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a b s t r a c t 

We investigate the relationship between the extent of a city’s subway network, its population and its spatial 

configuration. For the 632 largest cities in the world we construct panel data describing population, measures 

of centralization calculated from lights at night data, and the extent of each of the 138 subway systems in these 

cities. These data indicate that large cities are more likely to have subways but that subways have an economically 

insignificant effect on urban population growth. Our data also indicate that subways cause cities to decentralize, 

although the effect is smaller than previously documented effects of highways on decentralization. For a subset 

of subway cities we observe panel data describing subway and bus ridership. For those cities we find that a 10% 

increase in subway extent causes about a 6% increase in subway ridership and has no effect on bus ridership. 
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1 A statement by the agency responsible for Toronto’s transit expansion is typi- 

cal: “Expanding transportation can help create thousands of new green and well- 

paid jobs, and save billions of dollars in time, energy and other efficiencies. ”

( http://www.metrolinx.com/en/regionalplanning/bigmove/big_move.aspx ) 
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. Introduction 

We investigate the relationship between the extent of a city’s subway
etwork and its population, transit ridership and spatial configuration.
o accomplish this investigation, for the 632 largest cities in the world
e construct panel data describing population, total light, measures of

entralization calculated from lights at night data, and the extent of each
f the 138 subway systems in these cities. For a subset of these subway
ities we also assemble panel data describing bus and subway ridership.

These data suggest the following conclusions. First, while large cities
re more likely to have subways, subways have a precisely estimated
ear zero effect on urban population growth. Second, subways cause
ities to decentralize, although this effect appears to be small relative to
he decentralization caused by radial highways. Third, a 10% increase
n subway extent leads to about a 6% increase in subway ridership and
oes not affect bus ridership. A back of the envelope calculation suggests
hat only a small fraction of ridership increases can be accounted for by
ecentralized commuters. Together with the fact that little new rider-
hip can be attributed to population growth, this suggests that most new
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idership derives from substitution from other modes of travel towards
ubways. 

Subway construction and expansion projects range from merely ex-
ensive to truly breathtaking. Among the 16 subway systems examined
y Baum-Snow and Kahn (2005) , construction costs range from about
5 million to 550 million USD2005 per km. On the basis of the mid-
oint of this range, 287 million per km, construction costs for the cur-
ent stock are about 3 trillion dollars. These costs are high enough that
ubway projects generally require large subsidies. To justify these subsi-
ies, proponents often assert the ability of a subway system to encourage
rban growth. 1 Our data allow the first estimates of the relationship be-
ween subways and urban growth. That subways appear to have almost
ero effect on urban growth suggests that the evaluation of prospective
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2 The Charlotte light rail system is not completely isolated from pedestrian 

and automobile traffic and so does not appear in our data as a subway. 
3 Manelici (2017) investigates the interaction between terrorism and proxim- 

ity to London subway stations and finds that a terrorist attack in London in 2005 

disproportionately affected real estate prices near subway stations. 
4 We note the large literature on modal choice using individual level data. 

This important literature is only tangentially related to our present inquiry. A 

survey is available in Small and Verhoef (2007) . 
ubway projects should rely less on the ability of subways to promote
rowth and more on the demand for mobility. Our data also allow the
rst panel data estimates of the impact of changes in system extent on
idership and therefore also make an important contribution to such
valuations. 

Understanding the effect of subways on cities is also important to
olicy makers interested in the process of urbanization in the develop-
ng world. Over the coming decades, we expect an enormous migration
f rural population towards major urban areas, and with it demands for
rban infrastructure that exceed the ability of local and national govern-
ents to supply it. In order to assess trade-offs between different types

f infrastructure in these cities, understanding the implications of each
or welfare is clearly important. Since people move to more attractive
laces and away from less attractive ones (broadly defined), our investi-
ation of the relationship between subways and population growth will
elp to inform these decisions. In particular, if the objective of policy-
akers is to increase a city’s population or to decentralize economic

ctivity, highways seem more promising. On the other hand, in a re-
ated companion paper, Gendron-Carrier et al. (2017) show that if the
bjective is to reduce pollution, then subways can be effective. 

Finally, an active academic literature investigates the effect of trans-
ortation infrastructure on the growth and configuration of cities. In
pite of their prominence in policy debates, subways have so far escaped
he attention of this literature. This primarily reflects the relative rarity
f subways. Most cities have roads so a single country can provide a large
nough sample to analyze the effects of roads on cities. Subways are too
are for this. A statistical analysis of the effect of subways on cities re-
uires data from, at least, several countries. An important contribution
f this paper is to assemble data that describe all of the world’s subway
etworks. In addition, with few exceptions, the current literature on the
ffects of infrastructure is static or considers panel data that is too short
o investigate the dynamics of infrastructure’s effects on cities. Because
ur panel spans the 60 year period from 1950 until 2010, we are able
o investigate such dynamic responses to the provision of subways. 

