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ABSRACT 

The following document summarizes the structural characteristics of a dynamic 
forecasting model for the state of California, designed to support research into 
climate change, policy response, and their effects across this large and diverse state 
economy. The model integrates detailed treatment of sectoral production, 
employment, and demand with statewide assessment of environmental pollution and 
energy use over the next two decades. This model is currently under development 
and all technical details covered in this overview are subject to change. This work is 
part of a larger research exercise sponsored by the California Energy Commission, 
whose support is gratefully acknowledged. I am also grateful to Larry Goulder for 
helpful comments. All views expressed here are those of the author and should not 
be attributed to his affiliated institutions. 
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I The Model 

1 Introduction 

This paper provides the complete technical specification of a computable general 
equilibrium model for the California economy, with detailed treatment of energy use 
and environmental pollution. Such a model can be used to support a broad spectrum 
of policy analysis, including energy policy and policy responses to climate change. 
The next section provides a brief overview of the main features of the model, which 
is followed by a detailed description of each block of the model. 

Production 

All sectors are assumed to operate under constant returns to scale and cost 
optimization. Production technology is modeled by a nesting of constant-elasticity-of-
substitution (CES) functions. See Figure 1 for a schematic diagram of the nesting. 
The implementation of the model allows for all permissible special cases of the CES 
function, notably Leontief and Cobb-Douglas. 

In each period, the supply of primary factors — capital, land, and labor — is usually 
predetermined.1 The model includes adjustment rigidities. An important feature is 
the distinction between old and new capital goods. In addition, capital is assumed to 
be partially mobile, reflecting differences in the marketability of capital goods across 
sectors.2 

Once the optimal combination of inputs is determined, sectoral output prices are 
calculated assuming competitive supply (zero-profit) conditions in all markets. 

Consumption and Closure Rule 

All income generated by economic activity is assumed to be distributed to 
consumers. Each representative consumer allocates optimally his/her disposable 
income among the different commodities and saving. The consumption/saving 
decision is completely static: saving is treated as a “good” and its amount is 
determined simultaneously with the demand for the other commodities, the price of 
saving being set arbitrarily equal to the average price of consumer goods.3 

The government collects income taxes, indirect taxes on intermediate inputs, 
outputs and consumer expenditures. The default closure of the model assumes that 
the government deficit/saving is exogenously specified.4 The indirect tax schedule 

                                        

1 Capital supply is to some extent influenced by the current period’s level of investment. 

2  For simplicity, it is assumed that old capital goods supplied in second-hand markets and new capital goods are 
homogeneous. This formulation makes it possible to introduce downward rigidities in the adjustment of capital without 
increasing excessively the number of equilibrium prices to be determined by the model (see Fullerton, 1983). 

3 The demand system is a version of the Extended Linear Expenditure System (ELES) which was first developed by Lluch 
(1973). The formulation of the ELES in this model is based on atemporal maximisation — see Howe (1975). In this 
formulation, the marginal propensity to save out of supernumerary income is constant and independent of the rate of 
reproduction of capital. 

4 In the reference simulation, the real government fiscal balance converges (linearly) towards 0 by the final period of the 
simulation. 
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will shift to accommodate any changes in the balance between government 
revenues and government expenditures. 

The current account surplus (deficit) is fixed in nominal terms. The counterpart of 
this imbalance is a net outflow (inflow) of capital, which is subtracted (added to) the 
domestic flow of saving. In each period, the model equates gross investment to net 
saving (equal to the sum of saving by households, the net budget position of the 
government and out of state capital inflows). This particular closure rule implies that 
investment is driven by saving. 

Trade 

Goods are assumed to be differentiated by region of origin, including goods from 
abroad and from the rest of the United States. In other words, goods classified in 
the same sector are different according to whether they are produced domestically 
or imported. This assumption is frequently known as the Armington assumption. The 
degree of substitutability, as well as the import penetration shares are allowed to 
vary across commodities and across agents. The model assumes a single Armington 
agent. This strong assumption implies that the propensity to import and the degree 
of substitutability between domestic and imported goods is uniform across economic 
agents. This assumption reduces tremendously the dimensionality of the model. In 
many cases this assumption is imposed by the data. A symmetric assumption is 
made on the export side where domestic producers are assumed to differentiate the 
domestic market and the export market. This is implemented using a Constant-
Elasticity-of-Transformation (CET) production possibility frontier. 

Dynamic Features and Calibration 

The current version of the prototype has a simple recursive dynamic structure as 
agents are assumed to be myopic and to base their decisions on static expectations 
about prices and quantities. Dynamics in the model originate in three sources: i) 
accumulation of productive capital and labor growth; ii) shifts in production 
technology; and iii) the putty/semi-putty specification of technology. 

 (a) Capital accumulation 

In the aggregate, the basic capital accumulation function equates the current capital 
stock to the depreciated stock inherited from the previous period plus gross 
investment. However, at the sectoral level, the specific accumulation functions may 
differ because the demand for (old and new) capital can be less than the 
depreciated stock of old capital. In this case, the sector contracts over time by 
releasing old capital goods. Consequently, in each period, the new capital vintage 
available to expanding industries is equal to the sum of disinvested capital in 
contracting industries plus total saving generated by the economy, consistent with 
the closure rule of the model. 

 (b) The putty/semi-putty specification 

The substitution possibilities among production factors are assumed to be higher 
with the new than the old capital vintages — technology has a putty/semi-putty 
specification. Hence, when a shock to relative prices occurs (e.g. the imposition of 
an emissions tax), the demands for production factors adjust gradually to the long-
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run optimum because the substitution effects are delayed over time. The adjustment 
path depends on the values of the short-run elasticities of substitution and the 
replacement rate of capital. As the latter determines the pace at which new vintages 
are installed, the larger is the volume of new investment, the greater the possibility 
to achieve the long-run total amount of substitution among production factors. 

 (c) Dynamic calibration 

The model is calibrated on exogenous growth rates of population, labor force, and 
GDP. In the so-called Business-as-Usual (BaU) scenario, the dynamics are calibrated 
in each region by imposing the assumption of a balanced growth path. This implies 
that the ratio between labor and capital (in efficiency units) is held constant over 
time.5 When alternative scenarios around the baseline are simulated, the technical 
efficiency parameter is held constant, and the growth of capital is endogenously 
determined by the saving/investment relation. 

 

In the equations which follow, the following indices will be used extensively. Note 
that the time index generally be dropped from the equations.  

i Production sectors. j is an alias for i. 

nf Represents the non-fuel commodities. 

e Represents fuel commodities. 

l Represents the labor types. 

v Represents the capital vintages. 

h Represents the households. 

g Represents the government expenditure categories. 

f Represents the final demand expenditure categories (including g as a subset). 

t Time index. 

 

2 Production 

Production is based on a nested structure of Constant Elasticity of Substitution (CES) 
functions. Each sector produces a gross output6, XP, which given the assumption of 
constant returns to scale is undetermined by the producer. It will be determined by 
equilibrium conditions. The producer therefore minimizes costs subject to a 
production function which is of the CES type. At the first level, the producer chooses 

                                        
5This involves computing in each period a measure of Harrod-neutral technical progress in the capital-labor bundle as a 
residual. This is a standard calibration procedure in dynamic CGE modeling — see Ballard et. al. (1985). 

