

Provincial Trade Flow Estimation for China

David Roland-Holst and Muzhe Yang UC Berkeley

Lecture II Presented to the Development Research Centre State Council of the PRC Beijing, 6 June 2005

- Implement an *efficient* procedure for estimating a multi-regional trade flows across China
- Integrate this with a complete set of consistent provincial SAMs to form a national Multi-regional Social Accounting Matrix (MrSAM)

Motivation

- Single-region IO tables are already accessible, but neither mutually consistent not integrable
- MRSAM is of interest for its own sake, but can also support more integrated policy analysis
 - CGE
 - Economic integration studies
- Generate a prototype data set as a template for more standardized regional data reporting and management

Foundation – PRC Provincial IO Tables

- Already available
- Nationally comprehensive and consistent in terms of account definitions
- Builds on DRC capacity for SAM and CGE research at the national level

6 June 2005

Consistency Issues

- Provincial trade statistics are maintained independently
- Domestic imports and exports are not consistently distributed across other sub-national regions
- There is very little accounting of margins arising from distribution costs and administrative measures

Proposed Approach

- Uses a new gravity specification to estimate bilateral trade econometrically
- Integrates the steps necessary to
 - Generate the interregional trade flow portions of the China MrSAM, while
 - insuring the consistency of the province accounts, regional aggregations, and the national system as a whole

Procedure

- Definitional Framework
 - Define the provinces
 - Define sectoral classifications and detail
- Generate single-region and national tables
- Estimate interregional trade distributions by commodity

Overview of the Estimation Problem

- Extending prior DRC work (He and Li: 2004) we propose a new gravity model specification of bilateral trade.
- We then propose three alternative estimators.
- Each of these can be implemented with standard statistical software, and the most attractive estimates used for multi-regional analysis

Schematic Trade Matrix

	Region 1						Region 2			Region 3					
		Industry	Commod	Factor	Institution	Inductor	Commod	Factor	Institution	Inductor	Commod	Factor	Institution	Domestic Trade	Foreign Trade
Region 1 Region 2 Region	Industry	mausiry	Commod	Factor	Institution	maasay	Commod	Factor	institution	maasay	Commod	Factor	institution	Trade	Trade
	Commodity														
	Factor														
	Institution														
	Industry														
	Commodity														
	Factor														
	Institution														
	Industry														
	Commodity														
	Factor														
3	Institution														
	Domestic Trade														
	Foreign Trade														

Estimation Technique

- The gravity type model has been commonly used in estimating trade flows in international economics.
- We apply this approach to modeling and predicting regional trade flows with a variation of an international strategy proposed by Mátyás (1997).

Generic Gravity Model

Consider the following specification

$$\ln y_{mnt}^{(i)} = \alpha_m + \gamma_n + \lambda_t + \beta_1 \ln Y_{mt}^{(i)} + \beta_2 \ln Y_{nt}^{(i)} + \beta_3 d_{mn} + \varepsilon_{mnt}$$

where:

 $y_{mnt}^{(i)}$ is the volume of commodity *i* 's trade (exports) from region *m* to

region n at time t;

 $Y_{mt}^{(i)}$ is the GDP for commodity *i* in region *m* at time *t*, and the same for $Y_{nt}^{(i)}$ for region *n*;

 d_{mn} is the distance between the regions *m* and *n*;

 α_m is the home regional effect, γ_n is the foreign regional effect, and λ_t is the time effect;

 $m=1,\cdots,N$, $n=1,\cdots,i-1,i+1,\cdots,N+1$, where the N+1 -th element is the rest of the world, $t=1,\cdots,T$;

 $i = 1, \dots, I$, the number of tradable goods;

 ε_{mnt} is a white noise disturbance term.

Comments

- From an econometric point of view, the α, γ and λ specific effects can be treated as either random effects or fixed effects. In this analysis, we assume those specific effects associated with regions are time-invariant, and adopt the fixed effects approach.
- Also note that our main goal is prediction, so the parameter estimates for α , γ , λ , β_1 , β_2 , β_3 only bear the meaning of best linear predictor, not estimates for latent structural parameters.

In addition, we could also add other terms to the right hand side, such as \ln POP $_{mt}$, and \ln POP $_{mt}$, the population for region m and region n at time t respectively.

