and non-adopters: sin-
gle-difference (cross-sectional) approaches 
require that, after controlling for observ-
able characteristics, the two groups would 
have the same expected outcomes in the 
absence of adoption. Instead, DD methods 
require that, after controlling for observ-
ables, the change in expected outcomes 
between the pre- and post-adoption 
surveys would be the same in the absence 
of adoption.

Due to the increased data requirements of 
DD, few technology adoption analyses have 
used it. An early example of using longitu-
dinal data in impact analysis for agricultural 
technologies is found in Walker and 
Kshirsagar (1985), which uses two waves of 
surveys to study the effects of adopting 
machine threshing technology in India. 
Dillon (2008), mentioned above, uses DD 
along with PSM to investigate the impact of 
irrigation from wells on agricultural pro-
duction, household consumption, and nutri-
tion in Northern Mali. Also mentioned 
above, Kumar and Quisumbing (2010) apply 
DD with PSM to study the consequences of 
adopting new fishpond management tech-
nologies and vegetable varieties in Bangla-
desh. Rusike et al. (2010) also use PSM 
alongside DD in investigating adoption 
rates (not the impact) of new varieties of 
cassava in Malawi. Finally, Omilola (2009) 
attempts to apply DD to a dataset in which 
only one wave of data was collected, with 
the ‘baseline’ data in fact constructed by 
asking farmers retrospective survey ques-
tions. The goal of that paper is to see if 
tube well adoption in Nigeria decreased 
poverty. DD methods are applied more 
widely in program evaluation contexts, 
where evaluation is more likely to be 

planned in advance and where the inter-
vention may be better defined than with 
the introduction of a new technology.

While expanded use of DD in impact 
analysis would be a positive development 
and certainly no worse than single- 
difference methods in controlling for selec-
tion bias in adoption, DD methods do not 
eliminate the need to think carefully about 
the adoption decision and ways in which 
adopters may differ from non-adopters. It is 
not a priori obvious that outcomes should 
be evolving similarly for those who choose 
to adopt and those who do not, even after 
considering observable characteristics.

For example, consider that the more inno-
vative and entrepreneurial farmers may be 
those who adopt a new technology. Such 
characteristics will not be recorded on a 
survey and are not necessarily correlated 
highly with observable characteristics. If 
these farmers are generally the most suc-
cessful in their village, we might expect 
them to be increasing their yields and 
profits at a faster rate than non-adopters 
even in the absence of the new technology, 
as they continually improve their farming 
practices and possibly adopt other technol-
ogies. Thus DD estimates would falsely at-
tribute these increases to adoption, when 
in reality they are due to the fact that the 
yields and profits of the more able farmers 
follow a different trajectory than that of 
the less able.

As another example illustrating where DD 
could fail, suppose that adopters of a new 
technology have plots that are more sensi-
tive to rainfall shocks than those of non-
adopters. If, during the follow-up survey, 
drought has affected the entire sample of 
farmers, then adopters will have lower 
yields due to their greater responsiveness to 
the rainfall shock, but this effect cannot be 
disentangled from the effect of adopting 
the new technology.

With these illustrations in mind, it is clear 
that DD does not solve the potentially 
serious issues of selection bias involved in 
technology adoption and that adopters and 
non-adopters need not follow parallel 
trends in outcomes in the absence of 
adoption. One way to test for the validity 
of the parallel trends assumption is to use 
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multiple years of pre-adoption panel data 
to see whether the two groups are follow-
ing similar trends prior to adoption. While 
finding parallel trends does not guarantee 
that trends would be the same during the 
post-adoption period, it does provide a 
compelling piece of evidence that this may 
be the case. Of course a long panel dataset 
requires significantly more data collection 
than a simple DD approach, and may be dif-
ficult to implement in many cases.

One lesson from the existing impact 
analysis studies using DD is that, for such a 
study to be convincing, it needs to be 
planned in advance of the introduction of 
the new technology so that proper baseline 
data can be collected. Using retrospective 
data from questions asked during the post-
diffusion survey instead (as in Omilola, 
2009) is likely to result in substantial mea-
surement error among both dependent and 
explanatory variables. Measurement error 
in explanatory variables is a particularly 
serious problem in analyses using longitudi-
nal data (such as DD) and can result in esti-
mates that are greatly biased towards zero. 
Likewise, collecting baseline data after the 
technology has already been adopted fails 
to capture the full effect of adoption. This 
occurs in Kumar and Quisumbing (2010) 
because the baseline surveys occur up to 
several years after adoption, and the paper 
discusses this problem in detail. Many of 
the adopters in the sample had probably 
already experienced some of the adoption 
gains by the time the baseline data were 
collected, so the difference between 
baseline and follow-up survey outcomes 
probably understated the effects of 
adoption.

Designing the impact evaluation prior to 
rolling out a new technology can prevent 
these problems by planning baseline survey 
collection ahead of time, as is done current-
ly with program evaluations. Of course, if it 
is possible to plan a technology rollout and 
its evaluation, there are probably better 
evaluation methods available than DD. 
These will be discussed in section 5.

4.5 Addressing spillovers from 
adoption

The previous discussion focuses primarily on 
the limitations of popular econometric 

methods in establishing the proper counter-
factual group against which to compare 
adopters. The issue of spillovers from adoption 
– on both other adopters and non-adopters 
– presents an additional and closely related 
subject that is faced by most impact analyses. 
Section 3.4 addresses the issue of spillovers in 
detail. This section discusses how the existence 
of spillovers affects current impact analyses 
and the ways in which they may affect the 
conclusions of such work. Spillovers are not 
simply econometric issues that must be ad-
dressed with improved methods, but rather 
fundamental consequences of technology 
adoption that must be considered carefully.

Most impact analyses (including nearly all 
those mentioned in this section) compare 
adopters with non-adopters within the 
same village or set of villages. Even suppos-
ing that the researcher successfully creates 
a valid counterfactual group for the 
adopters among the non-adopters (i.e., the 
two groups would have the same outcomes 
in single-difference models or the same 
change in outcomes in DD models), the ex-
istence of spillovers can result in incorrect 
estimates of the impact of adoption. 
Miguel and Kremer (2004) make this point 
clearly in the context of de-worming drugs. 
While the drugs in fact had large impacts 
on rates of illness and other outcomes, 
failing to account for the fact that treated 
students ceased infecting untreated 
students would cause one to conclude erro-
neously that the drugs had no effect at all 
on the non-adopters.

A similar issue is likely to afflict existing 
impact analyses of agricultural technolo-
gies. To illustrate with a recent evaluation, 
consider Omilola (2009). Suppose for sim-
plicity that within a village, people 
randomly choose whether or not to adopt a 
new tube well or pump technology, so that 
we can ignore selection bias in adoption. If 
use of these technologies for irrigation 
yields a larger harvest for adopters, then 
there are a number of ways in which this 
increase could affect non-adopters. Firstly, 
the larger harvest may increase demand for 
labor, driving up wages. This would increase 
income for non-adopters over and above 
the case in which nobody adopted. 
Secondly, if the market for agricultural 
products is restricted to a small geographi-
cal area, the increased output will drive 
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down prices and thus lower farm income 
for all producers. Thirdly, if there is some 
form of mutual insurance in the village, 
income gains accruing to adopters may be 
shared with non-adopters. Fourthly, non-
adopters may have an opportunity to make 
use of the adopters’ wells or pumps for 
their own farms, even though they have 
not adopted the technology themselves. 
This could raise output and income for non-
adopters. Certainly there could be other 
channels through which non-adopters are 
affected by others’ adoption as well.

