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 We present a model of a storable commodity with a price process different from those usually 

associated with agricultural commodities or exhaustible resources. This model has positive probability of 

zero output. For consumption equal to zero, price is infinite. In any initial period with finite price, the path 

of expected prices, conditional on current information, approaches infinity at a rate determined by the cost 

of storage, and the variance also approaches infinity. Price is expected to fall with probability one in finite 

time. Successive price realizations are always correlated, storage remains strictly positive, and expected 

consumption exceeds a strictly positive bound. There is a continuous limiting invariant distribution of 

price, with infinite mean. 
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A COMMODITY PRICE PROCESS WITH A UNIQUE CONTINUOUS INVARIANT 

DISTRIBUTION HAVING INFINITE MEAN 

 

BY EUGENIO S. A. BOBENRIETH H., JUAN R. A. BOBENRIETH H. AND BRIAN D. WRIGHT1 

 

1. INTRODUCTION 

IN STANDARD COMPETITIVE MODELS of a storable commodity in the tradition of Gustafson (1958) 

(for example, Samuelson (1971), Gardner (1979), Newbery and Stiglitz (1981), Wright and 

Williams (1982, 1984), Scheinkman and Schechtman (1983), Deaton and Laroque (1992)), 

expected price for the following period exceeds current price by the marginal cost of storage, 

whenever stocks are positive. The models fit the stylized fact that even after the worst production 

realization there is always a finite market-clearing price, via the adoption of one of two 

restrictions: demand is specified so that price at consumption equal to minimum harvest is finite, 

or the probability of minimum harvest is zero. 

 Models incorporating either restriction have implications inconsistent with three additional 

stylized facts of commodity markets. First, they generate stock-outs with positive probability, 

contrary to the observation of continually positive stocks for many commodities. Second, prices 

above the stock-out threshold do not exhibit the positive serial correlation observed over the full 

range of sample prices in many markets (Deaton and Laroque 1992, 1996). Third, price expected 

for the next period is never below spot price, in contrast to inferences from futures market 

observations at low stock levels in empirical “supply of storage” studies in the tradition of 

Working (1934). One way to make the model consistent with all four stylized facts would be to 

impose a sufficiently large marginal “convenience yield” at small stock levels. Disadvantages of 
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this approach include the lack of a clear theoretical basis and the absence of direct evidence of 

convenience yield. As an alternative, Bobenrieth and Wright (2000) derive typical supply of 

storage behavior as an aggregation phenomenon, in a variant of the standard model that assumes 

no convenience yield but includes marketing costs as a function of stocks and sales. 

 Here we show that the first three of the above four stylized facts of commodity markets can 

be replicated by the behavior of a variant of the canonical model of Scheinkman and Schechtman 

(1983), if it is specified such that zero output has positive probability, and price at zero 

consumption is infinite. In the limiting behavior of this model, with probability one, stocks are 

strictly positive and price is finite and serially correlated at all finite price levels. But the path of 

expected prices, conditional on current information, approaches infinity, rising at a rate equal to 

the cost of storage. There is a unique invariant limiting distribution of price, with infinite mean. 

 The occurrence of expected price spreads that are always at full storage cost contrasts with 

the implications of the standard models, and of futures price profiles for many commodities, 

under assumptions of risk neutrality, rationality, and zero transaction cost. Thus far our 

characterization of price behavior might make it seem analogous to that of an exhaustible 

resource (cf. Scheinkman and Schechtman (1983, p. 433)). But price, though always rising in 

expectation, falls with probability one in finite time, behavior often associated with price 

“bubbles.” Given a finite initial price, the variance of price approaches infinity. In further 

contrast with exhaustible-resource behavior, the invariant price distribution is continuous, and 

expected consumption in any future period exceeds a strictly positive constant, independent of 

time. Our model violates Samuelson’s (1971) transversality condition that discounted expected 

price goes to zero in the limit.  
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 In the next section we outline the model. In Section 3 we address the behavior of available 

supply and the nature of its invariant distribution. The implications for the invariant distributions 

of consumption and price are addressed in Section 4, followed by a conclusion. 