Consider commodity $i \in \{1, 2, \dots, I\}$, the explained variable, $\mathbf{y}^{(i)}$, in the model (1-1) is an $N \times N \times T$ -vector of observations, arranged in the form: $\mathbf{y}^{(i)} = \left(y_{121}^{(i)}, \dots, y_{12T}^{(i)}, y_{131}^{(i)}, \dots, y_{13T}^{(i)}, \dots, y_{N1T}^{(i)}, \dots, y_{N(N+1)1}^{(i)}, \dots, y_{N(N+1)T}^{(i)}\right)'$

The explanatory variables are arranged accordingly: $X^{(i)} = \begin{bmatrix} D_{\alpha}, D_{\gamma}, D_{\lambda}, Y_{mt}^{(i)}, Y_{nt}^{(i)}, d_{mn} \end{bmatrix}$

where D_{α} , D_{γ} and D_{λ} are dummy variable matrices for α , γ and λ .

Then we stack these I ($i = 1, \dots, I$) vectors to construct an

I -good trade-flow (demand) system:

$$Y = \left(\mathbf{y}^{(1)'}, \mathbf{y}^{(2)'} \cdots, \mathbf{y}^{(I)'}\right)_{(N \times N \times T \times I) \times 1}$$

$$X = \begin{bmatrix} X^{(1)} & 0 & 0 & 0 \\ 0 & X^{(2)} & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & X^{(I)} \end{bmatrix}_{(N \times N \times T \times I) \times (6 \times I)}$$

Three Alternative Estimators

Modern econometrics has developed a large set of alternative estimation strategies, each performing differently under different data conditions.

- For the present application, we recommend three alternative estimators, to be evaluated ex post in terms of statistical performance:
- 1. Ordinary Least Squares (OLS)– the most traditional approach
- Seemingly Unrelated Regressors (SUR) an generalization of OLS that imposes less prior assumptions on the data structure
- 3. Generalized method of moments (GMM)

Ordinary Least Squares 1

OLS estimates for Y and X above can be obtained as follows:

Regressand: vector $\mathbf{y}^{(i)}$ consists of bilateral trade flows of commodity $i \in \{1, 2, \dots I\}$ between region m ($m = 1, \dots, N$) and region ($n = 1, \dots, i - 1, i + 1, \dots, N + 1$) sorted by t ($t = 1, \dots, T$). $\mathbf{y}^{(i)} = (y_{121}^{(i)}, \dots, y_{12T}^{(i)}, \dots, y_{N11}^{(i)}, \dots, y_{N(N+1)1}^{(i)}, \dots, y_{N(N+1)T}^{(i)})'$ $Y = (\mathbf{y}^{(1)'}, \mathbf{y}^{(2)'}, \dots, \mathbf{y}^{(1)'})'_{(N \times N \times T \times I) \times 1}$ (where $i = 1, \dots, I$) OLS 2

Regressors: matrix $X^{(i)}$ consists of dummy variables for home region m, foreign region n and time t:

$$D_{\alpha} = \begin{cases} 1 \text{ for region } m \\ 0 \text{ else} \end{cases} \quad X^{(i)} = \begin{bmatrix} D_{\alpha}, D_{\gamma}, D_{\lambda}, Y_{mt}^{(i)}, Y_{nt}^{(i)}, d_{mn} \end{bmatrix}_{(N \times N \times T) \times 6} \\ D_{\gamma} = \begin{cases} 1 \text{ for region } n \\ 0 \text{ else} \end{cases} \quad X = \begin{bmatrix} X^{(1)} & 0 & 0 & 0 \\ 0 & X^{(2)} & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & X^{(I)} \end{bmatrix}_{(N \times N \times T \times I) \times (6 \times I)} \end{cases}$$

OLS 3

Disturbances are given by

$$\boldsymbol{\varepsilon} = \left(\varepsilon_{1}^{'}, \varepsilon_{2}^{'}, \cdots, \varepsilon_{I}^{'}\right)_{(N \times N \times T \times I) \times 1}^{'}$$
$$E\left(\varepsilon \mid X\right) = 0$$
$$E\left(\varepsilon\varepsilon^{'} \mid X\right) = \sigma^{2} I_{N \times N \times T \times I}$$

Now formulate the model as

with

$$Y = X\beta + \varepsilon$$

and estimate with

$$\widehat{\boldsymbol{\beta}}_{OLS} = \left(X'X \right)^{-1} \left(X'Y \right)$$

Seemingly Unrelated Regressions 1

In this case we use a technique called Feasible Generalized Least Squares (FGLS), with