To estimate the causal effects of subways on urban growth and urban
orm, we must grapple with the fact that subway systems and stations are
ot constructed at random times and places. This suggests two potential
hreats to causal identification. The first could occur if subway expan-
ions systematically take place at times when a city’s population growth
s slower (or faster) than average. For example, if construction crews
eave the city when new subway expansions are complete or if subway
xpansions tend to occur when some constraint on a city’s growth be-
ins to bind. The second results from omitted variables. For example,
uppose that cities expand their bus networks in years when they do
ot expand their subway networks and that bus and subway networks
ontribute equally to population growth. Then any regression of popula-
ion growth on subway growth that omits a measure of the bus network
ill be biased downward. Briefly, we address the problem of confound-

ng dynamics by showing that the null population growth result is in-
ariant to using first differences, instrumented first differences, second
ifferences and dynamic panel data models. The instrument we propose
akes advantage of the fact that larger subway systems grow more slowly
nd this allows us to predict subway growth using long lags of subway
ystem size. We address the omitted variables issue by showing that the
ull effect of subways on population is not masking heterogenous effects
y measures such as congestion, road supply, bus supply, institutional
uality, city size, or size of network, among others. 

. Literature 

.1. Subways 

With a few exceptions that we describe below, the literature that
nalyzes the effects of subways on cities consists entirely of analyses
f a single city. Nevertheless, this literature is large and we here focus
ur attention on the small set of papers which attempt to resolve the
86 
roblem of non-random assignment of subways. More complete surveys
re available in Billings (2011) and Gibbons and Machin (2005) . 

Gibbons and Machin (2005) examine housing prices in London dur-
ng the periods 1997–1999 and 2000–2001, periods that bracket two
xpansions of the London underground. Gibbons and Machin (2005) cal-
ulate various difference-in-differences estimates of the effect of these
ransit expansions on housing prices and find that moving one km away
rom a subway station decreases house values by about 2% for the first
wo km, and about zero thereafter. Billings (2011) conducts a similar
xercise for a new light rail line in Charlotte, North Carolina. 2 Like
ibbons and Machin (2005) , Billings (2011) estimates the effect of sub-
ays on housing prices using a difference-in-differences estimator. De-

pite differences in milieu and method, Billings (2011) arrives at esti-
ates quite close to those of Gibbons and Machin (2005) : single fam-

ly houses within 1.6km of the transit line see their prices increase by
bout 4% while condominiums see their prices rise by about 11%. Like
ibbons and Machin (2005) , Billings (2011) observes that changes re-

ult from subway construction over the course of just a few years. 3 

Each of these papers makes a credible attempt to overcome the fact
hat subway systems are not located randomly within cities. However,
either provides us with much information about the relationship be-
ween subways and city-level growth. If subways affect the growth of
ities, then they may affect it everywhere, both near and far from a sta-
ion. By construction, a differences-in-differences methodology cannot
easure such citywide effects. Therefore, while the existing literature
akes some progress on the problem of non-random assignment of sub-
ays to places, it does so at a high cost. The difference-in-differences
ethodology cannot tell us about the effect of changes in the overall

evel of activity within a city. Unless we are specifically interested in
eorganizing economic activity across neighborhoods within a city, it
s changes in the overall level which are of primary policy interest and
hich are the object of our investigation. 

Finally, in an important contribution Ahlfeldt et al. (2015) esti-
ate a structural model of how a subway network can restructure a

ity, rather than just whether subways attract development. Given this,
t is closest in spirit to our decentralization exercise. With this said,
hlfeldt et al. (2015) use time series variation from just one city, so

heir ability to investigate the effect of subways on urban growth relies
eavily on the assumptions underlying their model. 

There are few studies considering cross city or panel data
n transit and city level outcomes. Pang (2017) and Gendron-
arrier et al. (2017) are rare exceptions. Pang (2017) uses US data
o investigate the effect of public transit on employment rates for
ow-skilled workers, and finds that low skilled workers are more
ikely to be employed as their access to subways improves. Gendron-
arrier et al. (2017) is a companion paper to this one, and uses an event
tudy methodology to investigate the relationship between airborne par-
iculates and subway system opening. In a sample of about 40 cities all
ver the world, it finds that subway openings cause economically im-
ortant reductions in pollution. 

Apart from these two, the only studies to investigate the effects of
ubways on city level outcomes are primarily or completely interested
n ridership. 4 On the basis of a single cross-section of about 50 cities,
ordon and Willson (1984) conduct a city level regression to predict

iders per mile of track as a function of city population density and
ountry level per capita gdp . They find that these two variables are
xcellent predictors of ridership - the relationship being positive and
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6 To our knowledge, there is little systematic evidence about subway fund- 

ing arrangements. Official reports for Mexico City’s subway system suggest that 
egative, respectively. Finally, Baum-Snow and Kahn (2005) provide
vidence from 16 US cities for a similar relationship between density
nd transit use, although their small sample size limits the precision
f their results. They also show that ridership shares in catchment ar-
as for new stations attain almost the same level as in the catchment
reas of old stations over their 30 year study period. Consistent with
he finding in Gordon and Willson (1984) that ridership decreases with
ncome and increases with density, Baum-Snow and Kahn (2005) find
hat most US transit expansions have only small effects on ridership, a
onclusion echoed in Gomez-Ibanez (1996) for time series data on the
se of Boston’s transit system. Our results on the relationship between
ubway extent and ridership are the first to exploit city level panel data.
arnes (2005) provides evidence from a few cities in the US that people
re more likely to take transit for trips to a central business district than
or trips to other locations. 

.2. Other infrastructure 

Redding and Turner (2015) survey the literature relating roads and
ighways to urban growth. This literature has developed rapidly over
he past several years and suggests the following conclusions. 

