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Abstract
The view that the returns to educational investments are highest for early childhood

interventions is widely held and stems primarily from several influential randomized
trials – Abecedarian, Perry, and the Early Training Project – that point to super-normal
returns to early interventions. This paper presents a de novo analysis of these exper-
iments, focusing on two core issues that have received limited attention in previous
analyses: treatment effect heterogeneity by gender and over-rejection of the null hy-
pothesis due to multiple inference. To address the latter issue, I implement a statis-
tical framework that combines summary index tests with Familywise Error Rate and
False Discovery Rate corrections. The first technique reduces the number of tests con-
ducted; the latter two adjust the p-values for multiple inference. The primary finding
of the reanalysis is that girls garnered substantial short- and long-term benefits from
the interventions. However, there were no significant long-term benefits for boys.
These conclusions, which have appeared ambiguous when using “naive” estimators
that fail to adjust for multiple testing, contribute to a growing literature on the emerg-
ing female-male academic achievement gap. They also demonstrate that in complex
studies where multiple questions are asked of the same data set, it can be important to
declare the family of tests under consideration and to either consolidate measures or
report adjusted as well as unadjusted p-values.
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1 INTRODUCTION

The education literature contains dozens of papers showing inconsistent or low returns

to publicly funded human capital investments (cf. Hanushek 1986; Stecher, McCaffrey,

and Bugliari 2003). In contrast to these studies, several randomized early intervention

experiments report striking increases in short-term IQ scores and long-term outcomes for

treated children (Gray, Ramsey, and Klaus 1982; Campbell, Ramey, Pungello, Sparling,

and Miller-Johnson 2002; Schweinhart, et al. 2005). These results have been highly influ-

ential and are often cited as proof of efficacy for many types of early interventions (cf. Cur-

rie 2001). The experiments underlie the growing movement for universal pre-kindergarten

education (Kirp 2005) and play an important role in the debate over the optimal pattern

of human capital investments, with all parties agreeing that early education is a crucial

component of human capital policy (Carneiro and Heckman 2003; Krueger 2003).

This paper focuses on the three prominent early intervention experiments: the Abecedar-

ian Project, the Perry Preschool Program, and the Early Training Project. Beginning as

early as 1962, these programs targeted disadvantaged African-Americans in North Car-

olina, Michigan, and Tennessee respectively. These projects stand out from others because

they implement a random assignment research design, overcoming the problem of con-

founding that affects many observational studies. Following initial assignment to treatment

and control groups, treated children in each experiment received several years of preschool

education (intensity differed across programs). Intervention continued until the children

began regular schooling. At that point, further intervention was limited to data collection.

Children in both treatment and control groups received a series of standardized tests, and

researchers conducted subject interviews and examined school and government records to

collect long-term follow-up data on academic, social, and economic outcomes.

However, serious statistical inference problems affect these studies. The experimen-

tal samples are very small, ranging from approximately 60 to 120. Statistical power is

therefore limited, and the results of conventional tests based on asymptotic theory may be

misleading. More importantly, the large number of measured outcomes raises concerns

about multiple inference: significant coefficients may emerge simply by chance, even if
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there are no treatment effects. This problem is well known in the theoretical literature (cf.

Romano and Wolf 2005) and the biostatistics field (cf. Hochberg 1988), but it has received

limited attention in the policy evaluation literature. These issues – combined with a puz-

zling pattern of results in which early test score gains disappear within a few years and

are followed a decade later by significant effects on adult outcomes – have created serious

doubts about the validity of the results (cf. Currie and Thomas 1995; Krueger 2003).

This paper has two related objectives. First, it implements a comprehensive statistical

framework to directly address concerns about sample size and multiple inference. This

general framework is broadly applicable to a range of program evaluation studies, which

often have small samples and many outcomes. Second, in recognition of the emerging

female-male scholastic achievement gap (Lewin 2006), the paper simultaneously examines

all three studies to estimate the long-term effects of early intervention programs separately

by gender. The organization is as follows. Section 2 describes the data and each program’s

experimental design. Section 3 sets out the statistical framework. Section 4 presents results

organized by outcome stage – preteen, teen, and adult – and benchmarks the performance

of multiple inference adjustments when applied to a single study. Section 5 summarizes the

main results and places them in the context of the broader literature. Section 6 concludes.

The results demonstrate that early interventions (interventions that occur pre-kindergarten)

significantly improve later-life outcomes for females, particularly academic achievement.

However, treatment effects are modest or nonexistent for males – a fact that has been ob-

scured when using “naive” analyses that fail to account for multiple inference.

2 EXPERIMENTAL BACKGROUND AND DATA

2.1 The Abecedarian Project

The Abecedarian Project recruited and treated four cohorts of children in the Chapel Hill,

North Carolina area from 1972 to 1977. Children were randomly assigned to treated

and control groups. The treated children entered the program very early (mean age, 4.4

months). They attended a preschool center for eight hours per day, five days per week, 50
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weeks per year until reaching schooling age. The program focused on developing cogni-

tive, language, and social skills in classes of about six. In contrast to the other programs,

Abecedarian control children received some minor interventions: iron fortified formula,

free diapers, and supportive social services when appropriate (Campbell and Ramey 1994).

Of the three early intervention projects, Abecedarian was by far the most intensive.

The Abecedarian data set contains 111 children; 57 were assigned to the treatment

group and 54 to the control group. Data collection began immediately and has continued

– with gaps – through age 21. The data come from three primary sources: interviews with

subjects and parents, program administered tests, and school records. Children received IQ

tests on an annual basis from ages two through eight, and then once at age 12 and once

at age 15. Researchers collected information on grade retention and special education at

ages 12 and 15 from school records. Data on high school graduation, college attendance,

employment, pregnancy, and criminal behavior come from an age 21 interview. Follow-up

attrition rates are low, ranging from three to six percent for most outcomes.

2.2 The Perry Preschool Program

The Perry Preschool Program treated five waves of children in Ypsilanti, Michigan from

1962 to 1967. Children were randomly assigned to treated and control groups. Most treated

children entered the program at age three and remained in it for two years; the first wave

entered at age four and received one year of treatment. The program implemented the ideas

of Jean Piaget and focused on language, socialization, numbers, space, and time in classes

of five to six. Treated children attended the program five mornings per week from October

through May and received one 90 minute home visit per week (Schweinhart, et al. 2005).

The Perry data set contains 123 individuals, 58 in the treatment group and 65 in the

control group. Researchers gathered data from four primary sources: interviews with sub-

jects and parents, program administered tests, school records, and criminal records. IQ

tests were administered on an annual basis from program entry until age 10, and once more

at age 14. Information on special education, grade retention, and graduation status was

collected from school records. Arrest records were obtained from the relevant authorities,
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supplemented with interview data on criminal behavior. Economic outcome data come pri-

marily from interviews conducted at ages 19, 27, and 40. Follow-up attrition rates for most

variables are generally low, ranging between zero to ten percent.

2.3 The Early Training Project

The Early Training Project occurred in Murfreesboro, Tennessee from 1962 to 1964. Two

waves of three to four year old children were randomly assigned to treated and control

groups. The treated children attended preschool for 10 weeks during the summer, four

hours per day. The program continued until the beginning of school, for a total of two

to three summers of preschool. Children received positive reinforcement and participated

in activities focusing on motivation and persistence in classes of four to five. They also

received one 90 minute home visit per week for the program’s duration.