 

2. THE MODEL 

 As in previous studies of commodity storage, we model a competitive market for a single 

storable consumption commodity. Time is discrete. All agents have rational expectations.  

 In general, we follow the model of Scheinkman and Schechtman (1983). In this paper our 

focus is on the special case in which production is subject to one common exogenous i.i.d. 

multiplicative disturbance [ ]0, , 0Kω μ μ∈ ≡ < < +∞ , and ω  has a mixed discrete-continuous 

distribution with a single atom, at zero. More precisely, the distribution of ω  is of the form 

( )1 21L Lα α+ − , where ( )0,1α ∈ , 1L  is a discrete distribution with a unique atom at zero, and 2L  

is an absolutely continuous distribution with derivative m  specified as in Scheinkman and 

Schechtman (1983, p.436): the support of m is K and m is continuous on K. 

 Assume that there is a continuum of identical producers, and a continuum of identical 

consumers, both of total measure one. There is a one-period lag between the producers’ choice of 

effort 0λ ≥  and output ω λ′ , where ω′  is next period’s productivity shock. Cost of effort is 

given by a function :g + +→ , with ( )0 0g = , ( )0 0g′ = , and ( ) 0g λ′ ≥ , ( ) 0g λ′′ >  for all 

0λ > . The producer can store output from one period to the next. The amount stored is 0x ≥ . 

Storage cost is given by a function :φ + +→ , with ( )0 0φ = , ( )0φ′ ∈ , and ( ) 0xφ′ > , 

( ) 0xφ′′ >  for all 0x > . Given storage x  and effort λ , the next period’s total available supply is 

z x ω λ′ ′≡ + .  Producers are risk neutral and have a constant discount factor δ , 0 1δ< < . 
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 Utility is a function :U + +→ . U  is continuous in + , continuously differentiable in 

] [0, +∞ , strictly concave, and satisfies ( )0 0U = , ( ) 0 0U c c′ > ∀ > , 

( ) ( )00 limcU U c→ +′ ′= = +∞ , and ( )limc U c B→∞ ≤ < +∞ . Consumer’s demand is f U ′= . Note 

that ( ) ( )
0

c
U c f u du= ∫ , and that total revenue ( )c f c  is bounded.         

 The perfectly competitive market yields the same solution as the surplus maximization 

problem. The Bellman equation for the surplus problem is: 

 ( ) ( ) ( ) ( ) ( ){ },max xv z U z x x g E v zλ φ λ δ ′= − − − + ⎡ ⎤⎣ ⎦ ,  

  s.t. z x ω λ′ ′= + , 

   0, 0, 0x z x λ≥ − ≥ ≥ , 

where [ ].E  denotes the expectation with respect to next period’s production shock ω′ .  

 Standard results apply, establishing that v is continuous, strictly increasing, strictly concave, 

and that the optimal policy functions ( )x z  and ( )zλ  are single valued and continuous. 

Consumption and price are given by the functions ( ) ( )c z z x z≡ − , ( ) ( )( )p z f z x z≡ − . 

 The policy functions satisfy the Euler conditions: 

 ( )( ) ( )( ) ( ) ( )( ) ( ), with eq. if 0f z x z x z E v x z z x zφ δ ω λ⎡ ⎤′ ′ ′− + ≥ + >⎣ ⎦ , 

 ( )( ) ( ) ( )( ) ( ), with eq. if 0g z E v x z z zλ δ ω ω λ λ⎡ ⎤′ ′ ′ ′≥ + >⎣ ⎦ , 

and the envelope condition ( ) ( )( )v z f z x z′ = − . 

 Our assumption on the distribution of the ´sω , and the first arbitrage condition above, imply 

that if 0z > , then 0z′ >  and ( ) 0x z′ > . Thus, if current supply is positive, in any later period 

expected price exceeds current price. Note that ( ) ( )0 0p f= = +∞ . Contemplation of such price 
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behavior naturally raises issues of stationarity, which we approach by addressing the behavior of 

available supply, and then the implications for consumption and price. 