First, Duranton and Turner (2012) find that the stock of highways
n a city contributes to the growth in city population in the us between
980 and 2000. This effect is small in an absolute sense, though it is eco-
omically important as a share of the total growth rate. Using a similar
esearch design, Garcia-López et al. (2015) finds that highways cause
bout the same rate of population growth in Spanish cities. 5 

Second, that radial highways can have dramatic effects on the in-
ernal structure of cities. Baum-Snow (2007) investigates the effect of
adial highways on population decentralization for a sample of large US
ities between 1950 and 1990. He finds that, over the whole 40 year
ourse of his study period, a single radial highway causes about a 9%
ecrease in central city population. This large decentralizing effect of
ighways is confirmed for China by Baum-Snow et al. (2017) and for
pain by Garcia-López (2012) . 

Finally, Duranton and Turner (2011) and Hsu and Zhang (2014) find
hat vehicle kilometers traveled increase about proportionately to in-
reases in the extent a city’s road network, and that increases to non-
ommute driving appear to be the most important contributor to this
ncrease. All of these responses, decentralization, growth and driving,
an be detected over a 5–20 year time horizon, much shorter than our
0 year study period. 

In contrast, we find that the effects of subways on urban growth
re tiny. We find a much larger effect of subways on the configuration
f cities. The effect of subways on ridership is large, though probably
maller than the effect of roads on driving. Finally, we will present indi-
ect evidence to suggest that only a small fraction of the increase in rid-
rship reflects decentralized commuters. More likely, commuters shift
heir mode of transportation towards subways. 

. Results vs. theory 

Anticipating our results, our data indicate that marginal changes to
 city’s subway network have the following effects. First, subways have
pproximately zero effect on a city’s population. Second, subways cause
ities to decentralize in a way that is qualitatively similar to the way that
oads cause cities to decentralize. Third, the cities in our sample grow at
bout 2% per year. In addition, from Gendron-Carrier et al. (2017) , we
now that subway openings cause reductions in air pollution that have
n estimated value that is of about the same order of magnitude as con-
truction costs (though the effects of expansions are probably smaller).
5 Related to this, Blonigen and Cristea (2015) and Campante and Yanagizawa- 

rott (2018) investigate the role of airports in urban growth and argue for a 

ausal relationship between airport traffic and urban growth. 
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87 
inally, what evidence we have on the matter, e.g., Baum-Snow and
ahn (2005) , suggests that subways are very expensive to build and

hat fare revenue does not fully cover operating costs. 
These facts are consistent with basic theory. To see this, consider

 simple linear city. Each identical agent consumes a unit of land at
istance x from the center and commutes to 𝑥 = 0 where she receives
age, w t . The unit cost of travel is 𝜏 t and land rent, R t ( x t ), varies with
istance to the center. Subscripts index two periods, t ∈ {0, 1}, an initial
eriod where the subway is smaller or not present, and a later period
hen the subway is more extensive. 

Denote the most remote occupied location as 𝑥 𝑡 and suppose that
and rent is zero beyond this boundary. Because each agent consumes
xactly one unit of land, 𝑥 𝑡 determines both the physical extent of the
ity and its population. Agents derive utility from consumption, c t , and
rom a city specific amenity, A t . They pay a tax T t to fund the subway.
gents have the choice to reside in the city of interest, or at some alter-
ative that provides utility 𝑢 ∗ 

𝑡 
. 

A representative agent solves the following problem, 

ax 𝑐 𝑡 + 𝐴 𝑡 

s.t. 𝑤 𝑡 = 𝑐 𝑡 + 𝜏𝑡 𝑥 + 𝑇 𝑡 − 𝑅 ( 𝑥 ) . 

ith free mobility, this implies that the boundary of the city is deter-
ined by the following condition, 

 𝑡 = 

𝑤 𝑡 + 𝐴 𝑡 − 𝑇 𝑡 − 𝑢 ∗ 
𝑡 

𝜏𝑡 
. 

Our finding that subways do not change city population means that
 0 = 𝑥 1 , and hence that 

𝑤 0 + 𝐴 0 − 𝑇 0 − 𝑢 ∗ 0 
𝜏0 

= 

𝑤 1 + 𝐴 1 − 𝑇 1 − 𝑢 ∗ 1 
𝜏1 

. (1) 

ecause cities decentralize with subways, we conclude that they drive
own unit transportation cost. In the context of this model, this means
hat 𝜏1 < 𝜏0 . Together with Eq. (1) , this requires that 

 0 + 𝐴 0 − 𝑇 0 − 𝑢 ∗ 0 > 𝑤 1 + 𝐴 1 − 𝑇 1 − 𝑢 ∗ 1 . (2) 

If our identification strategy is successful at isolating the effects of
uasi-random variation, then a city with a subway expansion faces the
ame outside option as a city without. That is, 𝑢 ∗ 1 = 𝑢 ∗ 0 . In this case, our
esults suggest that any beneficial effects subways have on transporta-
ion costs, wages and amenities are about offset by the local share of
osts. 6 

On the other hand, if cities either invest in subways or in some sub-
titute, then we might think that 𝑢 ∗ 1 > 𝑢 ∗ 0 . In this case, our results need
o be understood as relative, not to the status quo, but to the improving
utside option. This means that the benefits of subways minus the local
hare of costs is no better that the alternative investment. 