The Early Training Project gathered data on 88 children. The study’s control group

consists of a local control group and a distal control group. Of the 88 children in the

study, 61 lived in Murfreesboro, and 27 lived in another Tennessee town. The 61 children

in Murfreesboro were randomly assigned to the treatment group with approximately two-

thirds probability and the local control group with approximately one-third probability. The

27 children in the distant town formed the distal control group. Since the children in the

distal control group were not randomly assigned and their observable characteristics are

not similar to the local control group (Anderson 2006), I drop them from the analysis. This

choice results in a total sample of 65 – 44 treated children and 21 control children.

Early Training Project data come from three sources: interviews with subjects and par-

ents, program administered tests, and school records. IQ tests were given annually from

ages four through eight and at ages 10 and 17. Data on grade retention and high school en-

rollment comes from school records. Subject interviews provide data on post-high school

education and economic outcomes. No crime data were collected. Attrition rates for most

variables are below 10 percent, and females had virtually no attrition for many variables.
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2.4 Summary Statistics

Table 1 lists means and standard deviations of key variables for all three projects. The

statistics highlight the degree to which these children are disadvantaged. Average IQs in

the teen years range from 77.7 to 93.2. High school dropout rates range from 30 to 40

percent. In one sample, a majority of subjects have a criminal record. When drawing

inferences about the results’ external validity, it is important to note that these children are

not representative of the average American child. Nevertheless, many of their attributes are

not unusual for African-American youth in poor neighborhoods (cf. Miller 1992).

2.5 Internal Study Group Findings

Each study group has published manuscripts documenting the evolution of differences be-

tween treatment and control groups over time. In spite of substantial variation in treat-

ment intensity across programs, similarities in outcome patterns emerge. All studies report

significant, meaningful effects on IQ scores during the pre-kindergarten treatment period.

These effects diminish over time, however, and by high school the IQ effects drop in mag-

nitude by 70% to 100%. Nevertheless, all three studies report increases in schooling com-

pletion rates for treated children; high school graduation or college attendance rates rise

by as much as 17 to 22 percentage points in each study. It therefore appears that although

the cognitive benefits of these programs fade out, the non-cognitive benefits persist and

manifest themselves in improved schooling completion rates later in life (Gray, et al. 1982;

Schweinhart, et al. 1993; Campbell and Ramey 1994, 1995; Campbell, et al. 2002).

Nevertheless, important divergences appear between these studies’ findings. In particu-

lar, the Perry Preschool Program reports large, statistically significant reductions in juvenile

and adult criminal behavior that do not replicate in the Abecedarian Program. This diver-

gence is not due to a low base rate of criminal behavior among the Abecedarian sample;

the Abecedarian and Perry control groups display similar arrest rates (Schweinhart, et al.

1993; Clarke and Campbell 1998; Campbell, et al. 2002).

The findings become even more contradictory when effects are reported separately by
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gender. The Early Training and Abecedarian programs do not consistently report effects

by gender. For example, Gray, et al. (1982) report effects by gender for 5 of the 17 sets of

results they present, while Campbell, et al. (2002) report treatment-by-gender interactions

for 3 of the 15 adult demographic outcomes they present. Nevertheless, both study groups

suggest in summary discussions that benefits for males may be modest. Early Training

investigators caution that “as a whole, it looks as if the intervention program...was more

effective for the females than the males” (Gray, et al. 1982, p. 254). Abecedarian re-

searchers note that “treated women made greater educational progress relative to untreated

women than was true for treated men relative to untreated men” and mention no significant

long-term effects for males (Campbell, et al. 2002, p. 54).

The Perry Preschool manuscripts report effects separately by gender when results are

significant. In contrast to the other studies, Perry investigators conclude there is no evidence

of weaker benefits for males. In summarizing the overall benefits of the program, they

state, “There is no suggestion that from a public policy perspective, preschool programs

make sense for females but not for males, or vice versa” (Schweinhart, et al. 1993, p. 166).

In fact, Schweinhart, et al. (2005) conclude that the total benefits for males are four times

greater than the total benefits for females.

On the whole, there is therefore no consensus regarding the heterogeneity of early in-

tervention effects by gender. This ambiguity may be due to the large numbers of outcomes

tested in each study; every study group comes to a different conclusion because each one

focuses on its subset of significant outcomes. In applying a framework that is robust to mul-

tiple inference, I untangle the conflicting gender-specific findings in the existing literature.

Furthermore, I demonstrate that, when applied to a single study, these methods generate

robust conclusions that replicate in the other two studies. This performance is encouraging

and stands in contrast to the unstable conclusions produced by “naive” analyses.

7



3 STATISTICAL FRAMEWORK

3.1 Identification and Inference

The random assignment process makes estimation of causal effects straightforward. The

primary approach compares treated children (those that received the intervention) to un-

treated children (those that did not) across a wide variety of outcomes. To conduct infer-

ence, I compute Huber-White standard errors that are robust to heteroskedasticity (White

1980). Although these standard errors are asymptotically consistent, the samples are quite

small – some groups contain as few as 10 individuals. The Huber-White standard errors

may therefore be misleading, particularly since the underlying data is distributed non-

normally in some cases. To address this concern, I calculate p-values that do not rely

on asymptotic theory or distributional assumptions.

Instead of a standard t-test, I implement a variant of the non-parametric permutation

test (cf. Efron and Tibshirani 1993). This procedure computes the null distribution of the

test statistic under minimal assumptions: random assignment and no treatment effect. For

a given sample size Nk, the procedure is implemented as follows:

1. Draw binary treatment assignments z∗i from the empirical distribution of the original

treatment assignments without replacement.

2. Calculate the t-statistic for the difference in means between treated and untreated

groups.

3. Repeat the procedure 100,000 times and compute the frequency with which the sim-

ulated t-statistics – which have expectation zero by design – exceed the observed

t-statistic.

If only a small fraction of the simulated t-statistics exceed the observed t-statistic, reject

the null hypothesis of no treatment effect. This procedure tests the sharp null hypothesis of

no treatment effect, so rejection implies that the treatment has some distributional effect.

Formally, the two required assumptions are:
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1. Random Assignment: Let yi0 be the outcome for individual i when untreated and

yi1 be the outcome for individual i when treated (we only observe either yi0 or yi1).

Random assignment implies {yi0, yi1 ⊥ zi}.

2. No Treatment Effect: yi0 = yi1 ∀ i

Note that no assumptions regarding the distributions or independence of potential out-

comes are needed. This is because the randomized design itself is the basis for inference

(Fisher 1935), and pre-existing clusters cannot be positively correlated with the treatment

assignments in any systematic way. Even if the potential outcomes are fixed, the test statis-

tic will still have a null distribution induced by the random assignment. Since the researcher

knows the design of the assignment, it is always possible to reconstruct this distribution

under the null hypothesis of no treatment effect, at least by simulation if not analytically.

Thus, this test always controls Type I error at the desired level (Rosenbaum 2007).

For binary yi, this test generally converges to Fisher’s Exact Test. However, it differs

slightly from Fisher’s Exact Test in that Fisher’s test rejects for small p-values while this test

rejects for large t-statistics. This test is also similar to bootstrapping under the assumption

of no treatment effect (Simon 1997); the only difference is that the resampling is done

without replacement rather than with replacement. This highlights the fact that the variance

in the test statistic’s null distribution arises from the randomization procedure itself rather

than from unknown variability in the potential outcomes.