Many of the spillover channels could lead 
to the author’s conclusion that the effects 
of adopting such irrigation technologies are 
small, even when the effects are, in fact, 
large. When adoption by some also benefits 
the non-adopters, the gains from the new 
technology are understated because it 
appears that the adopters would have been 
quite well off even without the new tech-
nology. On the other hand, if non-adopters 
suffer due to adoption by others, as in the 
case of prices being driven down, the new 
technology may appear more beneficial 
than it really is. Indeed, spillovers invalidate 
the use of the non-adopters as the counter-
factual for adopters because they no longer 
represent the true experiences of adopters 
in the absence of the technology.

The problems posed by spillovers are miti-
gated if adoption takes place at the village 
level, for example as in the village-level  
irrigation programs studied by Dillon 
(2008). In this case there is probably little 

spillover from adopters to non-adopters 
unless there is substantial inter-village in-
teraction, which the author states is not a 
concern. If we ignore the selection bias 
issue, then a comparison of adopters with 
non-adopters is valid. However, there is 
another problem. Random shocks, particu-
larly rainfall, are often clustered at the 
village level. It is necessary to account for 
this intra-village correlation in statistical 
comparisons between adopters and non-
adopters. Doing so can raise the standard 
errors of estimates substantially, especially 
if the number of clusters (villages) is small. 
In the case of Dillon’s irrigation study 
(which does not appear to account for clus-
tering in its computation of standard 
errors), there are only ten villages, a suffi-
ciently low number to suggest that precise 
comparisons that also account for spillovers 
are unlikely.

Laboratory and on-farm trials might seem 
to offer an advantage by strictly controlling 
the behavior of the control group to 
prevent spillovers from adopters. But, aside 
from the problems with these trials ex-
plained above, it is worth noting that we 
do not want to eliminate spillover effects 
when studying the effects of a new tech-
nology. Spillovers, on both adopters and 
non-adopters, are a consequence of 
adoption in the real world and thus it is im-
portant to incorporate them in calculations 
of the technology’s impact. By ignoring 
spillovers, by design, laboratory and 
on-farm trials fail to reflect the true impacts 
of adoption.
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5.1 General recommendations

Current approaches to microeconomic 
impact analysis suffer from two main weak-
nesses: problematic formation of the coun-
terfactual non-adopting group, and failure 
to account for spillovers between adopters 
and non-adopters. Addressing these key 
shortcomings is a formidable challenge that 
cannot be overcome in the space of one 
paper. However, the recommendations 
below provide a step towards this goal.

It is evident from the above discussion that 
current approaches rely almost exclusively 
on some form of selection on observables 
and that such a strategy will rarely lead to 
convincing results. The broad suggestion 
made here is that, whenever possible, 
impact analysis should be based upon  
micro-studies with explicit research designs 
that estimate the effect of the new techno-
logy without relying exclusively on the ob-
servable characteristics of potential 
adopters. Optimally, such research 
programs should be planned in advance of 
the technology’s introduction and diffusion. 
While such programs can be difficult and 
expensive to implement, they allow for the 
application of econometric techniques for 
which the underlying assumptions are clear 
and relatively mild. Thus the results 
stemming from their implementation will 
be more credible and more likely to with-
stand scrutiny than those from ex-post eval-
uations relying on strong and usually un-
reasonable assumptions.

5.2 Approaches to avoid

Recent papers, both academic and policy-
oriented, have focused on the potential ap-
plication of RCTs in impact analysis of agri-
cultural technologies. While the use of RCTs 
has significant potential to add rigor to 
future analyses, and indeed much of the 
rest of this section discusses this possibility, 
it is important to point out that certain ap-
plications of RCTs would not be fruitful, 
either because they fail to overcome the 
problems with current methods, or because 
they introduce new issues that undermine 

their usefulness. Three RCT design issues are 
described below.

1. Plot-level randomization 
There has been much interest in the work 
of Duflo et al. (2008) in conducting on-farm 
trials in which participating farms had one 
small plot allocated randomly to no fertil-
izer and two plots allocated to using pre-
determined amounts of fertilizer. The paper 
has appeal in part because it uses a simple 
method of randomization (at the plot level) 
to estimate the gains from the new tech-
nology, removing the possibility of bias 
from farmers selecting certain types of land 
into adoption. 

The objective of the study was to demon-
strate the value of using an appropriate 
amount of fertilizer, and this method is per-
fectly appropriate for that purpose. 
However, the method would not be suitable 
for ex-post impact analysis of agricultural 
technologies. The fundamental problem 
with applying this approach to ex-post 
analysis is that it does not estimate the 
effect of the technology for actual adopters 
(ATT), but rather the average effect (ATE) 
over an arbitrary set of farmers and pieces of 
land. As a result, there is little or no im-
provement over the on-farm trials discussed 
earlier. Restricting the sample of farmers to 
those who would normally adopt is not 
possible unless adoption is determined 
totally by observable characteristics, in which 
case an RCT would not be necessary because 
adopters and non-adopters could simply be 
compared after diffusion by using PSM. Fur-
thermore, even if the set of adopters were 
known, the plots of land they would choose 
for adoption might differ from those 
selected for planting in the RCT.

If it were certain that real-world adoption 
would take place only among those farmers 
in the sample with the highest returns to 
the technology, then the RCT might give a 
lower bound on the ATT because it includes 
farmers with low enough returns to deter 
adoption. But non-adoption could take 
place for a number of reasons (see Agricul-
tural Technology Adoption Initiative, 2010), 

5. Suggested approaches and improvements
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such that the estimated effect of the tech-
nology is not a lower bound. For example, 
if the farmers with the highest returns from 
adoption are also the most credit- 
constrained, then the ATE may underesti-
mate the true ATT. Thus the result of a 
within-farm randomized design fails to 
bound the effect of the new technology.

An RCT in which technology is randomized 
within a farm may fail to induce farmers to 
act as they would if they had optimally 
chosen to adopt the technology. Farmers 
who have a small test plot assigned to a 
new technology may have little incentive to 
take the time to implement the technology 
carefully. Non-governmental organization 
(NGO) staff or extension agents who advise 
the farmers will not solve the problem, as 
they may induce different behavior from 
that exhibited by actual adopters. Inputs, 
both variable and fixed, may not be 
adjusted optimally on the treated plot. 
(Foster and Rosenzweig, 2010, note too 
that changes in inputs allocated specifically 
to the test plot might be difficult to 
measure.) Thus even the ATE may be esti-
mated incorrectly. Hence this approach has 
potential issues with both internal and 
external validity that make it an untenable 
option for impact evaluation.

2. Demand-side interventions
Offering a demand-side intervention that 
induces some farmers to adopt an available 
technology, for example an encouragement 
design that pushes a randomly selected set 
of farmers to adopt, is a strategy mention-
ed for moving away from on-farm trials to 
a design that allows farmers to select into 
adoption. The basic idea behind encourage-
ment designs is to use the encouragement 
as an instrumental variable for adoption, 
then to use two-stage least squares to 
obtain the effect of adoption on the 
outcome of interest.10 Other examples of 
demand-side instruments include random 
extension of credit to some farmers or ran-
domized price subsidies through coupon 
distribution.

Demand-side interventions will not recover 
the ATT of a new technology. Regressions 
using an instrumental variable obtain the 
local average treatment effect (LATE) of 
adoption, which is the average effect of 
adoption only for those induced to adopt 

because they received the treatment 
(Imbens and Angrist, 1994). A necessary 
condition for the LATE to be valid is that 
treatment must have no effect on the 
control group. This would be invalid in a 
demand-side intervention if, for example, 
the increased demand for a technology in-
creased its price and caused some farmers 
in the control group not to adopt. 