This model is deliberately stylized and so welfare interpretations
hould be regarded with care. In particular, the model omits the possi-
ility that people consume more space as transportation costs fall. This
s surely valuable, but statements about residential density are beyond
he reach of our data and so we omit this margin of adjustment from
ur model. 

In addition, this simple model is based on the assumption that im-
rovements to the subway network reduce transportation costs every-
here. In fact, as we will show, subways overwhelmingly serve central

ities. Since mode transfers are costly, one can therefore imagine that
ubways could reduce the cost of commuting within their central service
arebox revenue only accounts for about half of operating costs, the rest being 

nanced by subsidies from general city funds. In Toronto’s TTC a third of oper- 

ting costs are covered by the city’s property tax. Gomez-Ibanez (1996) reports 

hat capital costs for Boston’s subway from about 1965–1990 on were substan- 

ially funded by the federal government. 
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8 Australia contains few large cities and has no subways in 2010. To simplify 

the exposition, we have consolidated Asia and Australia. 
9 Available from http://www.ngdc.noaa.gov/dmsp/downloadV4composites. 
rea, while leaving commute costs from more remote locations more or
ess unchanged. In this case, changes to the subway system would not
ffect the condition determining the edge of the city. Relative to the
odel articulated above, such a model has the advantage of greater re-

lism and of predicting widely observed increases in land rent in subway
atchment areas. With this said, the same basic intuition holds. In order
or population to remain constant with increases in subways, we re-
uire that the increased tax burden offset improvements in local wages
r amenities. 

. Data 

To investigate the effect of subways on the evolution of cities’ popu-
ation, spatial structure and transit ridership, we require data for a panel
f cities. We construct such data from four principal sources. Our popu-
ation data are the UN World Cities Data. Our subways data are the result
f primary data collection, as is our ridership data. Our description of
rban spatial structure derives from satellite lights at night data. 

.1. Population data 

Our data are organized around the UN World Cities Data. 7 Produced
y the United Nations, Department of Economic and Social Affairs, Pop-
lation Division, these data describe population counts for all cities
hose population exceeds 750,000 at any time during 1950–2010. 

Constructing international data describing city level population is
ubject to two difficulties. First, population data are generally, but
ot always, available from decennial or quinquennial censuses, but
o not synchronize neatly across countries. To resolve this problem,
he UN World Cities Data interpolate across available censuses to con-
truct annual values. Therefore, because few countries conduct censuses
ore often than every five years, successive annual population changes
ust sometimes reflect linear interpolation of the same proximate cen-

us years. To avoid making inferences from such imputed population
hanges, we restrict attention to observations drawn every fifth year
e.g., 1950, 1955, ...) and refer to each such observation as a ‘city-year’.
his decreases the likelihood that sequential city-years are calculated by

nterpolation from the same two underlying censuses. In fact, for some
ountries, census data is available less often than every five years, so we
lso experiment with observations drawn every 10 years and with even
onger periods. 

A second difficulty arises because metropolitan areas and census
nits are not defined at the same scale in all countries. To overcome
his problem, the UN World Cities Data is based on population counts
t the most geographically disaggregated administrative unit available
rom every country. Once equipped with these data, metropolitan areas
re defined as a fixed set of smaller administrative units — regardless
f whether the smaller units were in the same state, for example. This
llows UN researchers to use a consistent definition of metropolitan ar-
as across countries and over time, and captures what we think of as
etropolitan areas. 

The top panel of Table 1 describes our population data. The data
onsist of 632 cities, more than half in Asia. In 2010, the mean popula-
ion of a city in our sample is about 2.4 million. There is little variation
n mean population across continents, although cities in South America
end to be larger while cities in Europe tend to be smaller. Between 1950
nd 2010, the mean five year growth rate of a city in our sample is about
8%. This rate falls by about 1 percentage point every five years. Not
urprisingly, cities in Africa, Asia and South America grow faster than
n North America and Europe. European cities are the obvious outlier
nd grow more slowly than cities elsewhere. The growth rate of cities
s declining on all continents and this decrease is somewhat slower in
urope. 
7 Downloaded from http://esa.un.org/unup/GIS-Files/gis_1.htm , February 

013. 

h

d

t

88 
The bottom panel of Table 1 describes our population data for the
38 cities in our sample with a subway in 2010. At 4.7 million people
n average, these cities are about twice as large as non-subway cities.
airo is the single African city with a subway, and so the Africa col-
mn in the bottom panel of Table 1 is really a ‘Cairo column’. 8 Asian
nd South American subway cities are larger than those in North Amer-
ca and dramatically larger than those in Europe. The five year growth
ate for an average subway city is about 11%, slower than in the whole
ample. As for the whole sample, European subway cities are growing
ore slowly than other subway cities. Also similar to the whole pop-
lation of cities, growth rates between 1950 and 2010 are declining
y about 1% every five years and this decrease is somewhat slower in
urope. 