 

3. THE BEHAVIOR OF AVAILABLE SUPPLY  

 For available supply 0z ≥  and disturbance ω μ′ = , the function ( ) ( ) ( ),h z x z zμ λ μ= +  

describes the value of z′ . Note that storage ( )x z  is continuous and strictly increasing with z, 

( )zλ  is decreasing with z, ( )0 0x = , and that ( )0 0g′ =  implies ( ) 0zλ >  for each 0z ≥ . The 

results of Scheinkman and Schechtman (1983, section 5) in Lemmata 1, 2, 3, and 4, hold under 

our assumptions.  In particular, the facts that storage costs are positive and strictly convex imply 

the existence of an upper bound on storage, ( )
0

sup
z

x z
≥

< +∞ . Then a suitable state space is 

[ ]0,S z≡ , where ( ) ( )
0

sup 0
z

z x z λ μ
≥

≡ + . Storage takes values in the set [ ]0, x , where ( )0 0x =  

and ( )x x z≡ , labor supply takes values in the set ,λ λ⎡ ⎤⎣ ⎦ , where ( ) 0zλ λ≡ >  and ( )0λ λ≡ .  

Consumption takes values in the set [ ]0,c , where ( )0 0c =  and ( )c c z≡ . Without loss of 

generality, let the initial value of z be in S. 

 The transition probability of available supply is 

(1) 

( ) ( )

( )
( )

( )

( ) ( )
( )

( ) ( )
0

Prob Prob

0, if ,
Prob

1- , if .
a x a

a

z a z a x a a a

a x aa x a
a m d a x aλ

ω λ

ω
λ α α μ μ

′−⎡ ⎤⎣ ⎦

′ ′ ′ ′⎡ ≤ = ⎤ = + ≤⎡ ⎤⎣ ⎦⎣ ⎦
′⎧ <⎡ ⎤′ − ⎪′= ≤ = ⎨⎢ ⎥
′⎣ ⎦ ⎪ + ≥⎩ ∫

 

 Let M  be the c.d.f. for the density m. If the distribution of z  is G , the distribution of z′  is 
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(2) ( )( )
( )( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )

1

*

1 , if 0 ,

1 , if .

S

S

a x a
G x a M dG a a x

a
T G a

a x a
M dG a a x

a

α α
λ

α α
λ

−
⎧ ⎛ ⎞′ −

′ ′+ − ≤ <⎪ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠′ = ⎨
⎛ ⎞′ −⎪ ′+ − ≥⎜ ⎟⎪ ⎜ ⎟
⎝ ⎠⎩

∫

∫
 

 Let ( )SG  be the set of all c.d.f.’s with support on S. Equation (2) defines the adjoint 

operator ( ) ( )* :T S S→G G . A fixed point of *T  is an invariant distribution.  

 The following Theorem indicates that from any initial available supply, the distribution of 

available supply approaches a unique distribution, which is a global attractor.  

 THEOREM: There exists a unique fixed point *G  of *T . Furthermore, if G  is an arbitrary 

initial distribution on z , then ( ) ( )* t
T G  converges uniformly to the invariant distribution *G  (as 

t →+∞ ), at a geometric rate.  

 PROOF: Note that the transition probability (1) can be written as ( )1 21P Pα α+ − , where  

[ ]( )1 , 0, 1P a a′ = ,   [ ]( ) ( )( )

( )
( )2

1, 0,
a

x a

z x a
P a a m dz

a aλ λ
′ ⎛ ⎞′ −

′ ′= ⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ,   if ( ) [ ]0,x a a′∈ ; 

[ ]( ) [ ]( )1 2, 0, , 0, 0P a a P a a′ ′= = ,  otherwise.  

 Let 1T  and 2T  be the Markov operators associated with 1P  and 2P . The Markov operator 

associated with the transition probability (1) is ( )1 21T T Tα α= + − .  