Regressand: vector $\mathbf{y}^{(i)}$ consists of bilateral trade flows of commodity $i \in \{1, 2, \dots I\}$ between region m ($m = 1, \dots, N$) and region ($n = 1, \dots, i - 1, i + 1, \dots, N + 1$) sorted by t ($t = 1, \dots, T$). $\mathbf{y}^{(i)} = \left(y_{121}^{(i)}, \dots, y_{12T}^{(i)}, \dots, y_{N11}^{(i)}, \dots, y_{N(N+1)1}^{(i)}, \dots, y_{N(N+1)T}^{(i)}\right)'$

$$Y = \left(\mathbf{y}^{(1)'}, \mathbf{y}^{(2)'} \cdots, \mathbf{y}^{(I)'}\right)'_{(N \times N \times T \times I) \times 1} \quad (\text{where } i = 1, \cdots, I)$$

SUR 2

Regressors: matrix $X^{(i)}$ consists of dummy variables for home region m, foreign region n and time t:

$$D_{\alpha} = \begin{cases} 1 \text{ for region } m \\ 0 \text{ else} \end{cases} \quad X^{(i)} = \begin{bmatrix} D_{\alpha}, D_{\gamma}, D_{\lambda}, Y_{mt}^{(i)}, Y_{nt}^{(i)}, d_{mn} \end{bmatrix}_{(N \times N \times T) \times 6} \\ D_{\gamma} = \begin{cases} 1 \text{ for region } n \\ 0 \text{ else} \end{cases} \quad X = \begin{bmatrix} X^{(1)} & 0 & 0 & 0 \\ 0 & X^{(2)} & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & X^{(I)} \end{bmatrix}_{(N \times N \times T \times I) \times (6 \times I)} \end{cases}$$

SUR 3

Disturbances in this case are given by

with

$$E(\varepsilon \mid X) = 0$$

$$E(\varepsilon \mid X) = \Omega_{(N \times N \times T \times I) \times (N \times N \times T \times I)}$$

$$= \Sigma_{(I \times I)} \otimes I_{(N \times N \times T) \times (N \times N \times T)}$$

$$\Sigma = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1I} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2I} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{I1} & \sigma_{I2} & \cdots & \sigma_{II} \end{bmatrix}$$

SUR 4

Now formulate the model as in OLS, i.e. $Y = X\beta + \varepsilon$ but estimate with FGLS as

$$\widehat{\boldsymbol{\beta}}_{FGLS} = \left(X' \widehat{\boldsymbol{\Omega}}^{-1} X \right)^{-1} \left(X' \widehat{\boldsymbol{\Omega}}^{-1} Y \right)$$
$$= \left[X' \left(\widehat{\boldsymbol{\Sigma}}^{-1} \otimes I \right) X \right]^{-1} \left[X' \left(\widehat{\boldsymbol{\Sigma}}^{-1} \otimes I \right) Y \right]$$

$$\widehat{\Sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1I} \\ \widehat{\sigma}_{21} & \widehat{\sigma}_{22} & \cdots & \widehat{\sigma}_{2I} \\ \vdots & \vdots & \ddots & \vdots \\ \widehat{\sigma}_{I1} & \widehat{\sigma}_{I2} & \cdots & \widehat{\sigma}_{II} \end{bmatrix}$$

where

The least squares residuals $\mathbf{e} = Y - X \widehat{\boldsymbol{\beta}}_{OLS}$ can be used to estimate consistently the elements of Σ with

$$\widehat{\sigma}_{ij} = \frac{\mathbf{e}_i \mathbf{e}_j}{N \times N \times T} \quad (i, j = 1, \cdots, I)$$

Generalized Method of Moments 1

Using information of aggregate provincial/regional trade flows by commodity, we can add additional moment restrictions:

$$\sum_{m=1}^{N} \mathbf{y}_{\cdot nt}^{(i)} = IM^{(i)} \ (i = 1 \cdots, I)$$
$$\begin{bmatrix} \sum_{m=1}^{N} \mathbf{y}_{\cdot nt}^{(1)} \\ \vdots \\ \sum_{m=1}^{N} \mathbf{y}_{\cdot nt}^{(I)} \end{bmatrix} = \begin{bmatrix} IM^{(1)} \\ \vdots \\ IM^{(I)} \end{bmatrix}$$

where IM denotes provincial/regional domestic import demand.