Demand-side instruments are therefore un-
desirable for two reasons. Firstly, they do 
not estimate the impact of the technology 
for farmers who would have adopted even 
without the intervention. These infra- 
marginal adopters probably differ substan-
tially from those who adopt only when they 
receive the treatment; they may have 
higher returns to the technology and thus 
rationally adopt without the treatment, or 
they may have lower returns but be less 
constrained in some way that allows them 
to adopt without having received the treat-
ment. Secondly, the estimated effect is, by 
construction, only for farmers who would 
not adopt in the real world sans interven-
tion. We know this because the LATE 
measures the difference in outcomes 
between marginal adopters due to treat-
ment and farmers in the control group who 
are like them in every way except treat-
ment status but who choose not to adopt. 
Hence, a demand-side instrument does not 
estimate the effect of adoption for any real-
world adopters but does estimate the 
returns for some real-world non-adopters. 
This is a problem if we believe that technol-
ogy adoption is the result of optimization 
by farmers with respect to the expected 
gains from adoption.

To illustrate this point further, we present a 
graphical representation of a simple en-
couragement design in a village where the 
technology has just been introduced and is 
available to all farmers, and where all 
farmers underestimate the benefits of 
adoption. Half the farmers receive exten-
sion services explaining the technology’s 
benefits. It is assumed that farmers are risk-
neutral and expected profit maximizers, 
adopting only if the technology will 
increase their expected profits. It is also 
assumed that adoption is a binary decision 
(yes or no). Figure 1 plots supply and 
demand for the technology. For simplicity, 
supply of the technology (S) is assumed to 
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be perfectly elastic, e.g., offered at a 
uniform price set by the government.

The demand curve for the control group is 
denoted DC. If adoption is binary, each 
point (q, p) on DC indicates the number of 
control group farmers (q) for whom 
expected profit gross of the technology cost 
is at least p. The encouragement interven-
tion can be thought of as raising the 
expected benefit of adoption, which we 
assume (only for convenience) equates 
expected with actual profitability. Thus 
treatment shifts the demand curve for the 
treated group to DT.

Of the control group, qC farmers adopt. Of 
the treatment group, qT farmers adopt: a 
higher number than in the control group. 
The important feature of this graph is the 
location on the demand curve of the 
farmers induced to adopt by the treatment 
(between qC and qT). These farmers have 
low net profits from adoption. Consider the 

implications if the researcher’s goal is to 
estimate the true impact of the technology 
on profitability in the real world (ATT). The 
correct measure of this is (A + B) / qC, which 
is the average profit from adoption for 
farmers who adopt without any demand-
side intervention. However, the LATE from 
two-stage least squares is C / (qT – qC ): the 
average profit from adoption for those 
induced to adopt by the intervention. The 
graph shows clearly that the LATE is much 
lower than the desired ATT because the 
LATE measures only the effect for the 
farmers for which benefits are the least.

3. Household-level randomization
Experiments (natural or controlled) in 
which the randomization occurs at the level 
of the household or plot are unlikely to 
result in reliable impact estimates. Random-
izing at the plot level leads to the problems 
discussed above, while randomizing at the 
household level has other problems, dis-
cussed below.

Figure 1. Supply and demand for a technology and the estimation of ATT vs. LATE
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The most serious issue with randomizing 
over households (instead of over villages, 
for example) is that adoption by some in 
the treated group will probably affect the 
outcomes of the control group. Such spill-
overs invalidate comparisons between 
treated and control groups as a basis for es-
timating the effect of a new technology. 
Sections 3.4 and 4.5 explain the problem of 
spillovers and how they affect current selec-
tion on observables approaches. The 
problems described in the latter section 
carry over even to otherwise well-planned 
RCTs where randomization of technology 
over households is explicit.

To illustrate, we return to the example of 
tube wells in section 4.4. Suppose that 
instead of comparing adopters and non-
adopters on observables, an RCT took place 
at the time the technology was introduced. 
A group of farmers was selected for treat-
ment in which they were visited by exten-
sion agents, told about the new technol-
ogy, and offered the necessary materials for 
sale. The control group was not visited. 
Baseline data were taken before any 
adoption and then a follow-up took place 
two years later to see how farm profitabil-
ity and household consumption had 
changed.

Randomization does not solve any of the 
spillover problems discussed in the selection 
on observables case: wage effects, local 
price effects, mutual insurance effects, and 
usage of the wells by non-adopters. Any of 
these could be serious enough to limit the 
validity of the experiment. Spillovers within 
the village are a consequence of adoption 
itself, not the research design being used. 
They will exist regardless of the researcher’s 
approach.

A further issue with randomization at the 
household level is that, in many cases, 
farmers in the control group may gain 
access to the new technology and choose to 
adopt it even when it is not offered to 
them, a problem often referred to as con-
tamination of the control group. This is par-
ticularly likely if the new technology is a 
farming technique rather than a physical 
input that is purchased. Adoption by 
control farmers is a problem because the 
estimated LATE no longer gives the effect 
for those who were induced to adopt by 

the offer of the technology compared with 
those who would have adopted if given the 
treatment. Instead it measures the effect 
for those induced to adopt compared with 
a mixture of adopting and non-adopting 
households. Dropping the adopting house-
holds in the control group from the sample 
prior to analysis does not fix the problem, 
because these may have indeed been the 
farmers that correspond to the adopters in 
the treated group. In this case, the treated 
adopters would be compared with control 
farmers who would never adopt, and this is 
the wrong counterfactual group for esti-
mating the LATE.

5.3 Specific suggestions

Having cautioned against several potential 
new approaches for impact analysis, this 
section presents suggestions for future 
work. The main purpose of these sugges-
tions is to help in clearly identifying a coun-
terfactual group against which to compare 
adopters, accounting for inevitable spill-
overs from adoption, and limiting contami-
nation of the control group.

1. Use natural or randomized experiments 
where the village, community, or other 
appropriate social grouping is the unit of 
randomization
By ‘natural’ experiment we mean a situa-
tion in which assignment of the treatment 
is as good as random, possibly conditional 
on some observable variables, but that no 
specific attempt was made to randomize 
the treatment as in an RCT. The rollout of a 
technology over time and space might con-
stitute a natural experiment in some cases. 
Using natural or randomized experiments 
in which the village, community, or other 
appropriate social grouping is the unit of 
randomization addresses the issue of spill-
overs, not by ignoring them or trying to 
create an environment in which they do 
not exist, but rather by acknowledging 
that they are potentially important results 
of adoption and incorporating them into 
the measured effect of the new technol-
ogy. Randomizing at a level higher than 
that of the household in the presence of 
spillovers has recently become standard 
practice among development economists. 
In the field of health, for example, Miguel 
and Kremer (2004) randomize drug treat-
ment at the school level and Cohen and 
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Dupas (2010) randomize mosquito net 
prices at the clinic level. In education,  
Muralidharan and Sundararaman (2009) 
and Kremer et al. (2009) randomize teacher 
and student incentives (respectively) at the 
school level.

When randomization takes place at the 
village level (as an example used for conve-
nience, since this discussion applies also to 
other levels of randomization) in an RCT, 
two-stage least squares can be performed 
using households as the unit of analysis, 
provided that the standard errors are clus-
tered at the village level.11 Clustering typi-
cally causes standard errors to be much 
greater and requires many villages to be 
included in the experiment, which increases 
the cost and scale of the project. While this 
is an unfortunate consequence, the alterna-
tive of household-level randomization gives 
a (potentially seriously) biased estimate of 
the effect of the new technology.

When randomization takes place at the 
village level and individuals are used as the 
unit of observation, regressing the outcome 
of interest on treatment status gives the 
average effect of the treatment being 
offered, regardless of whether the treat-
ment induces adoption. This is known as 
the intention to treat effect (ITT). The ITT is 
a useful quantity because it gives the 
average impact of the treatment per house-
hold regardless of adoption status, which 
can be used as a measure of the effective-
ness of the treatment. The ITT accounts for 
all effects of the technology, both directly 
through adoption and through spillover 
effects on adopters and non-adopters.