 Let ( )B S  be the set of all bounded and measurable real valued functions on S, and let 

( )C S  be the subset of ( )B S  consisting of the continuous functions. For each ( )u B S∈ , 

 ( ) ( )( ) ( ) ( )
( )

( )
( )( )

1
z

x a

u z z x a
Tu a u x a m dz

a a
α α

λ λ
⎛ ⎞′ ′ −

′= + − ⎜ ⎟⎜ ⎟
⎝ ⎠

∫ . 
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 From Theorem 4.6 in Futia (1982, p. 394), 2T  is weakly compact, implying that 2
2T  is 

compact, and therefore 2T  is quasi-compact. Observing that 1T  is linear and continuous, by 

Theorem 4.10 in Futia (1982, p. 397), we conclude that T is quasicompact. Since 

( )( ) ( )T C S C S⊆ , Theorem 3.3 of Futia (1982, p. 389) implies that T is equicontinuous. 

Considering that the transition probability (1) satisfies the Uniqueness Criterion 2.11 in Futia 

with respect to the point 0, using Theorem 2.12 in Futia (1982, p. 385) we conclude that there is 

a unique probability *γ  satisfying ( )*
* *T γ γ= . 

 Finally, observing that the transition probability (1) also satisfies, with respect to the point 0, 

what is called in Futia a Generalized Uniqueness Criterion, Theorems 3.2, 3.6, and 3.7 in Futia 

(1982, p. 388 and p. 390) imply that given any initial probability measure γ  on z , the sequence 

( ) ( ){ }* :
t

T tγ ∈  converges in the total variation norm to *γ , at a geometric rate.  Q.E.D. 

 If G is the unit point mass at the initial value z, the conditional distribution of available 

supply in the next period, *T G , has as its support a finite interval with a single atom, of size α , 

at its lower limit ( )x z , and the distribution of available supply t periods in the future, ( ) ( )* t
T G , 

has a single atom of size tα  at the lower limit, ( )tx z , of its support. The invariant distribution 

*G  has no atoms, and the lower limit of its support is zero. 

 

4. THE BEHAVIOR OF CONSUMPTION AND PRICE  

 In this model the conditional expectation of price j∈  periods in the future exceeds 

current price and approaches infinity as j approaches infinity. Is such behavior consistent with a 

continuous invariant distribution of price? We address this issue by first considering the behavior 
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of consumption. We shall then use the inverse consumption demand relation to derive the 

limiting behavior of price. 

 Having established that z  has a unique invariant distribution with no atoms, and that the 

system converges to it at a geometric rate given any initial distribution, it follows immediately 

that the same is true for consumption, labor supply, storage, and price. 

 Note that the upper bound on the invariant distribution for z , call it uz , is less than z , and 

the upper bound on consumption under the invariant distribution is ( ) ( )u uc c z c z c= < = . We 

can construct uz  as follows. Let 0ẑ z= , and define the sequence { }ˆnz  by 

[ ]
( ) ( )

ˆ0,
1ˆ max

z zn
nz x z zλ μ

∈
+ = +⎡ ⎤⎣ ⎦ . 

Clearly 1 0ˆ ˆz z z< = , and since the operator on the RHS is monotone, it follows that { }ˆnz  is a 

decreasing sequence. Hence it converges, and the limit is uz .  Let z#  be the maximizing value 

when the interval is 0, uz⎡ ⎤⎣ ⎦ . Then an upper bound on consumption under the invariant 

distribution is 

( ) ( ) ( ) ( ) ( ) ( )0u u u u uc c z z x z x z z x zλ μ λ μ⎡ ⎤= = − = + − <⎣ ⎦
# # , 

where the inequality uses the facts that 0 uz z≤ ≤# , so ( ) ( )ux z x z≤#  and ( ) ( )0zλ λ≤# , and 

that the cost of effort is a strictly convex function. Accordingly, 0 and ( )( )1 0c λ μ−  are bounds 

on the support of the invariant distribution of available supply. 

 For the discussion that follows in this section, it is convenient to use the subscript t to denote 

the value of a function or of a variable in period t. Consider consumption in time t, 

( ) ( )t t t tc c z z x z= = − .  
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 The following corollary establishes that this model is not an exhaustible resource model, 

because the conditional expectation of consumption, and the mean of its invariant distribution, 

have a positive and finite lower bound.  