The reported p-values are correct for tests conducted in isolation, but they do not ad-

dress the issue of multiple inference. Because each study examines hundreds of outcomes,

some outcomes should display significance even if no effect exists. Furthermore, the small

samples ensure that significant results are necessarily of notable magnitude.

3.2 Multiple Inference Adjustments

Several papers in the educational field have discussed the issue of simultaneous inference

with large numbers of outcomes (cf. Williams, Jones, and Tukey 1999), and some research

organizations, such as the Institute of Education Sciences’ What Works Clearinghouse,
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have technical standards that include multiplicity adjustments. However, most randomized

evaluations in the social sciences test many outcomes but fail to apply any type of mul-

tiple inference correction. To gauge the extent of the problem, I conducted a survey of

randomized evaluation papers published from 2004 to 2006 in the fields of economic or

employment policy, education, criminology, political science or public opinion, and child

or adolescent welfare. Using the CSA Illumina social sciences databases, I identified 44

such papers in peer-reviewed journals.

Of these 44 articles, 37 (84%) report testing five or more outcomes, and 27 (61%) report

testing ten or more outcomes. These figures represent lower-bounds for the total number

of tests conducted, since many tests may be conducted but not reported. Nevertheless, only

three papers (7%) implement any type of multiple inference correction. Of these three

papers, two apply the Bonferroni correction – the most rudimentary adjustment in general

use – and one implements a summary index that reduces the total number of tests. Although

multiple inference corrections are standard (and often mandatory) in psychological research

(Benjamini and Yekutieli 2001), they remain uncommon in other social sciences, perhaps

because practitioners in these fields are unfamiliar with the techniques or because they have

seen no evidence that they yield more robust conclusions.

Two approaches exist to solving the multiple inference problem. One approach reduces

the number of tests being conducted. This method avoids p-value adjustments, which gen-

erally reduce the power of any given test, at the cost of limiting the scope of hypothesis

testing. The other approach maintains the number of tests but adjusts the p-values to reflect

this fact. This method allows for an arbitrarily large number of tests, but the power of each

specific test can fall as the number of tests conducted grows. In this paper, I combine both

approaches in order to balance the trade-offs of each one.

I begin by limiting the total number of hypotheses being tested. First, I choose a specific

set of outcomes based on a priori notions of importance. I then implement summary index

tests in three broad outcome areas: preteen, adolescent, and adult. These indices combine

multiple measures to reduce the total number of tests conducted.

Nevertheless, I still test multiple indices. I therefore adjust the p-values on the summary
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index tests to reflect this fact. Specifically, I control Familywise Error Rate (FWER) – the

probability of rejecting at least one true null hypothesis – using the free step-down resam-

pling method. When reporting results for specific outcomes, I control the False Discovery

Rate (FDR), or the proportion of rejections that are “false discoveries” (Type I errors). FDR

control is well suited to exploratory analysis because it allows a small number of Type I

errors in exchange for greater power than FWER control.

3.2.1 Summary Index Tests

In this study I define a set of primary outcomes that includes IQ scores, grade retention,

special education, high school graduation, college attendance, employment, earnings, gov-

ernment transfers, arrests, convictions or incarcerations, drug use, teen pregnancy, and mar-

riage (see Table 2). This list appears long but represents only a small fraction of all avail-

able outcomes. Nevertheless, the total number of outcomes tested reaches 47. I therefore

implement summary index tests that pool multiple outcomes into a single test.

Summary index tests originate in the biostatistics literature (see O’Brien 1984). These

tests feature three advantages over testing individual outcomes. First, they are robust to

over-testing because each index represents a single test. Therefore, the probability of a

false rejection does not increase as additional outcomes are added to a summary index.

Second, they provide a statistical test for whether a program has a “general effect” on a

set of outcomes. Finally, they are potentially more powerful than individual level tests –

multiple outcomes that approach marginal significance may aggregate into a single index

that attains statistical significance. For example, consider an underlying latent variable –

human capital at a given age – that is expressed through multiple measures, such as years

of education, employment, earnings, and criminal record. When testing whether early

intervention affects the latent variable, two sources of random error exist. First, there is

error that arises from the random assignment procedure – the latent variable will not be

perfectly balanced across treatment and control groups in any finite sample. Second, there

is random error in each outcome measure – individuals with the same latent value may

realize different values for any given outcome. Summary index tests can reduce the second
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source of error by combining data from multiple outcome measures into a single index.

At the most basic level, a summary index is a weighted mean of several standardized

outcomes. The weights are calculated to maximize the amount of information captured

in the index. A summary index test can be implemented through the following steps (see

Appendix A for a formal definition):

1. For all outcomes, switch signs where necessary so that the positive direction always

indicates a “better” outcome.

2. Demean all outcomes and convert them to effect sizes by dividing each outcome

by its control group standard deviation. Call the transformed outcomes ỹ. (This

conversion normalizes outcomes to be on a comparable scale.)

3. Define J groupings of outcomes (also referred to as areas or domains). Every out-

come yjk is assigned to one of these J areas, giving Kj outcomes in each area j (k

indexes outcomes with an area).

4. Create a new variable, sij , that is a weighted average of ỹijk for individual i in area j.

When constructing sij , weight its inputs, outcomes ỹijk, by the inverse of the covari-

ance matrix of the transformed outcomes in area j. (A simple way to do this is to set

the weight on each outcome equal to the sum of its row entries in the inverted covari-

ance matrix for area j. Formally, sij = (1′Σ̂−1
j 1)−1(1′Σ̂−1

j ỹij), where 1 is a column

vector of ones, Σ̂−1
j is the inverted covariance matrix, and ỹij is a column vector of

all outcomes for individual i in area j. Note that this is an efficient generalized least

squares (GLS) estimator.)

5. Regress the new variable, sij , on treatment status to estimate the effect of treatment

on area j. A standard t-test assesses the significance of the coefficient.

In this research I define three groupings based on age: preteen, adolescent, and adult.

Given the interest in these programs’ long-term impacts, testing for effects at the adolescent

and adult stages is natural. Nevertheless, the choice of outcome groupings can theoretically

affect the results, so one should check that results are robust to alternative grouping choices.
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For example, in this paper grouping outcomes by academic, economic, and social domains,

rather than stage-of-life domains, does not qualitatively change the results. (If the results

are sensitive to grouping choice, then summary index p-values should be adjusted using the

techniques in Section 3.2.2 or 3.2.3 to reflect the fact that the most significant specification

was chosen.)

The GLS weighting procedure in step 4 increases efficiency by ensuring that outcomes

which are highly correlated with each other receive less weight, while outcomes that are

uncorrelated and therefore represent new information receive more weight. O’Brien (1984)

finds this procedure to be more powerful than other popular tests in the repeated measures

setting. Also, missing outcomes are ignored when creating sij . This procedure therefore

uses all the available data, but it weights outcomes with fewer missing values more heavily.

3.2.2 Familywise Error Rate Control

Each summary index consolidates several individual tests into a single test. However, we

may wish to test for effects in several domains or across multiple experiments, resulting

in multiple summary indices. In this research, there are nine summary indices per gender

(three domains by three experiments). One option is to further reduce the number of tests

by aggregating all summary indices together. However, because differential effects by

domain may be of interest, there is substantial benefit to maintaining separation between

the indices. For example, long-term outcomes may be of greater policy interest than short-

term test score gains. Therefore, an alternative approach is to maintain the number of

summary indices and adjust their p-values to reflect the multiple inference problem.