6 Gross output is divided into two parts, one part produced with old capital, and the residual amount produced with new 
capital. 
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a mix of a value added aggregate, VA7, and an intermediate demand aggregate, 
ND.8  In mathematical terms, this leads to the following formulation: 

min PVA VA PN NDi i i i  

s.t. 

 XP a VA a NDi va i i nd i i
i
p

i
p i

p

 , ,

/
 

1

 

where PVA is the aggregate price of value added, PN, is the price of the intermediate 
aggregate, ava and and are the CES share parameters, and  is the CES exponent9. 
The exponent is related to the CES elasticity, via the following relationship: 

 




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p i
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Note that in the model, the share parameters incorporate the substitution elasticity 
using the following relationships: 

    
 

va i va i nd i nd ia and ai
p

i
p

, , , ,   

Solving the minimization problem above, yields Equations (2.1.1) and (2.1.3) in 
Table 2.1. Because of the assumption of vintage capital, we are allowing the 
substitution elasticities to differ according to the vintage of the capital. Depending on 
the available data, and due to the importance of energy in terms of pollution, we 
separate energy demand from the rest of intermediate demand, and incorporate the 
demand for energy directly in the value added nest. Hence, the equations below are 
not specified in terms of a value added bundle, but a value added plus energy 
bundle. Equation (2.1.1) determines the volume of aggregate intermediate non-
energy demand, by vintage, ND. Equation (2.1.2) determines the total demand for 
intermediate non-energy aggregate inputs (summed over vintages), ND. 
Equation (2.1.3) determines the level of the composite bundle of value added 
demand and energy, KEL. The CES dual price of ND, and KEL, PXv, is defined by 
Equation (2.1.4). Equation (2.1.5) determines the aggregate unit cost, PX, exclusive 
of an output subsidy/tax10. Finally, we allow the possibility of an output subsidy or 
tax, generating a wedge between the producer price and the output price, PP, 
yielding Equation (2.1.6). The production tax is multiplied by an adjustment factor 
which normally is fixed at unit value. However, it is possible to endogenize the 
average level of the production tax to achieve a pre-determined fiscal target. 

 

                                        
7 The value added bundle also contains demand for energy, see below. 

8  Some models of this type assume a top level Leontief, i.e. a substitution elasticity of zero, in which case there is no 
substitution possibility between intermediate demand and value added. The GAMS implementation of the model can handle 
all of the special cases of the CES, i.e. Leontief and Cobb-Douglas. 

9 The CES is described in greater detail in Appendix 1. 

10 The unit cost equation will be affected by production-specific emission taxes. Emission taxes are discussed in section 12. 
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Table 2.1:  Top Level Production Equations 
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 (2.1.4) 
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  (2.1.5) 

 PP XP PX XPj j j
p

j
p

j
p

j  1     (2.1.6) 

 

 

The next level of the CES nest concerns on the one side aggregate intermediate 
demand, ND, and on the other side, the KEL bundle. The split of ND into 
intermediate demand is assumed to follow the Leontief specification, in other words 
a substitution elasticity of 0. (We also assume that the share coefficients are 
independent of the vintage.) The demand for non-fuel intermediate goods is 
determined by Equation (2.2.1). The intermediate demand coefficients are given by 
anf,j. The price of aggregate intermediate demand is given by adding up the unit 
price of intermediate demand. This is specified in Equation (2.2.2) in Table 2.2. 
Demand for each good is specified as a demand for the Armington composite 
(described in more detail below), an aggregation of a domestic good and an import 
good which are imperfect substitutes. Therefore, while there is no substitution of 
one intermediate good for another, there will be substitution between domestic 
demand and import demand depending on the relative prices. The price of the 
Armington good is given by PA. 

At the same level, the KEL bundle is split between labor and a capital-energy bundle, 
KE. It is assumed here as well, that the substitution possibilities between labor and 
the KE bundle depend on the vintage of the capital. The optimization problem is 
similar to above, i.e. cost minimization subject to a CES aggregation function. If AW 
is the aggregate sectoral wage rate, and PKE is the price of the KE bundle, 
aggregate labor demand, AL and demand for the KE bundle, are given by 
Equations (2.2.3) and (2.2.4). l,i and ke,i are the CES share parameters, and v is 
the CES elasticity of substitution. The price of KEL bundle, PKEL, is determined by 
Equation (2.2.5), which is the CES dual price. 
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Table 2.2:  Second Level CES Production Equations 
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The combined labor bundle is split into labor demand by type of labor, each with a 
specific wage rate, W.11 (Though labor markets are assumed to clear for each skill 
category, we allow for differential wage rates across sectors reflecting potential 
different institutional arrangements). Equation (2.3.1) determines labor demand by 
skill type in each sector, using a CES aggregation function. We allow for changes in 
labor efficiency which can be specified by both skill type and by sector. The dual 
price, or the average sectoral wage, AW, is defined by Equation (2.3.2). 

 

 

Table 2.3:  Labor Demand 
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11 The current U.S. SAM has a single aggregate labor account, though both the data processing facility and the model can 
handle multiple labor accounts. Depending on the level of labor disaggregation, it might be appropriate to have a more 
detailed nesting structure for labor, rather than a single level nest. 
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The next table describes the disaggregation of the capital-energy bundle, KE, into its 
energy and capital-land components. Equation (2.4.1) determines the demand for 
aggregate energy. Equation (2.4.2) determines the demand for the capital-land 
bundle by vintage, KT, where PKT is the price of the capital-land bundle. 
Equation (2.4.3) defines the dual price of the KE bundle. 

 

 

Table 2.4:  Capital-Land Bundle and Energy Bundle Demand 
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The next level in the nest determines the demand for the capital and land factors. 
Equation (2.5.1) defines land demand by sector and vintage, Tv, where PT is the 
price of land. Similarly, Equation (2.5.2) determines demand for capital by sector 
and vintage, Kv, where R is the rental rate of capital. Note that the rental rate is 
both sector and vintage specific. Both equations incorporate technology shifters 
(which will be explained in the section on dynamics).12  Equations (2.5.4) and (2.5.5) 
determine respectively aggregate sectoral land demand and capital demand. 

 

                                        
12 The current data for the U.S. model does not include land as a separate account, therefore the additional capital-land nest, 
though active, is irrelevant. 
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Table 2.5:  Capital and Land Demand 
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 ,  (2.5.4) 

K Kvj
d

j
d v

v

 ,  (2.5.5) 

 

 

The energy bundle determined by Equation (2.4.1) is further disaggregated by 
energy-type. The number of fuel types will depend on the available data. We let the 
index e range over the number of fuel types (eventually the dimension of e could 
even be 1). Equation (2.6.1) determines the demand for the different types of fuels. 
The  factor allows for energy efficiency improvement over time which can be sector 
specific, as well as vintage specific. Equation (2.6.2) determines the CES dual price, 
PEv, of the energy bundle. 