The LATE scales the ITT by the fraction of 
adopters, so it measures the effect of 
adoption per adopter. Because the LATE is 
just the scaled ITT, it still includes the effect 
of spillovers. Provided that the treatment 
induces adoption for all farmers who would 
adopt under real-world conditions, while 
not inducing adoption for real-world non-
adopters, the LATE gives the desired 
quantity for impact analysis of a technol-
ogy: the ATT plus the average spillover 
effect per adopter.

In the case of an RCT, clustered randomiza-
tion also ameliorates, to some extent, the 
ethical dilemma presented by Maredia 

(2009), in which some farmers are offered a 
technology while it is withheld from others 
in the same village. Withholding treatment 
from some villages is a less artificial act 
than withholding it from households, as the 
number of treated villages is likely to be 
determined by budget constraints and 
treating any of the control villages is unfea-
sible. Of course, data collection must still 
take place in the control villages, and if the 
marginal cost of distributing the technol-
ogy during surveying is low, then the artifi-
cial withholding of treatment will present 
an issue.

A further benefit from including many 
villages in an evaluation is that the effect of 
the technology is estimated using several 
geographically distinct locales. This adds a 
degree of external validity to the results, 
since the estimates will be based on the 
results of adoption across locations with po-
tentially heterogeneous effects from 
adoption. For example, if the new technol-
ogy is useful only when rainfall is scarce 
(such as a drought-resistant seed variety), 
then measuring the effects of adoption 
only in a village that experiences plentiful 
rain will not reveal the true returns of 
adoption. A study covering many villages, 
however, could observe a range of rainfall 
levels and obtain an estimated effect closer 
to the true quantity.

2. Use supply-side interventions where the 
new technology is introduced to entire 
villages
Village-level clustering is not sufficient to 
recover the desired (ATT + average spill-
over) estimate because it does not ensure 
that adoption due to the treatment corre-
sponds to those who would take up the 
technology under true market conditions. 
For this reason, the treatment should 
simulate the introduction of the new tech-
nology on the market as closely as possible. 
The simplest example of this in the setting 
of an RCT is to choose a set of villages that 
do not have the technology and to 
randomly choose a subset of villages in 
which to sell the technology at the ‘market 
price’. Adopters will then be the entire set 
of farmers who find it optimal to adopt 
when the technology is available for 
purchase, i.e., those who would purchase 
under real-world conditions. The LATE is as 
desired: the effect of the technology, (ATT + 
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average spillover), when the technology is 
made available for sale.

It is important to note that not all supply-
side interventions yield the correct LATE. If 
the product is already available in villages 
and the intervention is a subsidy to sellers 
that shifts supply of the technology 
outward, then the analysis suffers from 
problems similar to those discussed for de-
mand-side treatments. Only the effect on 
marginal adopters is estimated. Thus it is 
important for the supply-side intervention 
to be a relaxation of a supply constraint so 
that villages with no access to the technol-
ogy are given access at market prices.

3. Do not limit research designs to RCTs. 
Natural experiments can yield reliable 
estimates of impact even in the absence of 
controlled, explicit randomization
There are situations in which an RCT is a 
plausible option that should be pursued. If 
a new technology must be rolled out over 
time due to supply constraints, randomizing 
the villages receiving the technology at 
each phase of the rollout may be a simple 
and feasible task that provides precisely the 
supply-side RCT necessary for estimating 
impact. This can be done by matching pairs 
of villages based on observables, then 
randomly drawing treatment within each 
pair. Care must be taken not to ‘sabotage’ 
the technology by introducing it to areas in 
which it is unlikely to be taken up, since 
such a strategy could damage the reputa-
tion of the technology and inhibit its suc-
cessful expansion.

In other cases, it is not possible to plan and 
carry out an RCT. While there may be op-
portunities for good impact analysis, some 
creativity is required. Rollouts of a technol-
ogy that were arguably random, even when 
they were not explicitly randomized, can be 
analyzed in a similar way to those of RCTs. 
The assumption of randomness in the 
rollout cannot be fully tested, so it is impor-
tant that researchers with institutional 
knowledge of the technology and its 
rollout process provide guidance on how 
the rollout occurred. In other cases, the 
rollout follows explicit rules based on ob-
servables that can be used to instrument 
treatment. Provided that the necessary data 
are available, treating the rollout process as 
a natural experiment allows for the analysis 

of technologies that have already been 
diffused. It often allows for use of very 
large administrative databases. This is a 
distinct advantage over RCTs, which are 
only possible for new technologies.

Other kinds of natural experiments may be 
usable as well. A geographic discontinuity 
approach may be possible when a specific 
area is chosen for diffusion of the technol-
ogy. Provided that the boundary defining 
which farmers receive the technology is not 
physically or politically important (such that 
villages on either side of the boundary are 
very different from each other), the two 
groups of villages can be compared, with 
the status of being on the ‘diffusion side’ of 
the boundary used as the indicator of treat-
ment. The natural experiment is that, since 
the boundary is assumed to be arbitrary, 
the side on which the villages lie is essen-
tially random. Regression discontinuity 
methods might be applied in order to 
account for differences between the two 
sides of the boundary due to continuous 
changes in village characteristics over 
space.12 However, here again, we measure 
only local treatment effects in the proximity 
of the discontinuity rule.

An example in which a boundary disconti-
nuity design might be successful is the in-
troduction of technologies that control 
Striga hermonthica, a parasitic weed that 
has spread widely throughout Africa, sup-
pressing yields of maize and other grains in 
affected areas (Berner et al., 1994). Striga is 
spread by wind, livestock droppings, and 
sale of contaminated seed at markets. 
There may be a geographical frontier 
between areas that are infested and those 
that have yet to be affected, with the 
frontier advancing from year to year. 
Suppose that researchers map the infesta-
tion frontier and collect baseline data on 
crop yields (and other outcomes), prior to 
the introduction of a new striga control 
technology (whether chemical or biological) 
for sale to farmers.

Figure 2 gives a stylized illustration of the 
geographic discontinuity design that could 
be used in this context. The ‘T’ villages are 
those affected by striga where the new 
technology is offered for sale. The ‘U’ 
villages are unaffected because the infesta-
tion has yet to reach them. The boxed ‘U’ 
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and ‘T’ villages form the treatment and 
control groups under consideration, 
because they are sufficiently close to the 
boundary to make them comparable along 
all dimensions except for their exposure to 
striga.

The effect of the technology can be esti-
mated by a DD method that uses introduc-
tion of the technology as an instrument for 
adoption, then compares the change in 
yield for the baseline-infested (treated) 
areas to the baseline-uninfested areas 
(control). The intuition is that in the 
absence of infestation, changes in yield 
over time between the treatment and 
control villages would be similar. Then the 
DD estimator recovers the average change 
in yield due to adoption, because the unin-
fested area is an appropriate counterfac-
tual. Note that while no randomization of 
treatment is necessary for this evaluation, it 
is necessary to have baseline data for both 
treatment and control areas, as well as  
follow-up data after adoption has occurred.

Needless to say, the list of possible research 
designs is longer than: i) RCTs; ii) arguably / 
‘as-good-as’ random rollouts; and iii) geo-
graphic discontinuities. The key is to be 
creative when defining sources of random 
variation in supply of the new technology. 

Such unique research designs will be case-
specific and will require intimate knowl-
edge of the technology’s introduction and 
subsequent diffusion. Brainstorming involv-
ing economists as well as staff involved in 
the technology’s development and release 
will help identify suitable options.