6 June 2005

Roland-Holst and Yang

Regressand: The vector $\mathbf{y}^{(i)}$ consists of bilateral trade flows of commodity $i \in \{1, 2, \dots I\}$ between region $m = 1, \dots, N$, and region $n = 1, \dots, i - 1, i + 1, \dots, N + 1$, sorted by t ($t = 1, \dots, T$). $\mathbf{y}^{(i)} = \left(y_{121}^{(i)}, \dots, y_{12T}^{(i)}, \dots, y_{N11}^{(i)}, \dots, y_{N1T}^{(i)}, \dots, y_{N(N+1)1}^{(i)}, \dots, y_{N(N+1)T}^{(i)}\right)'$ $Y = \left(\mathbf{y}^{(1)'}, \mathbf{y}^{(2)'}, \dots, \mathbf{y}^{(1)'}\right)'_{(N \times N \times T \times I) \times 1}$ (where $i = 1, \dots, I$)

Regressors: matrix $X^{(i)}$ consists of dummy variables for home region m, foreign region n and time t:

$$D_{\alpha} = \begin{cases} 1 \text{ for region } m \\ 0 \text{ else} \end{cases} \qquad X^{(i)} = \begin{bmatrix} D_{\alpha}, D_{\gamma}, D_{\lambda}, Y_{mt}^{(i)}, Y_{nt}^{(i)}, d_{mn} \end{bmatrix}_{(N \times N \times T) \times 6} \\ D_{\gamma} = \begin{cases} 1 \text{ for region } n \\ 0 \text{ else} \end{cases} \qquad X = \begin{bmatrix} X^{(1)} & 0 & 0 & 0 \\ 0 & X^{(2)} & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & X^{(I)} \end{bmatrix}_{(N \times N \times T \times I) \times (6 \times I)} \end{cases}$$

Disturbances in this case are given by

with

$$E(\varepsilon \mid X) = 0$$

$$E(\varepsilon \mid X) = \Omega_{(N \times N \times T \times I) \times (N \times N \times T \times I)}$$

$$= \Sigma_{(I \times I)} \otimes I_{(N \times N \times T) \times (N \times N \times T)}$$

$$\Sigma = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1I} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2I} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{I1} & \sigma_{I2} & \cdots & \sigma_{II} \end{bmatrix}$$

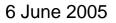
Again we formulate the model as in OLS, i.e. $Y = X\beta + \varepsilon$ but use the GMM estimator given by

$$\widehat{\beta}_{GMM} = \arg\min_{\widehat{\beta}} \left(\frac{\sum_{i=1}^{N \times N \times T \times I} \psi_{i}(X, Y \mid \widehat{\beta})}{N \times N \times T \times I} \right) \Psi \left(\frac{\sum_{i=1}^{N \times N \times T \times I} \psi_{i}(X, Y \mid \widehat{\beta})}{N \times N \times T \times I} \right)$$

where

$$\begin{aligned}
\psi_{i}.(X,Y \mid \widehat{\beta}) &= \begin{bmatrix}
\frac{1}{N \times N \times T \times I} \sum_{i=1}^{N \times N \times T \times I} x_{i1} \left(y_{i} - x_{i1}^{'} \widehat{\beta}\right) \\
\vdots \\
\frac{1}{N \times N \times T \times I} \sum_{i=1}^{N \times N \times T \times I} x_{iK} \left(y_{i} - x_{i1}^{'} \widehat{\beta}\right) \\
\frac{1}{N} \sum_{m=1}^{N} \mathbf{y}_{\cdot nt}^{(i)} - \frac{1}{N} IM^{(1)} \\
\vdots \\
\frac{1}{N} \sum_{m=1}^{N} \mathbf{y}_{\cdot nt}^{(I)} - \frac{1}{N} IM^{(I)}
\end{aligned}$$
and

$$\vec{W} = \widehat{\Delta}^{-1} \\
\widehat{\Delta} = \overline{\operatorname{Var}}\left(\psi_{i}.(X,Y \mid \widehat{\beta})\right) \\
&= \frac{\sum_{i=1}^{N \times N \times T \times I} \left(\psi_{i}.(X,Y \mid \widehat{\beta})\right) \cdot \left(\psi_{i}.(X,Y \mid \widehat{\beta})\right)^{'}}{N \times N \times T \times I}
\end{aligned}$$



Roland-Holst and Yang

Estimator Selection

- After generating estimates by all three methods, we can use a variety of criteria to choose between them.
- In traditional econometric analysis, one would use the goodness of fit measure, adjusted R² as the selection criterion.
- For our primary objective is imputing missing bilateral trade flows, we would choose the estimator with the largest

References

- He, Jianwu, and Shantong Li (2004), "A Three-regional CGE Model for China," presentation to the DRC, Beijing, November.
- He, Jianwu (2004), "A Social Accounting Matrix for China: 2000," processed, DRC, Beijing, November.
- Mátyás, L. (1997), "Proper Econometric Specification of the Gravity Model," *The World Economy* 20(3): 363--368.