.2. Lights data 

Lights at night data are collected by earth observing satellites that
easure the intensity of visible light every night in 30 arc second cells

about one kilometer square) on a regular grid covering the entire world.
ost extant applications of the lights at night data in economics rely on

he “DMSP-OLS Nighttime Lights Time Series ”. 9 These data are avail-
ble annually from 1992 until 2012. Each of these lights at night im-
ges is a composite constructed from many raw satellite images and the
alue for each cell reflects average light intensity, over all cloud free
mages, on a scale of 0–62 with 63 used as a topcode. Since most large
ities, particularly in the developed world, contain large topcoded re-
ions near their centers, these data are of limited use for studying the
nternal structure of the large wealthy cities where most subways are
ocated. We instead exploit ‘radiance calibrated lights at night data’, 10 

ollected during times when the satellite sensor was set to be less sen-
itive. These data are less able to distinguish dim light sources, but are
ble to measure variation in light within regions that are topcoded in the
MSP-OLS version. Fewer cross-sections of the radiance calibrated lights
re available but the available cross-sections (ca. 1995, 2000, 2005 and
010) match up neatly with the last four cross-sections of our population
ata. 

Lights at night data are of interest as a check on our population data.
he lights at night data are measured consistently across cities and we
an calculate city level measures of total light without reference to ad-
inistrative boundaries. That is, the lights at night data are not subject

o either of the two problems that we are concerned about for our pop-
lation data. Since people light the places they live and work, more
ensely populated and more productive places are often brighter. More
oncretely, Henderson et al. (2012) use the topcoded version of lights at
ight data to show that country level mean light intensities are a good
roxy for gdp , a result that Storeygard (2017) confirms at the regional
evel for China. 

The bottom panel of Table 1 shows the correlation of the mean 2010
ight intensity within 25 km of a city center and 2010 population in
ubway cities. It is clear that lights provide some information about pop-
lation, although this information is imperfect. Finally, we note that the
ights at night data are difficult to interpret. While we can be confident
hat lights at night data are telling us something about the location of
conomic activity, we cannot know whether places are brighter because
he people living there are richer or because the place is more densely
opulated. 
tml (October 2014). 
10 Downloaded in October 2014 from http://ngdc.noaa.gov/eog/dmsp/ 

ownload_radcal.html . We are grateful to Alexi Abrahms for drawing our at- 

ention to these data. 

http://esa.un.org/unup/GIS-Files/gis_1.htm
http://www.ngdc.noaa.gov/dmsp/downloadV4composites.html
http://ngdc.noaa.gov/eog/dmsp/download_radcal.html
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Table 1 

Descriptive statistics for the world’s cities and cities with subway systems in 2010. 

World Africa Asia Europe N. America S. America 

All cities 

N 632 71 347 57 99 56 

Mean population 2427 2091 2509 1921 2441 2825 

Mean log(Pop.) 14.3 14.3 14.3 14.2 14.3 14.4 

Mean Δt log(Pop.) 0.18 0.24 0.20 0.05 0.14 0.19 

Mean Δ2 
𝑡 

log(Pop.) -0.010 -0.013 -0.008 -0.005 -0.013 -0.015 

Mean light gradient -0.79 -0.85 -0.78 -0.72 -0.69 -0.96 

Mean light intercept 11.0 10.5 10.8 10.8 10.8 12.7 

Cities with subway in 2010 

N 138 1 53 40 30 14 

Total stations 7886 51 2977 2782 1598 478 

Total route km 10,672 56 4210 3558 2219 627 

Mean stations 57 51 56 70 53 34 

Mean route km 77 56 79 89 74 45 

Mean subway lines 4.5 2.0 4.1 5.8 4.7 2.6 

Δt Stations 3.5 3.9 4.2 3.8 2.5 2.2 

Mean log(Stations) 3.60 3.95 3.55 3.90 3.38 3.30 

Mean Δt log(Stations) 0.23 0.30 0.26 0.22 0.21 0.23 

Mean population 4706 11,031 5950 2259 4813 6300 

Mean log(Pop.) 14.93 16.22 15.15 14.37 15.05 15.34 

Mean Δt log(Pop.) 0.11 0.12 0.14 0.04 0.12 0.17 

Mean Δ2 
𝑡 

log(Pop.) -0.011 -0.014 -0.012 -0.005 -0.013 -0.017 

Mean light in 25km disk 122 212 117 95 170 109 

Corr. lights & pop. 0.67 0.67 0.69 0.78 0.91 

Mean light gradient -0.72 -0.62 -0.78 -0.71 -0.58 -0.80 

Mean light intercept 11.2 11.0 11.8 11.0 10.2 11.9 

Note : Population levels reported in thousands. Lights data are based on radiance calibrated lights 

at night imagery. All entries describing levels report 2010 values. Entries describing changes 

are averages over the period from 1950 to 2010. 
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.3. Centralization 

We also use the lights data to describe urban centralization. The reso-
ution of the radiance calibrated lights data we use is about 1km square.
his is small enough to provide information about the way that cities
re laid out, and inspection of Fig. 2 shows that the lights data reflect
road patterns of urban density. 

In order to describe the ‘centralization’ of each city, we follow a
ong tradition in urban economics of calculating density gradients (e.g.,
lark, 1951 ; Mills and Peng, 1980 ). In our case, we estimate a light

ntensity gradient for every city-year to measure the rate at which den-
ity decays with distance from the center. To do this, we first calcu-
ate mean light intensity, for disks with radius 1.5 km, 5 km, 10 km,
5 km and 50 km, around each city’s centroid. These disks describe a se-
ies of doughnuts surrounding the center of each city. Let x i ∈ {0.75 km,
.25 km, 7.5 km, 17.5 km, 37.5 km} be the radii of the circles lying
alfway between the inner and outer border of these doughnuts. For
xample, 𝑥 𝑖 = 3 . 25 lies halfway between the inner and outer radius of
he doughnuts that extends from 1500 m to 5 km from a city’s center.
or each such doughnut, let y i denote the average light intensity in the
oughnut. 11 All together, for each city, we now have 5 pairs of light
ntensity and distance, ( y i , x i ). 