Whether use of PSM survives as a viable 
strategy depends on the details of the tech-
nology diffusion process. The only situation 
in which PSM is obviously suitable is when 
availability of the technology in villages is 
as good as random after conditioning on 
observable characteristics of the village. 
This does not seem likely, but if the re-
searcher can justify such an assumption, 
PSM could be a useful approach.

4. Leverage public–private–civil society 
partnerships to perform supply-side 
interventions
The most likely best case for RCT is the 
random introduction of a new technology 
into villages. A potentially attractive means 
for doing this is to pursue partnerships 
between the originator of the technology 
and organizations that are already on the 
ground distributing the technology, 
whether they are private dealers or NGOs. 
In the case of seeds, partnerships with local 
agro-dealers could provide a fruitful col-

Figure 2. Stylized illustration of a geographic discontinuity design
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laboration for introducing new varieties to 
selected areas. Local agro-dealers already 
provide agricultural inputs to villages and 
so provide a natural channel for distribut-
ing new varieties.

An RCT including agro-dealers in the supply 
chain would need to do two things with 
respect to distribution of the new seed 
variety. Firstly, it would have to make the 
new variety available to a random subset of 
dealers. Secondly, it would have to provide 
adequate incentives for dealers to actually 
buy the seeds and offer them for sale to 
farmers in their territories. The former 
should be simple in most cases, since agro-
dealers already form part of the supply 
chain. The latter might be accomplished by 
subsidizing the wholesale price of seeds to 
dealers.

An advantage of releasing the new technol-
ogy through agro-dealers is that farmers are 
already used to buying from them and will 
have some confidence that supply will 
remain available in the future (as opposed 
to obviously randomized interventions 
where it is unclear whether the new tech-
nology will continue to be offered for sale in 
the future). In addition, prices are set ac-
cording to market forces because the dealer 
has a profit motive. This makes observed 
adoption more reliable than interventions 
that push new technologies by methods 
outside of the traditional supply chain. After 
all, once the rollout is complete, regardless 
of the method, it is likely that dealers will be 

the only sustainable suppliers. Incorporating 
them into the process at the evaluation 
phase is a natural way to accurately estimate 
the effects of the new technology.

5. Plan the evaluation before and conduct 
it during diffusion of a new technology
The fact that impact analyses are referred 
to as ex-post does not suggest that they 
should be planned and performed after the 
fact, a point made clearly in Maredia 
(2009). Baseline surveys that reflect pre-
adoption outcomes accurately must be un-
dertaken prior to diffusion, and these may 
take some time to carry out. It goes without 
saying that an RCT requires advanced 
planning prior to rollout of the technology, 
but even if the rollout is not explicitly ran-
domized, any follow-up surveys taking 
place during the rollout must be ready for 
administration.

Failing to plan the evaluation ahead of time 
has multiple negative consequences. The 
first is that it may result in a lack of appro-
priate baseline data on the pre-adoption 
characteristics of farmers and villages. The 
second is that the researcher may miss a 
chance to implement a clear research 
design. The last is more subtle and relates to 
the temptation to evaluate the technologies 
that are perceived to have been already suc-
cessful. By planning and executing impact 
analyses for all projects, even those that are 
not perceived to be successes, it is possible 
to obtain a better picture of the returns to 
the entire portfolio of projects. 
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The goal of this section is to give concrete 
examples of impact analyses that could be un-
dertaken using the methods discussed. Each 
example is based on a new technology devel-
oped in collaboration with a CGIAR research 
center and each proposes a way to evaluate 
impact as the technology is rolled out. It should 
be noted that these proposals are for new 
technologies that have yet to be completely 
diffused. This is not a coincidence: the best ap-
plications are those for which evaluations take 
place as the technology is rolling out.

6.1 Genetically improved farmed 
tilapia

The Worldfish Center, along with other or-
ganizations, has spent decades developing 
genetically improved farmed tilapia (GIFT) 
through selective breeding programs. The 
fish ‘seed’ is distributed through public–
private partnerships in many countries, 
mostly in Southeast Asia. Adoption has 
been most successful in the Philippines and 
Thailand. Distribution in Bangladesh has 
been logistically difficult, resulting in very 
little adoption. Adoption in Vietnam has 
had some success, but there appears to be 
room for more growth.

Previous impact evaluation, summarized in 
an Asian Development Bank report (Opera-
tions Evaluation Department, 2005), has 
relied mostly on research station and 
on-farm evaluations of differences in yield 
(weight at harvest) and surveys of fish 
farmers for information on profitability. 
The report states that the yield numbers are 
controversial, highly debated, and not care-
fully peer-reviewed. 

Because the ADB report mentions explicitly 
that there have been supply-side con-
straints in Bangladesh, an RCT may be ap-
propriate for assessing the impact of GIFT 
on such outcomes as yield, income, farm 
profits, and poverty. While the estimated 
impacts would be specific to Bangladesh, 
the results may be applicable to some 
extent to countries where diffusion has 
already been successful. The first step of the 
evaluation would be to identify a random 

subset of villages or communities that are 
engaged in tilapia farming and randomize 
them into treatment and control groups. 
Then a baseline survey of household and 
farm characteristics would be conducted.

If public–private partnerships are viable in 
Bangladesh, aquaculture suppliers and 
dealers in or near villages selected for treat-
ment would be offered the GIFT seed and 
monetary incentives to sell the new variety. 
This would both make supply available to 
dealers and ensure that they actually offer 
the GIFT for sale so that farmers have a 
chance to adopt it. If private partnerships are 
not feasible but NGO or governmental in-
volvement is strong, these groups could offer 
extension services that sell GIFT in the treated 
villages. Control villages would experience no 
changes. After a period of time long enough 
for farmers to purchase, use, and realize the 
benefits and costs of the new variety, a fol-
low-up survey would be conducted.

For the empirical analysis, the dependent 
variable would be the change in outcome 
(yield, income, profit, consumption, etc.) 
between baseline and follow-up surveys. 
The variable of interest – adoption of the 
GIFT variety – would be instrumented by a 
variable equal to 1 if the village was 
offered GIFT seed and 0 if the village was a 
control. The estimated coefficient on 
adoption would then give the effect of 
adoption on adopters (ATT), plus any spill-
overs induced by adoption. 

It is not clear (to the authors) how much 
learning-by-doing there is in tilapia farming 
or how fast adoption would take place. If 
these are thought to be important factors, 
then follow-up surveys could take place 
over successive years to estimate the path 
of adoption and outcomes over time, but 
only if the control group did not obtain the 
GIFT technology in the meantime.

6.2 Treatment for internal parasites 
in goats

During the past decade, the Australian 
Centre for International Agricultural 

6. Examples of approaches to evaluation
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Research (ACIAR) and the International 
Livestock Research Institute (ILRI), among 
others, have conducted a program to 
educate Filipino farmers about the serious 
problem of parasites in goats, and to help 
them introduce strategies for preventing 
mortality from parasites. The work is docu-
mented in a report by ACIAR (Montes et al., 
2008). After researching optimal procedures 
and technologies for preventing and com-
bating parasites, they performed outreach 
activities in the form of intensive farmer 
livestock schools funded by national and 
local governments. Farmers invested their 
time and effort in class learning as well as 
investing in de-worming drugs and making 
on-farm improvements. The focus was on 
non-chemical means of control, partly 
because drug-resistant worms are becoming 
a serious problem.

Previous impact analysis has attempted to 
estimate the ATT through a case study with 
very few animals. This ATT does not neces-
sarily reflect the impact of the methods 
because it is not clear that it represents the 
outcomes under actual ranching behavior. 
These benefits were then projected onto 
the population by using the estimated 
adoption rate in the regions included in the 
program.