The most common approach to adjusting p-values for multiple testing is to control

Familywise Error Rate. Suppose a family of M hypotheses, H1, H2, ..., HM , is tested,

of which J are true (J ≤ M ). FWER is the probability that at least one of the J true

hypotheses in the family is rejected. In this research, the family of tested hypotheses is the

set of nine summary index tests performed for each gender. As more hypotheses are added

to a family, the probability of rejecting at least one of them at a given α-level increases, and

hence FWER increases. FWER control techniques adjust the p-values of each test upwards
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to reduce the probability of a false rejection.

A popular technique for controlling FWER is the Bonferroni correction. This technique

multiplies each p-value by M , the number of tests performed. Its advantage is simplicity,

but it suffers from poor power. A more powerful technique that controls FWER is the

free step-down resampling method (Westfall and Young 1993). This algorithm is more

powerful than the Bonferroni correction (and other algorithms) for three reasons. First,

the free step-down resampling method computes an exact probability rather than an upper

bound (it is common, for example, for Bonferroni p-values to exceed 1). Second, when a

hypothesis is rejected, the free step-down resampling method removes it from the family

being tested, increasing the power of the remaining tests. Bonferroni does not. Finally,

unlike Bonferroni, free step-down resampling incorporates dependence between outcomes.

This can substantially increase power if outcomes are highly correlated. In an extreme

case, if all outcomes are perfectly correlated, FWER adjusted p-values and the unadjusted

p-values should be equal, and with the free step-down resampling method they will be.

For a family of M outcomes tested in an experimental setting, the free step-down re-

sampling procedure is implemented as follows:

1. Sort outcomes y1, ..., yM in order of decreasing significance (increasing p-value), i.e.

such that p1 < p2 < ... < pM .

2. Simulate the data set under the null hypothesis of no treatment effect using the re-

sampling procedure described in Section 3.1.

3. Calculate a set of simulated p-values, p∗1, ..., p
∗
M , for outcomes y1, ..., yM using the

simulated treatment status variable. Note that they will not display the same mon-

tonicity as p1, ..., pM .

4. Enforce the original monotonicity: Compute p∗∗r = min{p∗r, p∗r+1, ..., p
∗
M}. (r denotes

the original significance rank of the outcome, with r = 1 being the most significant

and r = M being the least significant)
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5. Perform L ≥ 100, 000 replications of steps 2 through 4. For each outcome yr, tabu-

late Sr, the number of times that p∗∗r < pr.

6. Compute pfwer∗
r = Sr/L.

7. Enforce monotonicity a final time: pfwer
r = min{pfwer∗

r , pfwer∗
r+1 , ..., pfwer∗

M }. (This

final monotonicity enforcement ensures that larger unadjusted p-values always cor-

respond to larger adjusted p-values.)

The crucial steps of this algorithm are steps 2 through 4. Steps 2 and 3 ensure that

the dependence structure between outcomes is preserved because each case is resampled

with the correlation structure of its outcomes intact. We therefore expect p∗1, ..., p
∗
M to be

positively correlated (if the original outcomes were positively correlated), and the minimum

p-value of a set of M positively correlated p-values is generally greater than the minimum

p-value of a set of M independent p-values. Incorporating dependence thus increases the

probability that pr < p∗∗r , reducing Sr and increasing the probability of rejection.

Step 4 performs the key multiplicity adjustment when the simulated p-value for out-

come yr p
∗
r , is replaced with min{p∗r, p∗r+1, ..., p

∗
M}. The original p-value, pr, is thus judged

against the distribution of the minimum p-value of a set of M − r + 1 p-values. This

makes the adjusted p-value more conservative than a standard p-value, which is implicitly

judged against the distribution of the minimum p-value of a set of one p-value, but less

conservative than the Bonferroni correction, which implicitly judges every p-value against

the distribution of the minimum p-value of a set of M p-values.

An example may aid interpretation of FWER adjusted p-values. In this research, there

are M = 9 summary indices tested for each gender. Consider the smallest summary index

p-value of the nine male summary indices, which occurs for adult Early Training males

(Table 3). The unadjusted p-value is approximately 0.011. The corresponding adjusted

p-value, calculated via the free step-down resampling method for the entire family of male

summary tests, is pfwer = 0.090. Suppose we simulate the male data 100,000 times under

the null hypothesis of no treatment effect. If we compute an entire set of nine summary

effect p-values for each simulation, the minimum p-value of that set will be less than or
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equal to the unadjusted p-value of 0.011 approximately 9 percent of the time. A minimum

observed p-value of 0.011 is therefore not unlikely under the null given the number of

tests conducted – a fact that helps explain why this particular effect goes in the “wrong”

(negative) direction. For unadjusted p-values above the family’s minimum p-value, the

number of tests in the family effectively decreases, making the adjustment less severe.

The free step-down resampling method strongly controls FWER – for any subset of the

family of hypotheses, it ensures that the probability of falsely rejecting at least one hypoth-

esis is less than α even if some of hypotheses outside of that subset are false (weak control

of FWER only guarantees the size of a test if every hypothesis in the family is true). The

only assumption necessary for this algorithm to provide strong control is subset pivotality,

or the assumption that the distribution of any subset of the family of test statistics depends

only on the validity of the hypotheses in that subset. For tests of multiple outcomes, such

as this one, that assumption is met (Westfall, Tobias, Rom, Wolfinger, and Hochberg 1999,

p. 237).

3.2.3 False Discovery Rate Control

FWER control limits the probability of making any Type I error. It is thus well suited to

cases in which the cost of a false rejection is high. In this research, for instance, incorrectly

concluding that early interventions are effective could result in a large-scale misallocation

of teaching resources. However, in exploratory analysis we may be willing to tolerate some

Type I errors in exchange for greater power. For example, the effects of early intervention

on specific outcomes may be of interest, and since overall conclusions about program ef-

ficacy will not be based on a single outcome, it seems reasonable to accept a few Type I

errors in exchange for greater power. This tradeoff is particularly appealing when, as in this

case, we are testing a large number of hypotheses, because FWER adjustments become in-

creasingly severe as the number of tests grows – it is inherent in controlling the probability

of making a single false rejection. An alternative method of addressing the multiplicity

problem that often affords better power is to control the False Discovery Rate, or the ex-

pected proportion of rejections that are Type I errors. FDR formalizes the tradeoff between
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correct and false rejections and reduces the penalty to testing additional hypotheses.

Define V as the number of false rejections, U as the number of correct rejections, and

t = V +U as the total number of rejections. FWER is the probability that V is greater than

0. FDR is the expected proportion of all rejections that are Type I errors, or E[Q = V/t]

(when t = 0, Q is defined to be 0). If all null hypotheses are true, then V = t, and FWER

and FDR are equivalent (Q equals 0 when there are no rejections and 1 when there are one

or more rejections, so FDR = E[Q] = P (t > 0) = P (V > 0) = FWER). However, when

some false hypotheses are correctly rejected, then FDR is less than FWER because the

expected proportion of rejections that are Type I errors is less than the probability of making

any Type I error. Controlling FDR at a given level therefore often requires less stringent

p-value adjustments than controlling FWER at the same level, resulting in increased power.

Benjamini and Hochberg (1995) propose a simple method for controlling FDR (re-

ferred to as BH from this point on). As in Section 3.2.2, suppose that we test hypotheses

H1, ..., HM , and let the hypotheses be sorted in order of decreasing significance, such that

p1 < p2 < ... < pM . Suppose q ∈ (0, 1). Let c be the largest r for which pr < qr/M .