 COROLLARY 1:  There exists a constant 0q >  such that 

 ( )t j tE c z z q+
⎡ ⎤ ≥⎣ ⎦  { }0 ,t j∀ ∈ ∪ ∀ ∈ , 

 ( )t jE c z q+
⎡ ⎤+∞ > ≥⎣ ⎦ , and ( ) ( )*S

c z dzγ+∞ > ∫  ( )lim j t jE c z q→+∞ +
⎡ ⎤= ≥⎣ ⎦ .  

PROOF: Since c  is increasing and ( ) 0zλ λ≥ >  for each z S∈ , we conclude that 

( ) ( )2 Prob 2 0t j t t jE c z z c qλ μ ω μ+ +
⎡ ⎤ ⎡ ⎤≥ ⋅ ≥ ≡ >⎣ ⎦⎣ ⎦ . Using the facts that { }tγ  converges to *γ  

in the total variation norm and that ( )c B S∈ , we conclude that 

( ) ( ) ( ) ( ) ( )*t j t jS S
E c z c z dz c z dzγ γ+ +
⎡ ⎤ = →⎣ ⎦ ∫ ∫  (as j →+∞ ).                                              Q.E.D. 

 For price ( )t tp f c= , let ( )tH y [ ]Prob tp y≡ ≥ . Starting from a mass point in price, tH  has 

a mass point at the upper bound of its support, and converges uniformly to a unique stationary 

distribution *H , which is continuous and is a global attractor.  

 As noted above, if initial available supply 0z  is positive, then storage is positive for all later 

periods. In this case, it follows from the arbitrage equations that 

( ) ( )0 0
1

t tE p z z p z
δ

⎡ ⎤ ≥⎣ ⎦ ( )1 0t p z
δ

≥ > . If 0 0z = , ( ) 0tE p z z⎡ ⎤ = +∞⎣ ⎦  for all 0t ≥ . Therefore, 

 ( ) ( ) ( ) ( ) ( )0 0 0
1 1

t t t tS S
E p z E p z z dG p z dG p z t

δ δ
⎡ ⎤= ≥ = → +∞ → +∞⎡ ⎤⎣ ⎦ ⎣ ⎦∫ ∫ . 
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 Thus the mean of the invariant distribution is infinite. Furthermore, if ( )0p z < +∞ , the facts 

that ( )tE p z →+∞⎡ ⎤⎣ ⎦ , that tH  converges to *H , and that ( )* 0H +∞ = , imply that the variance 

of tp  approaches infinity (as t →+∞ ).  

 Though expected price increases without bound, the probability becomes arbitrarily large 

that realized price is below its expectation: 

 COROLLARY 2: For arbitrary 0ε >  and 0D > , there exist N ∈  and D D′ ≥  such that 

t N≥  implies that [ ]tE p D′>  and [ ]Prob tp D ε′≥ < .  

 PROOF: Since ( ) ( ) 0n * *lim H n H→+∞ = +∞ =  and tH  converges to *H  (as t →+∞ ), there 

exists D D′ ≥  and 1N ∈  such that ( )1 tt N H D ε′≥ ⇒ < . Observing that [ ]tE p →+∞  we 

conclude the proof. Q.E.D. 

 This corollary obviously has strong implications for the sampling properties of this price 

process. 

5. CONCLUSION  

 A modest modification of the standard assumptions of storage models results in a new price 

process distinct from those typically associated with agricultural or exhaustible resources. In this 

model, there is a (possibly arbitrarily small) positive probability of minimum output and 

consumption price is infinite at minimum output. We prove that price, consumption, storage and 

available supply can each have a unique continuous invariant limiting distribution which is a 

global attractor, and in which, almost surely, each respective variable is positive and finite, and 

expected price exceeds current price, which is serially correlated. The recurrence of episodes of 

behavior often associated with price “bubbles,” namely sequences of rapidly increasing prices, 

followed by abrupt price falls, is a feature of the limiting behavior of our price process. 
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