To characterize the centrality of each city, we estimate the following
egression 

n 𝑦 𝑖 = 𝐴 + 𝐵 ln 𝑥 𝑖 + 𝜖𝑖 . (3) 

he coefficient B in this regression is the rate at which light decays
ith a change in distance from the center, and will be our measure of

entrality for each city in each year. All else equal, a city with a more
egative value of B sees its density decrease more quickly with distance
rom the center, and is therefore, ‘more centralized’. 
11 We note that we do not make any adjustments for geographic features such 

s mountains or surface water when performing this calculation. 
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Table 1 reports sample mean values of A and B for the sample of all
ities and subway cities. We see that the gradient for an average city is
.79. Thus, density falls by 79% with a doubling of distance. Not too sur-
risingly, cities in Africa and South America are more centralized, while
ities in North America are less centralized. Subway cities are slightly
ess centralized than cities without subways. For these cities, density
alls by 72% with a doubling of distance. Interestingly, North Ameri-
an subway cities are particularly spread out, with a density gradient of
.58. 

.4. Subways data 

We define a ‘subway’ as an electric powered urban rail that is com-
letely isolated from interactions with automobile traffic and pedestri-
ns. This excludes most streetcars, because they interact with vehicle
raffic at stoplights and crossings, although we include underground
treetcar segments. In order to focus on intra-urban subway transporta-
ion systems, we also exclude heavy rail commuter lines. We do not dis-
inguish between surface, underground or aboveground subway lines as
ong as the exclusive right of way condition is satisfied. For the most
art, our subways data describe public transit systems that would ordi-
arily be described as ‘subways’, e.g., the Paris metro and the New York
ity subway, and only such systems. As with any such definition, the
nclusion or exclusion of particular marginal cases in our sample may
e controversial. 

On the basis of this definition, we assemble data describing the lat-
tude, longitude and date of opening of every subway station in the
orld. We compiled these data manually between January 2012 and
ebruary 2014 using the following process. First, using online sources
uch as http://www.urbanrail.net/ and links therein, together with links
n wikipedia, we complied a list of all subway stations worldwide. Next,
or each station on our list, we record opening date, station name, line
ame, terminal station indicator, transfer station indicator, city and
ountry. Latitude and longitude for each station were obtained from

http://www.urbanrail.net/
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Table 2 

Public transit ridership (2010). 

Annual ridership Annual ridership per capita Population 

(millions of rides) (rides per person per year) (millions) 

Mean Std. dev. 0.10 0.90 Mean Std. dev. 0.10 0.90 Mean Cities Countries 

Subway 377 640 18 1110 69 76 8 127 5.6 77 34 

Bus 242 343 26 697 67 80 12 170 4.0 40 17 

Bus | Subways > 0 256 315 36 584 74 86 14 145 4.5 31 17 

Source: American Public Transportation Association, public transit agencies, municipal and state-level statistics agencies, and rail- 

way companies. 
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Fig. 1. Growth of world subway systems. 

Note : The dashed line indicates the number of cities with a subway system (right 

axis) and the solid line indicates the total number of operational stations (left 

axis). 
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OOGLE maps. This process leads us to enumerate subway stations in
61 cities. Of these, 138 are large enough to appear in the un World
ities Data and are the main subject of our analysis. 12 

We use our data to construct three measures of subway extent for
ach city-year. First, we count the number of operational stations in each
ear. Second, we count the number of operational subway lines in each
ity in each year. Finally, by connecting stations on each subway line by
he shortest possible route, we approximate the route of each subway
ine. Taking the union of all such lines in a city approximates each city’s
etwork and calculating the length of this network gives us the length
f each system. In this way we arrive at our three primary measures of
ubway extent for each city-year; operational stations, operational lines
nd route kilometers. 

Fig. 2 illustrates our subway data for six cities. The figure shows
ll stations operational prior to 2010 as dots. The network maps, on
hich the 2010 calculation of route km is based, are shown as con-
ecting lines. In each panel of the figure, the large(small) circle or el-
ipse describes a circle of 25(5) km radius to show scale. This circle
s distorted in Northerly cities as a consequence of our map projection.
o show the configuration of each city, the background shows lights at
ight in 2010. In the top row, with 2010 populations of 1.1m and 0.9m
ibilsi (Georgia) and Toulouse (France) are among the smallest cities in
ur sample to have subways. In 2010 their subway systems consist of
1 and 37 stations, and 27 and 28 route km. In the middle row, Boston
nd Singapore have populations of 4.7 million and 5.1 million, near the
.7 million mean for subway cities. Their subway systems consist of 74
nd 78 stations and of 88 and 111 route km, which makes both systems
omewhat larger than both world and the relevant continental averages.
he bottom row of Fig. 2 shows two of the largest cities in our sample,
exico City and Beijing. The population of Mexico City in 2010 was

ust over 20 million against about 15 million for Beijing. Their subway
ystems contained 147 and 124 stations and consisted of 182 and 209
oute kilometers. 