The technology being evaluated is a 
package of livestock management tech-
niques taught by the schools. A simple 
impact evaluation of this technology would 
select a group of villages or communities 
where goats are raised, then randomly 
offer field school classes to a subset of 
them. This should be done only in parts of 
the country that have not yet been exposed 
to the schools, since the program took 
place initially in two regions but would be 
suitable for other areas of the country as 
well. After the classes conclude and suffi-
cient time has passed for farmers to fully 
implement their new techniques, follow-up 
data could be collected on farm-level 
outcomes.

An analysis that randomly offers classes in 
new regions would have two effects of 
interest. First is the reduced form effective-
ness of the schools themselves in changing 
outcomes. This can be obtained by regress-
ing outcomes of interest (profitability, herd 
mortality, etc.) on the presence of a field 

school. The second effect of interest is from 
an instrumental variable (IV) regression 
using the school’s presence as an instru-
ment for farmers’ adoption of the new 
techniques. 

An obvious concern with this approach is 
the potential for spillover of knowledge 
between communities where the schools 
are offered and those where they are not. 
The seriousness of this problem depends on 
the geographical distance between the 
communities and the degree of interaction 
between them. It does not seem that the 
spread of parasites between farmers’ herds 
is an important issue. Even in the presence 
of spillovers of this sort, an RCT would still 
be useful. If there is no spillover, then the 
IV regression yields the pure ATT of the 
new techniques, while if there are spill-
overs, the IV regression gives the ATT plus 
the impact of the spillovers from adoption.

6.3 Drought-tolerant maize varieties

The Drought Tolerant Maize for Africa 
(DTMA) Project13 is a major ongoing effort 
conducted by the International Maize and 
Wheat Improvement Center (CIMMYT) and 
the International Institute for Tropical Agri-
culture (IITA). The project claims that the 
gains from introduction of drought-toler-
ant varieties will lead to yield advantages 
of up to 34% over improved but non-
drought-tolerant varieties (La Rovere et al., 
2010), with up to 50% advantage during 
drought seasons. This is an ex-ante estimate 
from field trials, so it is important to 
evaluate such claims under real-world 
adoption as the program progresses and 
diffusion takes place.

A straightforward RCT supplying new seed 
varieties to a random subset of agro-dealers 
could be used for such an evaluation. 
Indeed, given that the project is still at a 
relatively early stage and supply is still 
severely constrained, this could prove to be 
an excellent candidate for an RCT evalua-
tion. An additional approach may also be 
useful, and this is illustrated here as an 
example of using a natural experiment for 
the evaluation of technologies.

Drought tolerance is a risk-reducing tech-
nology designed to limit yield losses in 
times of drought rather than increase yields 
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in times of adequate rainfall. As discussed 
in section 2.1, evaluating this technology 
requires that drought actually occurs for 
some of the farmers involved in the evalua-
tion. Our suggested approach is to compare 
adopters in areas with equal levels of 
drought risk, but where some experienced 
drought and others did not. A DD estimator 
that controls for ex-ante drought risk can 
be used to obtain estimates of the yield 
effects (and other outcomes) for actual 
adopters. In this case, the randomization 
required for identification in a natural ex-
periment comes from rainfall shocks.

The first step of this evaluation would be to 
perform a baseline survey on areas where 
adoption of drought-tolerant varieties is 
likely to be high when they become avail-
able on the market. A follow-up survey 
would then be conducted on the same 
farmers once sufficient time has passed for 
substantial adoption to occur. Researchers 
would then identify the subsample of 
farmers who had adopted the new 
drought-tolerant varieties made available 
by DTMA. The sample should include 
farmers within a similar agro-ecological 
zone (although the evaluation could 
include comparisons within several zones), 
but who are spread far enough apart to 
provide variation in realized rainfall and 
drought. The sample would then be further 
limited to adopting farmers who experi-
enced drought at baseline. This is an impor-
tant requirement for identifying the effect 
of the drought-tolerant varieties.

The next step would be to compile fine-
grained historical rainfall data for the areas 
in the sample. This data would be used to 
estimate the drought risk for each farmer in 
the dataset.

The econometric strategy is to compare 
adopters with similar levels of drought risk 
but who had different realized drought 
outcomes. This can be done either with 
ordinary least squares (OLS) regression or 
with PSM. Indeed, this is a good example of 
the proper use of PSM, since matching 
between farmers that were affected by 
drought and those that were not would 
take place on the estimated probability of 
drought. The key assumption to make this 
analysis valid is that risk of drought is 
random after conditioning on our con-

structed measure of predicted drought. 
After matching farmers on the basis of 
drought risk, the DD estimator can be used 
to see how the change in yield over 
baseline differed by drought status. The 
average of this difference is the yield ad-
vantage of the technology under drought 
conditions.

This estimate can then be multiplied by the 
average probability of drought to obtain 
the expected annual yield gain from 
adoption for adopters. A similar method 
could then be used to estimate impacts for 
profits, income, and poverty status, 
provided that sufficient data were collect-
ed. Adoption effects could then be disag-
gregated on the basis of drought risk. The 
effect for farmers at relatively low drought 
risk might be compared with those at high 
risk to see if the realized gains during 
drought seasons are the same. Stratifying 
the matching on such other household 
characteristics as gender of household head 
or education level could give effects for dif-
ferent subpopulations, providing a richer 
view of the distribution of the technology’s 
impacts.

There are important caveats to this research 
approach. Adopting the technology and 
lowering drought vulnerability for maize 
may lead farmers to re-optimize their pro-
duction plan and farm activities, which 
could include the planting of more risky 
crops since their maize production risk has 
fallen. Since adopting farmers experiencing 
drought and those not experiencing 
drought will have engaged equally in this 
re-optimization, such an effect would not 
be identified by looking at differences 
between the two groups of adopters. Simi-
larly, if the drought-tolerant variety has an 
improved yield even in times of good 
rainfall, this change cannot be identified 
separately from the time trend in yields for 
adopters. The estimated adoption effect 
here would indicate only by how much the 
adoption of drought-tolerant varieties 
alters the drought to no drought spread in 
outcomes. Changes in production behaviors 
and good-weather yield could be examined 
casually by comparing changes in crop com-
position and labor supply for adopters with 
those of non-adopters using DD, but the 
validity of this analysis would depend on 
the assumption that in the absence of 
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drought-tolerant adoption, the adopters 
and non-adopters would have changed 
these choice variables in the same way and 
that yield trends for the non-drought-toler-
ant variety were similar between adopters 
and non-adopters.

The key aspect of this example, and what 
makes a natural experiment feasible, is that 

rainfall and drought are basically random 
after conditioning on the past history of 
rainfall. The fact that the technology’s 
benefits are activated randomly allows 
adopters to be compared with other 
adopters. The key here is that we are not 
matching on the basis of a choice variable, 
but rather on an arguably exogenous 
variable in the form of drought risk.
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7.1 The challenge of estimating 
long-term and aggregate effects

The econometric methods discussed so far 
can be used to establish the impact of tech-
nology adoption on outcomes at the 
producer level. These outcomes can be of dif-
ferent types (yield on the plot, production on 
the farm, welfare of the household, or labor 
demand), but in all cases impact is being 
measured on the units of observation used in 
the statistical analysis (similar methods can be 
used to measure impact at the consumer 
level, on health for example). The units could 
be villages, but will never be much bigger 
since statistical analysis requires a very large 
number of observations. In addition, such 
impact can be measured only when technol-
ogy diffusion is incomplete and it is possible 
to find counterfactuals that are unaffected by 
the technology. Therefore, impact analyses 
can be conducted only before sector-wide or 
economy-wide effects have taken place, if the 
implementation or even the data collection 
requires some design.   