Rejecting all hypotheses H1, ..., Hc controls FDR at level q for independent or positively

dependent p-values. (In other words, beginning with pM , check whether each p-value meets

pr < qr/M . When one does, reject it and all smaller p-values.) This procedure is in fact

conservative in that it controls FDR at level q(m0/M), where m0 is the number of true

null hypotheses (Benjamini and Yekutieli 2001). We do not observe m0, but if we did we

could “sharpen” the procedure by replacing qr/M with qr/m0. Since qr/m0 ≥ qr/M , the

sharpened procedure would provide greater power if at least one null hypothesis were false.

Benjamini, Krieger, and Yekutieli (2006) propose a two-stage procedure that estimates

the number of true hypotheses to achieve sharpened FDR control. The procedure is imple-

mented as follows:

1. Apply the BH procedure at level q′ = q/(1 + q). Let c be the number of hypotheses

rejected. If c = 0, stop. Otherwise, continue to step 2.

2. Let m̂0 = M − c.
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3. Apply the BH procedure at level q∗ = q′M/m̂0.

By incorporating the number of hypotheses rejected in the first stage into the second

stage, this procedure provides better power than the standard BH procedure while con-

trolling FDR at level q for independent p-values. Simulations indicate that the two-stage

procedure also works well for positively dependent p-values (Benjamini, et al. 2006), such

as the ones in this research. I therefore use the two-stage procedure to control FDR when

reporting results for specific outcomes (e.g., high school graduation, employment, etc.).

However, researchers dealing with negatively dependent p-values may need to adopt a more

conservative modification of the BH procedure (Benjamini and Yekutieli 2001, p. 1169).

The BH and two-stage procedures both report whether a hypothesis was rejected at level

q, but they do not report the smallest level q at which the hypothesis would be rejected. This

value – which is the natural analog to the standard p-value – can easily be computed for

all hypotheses by performing the procedure for all possible q levels (e.g., 1.000, 0.999,

0.998,...) and recording when each hypothesis ceases to be rejected. Stata code is available

from the author to calculate these FDR “q-values.”

To understand in practice why FDR control is less conservative than FWER control,

consider how the BH and free step-down resampling procedures treat the median p-value,

p′ = pM/2, in a set of M p-values. Roughly, the BH procedure rejects H ′ = HM/2 if

pM/2 < α(M/2)/M = α/2, while the free step-down resampling procedure rejectsHM/2 if

pM/2 exceeds the minimum of a family ofM/2 simulated p-values at a rate less than α. The

former equates to adjusting the p-value by a factor of 2, while the latter equates to adjusting

the p-value by a factor of up toM/2. For largeM , the difference becomes substantial. Note

also thatM does not appear on the right side of the expression pM/2 < α/2. If additional p-

values – distributed similarly to the existing p-values – are added to the family of tests, the

FDR adjustment to the existing p-values need not become more stringent in expectation.

3.2.4 Summary

Three types of multiple inference adjustments are presented (and applied): summary index

tests, FWER adjusted p-values, and FDR adjusted p-values. The first technique reduces
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the total number of tests performed, while the second and third techniques maintain the

number of tests and adjust the p-values. Given the substantial differences between these

techniques, it is important that researchers understand the benefits and drawbacks of each

technique when deciding which ones are most appropriate for their own work.

Summary index tests make sense when testing for an intervention’s overall effect and

when there is an a priori reason to believe that a group of outcomes will be affected in a

consistent direction. In those cases, a summary index test often has better power than a

series of FWER or FDR adjusted individual tests. This research applies summary indices

to estimate the overall effects of each program at different stages in life.

Athough they are more likely to reject, summary index tests yield less information when

they do reject, as it is impossible to conclude which underlying outcomes were significantly

affected. If effects on specific outcomes are of interest, or if there is no reason to believe

that outcomes are affected in a consistent direction, then testing all outcomes of interest

and adjusting the p-values is a logical strategy. In that case, the choice between FWER and

FDR adjustments may be dominated by the cost of a Type I error. When controlling FDR

with many outcomes, one can expect to encounter some false positives with reasonably

high probability. In contrast, when controlling FWER, all rejections will be correct with

high probability. Therefore, if the cost of a Type I error is high, a researcher will likely opt

for FWER control. However, if the cost of a Type I error is low to moderate, the increased

power of FDR control will be appealing, particularly if the family of hypotheses being

tested is large. This research applies FWER adjustments to the summary index p-values

to ensure that programs are not erroneously judged to be effective at different life stages.

It applies FDR adjustments to tests of individual outcomes to facilitate exploratory anal-

ysis while controlling the number of false rejections. Conclusions about overall program

effectiveness, however, should be based upon the FWER adjusted summary index p-values.
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4 RESULTS

4.1 Graphical Analysis

Figure 1 presents a graphical summary of the treatment effect t-statistics for long-term out-

comes. This figure plots t-statistics for teenage and adult coefficients across all experiments

for each gender (see rows marked “Teen” and “Adult” in Table 2). Each point corresponds

to the t-statistic for a single outcome, and all outcomes have been recoded so that the pos-

itive direction always corresponds to a “better” outcome. The first column of points plots

male t-statistics, and the second column plots female t-statistics. It is clear upon visual in-

spection that the distribution of female t-statistics is centered well above the distribution of

male t-statistics, suggesting females accrue greater long-term benefits from these programs.

The third column of points plots a set of t-statistics generated by randomly assigning

treatment status to children and computing the corresponding t-statistics. This procedure

guarantees that any significant “treatment effects” visible in the column are simply due to

chance. The procedure is equivalent to sampling randomly from the t-distribution, except

that it preserves the inherent correlation between t-statistics within each experiment.

The second and third columns are immediately distinguishable from each other, im-

plying that females realize long-term benefits from these programs. Comparing the first

and third columns, however, reveals that the distribution of male t-statistics is hard to dis-

tinguish from a draw of randomly generated t-statistics. The minimum value in the third

column exceeds the minimum value in the first column, but the first column has more t-

statistics clustered above 1.5. In both the first and third columns a case could be made

for positive treatment effects by focusing on the set of outcomes near the top. This fact

highlights the importance of correcting for multiple inference.

The following subsections analyze program effects by life-stage and experiment, as

well as exploring effects for specific outcomes. I define two families of tests for calculating

FWER and FDR adjusted p-values – one for each gender. (All female outcomes constitute

one family, and all male outcomes constitute a second family. A case can be made for

analyzing Abecedarian – the most intensive program – as a separate family; however, doing
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so does not change the paper’s central conclusions.) The reported summary effects control

for FWER, or the probability of any false rejection, while the effects for specific outcomes

control for FDR, or the expected proportion of false discoveries.

4.2 Preteen Outcomes

The interventions affect females positively at the preteen stage. Table 3 reports summary

index results by outcome stage and experiment. Like all tables in this section, it presents

results for both genders. Coefficients in this table represent effect sizes. For comparison,

the average effect size of a wide range of elementary school interventions summarized in

Hill, Bloom, Black, and Lipsey (2007) is 0.33, and the black-white test score gap corre-

sponds to an effect size of 0.8 to 1.0. At the preteen stage, the programs improve outcomes

for Abecedarian and Perry females, with summary effect size increases of 0.45 and 0.54

respectively. Controlling FWER using the free step-down resampling method, the Perry p-

value is significant, but the Abecedarian p-value falls short of marginal significance. Early

Training females experience an insignificant summary effect size increase of 0.36.