 

 

Table 2.6:  Decomposition of the Energy Bundle 
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3 Income Distribution 

Production generates income, both wage and non-wage, which is distributed in some 
form to three main institutions:  households, government, and financial institutions 
(both domestic and out of state). 
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Equation (3.1.1) determines gross operating surplus, KY. It is the sum across all 
vintages and all sectors of capital remuneration. Equation (3.1.2) defines company 
income, CY, it is equal to a share of gross operating surplus (the rest being 
distributed to households). Equation (3.1.3) determines corporate taxes, Taxc. The 
base tax rate is given by the parameter c. However, corporate taxes can be made 
endogenous (in order to meet a fiscal target, for example), in which case the 
adjustment parameter, c, becomes endogenous. Equation (3.1.4) defines retained 
earnings, i.e. corporate saving. Corporate saving is equal to a residual share of after-
tax company income.13 The remaining amount of net company income is distributed 
to households. 

 

 

Table 3.1:  Corporate Earnings Equations 

KY R Kv
i

v
i
d v

iv

  ,  (3.1.1) 

CY KYk   (3.1.2) 

Tax CYc c c    (3.1.3) 

 Sav CYc
p

h
c

h

c c 








 1 1    (3.1.4) 

 

 

Household income derives from two main sources, capital and labor income. 
Additionally, households receive transfers from the government. Equation (3.2.1) 
defines total labor income, YL as the product of total labor demand and the wage 
rate. 

Labor income is distributed to the households. Equation (3.2.2) defines total 
household income, YH. It is the sum of labor income, distributed capital income and 
net company income, income from land, and transfers from the government, TRg

h. 
Capital, company, and land income are distributed to households using fixed shares. 
The adjustment factor HTr on government transfers can be used as a fiscal 
instrument in order to achieve a specified target, similar to the adjustment factors 
on other taxes in the model. Household direct tax, Taxh, is given by Equation (3.2.3), 
where h is the tax rate. The adjustment factor HTx can be endogenous if the 
government saving/deficit is exogenous. In this case, the household tax schedules 
shifts in or out to achieve the net government balance. Otherwise, the household tax 
schedule is exogenous, and the factor stays at its initial value of 1. Finally 
Equation (3.2.4) defines household disposable income, YD. Disposable income is 
equal to total household income less taxes. 

                                        
13 In the reference simulation, both the private corporate saving rate and the household saving rate are adjusted (upwards), 
under the assumption that domestic saving, as a share of GDP, will increase in the future. The adjustments are based on rules 
of thumb, but could be made explicit in the model. 
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Table 3.2:  Household Income Equations 
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 ,  (3.2.1) 
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Tax YHh
h h

h
h

h    (3.2.3) 

YD YH Taxh h h
h   (3.2.4) 

 

 

4 Household Consumption and Savings 

Household disposable income is allocated to goods, services, labor, and savings 
using the Extended Linear Expenditure System (ELES) specification.14  The consumer 
problem can be set up as follows: 

 max ln lnU C
S

cpii i i
i

n

s  









  

1

 

s. t. PC C S YDi i
i

n


  

1

 

and  i
i

n

s

  

1

1 

where U is the utility function, Ci is consumption by commodity, S is household 
saving, PC is the vector of consumer prices, and YD is disposable income.  and  
are parameters which will be given an interpretation below. S can be thought of as 
demand for a future bundle of consumer goods. For reasons of simplification, it is 
assumed that the saving bundle is evaluated using the consumer price index, cpi. 
Lluch provides a more detailed theoretical analysis of how savings enters the utility 
maximization problem. 

Solving the above optimization problem leads to the following demand functions: 

C
Y

PCi i
i

i

   *

 

S Y YD PC Cs i i
i

n

  

 *

1

 

                                        
14  For references, see Lluch (1973) or Deaton and Muellbauer (1980). 
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Y YD PC j j
j

n
*  


 

1

 

Consumption is the sum of two parts, , which is often called the subsistence 
minima or floor consumption, and a fraction of Y*, which is often called the 
supernumerary income. Y* is equal to disposable income less total expenditures on 
the subsistence minima. 

Table 4.1 presents the equations of the consumer demand system. Equation (4.1.1) 
defines the consumer price vector (for goods and services), PC, it is the Armington 
price incorporating household specific indirect taxes and subsidies. Equation (4.1.2) 
defines supernumerary income, that is, disposable income less total expenditures on 
the subsistence minima. (The subsistence minima are adjusted each time period by 
the growth rate in population). Consumer demand for goods and services is given by 
Equation (4.1.3).15 Household savings is determined as a residual and is given in 
Equation (4.1.4). Aggregate household saving is determined by Equation (4.1.5). 
Equation (4.1.6) defines the consumer price index. 

 

 

Table 4.1:  Household Consumption and Savings Equations 

PC PAih i ih
h

ih
h  ( )( )1 1   (4.1.1) 

Y YD Pop PCh h h ih ih
i

*      (4.1.2) 

XAc Pop Y PCih h ih ih h ih   * /  (4.1.3) 

HSav YD PC XAch
p

h ih ih
i

   (4.1.4) 

S HSavh h
p

h

  (4.1.5) 

cpi

PC XAc

PC XAc
h

ih ih
i

ih ih
i



 ,0

 (4.1.6) 

 

 

5 Other Final Demands 

All other final demand accounts (except stock changes) are integrated into a single 
demand matrix component. In the most general version of the model, the final 
demand components are government current expenditures, government capital 
expenditures, private capital expenditures, trade and transport margins for domestic 

                                        
15 As noted earlier, the  parameters are adjusted in the reference simulation in order to increase the level of domestic 
saving. 
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sales, and trade and transport margins for imports. All the final demand vectors are 
assumed to have fixed expenditure shares. The closure of the final demand accounts 
will be discussed below. 

Equation (5.1.1) determines the composition of final demand for each of the final 
demand components. Demand for goods is determined as constant shares of the 
volume of total final demand, TFD. The index f covers government current and 
capital expenditures, private capital expenditure, inventory change, and both 
domestic and import trade margin expenditures. Equation (5.1.2) determines the 
value of final demand expenditures, TFDV. Equation (5.1.3) determines the price of 
final demand expenditures inclusive of taxes and subsidies, PFD. Equation (5.1.4) 
determines the aggregate final demand price deflator for each type of final demand 
account, PTFD. 

 

 

Table 5.1:  Final Demand Expenditure Equations 

XAFD afd TFDi
f

i
f

f  (5.1.1) 

TFDV PFD XAFDf i
f

i
f

i

   (5.1.2) 

  PFD PAFDi
f

i
f

i
f

i
f  1 1   (5.1.3) 

PTFD afd PFDf i
f

i
f

i

   (5.1.4) 

 

 

Government current expenditures include expenditures on goods and services. 
Government aggregate expenditures on goods and services are fixed in real terms. 
Total nominal government expenditures, GExp, is determined by Equation (5.2.1) in 
Table 5.2.  There are several exogenous elements which enter this equation 
including transfers to households, TRg

h. Note the potential adjustment factor 
attached to the household transfer variable. Also note that all domestic transfers are 
typically held fixed and are multiplied by a price index in order to insure the 
homogeneity of the model. Equation (5.2.2) defines the government expenditure 
deflator, PG. Finally, Equation (5.2.3) is simply an identity which equates aggregate 
real government expenditures to the variable TFD (for the accounts indexed by g). 
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Table 5.2:  Current Government Expenditure Equations 

   
GExp PA XAFD

FDIT FDSubs P TR

i i
g

ig

g g

g

HTr
g h
h

h



  


   ,

 (5.2.1) 

PG TG PFD XAFDg g i
g

i
g

i

   (5.2.2) 

TFD TGg g  (5.2.3) 

 

 

6 Government Revenues and Saving 

Government derives most of its revenues from direct corporate and household taxes, 
and indirect taxes. Subsidies are also provided which enter as negative revenues. 
Equations (6.1.1)-(6.1.4) in Table 6.1 list all the different indirect taxes paid by 
production activities, household consumption, final demand expenditures, and 
exports, respectively, PITx, SITx, HITx, FDITx, and EITx. Equation (6.1.5) describes 
the sum of all indirect taxes. 