On the other hand, we are often interested 
in measuring ex-post the aggregate benefit 
of a technology that has diffused over large 
areas. In this case, the overall impact of the 
technology should capture the changes that 
occurred in aggregate supply, demand, and 
price in the sector. If the sector is large 
enough, with spillovers into input markets, 
employment, and income effects, the impact 
analysis should also include general equilib-
rium effects. There is, of course, no counter-
factual situation that can be observed, and 
hence researchers will resort to different 
types of analyses. One is to focus on smaller 
units of observation (such as villages) on the 
presumption that markets are not well inte-
grated, so each unit represents a small 
‘economy’; and to rely on econometric 
analysis of the observations over time to 
identify the causal effect of uneven develop-
ment of technological change on these 
units. The second type of analysis is to resort 
to simulation models to extrapolate impacts 
measured at the micro level (most often in-
creases in yields) to the level of aggregate 
effects.  

7.2 Estimating the effects of 
technological change with long 
panel data

This is best illustrated by Foster and Rosenz-
weig’s body of work on the effects of the 
Green Revolution in India (Foster and 
Rosenzweig, 1996; 2003; and 2004). Starting 
in the mid-1960s with the introduction of 
new hybrid seed varieties, the Green Revo-
lution led to significant improvements in 
crop yields over a long period of time. An 
important aspect of the Green Revolution 
experience is that it progressed at a differ-
ent speed in different parts of the country, 
creating the opportunity to analyze its 
effects in a panel setup. A simplified model 
that captures the essence of the methodol-
ogy for measuring the impact of yield im-
provement on household or village level 
outcomes is written as: 

Yivt = βyieldvt + Xivtγ + μi + vt + εivt

Yvt = βyieldvt + Xvtγ + μv + vt + εvt

where Yivt (Yvt) are outcomes of interest at 
the household (village) level, yield is an 
index of yield at the village level, X are 
control variables, μi (μv) are fixed household 
(village) effects, vt fixed time effects, and ε 
error terms. The yield index is a Laspeyres 
index of village level yield on irrigated HYV 
crops. Foster and Rosenzweig use a panel of 
about 4,000 households from 250 villages 
with three rounds of observations (in 1971, 
1982, and 1999).  

With spatial and temporal fixed effects, 
identification of the impacts of an 
increase in yield comes from the  
differential change in yields across 
villages. In some specifications, the time-
fixed effect is State-specific, focusing the 
identification on the differential pace of 
yield improvements across villages within 
a State. Outcomes of interest are, for 
example, agricultural income, non-farm 
income, or total income at the household 
level; and rural wage, non-farm employ-
ment, total income, or poverty at the 
village level.

7. Long-term and aggregate effects
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A couple of issues are worth noting:
1.  The yield index used in the equation is 

affected by more than just 
technological change. This is because it 
results not only from technological 
change but also from changes in 
productive inputs such as fertilizer, 
labor, or education, all possibly 
influenced by technological change, but 
also by other factors. So there may be 
some concern that changes in the yield 
index at the village level capture the 
other factors that are correlated but not 
due to technology change. To 
circumvent this problem, Foster and 
Rosenzweig (1996 and 2003) recover a 
district-year specific technology factor 
from estimation of a farm-level profit 
function, and then instrument yield 
with this technology factor and some 
village characteristics.

2.  The estimation measures the effects of 
relative changes in yields across villages, 
but not the nationwide or State-level 
aggregate effects of technology 
change. For example, the extent to 
which the Green Revolution brought 
about a large decline in prices over the 
whole of India, thereby reducing 
poverty, is captured by the time-fixed 
effects and not attributed to the 
changes in yield.  

Still, this approach goes a long way towards 
understanding the aggregate and long-
term impacts of a large technological 
change such as that embedded in the Green 
Revolution. Note, however, that the analysis 
is very demanding in terms of data, as it 
requires a sufficiently large sample of ob-
servations to be representative of the ag-
gregate area of concern, over a long period 
of time that covers the technology diffusion 
period, and detailed farm data that allow 
for extracting the role of technological 
change from observed yields.  

7.3 Extrapolating micro results with 
partial equilibrium simulation 
models 
A second type of analysis uses simulation 
models. These translate or extrapolate the 
(estimated/measured) microeconomic 
effects into some aggregate number, based 
on assumptions about the sector or the 

economy at large. They rely on functional 
form assumptions, assumptions on supply 
and demand elasticities, and strong as-
sumptions on the functioning of the 
markets. Hence, in no way can these models 
be considered to estimate an aggregate 
impact in the same sense as econometric 
methods. On the other hand, they are a 
powerful way of translating micro-level es-
timations into plausible orders of magni-
tude of macro effects, if done with care and 
with sufficient sensitivity analysis. 

The most common of these simulation 
models is the economic surplus approach, 
based on a partial equilibrium model of the 
sector in which the technological change 
has occurred. The idea is that technological 
change induces a shift in the supply curve, 
which in turn induces a decline in price and 
a new equilibrium on the market. The 
economic surplus is calculated as:

ES = pqk ( 1 +             ) 

where p and q are the initial price and 
quantity of the commodity of interest, k is 
the proportional shift in the supply curve 
induced by technology change, and εs and 
εd are the supply and demand elasticities.  

The key input to this simulation is of course 
the k factor, i.e., the direct effect of techno-
logical change on the supply curve. The 
factors that allow the extrapolation from k 
to the value of the economic surplus are 
the observed total output and price, and 
the assumed elasticities (usually drawn from 
some other studies).

The k factor is determined by the combina-
tion of changes in yield and costs. Pictured 
on a supply curve, changes in yield are hori-
zontal shifts, while cost reductions are 
vertical shifts, which can be made equiva-
lent to proportional yield changes with the 
supply elasticity. Most studies focus on in-
creases in yields. Changes in yields them-
selves are drawn from either field trials or 
observational differences in yields between 
crop varieties. Neither is very satisfactory. 
What is needed is an estimated supply shift 
or yield increase that can be causally attrib-
uted to technological change. Hence the 
challenge is as described in section 7.2 on 
estimating the impact of technology on 
yield.  

1      k
2  εs + εd 
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This method has been used extensively in 
ex-post studies, computing time series of 
economic surplus based on observed output 
and prices, and assumed elasticities, and 
then aggregating the results over years to 
compute the aggregate effect. In many of 
these studies, the principal effort has been 
to measure the area (and output) affected 
by the specific technological change of 
interest, notably the development of 
certain varieties by the CGIAR (Byerlee and 
Traxler, 1995). Some studies run sensitivity 
analyses to the assumed elasticities. The 
method is also used in ex-ante studies, 
based on field trials for specific varieties 
(see Falck-Zepeda et al., 2007).

7.4 Poverty simulation

A further step in applying a ‘poverty elastic-
ity’ to the calculated aggregate production 
increase or welfare effect to obtain an 
impact on poverty has been taken (Fan et 
al., 2005; Alene et al., 2009). The key 
question of course is how the poverty elas-
ticity has been estimated and whether or 
not it applies to this specific context. Obvi-
ously, the poverty effects of an increase in 
aggregate welfare depend on who benefit-
ed from the increase in economic surplus 
among large producers, small producers, 
urban consumers, etc., and what their initial 
poverty levels were. So it seems a bit of a 
stretch to conduct a simulation exercise by 
applying a poverty elasticity estimated in a 
different context to an aggregate increase in 
production. Poverty impact should be ad-
dressed with rigorous econometric analyses 
like those discussed in section 7.2.

In conclusion, the validity and usefulness of 
these simulations is nothing less than the 
validity of the elements that enter into the 
simulations. It is therefore critically impor-
tant that the k factor is estimated rigorous-
ly, that sensitivity analyses are made on the 
elasticities in the economic surplus simula-
tions, and that it is clear that these are 
useful simulations as opposed to impact  
estimations.  