Fig. 2 reveals that in each of the six cities only a small portion of the
ity is within walking distance of a subway and the catchment area of
he subway is centrally located. This is typical. An average city in our
ample has about 57 stations. Of these, about 9% are within 1500 m
f the center, about 29% are between 1500 m and 5 km of the center,
bout the same share lie between 5 and 10 km and between 10 and
5 km. Just 7% of stations are beyond 25 km from the center. Since
he area to be served expands quadratically, this means that subways
er square kilometer decreases rapidly with radial distance. In an aver-
ge subway city, there are 0.67 stations per km 

2 within 1500 m of the
enter, 0.22 stations per km 

2 between 1500 m and 5 km from the cen-
er, 0.07 stations per km 

2 between 5 and 10 km from the center, and
.001 stations per km 

2 between 10 and 25 km from the center. Thus,
n an average city, the preponderance of the subway system is located
12 The 23 cities with subways in 2010 that do not occur in our population 

ata because their population is too small are: Bielefeld, Bilbao, Bochum, Cata- 

ia, Dortmund, Duisburg, Dusseldorf, Essen, Frankfurt, Genova, Hannover, Ki- 

akyushu, Kryvyrih, Lausanne, Mulheim, Naha, Nuremberg, Palma, Perugia, 

ennes, Rouen, Seville and Wuppertal. 
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ithin 10 km of the center and station density decreases rapidly with
istance from the center. This is consistent with the argument that public
ransit preponderantly serves downtown cores in Glaeser et al. (2008) . 

Close inspection of the network maps in Fig. 2 suggests that our net-
orks probably diverge slightly from the actual network. The algorithm

hat we use to construct network maps connects all open stations on
 subway line by the shortest possible route. Therefore, our measure of
ength is a measure of the route kilometers required to serve operational
tations in each year rather than a literal measure of the length of track
n the system. 13 While we regard the route kilometers measure as being
f considerable interest, we suspect it is a noisier measure of subway
xtent than is the count of operational stations. Given this, our investi-
ation relies primarily on the count of operational stations to measure
ystem extent, although our results are robust to the choice of subway
easure. 

Table 1 describes the world’s subway systems in 2010. In 2010 in
ur sample of cities, there were 7886 operational subway stations and
0,672 route kilometers of subways, divided across 138 operational sys-
ems. Of these 138 subway cities, 53 are in Asia, 40 in Europe, 30
n North America, 14 in South America and one in Africa. Asia, Eu-
ope, North America and South America account for 38, 35, 20 and 6%
f all operational stations in 2010. The corresponding percentages of
oute kilometers are 39 for Asia, 33 for Europe, 21 for North Amer-
ca and 6 for South America. Thus, Asia has more systems than Eu-
ope, but a typical system in Europe has more stations and route kilo-
eters. North America accounts for a small share of subway stations
13 Our algorithm will produce routes that diverge from the actual routes for 

our reasons. First, if pairs of stations are connected with curving track, the 

ctual route will diverge from our straight line network. Second, if intermediate 

tations on a line open after the end points, then the algorithm will not include 

he intermediate stations on the network until they open. Third, we may mis- 

ttribute stations to subway lines. Fourth, if a route is served by two or more 

ets of tracks — as in New York city — then this replication is invisible to us. 
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Fig. 2. Lights and subways in 2010 for six cities. 

Note : Images show 2010 radiance calibrated lights at night, 2010 subway route maps, and all subway stations constructed prior to 2010. The gray/green ellipses in 

each figure are projected 5 km and 25 km radius circles to show scale and light blue is water. 
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nd route km, it contains a small number of systems and the aver-
ge extent of these systems is between that of Asian and European
ystems. 

Table 1 reveals substantial differences in the availability of subways
cross continents. Of the 347 large cities in Asia only 53, about 15%,
ave subway systems. In Europe, more than two thirds of large cities
ave subways, while in North America it is just less than one third. South
merica is a bit lower at 25%. Conditional on being in a subway city,

he level of service also varies widely by continent. Cities are smaller
nd subway systems larger in Europe where there are 25,000 people
er route km and 32,000 per station. These service levels are higher
han those in North America and Asia and higher still than those in
outh American subway cities. Interestingly, although the share of North
merican cities with subways is much higher than in Asia, people per
tation and people per route km in subway cities are close for the two
ontinents. 

Two features of Table 1 stand out. First, the huge gap in subway
rovision between Europe and the rest of the world. Second, the weak
onnection between mean city size and subway extent. In particular,
sia is home to the preponderance of the world’s large cities while
outh America’s cities are larger, on average, than those elsewhere.
owever, neither South America nor Asia is well provided with sub-
ays relative to Europe and North America. Indeed, Europe’s cities are
 o  

91 
he smallest and slowest growing, and it is by far the best provided with
ubways. 

Fig. 1 illustrates the expansion of the world’s subway systems over
he past century. There were four subway systems in operation prior
o or during 1860; Liverpool, Boston, London and New York. The “L ”
pened in Chicago in 1892 and The Paris Metro opened in 1900. Both
he aggregate world data and the continental data, except for Asia,
how a first wave of subway construction between the two world wars
nd a second wave beginning in the 1970s and continuing to 2010.
he growth of Asian subways begins in the 1970s and has accelerated
ince. Except for North America, expansion of subway systems and in-
reases in the number of subway cities track each other closely. In 2010,
he 1169 subway stations operating in the us were spread across 21
ities. However, 489 of these stations were in New York. Chicago is the
econd largest system at 142 stations. On average, the remaining 19
S subway cities have just 29 stations each, just over half the sample
verage. 