 

 

Table 6.1:  Indirect Tax Equations 

 PITx PX XPp
i
p

i
p

i i
i

      (6.1.1) 

HITx PA XAci ih
h

ih
ih

    (6.1.2) 

FDITx PA XAFDf i i
f

i
f

i

    (6.1.3) 

EITx PEr ESrir ir
E

ir
ir

    (6.1.4) 

TIndTax PITx HITx FDITx EITxf
f

     (6.1.5) 

 

 

Equations (6.2.1)-(6.2.3) in Table 6.2 define the level of subsidies for household 
consumption, other final demand expenditures, and exports, respectively, HSubs, 
FDSubs, and ESubs. Total subsidies is given by Equation (6.2.4). 
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Table 6.2:  Subsidy Equations 

HSubs PA XAci ih
h

ih
h

ih
ih

  ( )1    (6.2.1) 

FDSubs PA XAFDf i i
f

i
f

i
f

i

  ( )1    (6.2.2) 

ESubs PEr ESrir ir
E

ir
E

ir
ir

  ( )1    (6.2.3) 

TSubs HSubs FDSubs ESubsf
f

    (6.2.4) 

 

 

Table 6.3 defines fiscal closure for the government. Equation (6.3.1) describes total 
income from import tariffs, where WPM are world prices, m are tariffs, and XMr 
represents import volumes. All the relevant import variables are doubly indexed 
since they represent variables by sector and region of origin. The exchange rate is 
used to convert world prices (e.g. in dollars) into local currency. There is an 
additional adjustment factor Tar which allows the aggregate tariff rate to vary 
endogenously. Equation (6.3.2) identifies miscellaneous government revenue 
sources, these are all revenues less household direct taxes. Equation (6.3.3) 
provides total current government nominal revenues, GRev. Equation (6.3.4) and 
(6.3.5) define respectively the nominal and real level of government saving. Two 
government closure rules are implemented. Under the default rule, government 
saving is held fixed (typically at its base value), and one of the taxes (or government 
transfers to households) is allowed to adjust (uniformly) to achieve the government 
fiscal target. Under the second closure rule, all tax levels and transfers are fixed, and 
real government saving is endogenous. This latter rule can have significant 
consequences on the level of investment since investment is savings driven. 

 

 

Table 6.3:  Government Revenues and Closure Equations 

YTrade ER WPM XMrTar
ri ri

m
ri

ir

    (6.3.1) 

MiscRev Tax TIndTax TSubs YTradec     (6.3.2) 

GRev MiscRev Taxh   (6.3.3) 

S GRev GExpg    (6.3.4) 

RSg S Pg /  (6.3.5) 
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7 Trade, Domestic Supply and Demand 

Similar to many trade CGE models, we have assumed that imported goods are not 
perfect substitutes for goods produced domestically.16  The degree of substitution 
will depend on the level of disaggregation of the commodities. For example, wheat is 
more substitutable as a commodity than grains, which in turn are more substitutable 
than a commodity called primary agricultural products.  The Armington assumption 
reflects two stylized facts. Trade data shows the existence two-way trade which is 
consistent with the Armington assumption. As well, and related, the Armington 
assumption leads to a model where perfect specialization, which is rarely observed, 
is avoided. 

In this version of the model, we have adapted the CES functional specification for 
the Armington assumption. This has some undesirable properties which have been 
explored in more detail elsewhere17, but alternative formulations have proven to be 
deficient as well. The adoption of the Constant Elasticity of Transformation (CET) 
specification for exports alleviates to some extent the deficiencies of the Armington 
CES specification. We also assume that there is only one domestic Armington agent, 
this is sometimes known as border-level Armington specification. It is parsimonious 
in both data requirements and computational resources. 

To allow for the existence of multiple trading partners, the model adopts a two-level 
CES nesting to represent the Armington specification (see Figure 2).18 At the top 
level, agents choose an optimal combination of the domestic good and an import 
aggregate which is determined by a set of relative prices and the degree of 
substitutability. Let XA represent aggregate demand for an Armington composite, 
with the associated Armington price of PA. Each agent then minimizes the cost of 
obtaining the Armington composite, subject to an aggregation function. This can be 
formulated by: 

 
min

/

PD XD PM XM

XA a XD a XMd m



 s. t.   1  

where XD is demand for the domestic good, PD is the price of obtaining the 
domestic good, XM is demand for the aggregate imported good, PM is the aggregate 
import price, a are the CES share parameters, and  is the CES exponent.  is 
related to the CES substitution elasticity via the following relation: 

 








 


1 1

1
 

At the second level of the nest, agents choose the optimal choice of imports across 
regions, again as a function of the relative import prices and the degree of 
substitution across regions. Note that the import prices are region specific, as are 

                                        
16  This is known as the Armington assumption — see Armington (1969). 

17  See for example Robinson et. al. (1992). 

18 The current U.S. SAM has a single rest of the world account, i.e. an aggregate trading partner. The dual nesting is 
therefore redundant. However, both the data processing facility and the model retain the multiple trading partner 
specification in order to maintain flexibility for future data developments. 



4/10/08 - 18 - Do Not Quote 

the tariff rates. The second level nest also uses a CES aggregation function. The CES 
formulation implies that the substitution between any two pairs of importing partners 
is identical. Table 7.1 lists the solution of the optimization problem described above. 
Equation (7.1.1) determines domestic demand for the Armington aggregate across 
all agents of the economy, XA. Equations (7.1.2) and (7.1.3) determine respectively, 
the optimal demand for the domestic component of the Armington aggregate, XD, 
and aggregate import demand, XM. Equation (7.1.4) defines the price of the 
Armington bundle, PA, which is the CES dual price. 

 

 

Table 7.1:  Top-level Armington Equations 

XA XAp XAc XAFDi ij
j

ih
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f
f

      (7.1.1) 
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XM
PA

PM
XAi i

m i

i
i

i
m


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 (7.1.3) 

 PA PD PMi i
d

i i
m

i
i
m

i
m i

m

  


   
1 1

1/ (1 )

 (7.1.4) 

 

 

The equations in Table 7.2 describe the decomposition of the aggregate import 
bundle, XM into its components, i.e. imports by region of origin. Each demand 
component will be a function of the price of the exporting partner, as well as 
partner-specific tariff rates. Equation (7.2.1) determines import volume by sector 
and region of origin, XMr, where PMr is the partner specific import price, in domestic 
currency and inclusive of tariffs. Equation (7.2.2) defines the price of the aggregate 
import bundle, PM, which is the CES dual price. Finally, Equation (7.2.3) defines the 
domestic import price, PMr, which is equal to the import price of the trading partner, 
converted into local currency, and inclusive of the partner-specific tariff rate. 
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Table 7.2:  Second-level Armington Equations 
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 (7.2.2) 

 PMr ER WPMri ri ri
m 1   (7.2.3) 

 

 

Treatment of domestic production is symmetric to the treatment of domestic 
demand. Domestic producers are assumed to perceive the domestic market as 
different from the export market. The reason is similar:  a high level of aggregation. 
Further, export markets might be more difficult to penetrate, forcing perhaps 
different quality standards than those applicable for the domestic market. This 
formulation assumes a production possibilities frontier where each producer 
maximizes sales, subject to being on the frontier, and influenced by relative prices. 