Males, however, do not experience consistent gains in preteen outcomes. Abecedarian

males realize a summary effect size increase of 0.42, but it is insignificant when adjusting

for multiple inference. The Perry and Early Training males experience summary effect size

increases of 0.15; neither result approaches significance.

The disaggregated results suggest that the interventions raise early IQ scores for both

genders and reduce early grade retention and special education for females. However, they

have limited effects on grade retention and special education for males.

Table 4 reports effects on preteen IQ scores. For each gender, the first column reports

coefficients and standard errors, the second column reports control group means, the third

column reports non-parametric p-values (which in general are qualitatively similar to the

standard parametric p-values), the fourth column reports FDR “q-values” (computed using

the two-stage procedure from Section 3.2.3), and the fifth column reports sample size. The

last column in each table tests for differences between female and male treatment effects.

All projects demonstrate similar IQ effects at early ages. In each project, there is a large
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IQ effect for at least one gender upon completion of preschool; in five cases – including

two cases for males – results are significant when controlling FDR at q = 0.10. Females

continue to display large IQ effects at age 10 in Abecedarian and Early Training. Males,

however, display no significant IQ effect in any project at age 10.

The results in Table 5 suggest that the early IQ gains may translate into better perfor-

mance in primary school, but no result rejects when controlling FDR at q = 0.10. Female

grade retention falls by 20 to 30 percentage points in all three programs, and female spe-

cial education placement falls 26 percentage points in the Perry program. Abecedarian

males experience (insignificant) 19 and 27 percentage point declines in grade retention and

special education placement. However, males in the Perry and Early Training programs

demonstrate no notable decreases in grade retention or special education placement.

Gender differences in treatment effects emerge by age 10. Female IQ effects at age 10

are higher than male IQ effects in both the Perry and Early Training programs. Females

also experience greater drops in grade retention than males in both the Perry and Early

Training programs. Most importantly, in every experiment the summary female preteen

effect is higher than the summary male preteen effect.

Although the interventions positively affect preteen outcomes, the implications for

long-term success are unclear. A short-term IQ gain may not result in any long-term bene-

fits, and decreased grade retention at an early age may not affect graduation rates a decade

later. For example, Currie and Thomas (1995) conclude that, for African-Americans, Head

Start initially boosts test scores but does not have a lasting effect on academic achieve-

ment. Conversely, diminishing effects on standardized tests may mask improvements in

non-cognitive skills that affect earnings and achievement (Heckman and Rubinstein 2001).

The next subsections therefore focus on long-term teenage and adult outcomes.

4.3 Teenage Outcomes

Overall, the interventions have consistent, positive effects on female teen outcomes. Teen

summary effects increase by 0.42, 0.61, and 0.46 standard deviations for females in the

Abecedarian, Perry, and Early Training programs (see Table 3). The Perry effect is highly
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significant (p < 0.001, pfwer = 0.003). The interventions, however, have no significant

effect on male teen outcomes; male summary effects increase by only 0.16, 0.04, and 0.12

respectively in the Abecedarian, Perry, and Early Training programs.

The disaggregated results suggest that early intervention improves high school gradu-

ation, employment, and juvenile arrest rates for females, but has no significant effect on

male outcomes. Table 6 presents program effects on teen academic outcomes, including IQ

scores and high school graduation rates. By age 14, initial IQ effects dissipate in all three

programs. However, the minimal IQ effects belie strong gains among females for several

important teen outcomes.

High school graduation effects for females are sizable. Females display increases in

high school graduation rates (or decreases in drop out rates) of 23, 49, and 29 percentage

points in Abecedarian, Perry, and Early Training respectively. The Perry result is highly

significant (p < 0.001, q = 0.001). The Abecedarian and Early Training results, however,

do not reject when controlling FDR at q = 0.10.

Male high school graduation effects, however, are weak or negative. Graduation rates

decline by 10 and 6 percentage points for Abecedarian and Perry males respectively. Early

Training males are 10 percentage points less likely to drop out. No effect is significant.

Table 7 presents results for teenage economic and social outcomes. Females appear to

experience positive economic effects from at least one intervention as teenagers. In Perry,

treated females have teen unemployment rates that are 31 percentage points lower than

untreated females (p = 0.03, q = 0.11). Treated females also receive roughly 1,600 dollars

less in annual government transfers at 19 (p = 0.04, q = 0.13). Males, however, derive no

significant economic benefits from the interventions during their teenage years.

One program has a significant effect on female teen criminal behavior; Perry females

are 34 percentage points less likely to have a juvenile record (p = 0.01, q = 0.05). How-

ever, this result is not mirrored among males.

During the teenage years, it is clear that females benefit more than males from these

interventions. The female-male difference in high school graduation effects is substantial

in the Abecedarian and Perry programs (t = 3.32). Female-male differences also emerge
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among Perry teens for effects on unemployment, criminal behavior, and government trans-

fers. At the summary index level, Perry females benefit significantly more than Perry males

(t = 3.32). For the other two experiments, female summary effects are at least 0.25 stan-

dard deviations higher than male summary effects. With the exception of Abecedarian IQ

scores, every reported teen effect is greater for females than for males.

4.4 Adult Outcomes

Overall, females benefit from at least one of the programs as adults. In the Abecedarian

and Perry programs, females display positive general effects of 0.45 and 0.35 standard

deviations respectively (see Table 3); the former effect is statistically significant (p < 0.01,

pfwer = 0.02). However, Early Training females demonstrate no general treatment effect

as adults. This could be due to differences in the Early Training Project’s intervention

program, or it could be due to low statistical power.

Unlike females, males show little evidence of positive effects as adults. Summary ef-

fects for Abecedarian and Perry males increase by 0.31 and -0.01 standard deviations. The

Abecedarian result appears marginally significant (p = 0.07), but in fact is insignificant

(pfwer = 0.37). Early Training males experience a decline of 0.71 standard deviations in

the summary index. This decrease – due primarily to low college attendance rates among

Early Training Males – appears highly significant (p = 0.01), but in fact is only marginally

significant (pfwer = 0.09). This unexpected finding in the “wrong” direction underscores

the importance of multiplicity adjustments.

The disaggregated results suggest that, for females, early intervention may raise college

attendance rates, improve economic outcomes, and reduce criminal behavior. The effects

for males, however, are weaker and inconsistent. There is evidence of a modest positive

effect on male economic outcomes, but it is accompanied by evidence of a negative effect

on male college attendance and a mixed effect on male criminal behavior. No male effect

is statistically significant at levels of 0.05 or less after FDR adjustment. The discussion

therefore focuses on possible female effects.

Table 8 reports treatment effects on college attendance. Early intervention may increase
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the probability of college attendance for females. Abecedarian females report college atten-

dance rates that are 29 percentage points higher than their control counterparts (p = 0.02,

q = 0.08). Perry and Early Training post-high school education attendance rates increase

by 12 to 16 percentage points, though neither effect is significant.

Table 9 reports results for adult economic outcomes. There is weak evidence of a

positive effect on female economic outcomes. Perry females are 26 percentage points more

likely to be employed at age 27 (p = 0.08, q = 0.22), and they earn more at ages 27 and

40 than their control counterparts (though these effects are statistically insignificant). Early

Training females are less likely to receive welfare at age 21, but the effect is insignificant. It

is possible that potential employment effects at age 21 for Abecedarian and Early Training

women are masked by increased college attendance rates. However, controlling for college

attendance does not appreciably change the employment coefficients for either program.