7.5 Computing aggregate impacts 
with general equilibrium simulation 
models 
Going beyond the sector model discussed in 
the previous section, researchers have used 

general equilibrium models for cases where 
the change in technology is sufficiently 
large to induce effects on trade and on 
output and input markets that, in turn, may 
induce spillover effects on other sectors 
(Arndt et al., 1999; Dorosh and Thurlow, 
2009; Diao et al., 2010). The most 
commonly used type is the computable 
general equilibrium (CGE), a model in 
which supply and demand in all markets is 
balanced with endogenous prices, although 
a few studies use the social-accounting 
matrix (SAM) multiplier approach, a 
Keynesian demand-driven general equilib-
rium model with excess supply in all 
markets.

CGEs essentially represent a system of 
markets that reach equilibrium through 
prices. Very broadly speaking, they consist 
of: (i) supply functions for each sector of the 
economy, derived from production models 
that are usually some combination of a 
constant elasticity of substitution (CES) ag-
gregate in primary factors of production and 
Leontief technology for intermediate inputs; 
(ii) demand functions emanating from 
households (using some standard demand 
system); and (iii) markets that balance either 
with flexible prices or with quantity adjust-
ments according to tradability. 

CGEs were developed initially for the 
modeling of trade and they remain stron-
gest in this area. Foreign goods and 
domestic goods are imperfect substitutes 
(using CES and constant elasticity of trans-
formation or CET functions), which also 
lead to specific demands for imports and 
supplies of exports in response to the 
relative prices of foreign and domestic 
goods. The rest of the model includes gov-
ernment and institutions that tax or 
transfer, mostly with fixed shares (e.g., the 
return to labor or to capital in each sector is 
allocated in fixed proportions across house-
holds, etc.). Sectors thus compete through 
their interactions in the input and factor 
markets. The data needed for such models 
essentially provide a static picture of all the 
flows in one particular year (the SAM 
derived from national income accounts and 
an input–output matrix) from which all 
shares are derived and which have four sets 
of elasticities: (i) elasticity of substitution 
between factors in the production function; 
(ii) demand elasticities (or more specifically 
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the parameters of a consistent demand 
system) for households; (iii) elasticity of sub-
stitution between imported and domestic 
goods; and (iv) elasticity of transformation 
between commodities for the domestic 
markets and exports for each sector. 

CGEs can have different levels of disaggre-
gation (e.g., number of sectors, number of 
household types) and, because elasticities 
are rarely estimated and most often 
‘guessed’, there is a difficult tradeoff 
between gaining details in shares and 
having to rely on an increasing number of 
assumed elasticities. Most CGEs are static 
models, although some have introduced 
the updating of capital stocks, labor supply, 
and possibly technological factors that 
make them sequentially dynamic. However, 
an additional set of assumptions is needed 
for these ‘updatings’. Some models attempt 
to capture the particularity of self-con-
sumption (Arndt et al., 1999), or link micro-
simulations applying the results obtained in 
CGEs to individual households and, by this, 
to obtain a better measure for poverty 
effects (Diao et al., 2010).

CGEs have the advantages of a consistency 
framework that forces markets and budgets 
to balance, and an anchoring of all simulat-
ed effects on the observed initial relative 
sizes of sectors and commodities. However, 

the extent of these models’ assumptions (in 
terms of market functions, representation of 
agents that make choices, existence of trans-
actions costs and constraints, heterogeneity 
across producers, etc.) makes them more 
suitable for discussion of alternative broad 
policy choices than for actual predictions of 
the effect of such specific shocks as techno-
logical change. The paper by de Janvry and 
Sadoulet (2002) uses archetype CGEs to illus-
trate the different channels through which 
an agricultural technological change can 
affect the rest of the economy. Although 
widely cited, this paper only intends to illus-
trate the different channels incorporated in 
a CGE, and to show how their relative im-
portance varies with the relative structural 
features of economies, the degree of 
openness of the economy, the substitutabil-
ity between foreign and domestic goods, 
and the functioning of markets. Stark con-
trasts can then be shown to exist in the 
impacts of the same technological change 
across archetypes that represent a South 
Asian or a sub-Saharan economy. Sensitivity 
analysis shows qualitative results to be 
robust, but quantitative results cannot be 
taken too seriously. In the application of 
focus of this paper – measuring the impact 
of a technological change – CGE simulations 
can basically help track, under a set of 
strong assumptions, the economy-wide 
effects of that particular change.   
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Endnotes

1 Examples of this type of analysis include 
Fan et al. (2000), Evenson and Gollin 
(2003), Raitzer and Kelley (2008), 
Maredia and Raitzer (2010), and Alston 
et al. (2000).

2 This paper does not specifically address 
issues concerning CGIAR research on 
best practice or policy. 

3 As Gollin (2010) says, “the current 
generation of improved varieties is not 
so easily identified. Nowadays, we are 
often trying to distinguish between one 
generation of improved varieties and a 
previous generation. Are farmers 
growing the ‘old’ hybrid maize, or a 
‘new’ hybrid maize? … It is not clear 
that farmers themselves can accurately 
tell you what varieties they are 
growing. Even where they purchase 
seed, the nature of seed systems in 
Africa is such that they may not know 
with any accuracy what variety they are 
growing”.

4 In the case where farmers engage in 
substantial subsistence consumption, 
implied profits can still be measured by 
treating own-consumption as a sale at 
local market prices, because this 
approximates the opportunity cost of 
own-consumption.

5 While there are such other interesting 
spillovers as economy-wide price effects 
and the effects of adoption by one 
farmer on the adoption decision-
making of other farmers, this paper 
focuses only on spillovers that affect 
such microeconomic outcomes as 
income and profits. 

6 Good examples of this work can be 
found in Adato and Meinzen-Dick 
(2007). We should point out that by 
‘qualitative analysis’ we mean methods 
that are not data-driven in reaching 
their conclusions. There is some 
confusion on this point because in a 
quantitative analysis, binary variables 
(like poverty status) are often called 
‘qualitative’ data. Using binary variables 
in a quantitative framework does not 
imply that the analysis is qualitative.

7 Bellon and Reeves (2002) collect a 
number of recent papers elaborating on 
on-farm trial methods and their 
comparison with research station trials. 

8 Note the contrast between the 
objectives and methods of the 
agricultural scientist and the economist. 
The scientist wants to hold all factors 
constant between treatment and 
control plots, including all 
complementary inputs. The economist, 
on the other hand, most certainly does 
not want to hold all else constant, as 
the endogenous adjustments of inputs 
and management practices due to 
adoption are potentially important 
determinants of differences in outcomes 
between adopting and non-adopting 
farmers. Failing to adjust inputs and 
management practices to the new 
technology corresponds to measuring a 
sub-optimal use of the new technology 
from the farmer’s vantage point.

9 PSM methods are also common in 
studies that go beyond analysis of 
agricultural technologies, for example 
evaluations by the International Food 
Policy Research Institute (IFPRI) on 
community development projects 
(Nkonya et al., 2008) and farmer field 
schools (Davis et al., 2010).

10 Encouragement designs are common in 
medical research, e.g., Hirano et al. 
(2000). Bradlow (1998) gives a clear 
explanation of encouragement designs 
along with an application to marketing.

11 See Cameron and Trivedi (2005) for a 
technical but approachable review of 
clustered standard errors, which is 
beyond the scope of this paper.

12 Imbens and Lemieux (2008) provide a 
useful guide to regression discontinuity 
designs. An important caveat of all 
discontinuity designs is that they 
estimate the LATE for those close to the 
boundary, which might not be 
applicable far from the boundary.

13 For more information about DTMA, see 
http://dtma.cimmyt.org.
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