The optimization problem is formulated somewhat differently since the object of the 
local producer is to maximize sales, not to minimize costs. We therefore have: 

 
max

. .
/

PD XD PE ES

s t XP XD ESd e



    1  

where XD is aggregate domestic sales of domestic production, ES is out of state 
sales of domestic production (exports), with a producer export price of PE, XP is 
aggregate domestic production with a producer price of PP,  are the CET share 
parameters, and l is the CET exponent. The CET exponent is related to the CET 
substitution elasticity,  via the following relation: 







 






1 1

1
 

Analogous to the Armington specification, producer supply decisions are assumed to 
be undertaken it two steps (see Figure 3). First, producers choose the optimal 
combination of domestic supply and aggregate export supply. Then, an additional 
step which optimizes export supply across trading partners. The top-level producer 
supply decisions, in reduced form, are given by Equations (7.3.1) and (7.3.2), where 
the share parameters are t and the CET substitution elasticity is t.19 
Equation (7.3.3) is the CET dual price function, which determines sectoral domestic 
output. If the CET elasticity is infinite, producers perceive no differentiation across 

                                        
19  Note the difference between the Armington CES and the CET.  First, the relation between the exponent and the 
substitution elasticity is different.  Second, the ratio of the prices and the share parameter in the reduced forms are inverted.  
This is logical since the goal of the producer is to maximize revenues.  For example, an increase in the price of exports, 
relative to the composite aggregate price, will lead to an increase in export supply. 
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markets, in which case both domestic and export goods are sold at the uniform 
producer price, PP, and output is simply the sum of domestic supply and export 
supply. (The formulas reflect an adjustment for stock building. Stock building is 
assumed to occur using only domestically produced goods, which are priced at the 
aggregate producer price, PP. Sectoral stock building is modeled as a fixed share of 
a volume of stock building, StB. This formulation implies that stock building is simply 
subtracted (added) from (to) total current output, XP.) 

 

 

Table 7.3:  Top-level CET Equations 
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The second-level CET nest determines the optimal supply of exports to individual 
trading partners, ESr. Equation (7.4.1) defines export supply by region of 
destination. Equation (7.4.2) determines the aggregate export price, PE. 

 

 

Table 7.4:  Second-level CET Equations 
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Table 7.5 presents the equations which determine export demand by the regional 
trading partners, and the export market equilibrium condition. Equation (7.5.1) 
defines export demand by trading partner, ED. If the exporting country has some 
market power, it will face a downward sloping demand curve. This is implemented 
using a constant elasticity function, with the elasticity given by e. Export demand 
will also be influenced by the price of competing exports. This is reflected in the 
variable WPINDEX, which is exogenous since it is assumed the domestic economy 
does not influence export prices of its trading partners. (Changes in the WPINDEX 
could show the impacts of exogenous changes in the terms-of-trade). Under the 
small-country assumption the export demand elasticity is infinity, and the exporting 
country faces a flat demand curve, i.e. the export price is fixed (in dollar terms). 
Equation (7.5.2) converts the domestic export producer price into the domestic 
export price inclusive of taxes and subsidies (however, it is still in local currency). 
Equation (7.5.4) defines the export market equilibrium, i.e. the equality between 
domestic export supply and out of state demand. 

 

 

Table 7.5:  Export Demand and Market Equilibrium 
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ESr EDir ir  (7.5.3) 

 

 

8 Equilibrium Conditions 

The first factor market equilibrium condition concerns labor. Labor demand, by skill 
type is generated by production decisions. In terms of supply, the model implements 
a simple labor supply curve, where labor supply is a function of the real wage. 
Equation (8.1.1) defines the labor supply curve. If the supply elasticity is less than 
infinity, labor supply is a function of the equilibrium real wage rate. In the extreme 
case where the elasticity is zero, labor is fully employed and fixed. If the elasticity is 
infinite, the real wage is fixed and there is no constraint on labor supply. This may 
be an appropriate assumption in cases where the level of unemployment is relatively 
high. Equation (8.1.2) determines equilibrium on the labor market. If the labor 
supply curve is not flat, it determines the equilibrium wage rate. If the labor supply 
curve is flat, it sets labor supply identically equal to aggregate labor demand. Labor 
by skill type is assumed to be perfectly mobile across sectors, therefore 
Equation (8.1.2) determines the uniform wage by skill type. Because the model 
allows for wages to vary across sectors, the uniform wage is actually the aggregate 
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wage which varies uniformly across sectors for each skill type, and the relative 
wages across sectors are held fixed at their base levels. 

 

 

Table 8.1:  Equilibrium Conditions for the Labor Market 
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Land market demand, similar to demand for labor and capital, is generated by the 
production sector. Land supply is modeled using the CET specification. If the 
elasticity is infinite, land is perfectly mobile across sectors. If the elasticity is zero, 
land is fixed and sector-specific. Between these two extreme values, land is partially 
mobile and sectoral supply will reflect the relative rate-of-return of land across 
sectors. Equations (8.2.1)-(8.2.3) reflect either situation (finite or infinite). In the 
case of a finite CET elasticity, Equation (8.2.1) determines the aggregate price of 
land, PLand, which is the CET dual price. TLand is aggregate land supply which is 
exogenous. Equation (8.2.2) determines sectoral supply of land, Ts, and 
Equation (8.2.3) is the equilibrium condition which determines the sector-specific 
land price, PT. In the case of infinite elasticity, Equation (8.2.1) determines the 
aggregate (uniform) price of land through an equilibrium condition which equates 
total land supply, TLand, to aggregate land demand. Equation (8.2.2) trivially sets 
the sectoral land price equal to the economy-wide land price, and Equation (8.2.3) 
equates sectoral supply to sectoral demand. 
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Table 8.2:  Land Supply and Market Equilibrium 
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9 Determination of Vintage Output and Capital Market Equilibrium 

The model is set up to run in either comparative static mode or recursive dynamic 
mode. Capital market equilibrium is different in the two cases, and each will be 
described separately. 

Comparative Static Capital Market Equilibrium 

In comparative static mode, there is no distinction made between old and new 
capital. Each sector determines demand for a single aggregate capital good. On the 
supply side, the model implements a CET supply allocation function (similar to land 
above). There is a single “capitalist” who owns all the capital in the economy, and 
supplies it to the different sectors based on each sector’s rate of return. Capital 
mobility across sectors is determined by the “capitalist’s” CET substitution elasticity. 
The substitution elasticity is allowed to vary from 0 to infinity. If the elasticity is 0, 
there is no capital mobility. This is an adequate description of a short term scenario. 
In the polar case, the substitution elasticity is infinite and there is perfect capital 
mobility. An intermediate value would allow for partial capital mobility. 