Table 10 presents effects on adult social behavior. Treated females report some reduc-

tions in criminal behavior. Abecedarian females are 32 percentage points less likely to use

marijuana (p < 0.01, q = 0.05), though they experience no significant reduction in convic-

tion or incarceration rates by age 21. Perry females have 86 percent fewer lifetime arrests

(-1.95 arrests per capita, p = 0.01, q = 0.07), though they are only 15 percentage points

less likely to have a criminal record.

There is some evidence that early intervention affects marriage rates. At age 27, Perry

females have a significantly higher marriage rate than untreated females. The 32 percentage

point increase represents a 382 percent rise over the control group’s base rate (p = 0.01,

q = 0.07).

Female treatment effects are generally higher than corresponding male effects, although

the effect heterogeneity is less pronounced than during the teen years. The difference in

female-male summary effects is substantial in Perry and the Early Training Project. Large

female-male treatment effect differences emerge for drug use and marriage among Perry

participants and post-high school education among Early Training participants. For drug

use and post-high school education, the differential is partially due to negative male treat-

ment effects. Nevertheless, it still constitutes evidence of greater benefits for females – the
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female effects are centered around a higher mean, so even in the event of adverse shocks

they do not become negative and significant.

4.5 Perry Reanalysis

As a final demonstration of the value of correcting for multiple inference, I conduct a

stand-alone reanalysis of the Perry Preschool Project – arguably the most influential of the

three experiments. For both male and female effects, I use the point estimates and standard

errors for all Perry outcomes presented in Tables 4 through 10. I compute FDR q-values

(not shown in tables) using all Perry outcomes as the family of tests under consideration,

as the original Perry researchers would have done were they to apply this technique.

Under these conditions, I find that two effects – early male IQ scores and female high

school graduation rates – reject when controlling FDR at q = 0.05. Three more effects –

early female IQ scores, female marital rates, and female juvenile arrest rates – reject when

controlling FDR at q = 0.10. Do these findings replicate in the other two studies? In

general, yes. The early male IQ effect replicates strongly in Abecedarian. The female high

school graduation effect replicates in both Abecedarian and Early Training, and the early

female IQ effect replicates weakly in Abecedarian and strongly in Early Training. The only

conclusion that fails to replicate is the female juvenile arrest rate effect, with a FDR q-value

of 0.07. (No data on adult marital rates are available for Abecedarian and Early Training).

A simple application of the two-stage FDR procedure – which requires no resampling and

can even be implemented in a spreadsheet – therefore proves sufficient to generate robust

conclusions that replicate in independent studies.

Now consider a conventional research design based on unadjusted p-values. Rejecting

effects with “naive” (unadjusted) p-values of less than 0.10 adds eight more significant or

marginally significant outcomes – female adult arrests, female employment, male monthly

income, female government transfers, female special education rates, male drug use (in

the adverse direction), male employment, and female monthly income. Of these eight

outcomes, two (male and female monthly income) are not included in the other two studies.

The remaining six fail to replicate in either of the other studies. The sharp contrast in
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replication performance between findings that reject when controlling FDR and findings

that reject based on unadjusted p-values emphasizes the benefits of applying even simple

adjustments for multiple inference.

5 DISCUSSION

A clear pattern emerges from a detailed examination of treatment effects by gender: fe-

males display significant long-term effects from the interventions, while males show weaker

and inconsistent effects. Treated females show particularly sharp increases in high school

graduation and college attendance rates, but there is also evidence of positive effects for

economic outcomes, criminal behavior, drug use, and marriage.

In contrast to females, males appear not to derive lasting benefits from the interventions.

A few positive, long-term outcomes achieve or approach significance for Perry males (when

using unadjusted p-values), including monthly earnings at 27 and employment at 40. How-

ever, these positive results are offset by several negative, significant male outcomes, both

in Perry and other programs.

A summary test that pools all teen outcomes together across experiments finds an over-

all effect size of 0.51 for females (standard error of 0.13) and 0.08 for males (standard error

of 0.14). The gender difference is significant (p = 0.029, pfwer = 0.029). A summary

test that pools all adult outcomes together across experiments finds an overall effect size of

0.27 for females (standard error of 0.09) and -0.05 for males (standard error of 0.11). The

gender difference is again significant (p = 0.027, pfwer = 0.029). (FWER p-values are

adjusted for the fact that gender differences are tested as teens and adults.) Of course, we

can never reject arbitrarily small effects for males, and precision is limited by the relatively

small samples. Some point estimates are of notable magnitude despite being insignificant.

It is also of note that summary effects for males are larger at every stage in Abecedarian

than Perry and Early Training. Perhaps males retain some benefits from highly intensive

programs. Nevertheless, the overall results indicate that positive male treatment effects are

likely modest at best.
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The results help clarify several inconsistencies in the previous literature. First, they

establish that girls benefited more than boys from these interventions – previous findings

demonstrating significant long-term effects for boys, primarily from the Perry program, do

not survive multiplicity adjustment and do not replicate in the other experiments. They

also help resolve the discrepancy between the Perry and Abecedarian projects in crime

effects. No adult Perry crime effect rejects when controlling FDR at the 5% level, and

only one rejects at the 10% level (adult female arrests). It is thus unsurprising that these

effects fail to replicate in the Abecedarian study. These facts are noteworthy because much

of the Perry program’s economic benefits (67%) accrued in the form of reduced crime by

participants (Schweinhart, et al. 2005, pp. 148-9). If crime effects are weaker than has been

believed, then the often cited 7-to-1 (or greater) benefit-cost ratio for early intervention will

be overstated.

The female-male gap in treatment effects is consistent with previous findings in the non-

experimental literature and reinforces a general perception that schooling helps girls more

than boys (Tyre 2006). For example, Oden, Schweinhart, Weikart, Marcus, and Xie (2000)

report that Head Start participation significantly raises high school graduation rates and

lowers arrest rates for females but not males. The results also parallel experimental findings

in other areas of the human capital literature. Kling, Liebman, and Katz (2007) report that

the Moving to Opportunity program improves educational outcomes and mental health for

females, but appears to have negative effects on male participants. Abadie, Angrist, and

Imbens (2002) find that services provided under the Job Training Partnership Act (JTPA)

significantly increase female earnings at all quantiles, including a 35 percent increase at

the lowest quantile. However, JTPA services have no significant effect on males at any

quantile below the median, suggesting that disadvantaged males in particular have trouble

benefiting from these programs.

In comparison to the ongoing randomized evaluation of Head Start, the three programs

discussed in this research demonstrate stronger early effects. Scores on early cognitive tests

increase by an average of 0.60 standard deviations in these programs but only 0.14 standard

deviations in the Head Start evaluation (U.S. Dept. of Health and Human Services 2005).
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However, it is difficult to forecast how these reduced early cognitive effects will affect later

life outcomes, and cognitive effects are not reported separately by gender.

6 CONCLUSION

This paper conducts a de novo analysis of the influential early intervention experimental

literature using statistical techniques that adjust for multiple inference. It partially confirms

previous findings, presenting strong evidence that females benefit from these interventions.

Female effects appear in the domains of criminal behavior, marriage, and economic suc-

cess, but the most consistent improvement is in total years of schooling. These interventions

have positive, significant overall long-term effects on females in two of the three programs

when adjusting for multiple inference.

For males, however, there is limited evidence of positive long-term treatment effects.