The equations in Table 9.1 determine the equilibrium conditions for the capital 
market in comparative static mode. Equation (9.1.1) determines the aggregate 
rental rate. If there is partial capital mobility, the aggregate rental rate is the CET 
dual price of the sector specific rates of return. If there is perfect capital mobility, 
the aggregate rental rate is determined by an equilibrium condition which equates 
aggregate capital demand to total capital supply. Equation (9.1.2) determines either 
sectoral capital supply, or the sectoral rental rate. If capital is partially mobile, 
sectoral capital supply is determined by the CET first order condition, i.e. sectoral 
capital supply is a function of each sectors relative rate of return. If capital is 
perfectly mobile, the equivalent condition identically sets the sectoral rate of return 
to the economy-wide rate of return. Finally, Equation (9.1.3) determines the sectoral 
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rate of return in the case of partial capital mobility. Under perfect capital mobility, it 
trivially equates capital supply to capital demand. 

 

 

Table 9.1:  Capital Market Equilibrium in Comparative Static 
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Recursive-Dynamic Capital Market Equilibrium 

Sectoral output is essentially determined by aggregate demand for domestic output, 
see Equation (7.3.3). (In the simplest case, with no market differentiation, output is 
equal to the sum of domestic demand for domestic output, plus export demand, i.e. 
XP = XD+ED.) The producer decides the optimal way to divide production of total 
output across vintages. At first, the producer will use all the capital installed at the 
beginning of the capital, this is the depreciated installed capital from the previous 
period. If demand exceeds what can be produced with the old capital, the producer 
will demand new capital. If demand is lower than the output which can be produced 
with the old capital, the producer will disinvest some of the installed capital. 

Equation (9.2.1) provides the capital/output ratio for old capital,  (note that Kvd,Old 
reflects the optimal capital demand for old capital by the producer). Once the 
capital/output ratio is determined, it is easy to determine the optimal output using 
old capital. Equation (9.2.2) determines this quantity, XPvOld, where an upper bound 
is given by total output. If the producer owns too much old capital, i.e. the desired 
output exceeds total demand, the producer will disinvest the difference between the 
initial capital stock and the capital stock which will produce the desired demand. 
Equation (9.2.3) determines output produced with new capital as a residual. 
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Table 9.2:  Determination of Vintage Output 
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If a sector is in decline, i.e. it has too much installed capital given its demand, it will 
disinvest. The capital supply curve is a simple constant elasticity function of the 
relative rental rates. The higher the rental rate on old capital, the higher the supply 
of old capital. The formula which is used is: 
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where k is the disinvestment elasticity. Another way to think of this is to subtract 
the two capital numbers, i.e. 
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This represents the supply of disinvested capital, which increases as the relative 
rental rate of old capital decreases. At the limit, when the rental rates are equalized, 
there is no disinvested capital. At equilibrium, demand for old capital (in each 
declining sector), must equal supply of old capital. We can therefore invert the first 
equation to determine the rental rate on old capital, assuming the sector is in decline 
and supply equals demand. Equation (9.3.1) determines the relative rental rate on 
old capital for sectors in decline, i.e. it is the ratio of the old rental rate to the new 
rental rate. It is bounded above by 1, because the rental rate on old capital in 
declining sectors is not allowed to exceed the rental rate on new capital. 

Equation (9.3.2) determines the rental rate on mobile capital. Mobile capital is the 
sum of new capital, disinvested capital, and installed capital in expanding sectors. It 
is not necessary to subtract immobile capital from each side of the capital 
equilibrium condition, i.e. the rental rate on mobile capital can be determined from 
the aggregate capital equilibrium condition. Equation (9.3.3) is an identity setting 
the rental rate on new capital equal to the rental rate on mobile capital. 
Equation (9.3.4) determines the rental rate of old capital. If a sector is disinvesting, 
the rental rate on old capital is essentially determined by Equation (9.3.1). If a 
sector is expanding, than RR is equal to 1, and therefore the rental rate on old 
capital in expanding sectors will be equal to the rental rate of new capital. 
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Table 9.3:  Capital Market Equilibrium 
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10 Macro Closure 

Government closure was discussed above, current government savings are 
determined either endogenously with fixed tax rates, or exogenously, with one of 
the tax adjustment factors endogenous. 

Equation (10.1.1) is the ubiquitous savings equals investment equation. In 
Equation (10.1.1), TFDVzp is the value of private investment expenditures, whose 
value must equal total resources allocated to the private investment sector:  retained 
corporate earning, Savc

p , total household savings, Sh, government savings, Sg, the 
sum across regions of out of state capital flows, Sf, and net of stock building 
expenditures. 

The last closure rule concerns the balance of payments. First, we make the small 
country assumption for imports, i.e. local consumption of imports will not affect the 
border price of imports, WPM. Equation (10.1.2) is the overall balance of payments 
equation. The value of imports, at world (border) prices, must equal the value of 
exports, at border prices (i.e. inclusive of export taxes and subsidies) plus net 
transfers and factor payments, and plus net capital inflows. The balance of 
payments constraint is dropped from the model due to Walras’ Law 

The final equations of the model, Equations (10.1.3)-(10.1.5) are used to calculate 
the domestic price index which is used to inflate real domestic transfers. Note that 
real GDP is measured in efficiency units. The numéraire of the model is the 
exchange rate. 
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Table 10.1:  Closure Equations 
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11 Dynamics 

Pre-Determined Variables 

The first table presents the variables which are pre-determined, i.e. they do not 
depend on any contemporaneous endogenous variables. Equation (11.1.1) 
determines the labor supply shift factor which is equal to the previous period’s labor 
supply shift factor multiplied by an exogenously specified labor supply growth rate. 
(All dynamic equations reflect the fact that the time steps may not be of equal size. 
The growth rates are always given as per cent per annum increases.) 
Equation (11.1.2) provides a similar equation for population. The population and 
labor growth rates are allowed to differ. Government (real) expenditures and the 
transfers between government and households grow at the rate of growth of GDP. 
This latter growth rate is exogenously specified (for the BaU scenario). 
Equations (11.1.3)-(11.1.4) provide the relevant formulas. Users can input there own 
exogenous assumptions about these variables. Equation (11.1.5) determines the 
amount of installed capital at the beginning of the period. If a sector is expanding, 
this will equal the amount of old capital in the sector at the end of the period. If a 
sector is declining, the amount of old capital at the end of the period will be less 
than the initial installed capital. The depreciation rate is exogenous. 
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Table 11.1:  Pre-Determined Variables 
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Capital Stock 

The motion equation for the aggregate capital stock is given by the following 1-step 
formula: 

K K It t t   ( )1 1 1  

where K is the aggregate capital stock,  is the annual rate of depreciation, It-1 is the 
level of real investment in the previous period. Using mathematical induction, we can 
deduce the multi-period transition equation: 

 K K I I

K K I

t t t t

t
n

t n
j

t j
j

n

    

   

  








( ) ( )

( ) ( )

1 1

1 1

2 2 1

1

1

 

 

  