Despite several positive and significant (unadjusted) results, most coefficients are insignifi-

cant, and several of the significant coefficients imply an adverse effect. The overall pattern

of male coefficients is consistent with the hypothesis of a minimal treatment effect at best –

significant (unadjusted) effects go in both directions and appear at a frequency one would

expect simply due to chance. Previous work has missed this finding because there has

been no systematic analysis by gender across experiments and because researchers have

emphasized the subset of unadjusted significant outcomes rather than applying a statistical

framework that is robust to problems of multiple inference.

These results highlight both methodological and substantive points. First, they under-

score the importance of multiple inference corrections in the context of the program evalu-

ation literature. Many studies in this field test dozens of outcomes and focus on the subset

of results that achieve significance. In response, the statistical framework presented in this

paper gives researchers tools to address the issue of multiple testing while minimizing the

loss in statistical power. The simulated stand-alone analysis of the most famous (and dra-

matic) preschool experiment, Perry, demonstrates that applying these tools can generate

robust conclusions that are more likely to replicate.
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In addition, this paper makes clear several points in the context of the current human

capital literature. Foremost, intensive intervention early in life can positively affect later-

life outcomes, at least for disadvantaged African-American females. However, there is little

evidence of strong long-term benefits for males. This fact suggests that investments in early

education alone may not dramatically improve opportunities for disadvantaged males. The

indicated treatment effect heterogeneity also calls into question the external applicability

of these experiments at a time in which advocates are invoking them to support funding for

universal preschool education. If treatment effects vary by gender, it is likely that they also

vary by race or class. Richer variation in sample demographics is necessary for the design

of optimal human capital policy.

APPENDIX A: SUMMARY INDEX DEFINITION

sij =
1

Wij

∑
k∈Kij

wjk

yijk − yjk

σy
jk

,

where k indexes outcomes within area j, Kij is the set of non-missing outcomes for obser-

vation i in area j, σy
jk is the control group standard deviation for outcome k in area j, wjk

is the outcome weight from the inverted covariance matrix Σ̂−1
j , and Wij =

∑
k∈Kij

wjk. If

Kj is the total number of outcomes for area j, and Njmn is the number of observations not

missing for both outcome m and outcome n in area j, then

wjk =

Kj∑
l=1

cjkl ,

Σ̂−1
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cj21 cj22 . . . . . .
...
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and Σ̂j consists of elements
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.

APPENDIX B: POTENTIAL COMPLICATIONS

Several complications, analyzed in-depth in Anderson (2006), threaten the validity of

the results. A quick summary of the complications and their resolutions follows.

Attrition affects all three experiments. If this attrition is caused by treatment status,

systematic differences unrelated to the treatment could emerge between the two groups.

In these experiments, the direction of the induced bias is ambiguous. I therefore impute

missing values for key outcomes and examine “worst case” scenarios. Under reasonable

assumptions, the paper’s central conclusions are unchanged.

Another complication is violation of the original random assignment. The most seri-

ous case occurred in the Perry Preschool Program; for logistical reasons, several children

with working mothers in the treatment group were switched to the control group. Perry

researchers did not record the identities of these children. If children with working mothers

perform differently than the average child, these swaps could induce bias. I address this

issue by conditioning outcomes on initial maternal employment status. I also study an en-

tire range of possible switches that could have occurred and examine the sensitivity of the

estimates to these switches. Again, the main results are unchanged.

A final complication is the possibility of dependence between observations, or clus-

tering. In these experiments, the possibility of classroom peer effects and the systematic

assignment of siblings to identical treatment groups are reasons for concern. If the peer

effects or intra-family correlations are strong, the standard errors could be too small. I

address the problem by estimating standard errors that adjust for clustering at the class-by-

year level or at the family level. These adjustments do not substantially affect key results.
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Table 1: Summary Statistics
Variable Abecedarian Perry Early Training

Percent treated 51.4 47.2 67.7
(50.2) (50.1) (47.1)

Percent female 53.2 41.5 46.2
(50.1) (49.5) (50.2)

IQ age 5 97.8 88.9 91.5
(12.6) (12.9) (13.6)

IQ age 14-17 93.2 80.9 77.7
(10.3) (11.0) (13.2)

Percent retained in grade 45.6 37.5 54.2
(50.1) (48.6) (50.2)

Percent graduate HS 69.9 61.8 60.0
(46.1) (48.8) (49.4)

Percent employed as adult 57.3 62.1 N/A
(49.7) (48.7)

Percent with criminal record 43.3 52.8 N/A
(49.8) (50.1)

NOTE: Parentheses contain standard deviations.

Table 2: Summary Index Components
Project Stage Summary Index Components
ABC Preteen IQ (5, 6.5, 12), Retained in Grade (12), Special Education (12)
Perry Preteen IQ (5, 6, 10), Repeat Grade (17), Special Education (17)
ETP Preteen IQ (5, 7, 10), Retained in Grade (17), Special Help (17)
ABC Teen IQ (15), HS Grad (18), Teen Parent (19)
Perry Teen IQ (14), HS Grad (18), Unemployed (19), Transfers (19), Teen Parent (19)

Arrested (19)
ETP Teen IQ (17), HS Drop Out (18), Worked (18)
ABC Adult College (21), Employed (21), Convicted (21), Felon (21), Jailed (21)

Marijuana (21)
Perry Adult College (27), Employed (27, 40), Income (27, 40), Criminal Record (27),

Arrests (27), Drugs (27), Married (27)
ETP Adult College (21), Receive Income (21), On Welfare (21)

NOTE: Age of measurement in parentheses. For Perry and Early Training grade repetition and
special education variables, it was not possible to isolate pre-9th grade outcomes in the data.
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Table 3: Summary Index Effects
Female Male Gender

Naive FWER Naive FWER Diff
Project Age Effect p-val p-val N Effect p-val p-val N t-stat
ABC Preteen 0.445 0.026 0.125 54 0.417 0.026 0.184 51 0.11

(0.194) (0.181)
Perry Preteen 0.537 0.004 0.028 51 0.150 0.387 0.943 72 1.53

(0.177) (0.172)
ETP Preteen 0.362 0.160 0.349 30 0.148 0.552 0.958 34 0.61

(0.251) (0.245)

ABC Teen 0.422 0.042 0.156 53 0.162 0.407 0.943 51 0.93
(0.202) (0.194)

Perry Teen 0.613 0.000 0.003 51 0.035 0.716 0.977 72 3.32
(0.156) (0.096)

ETP Teen 0.456 0.138 0.349 29 0.123 0.747 0.977 32 0.68
(0.299) (0.377)

ABC Adult 0.452 0.003 0.024 53 0.312 0.066 0.372 51 0.64
(0.144) (0.166)

Perry Adult 0.353 0.022 0.125 51 -0.012 0.927 0.977 72 1.83
(0.150) (0.130)

ETP Adult -0.069 0.714 0.701 29 -0.710 0.011 0.090 31 1.98
(0.186) (0.260)

NOTE: Parentheses contain OLS standard errors. Naive p-values are unadjusted p-values based on
the t-distribution. FWER p-values adjust for multiple testing at the summary index level and are
computed as described in Section (3.2.2). t-statistics test the difference between female and male
treatment effects. See Table 2 for the components of each summary index.
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Figure Caption:

Figure 1: t-statistics for teen and adult outcomes. Each point is a t-statistic for a single

outcome, and the positive direction corresponds to a “better” outcome. The first column

plots male t-statistics, the second column plots female t-statistics, and the third column

plots a set of randomly generated t-statistics.
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