If the step size if greater than 1, the model does not calculate the intermediate 
values for the path of real investment. The investment path is estimated using a 
simple linear growth model, i.e. 
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Note that the formula for the investment growth depends on the contemporaneous 
level of real investment. This explains why the current capital stock is not pre-
determined. If real investment increases (e.g. because out of state transfers 
increase), this will have some effect on the current capital stock via its influence on 
the estimated growth rate of real investment. Inserting the formula for the 
estimated real investment stream in the capital stock equation, we derive: 
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A little bit of algebra, yields Equation (11.2.1) for the aggregate capital stock. 
Equation (11.2.2) defines the annualized growth rate of real investment which is 
used to calculate the aggregate capital stock. Equation (11.2.3) determines the level 
of normalized capital. There are two indices of capital stock. The first index is the 
normalized level of capital stock. This index is called normalized because it is the 
level of capital stock in each sector which yields a rental rate of 1. The second index 
is the actual level of the capital stock, given in base year prices. The latter variable is 
only used in two equations. It is used to determine the depreciation allowance, and 
it is used to update the level of the capital stock in Equation (11.2.1) (because it is in 
the same units as the level of real investment).20 

 

 

Table 11.2:  Aggregate Capital Stock 
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Productivity 

Productivity enters the value added bundle — labor, land, and capital — as separate 
efficiency parameters for the three factors, differentiated by sector and by vintage. 
In the current version of the model, and for lack of better information, the labor 
efficiency factor (and the energy efficiency factor) are exogenous. In defining the 
reference simulation, the growth path of real GDP is pre-specified, and a single 
economy-wide efficiency factor for land and capital is determined endogenously. In 
subsequent simulations, i.e. with dynamic policy shocks, the capital and land 
efficiency factors are exogenous, and the growth rate of real GDP is endogenous.  

                                        
20  The following numerical example may clarify issue. Assume the value of the capital stock is 100. Assume, as well, that 
capital remuneration is 10. Capital remuneration is simply rK where r is the rental rate and K the demand for capital. In this 
example, rK is equal to 10, which implies a rental rate of 0.1. The model assumes a normalisation rule such that the rental 
rate is 1, and normalizes the capital data to be consistent with the normalisation rule. In other words, the normalized capital 
demand is 10, and it is really an index of capital volume. The non-normalized level of capital is used only in the 
accumulation function and in determining the value of the depreciation allowance. All other capital stock equations use the 
normalized value of capital. 
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Equation (11.3.1) defines the growth rate of real GDP. In defining the reference 
simulation, both lagged real GDP and the growth rate y are exogenous, therefore 
the equation is used to determine the common efficiency factor for land and capital. 
In subsequent simulations, Equation (11.3.1) determines y, i.e. the growth rate of 
real GDP. Equations (11.3.2) and (11.3.3) determine respectively the efficiency 
factors for capital and land. Both are set to the economy-wide efficiency parameter 
determined by Equation (11.3.1), however, the model allows for a partition of 
sectors, where the index i' indexes a subset of all the sectors. It is assumed that the 
sectors not indexed by i' have no efficiency improvement in land-capital. 
Equation (11.3.4) determines the common capital-labor efficiency growth factor, 
which is stored in a file for subsequent simulations. There are alternative methods 
for specifying and implementing the reference scenario. 

 

 

Table 11.3:  Capital-Land Efficiency 
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Vintage Re-Calibration 

At the beginning of each new period, the parameters of the production structure 
need to be modified to reflect the changing composition of capital. As a new period 
begins, what was new capital gets added to old capital, i.e. the new Old capital has 
a different composition from the previous Old capital. A simple rule is used to re-
calibrate the production structure: the parameters are calibrated such that they can 
re-produce the previous period’s output using the aggregate capital of the previous 
period, but with the Old elasticities. (The parameters of the New production 
structure are not modified.) The relevant formulas are not re-produced here but can 
be found in the GAMS code. 

 

12 Emissions 

Emissions data at a country and detailed level have rarely been collated. An 
extensive data set exists for the California which includes thirteen types of 
emissions, see Table 12.1.21 

                                        
21 See Martin et. al. (1991). 
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The emission data for the California has been collated for a set of over 400 industrial 
sectors. Generally, the emission data has been directly associated with the volume of 
output. This has several consequences. First, the only way to reduce emissions, with 
a given (abatement) technology, is to reduce output. This is often an unpleasant 
message for policy makers. The second consequence is that it ignores important 
sources of pollution outside the production side of the economy, namely household 
consumption. In an attempt to ameliorate this situation, the pollution data of the 
California has been regressed on a small subset of inputs of the US input output 
table. Using econometric estimates, we have shown that the level of emissions can 
be explained by a very small subset of inputs.22 This allows producers to substitute 
away from polluting inputs, and to use the same pollution coefficients for final 
demand consumption. 

Since the emission factors are originally calculated from a US data base, they are 
appropriately scaled so as to be consistent with the definition of output and inputs of 
the designated country. The following example shows how this is done in practice. 
Assume, in a specific sector, that output in 1990 has the value $1 billion, and that 
the estimated amount of lead emitted from that sector is 13,550 pounds. If we 
normalize the output price to 1 in 1990, the emission factor has units 1.355x10-5 
pounds per (1990) USD, or 13.55 pounds per million (1990) USD. If output, in the 
same sector is 300 billion pesos (in Mexico in 1988), the dollar equivalent is $131.5 
million (1988 USD). Abstracting from inflation, this leads to lead emissions of 1,782 
pounds. The emission factor for lead in Mexico (in this sector) would then be 5.94 
pounds per billion 1988 pesos. 

 

                                        
22 See Dessus et. al. (1994). 
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Table 12.1:  Emission Types 

 

 

 Air Pollutants 

 1. Suspended particulates PART 

 2. Sulfur dioxide (SO2) SO2 

 3. Nitrogen dioxide (NO2) NO2 

 4. Volatile organic compounds VOC 

 5. Carbon monoxide (CO) CO 

 6. Toxic air index TOXAIR 

 7. Biological air index BIOAIR 

 

 Water Pollutants 

 8. Biochemical oxygen demand BOD 

 9. Total suspended solids TSS 

 10. Toxic water index TOXWAT 

 11. Biological water index BIOWAT 

 

 Land Pollutants 

 12. Toxic land index TOXSOL 

 13. Biological land index BIOSOL 

 

 

Equation (12.2.1) defines the total level of emissions for each pollutant p. The bulk 
of the pollution is assigned to the direct consumption of goods, which is the second 
term in the expression. The level of pollution associated with the consumption of 
each good is constant (across a row of the SAM), i.e. there is no difference in the 
amount of pollution emitted per unit of consumption whether it is generated in 
production or in final demand consumption. The first term in Equation (12.2.1) 
represents what we call process pollution. It is the residual amount of pollution in 
production which is not explained by the consumption of inputs. In the estimation 
procedure, a process dummy proved to be significant in certain sectors. If an 
emission tax (or taxes) is exogenous, they are specified in physical units, i.e. dollars 
per pound (or ton). Equation (12.2.2) converts this into a nominal amount. 

The equations in Table 12.3 re-produce the corresponding equations in the text if a 
pollution tax is imposed. The tax can be generated in one of two ways. It can either 
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be specified exogenously (in which case it is multiplied by a price index to preserve 
the homogeneity of the model), or it can be generated endogenously be specifying a 
constraint on the level of emission. In the latter case, Equation (12.2.1) is used to 
define the pollution level constraint, and the tax which is generated by the constraint 
is the shadow price of Equation (12.2.1), and Equation (12.2.2) is not active. 

 

 

Table 12.2:  Emission Levels 
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The tax is implemented as an excise tax, i.e. it is implemented as a tax per unit of 
emission in the local currency. For example, in the US it would be the equivalent of 
$x per ton of emission. It is converted to a price wedge on the consumption of the 
commodity (as opposed to a tax on the emission), using the commodity specific 
emission coefficient. For example, in Equation (2.1.5'), the tax adds an additional 
price wedge between the unit cost of production exclusive of the pollution tax, and 
the final unit cost of production. Let production equal 100 (million dollars for 
example), and let the amount of pollution be equal to 1 ton of emission per 10 
million dollars of output. Then the total emission in this case is 10 tons. If the tax is 
equal to $25 per ton of emission, the total tax bill for this sector is $250. In the 
formula below,  is equal to 0.1 (tons per million dollars of output), XP is equal to 
100 (million dollars), and tp is equal to $25. The consumption based pollution tax is 
added to the Armington price, see Equation (7.1.4'). However, the Armington 
decomposition occurs using basic prices, therefore, the taxes are removed from the 
Armington price in the decomposition formulae, see Equations (7.1.2') and (7.1.3'). 
Equation (6.3.3') determines the modification to the government revenue equation. 
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Table 12.3:  Emission Price Wedges 
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APPENDEX 1 – The CES/CET Functions 

 

Because of the frequent use of the constant elasticity of substitution (CES) function, 
this appendix will develop some of the properties of the CES, including some of its 
special cases. The CES function can be formulated as a cost minimization problem, 
subject to a technology constraint: 

min

( )
/

PX

V a X

i i
i

i i i
i












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 
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where V is the aggregate volume (of production, for example), X are the individual 
components (“inputs”) of the production function, P are the corresponding prices, 
and a and  are technological parameters. a are most often called the share 
parameters.  are technology shifters. The parameter  is the CES exponent, which 
is related to the CES elasticity of substitution, which will be defined below. 

A bit of algebra produces the following derived demand for the inputs, assuming V 
and the prices are fixed: 
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where we define the following relationships: 
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P is called the CES dual price, it is the aggregate price of the CES components. The 
parameter , is called the substitution elasticity. This term comes from the following 
relationship which is easy to derive from Equation (1): 
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
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X X
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/

/

/

/
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In other words, the elasticity of substitution between two inputs, with respect to 
their relative prices, is constant. (Note, we are assuming that the substitution 
elasticity is a positive number). For example, if the price of input i increases by 
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10 per cent with respect to input j, the ratio of input i to input j will decrease by 
(around)  times 10 per cent. 

The Leontief and Cobb-Douglas functions are special cases of the CES function. In 
the case of the Leontief function, the substitution elasticity is zero, in other words, 
there is no substitution between inputs, no matter what the input prices are. 
Equations (1) and (2) become: 

(1') X
V

i
i

i
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
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(2') P
P

i
i

ii

 


 

The aggregate price is the weighted sum of the input prices. The Cobb-Douglas 
function is for the special case when  is equal to one. It should be clear from 
Equation (2) that this case needs special handling. The following equations provide 
the relevant equations for the Cobb-Douglas: 
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P
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where the production function is given by: 

  V A Xi i
i

i   
 

and 

  i
i
  1  

Note that in Equation (1'') the value share is constant, and does not depend directly on technology change. 

Calibration 

Typically, the base data set along with a given substitution elasticity are used to 
calibrate the CES share parameters. Equation (1) can be inverted to yield: 

 


i
i iX

V

P

P
 



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assuming the technology shifters have unit value in the base year. Moreover, the 
base year prices are often normalized to 1, simplifying the above expression to a 
true value share. Let’s take the Armington assumption for example. Assume 
aggregate imports are 20, domestic demand for domestic production is 80, and 
prices are normalized to 1. The Armington aggregate volume is 100, and the 
respective share parameters are 0.2 and 0.8. (Note that the model always uses the 
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share parameters represented by , not the share parameters represented by a. 
This saves on compute time since the a parameters never appear explicitly in any 
equation, whereas a raised to the power of the substitution elasticity, i.e. , occurs 
frequently.) 

With less detail, the following describes the relevant formulas for the CET function 
which is similar to the CES specification. 

max
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where V is the aggregate volume (e.g. aggregate supply), X are the relevant 
components (sector-specific supply), P are the corresponding prices, g are the CET 
share parameters, and  is the CET exponent. The CET exponent is related to the 
CET substitution elasticity,  via the following relation: 
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Solution of this maximization problem leads to the following first order conditions 
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where the  parameters are related to the primal share parameters, g, by the 
following formula: 
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Figures 

Figure 1:  Production Nesting 
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Notes: 
 1. Each nest represents a different CES bundle. The first argument in the CES function represents the substitution of 

elasticity. The elasticity may take the value zero. Because of the putty/semi-putty specification, the nesting is 
replicated for each type of capital, i.e. old and new. The values of the substitution elasticity will generally differ 
depending on the capital vintage, with typically lower elasticities for old capital. The second argument in the CES 
function is an efficiency factor. In the case of the KE bundle, it is only applied on the demand for capital. In the case 
of the decomposition of labor and energy, it is applied to all components. 

 2. Intermediate demand, both energy and non-energy, is further decomposed by region of origin according to the 
Armington specification. However, the Armington function is specified at the border and is not industry specific. 

 3. The decomposition of the intermediate demand bundle, the labor bundle, and the energy bundle will be specific to 
the level of aggregation of the model. The diagram represents only schematically the decomposition and is not 
meant to imply that there are three components in the CES aggregation. 
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Figure 2:  Armington Nesting 
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Note(s): 
 1. The base SAM includes a single trading partner with U.S., though the specification of import demand uses the 

multiple nesting approach in order to provide flexibility for the future as trade data is developed further. Import 
demand is modeled as a nested CES structure. Agents first choose the optimal level of demand for the so-called 
Armington good (XA). In a second stage, agents decompose the Armington aggregate good into demand for the 
domestically produced commodity (XD), and an aggregate import bundle (XM). At the third and final stage, agents 
choose the optimal quantities of imports from each trading partner. Import prices and tariffs are specific to each of 
the trading partners. 
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Figure 3:  Output Supply (CET) Nesting 
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Note(s): 
 1. The market for domestic output is modeled as a nested CET structure (similar to the note above, the current version 

of the U.S. data only concerns a single trading partner). Producers first choose the optimal level of output (XP)23. In 
a second stage, producers choose the optimal mix of goods supplied to the domestic market (XD), and an aggregate 
export supply (ES). At the third and final stage, producers choose the optimal mix of exports to each of the individual 
trading partners. The export price of each trading partner is region-specific. Under the small-country assumption, the 
export price is fixed (in out of state currency terms), otherwize, each trading partner has a downward sloping 
demand curve, and the export price is determined endogenously through an equilibrium condition. 

 

                                        
23 Note that in a perfectly competitive framework, output is determined by equilibrium conditions, and is not a producer 
decision. 
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