.5. Public transit ridership data 

We collected panel data on public transit ridership for the cities in
ur database from publicly available sources and reports. We were able
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Fig. 3. Proportion of cities with subways systems by population for two income 

classes. 

Note : Gray squares correspond to rich country cities and black triangles to poor 

country cities. See footnote 16 for the list of countries. 
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o obtain data on 77 subway systems and 40 bus transit systems. 14 

able 2 shows ridership descriptive statistics for subways and buses
n 2010. Bus systems provide on average 240 million trips per year,
hereas subways provide on average 380 million trips per year. In per

apita terms (columns 5–8), subways and buses are about equally impor-
ant in terms of rides per person per year. This is true not only when com-
aring averages, but also when comparing cities for which both types
f ridership information are available. 

. The relationship between subways and population 

We now turn to a description of the relationship between subways
nd population. Fig. 3 shows the relationship in 2010 between city size
nd the incidence of subway systems for all of the cities in our sample
xcluding Tokyo. 15 The horizontal axis gives city population by 0.5 mil-
ion bin and the vertical axis gives the proportion of cities with subways
or each bin. We split our sample of cities into rich and poor country
ities on the basis of the IMF advanced economy list for 2012. 16 Grey
quares and black triangles indicate the share of rich and poor coun-
ry cities with subways. The markers are spaced irregularly along the
orizontal axis because some population bins are empty. The solid line
s a smoothed plot of subway frequency in rich country cities and the
ashed line is the corresponding plot for poor country cities. 17 

There are no rich country cities with population above 5m without
 subway system and subways are common even among rich country
ities with populations in the 1 million–5 million range. Subways are
elatively rare among developing country cities with populations less
han about 5m and their frequency increases more or less smoothly with
ity size. 

Table 3 describes the largest 90 cities in our sample as of 2010. For
ach city, the table reports population, the count of operational stations
nd the number of stations per 100,000 of population. Despite the strong
elationship between city size and the presence of a subway system that
e see in Fig. 3, Table 3 suggests that the relationship between pop-
lation and subways is nuanced. In particular, none of the three cities
arger than New York has even half as many subway stations. Looking
own the list, we see that such reversals are common and do not sim-
ly reflect rich and poor country differences. Consistent with this, the
aw correlation between operational stations and population in 2010
s about 0.58. While subways are clearly more common in big cities,
he relationship between system extent and city size is noisy. Because
ome of the world’s largest cities have no subway system to speak of,
able 3 suggests that subway capacity may not be a binding constraint
n city size. 

We now turn to an investigation of what happens to a city when its
ubway system is inaugurated. Figures 4 , 5 and 6 describe the relation-
hip between changes in population and the introduction of a subway
ystem in a city using event study graphs. 

Fig. 4 shows the average population growth rate of cities as a func-
ion of the time since their subway system opened. 18 This figure is based
n data describing the 61 cities that opened their subway between 1970
14 Information on bus ridership by year is only reported by integrated transit 

ystems, something that is not common in developing countries. In particular, 

e have no bus ridership data for cities in Africa and South America. 
15 At 36 million people, Tokyo is nearly twice as large as the second largest 

ity. We omit it from the figure to improve legibility. 
16 These rich countries are: Australia, Japan, New Zealand, the United States, 

anada, Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, 

reece, Ireland, Israel, Italy, Netherlands, Norway, Portugal, Singapore, South 

orea, Spain, Sweden, Switzerland and the United Kingdom. 
17 More specifically, both lines are kernel weighted local polynomial regres- 

ions. 
18 The horizontal axis of each panel is time in years since a subway system in a 

ity is inaugurated, with negative values indicating years prior and conversely. 

he vertical axis indicates the mean change in log population — the population 

rowth rate — for all cities during the five year period ending t years before or 
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nd 1990, the set of cities for which we can calculate population growth
ates both for 20 years before and after their subway opens. This figure
hows that the average population growth rate during the five years fol-
owing the opening of a subway system is about 8%. During the five
ear period preceding a subway opening by five years, the average pop-
lation growth rate is about 12%. During the 20 years before and after a
ubway opening, the average city in our sample sees its growth rate de-
rease and there is no obvious change in this trend around the opening
f the subway system. 

The decrease in population growth rates visible in Fig. 4 reflects a
ample-wide decrease in growth rates. It may be that this downward
rend masks increases in growth rates associated with subway system
penings. Fig. 5 investigates this possibility by controlling for each pe-
iod’s mean growth rate. Using the same sample as in the top panel, for
ach year we calculate each city’s residual growth rate from a regression
f growth rates on continent and year dummies. We next calculate the
verage of these residuals conditional on time from subway opening.
nsurprisingly, this process removes the downward trend that we see

n Fig. 4 . Perhaps more surprisingly, it still does not show a systematic
hange in growth rates following subway system inaugurations. 

Figs. 4 and 5 show that city population growth rates do not increase
uring the 20 year period following the opening of a subway system.
s we discuss in Section 2 , the literature documents effects of subways
n within city outcomes over much shorter periods and the effects of
ther types of infrastructure on city level outcomes over a 10–20 year
orizon. Thus, the 40 year period illustrated in Figs. 4 and 5 should be
ong enough to reveal whether growth rates respond to a subway system
pening. Nevertheless, in Fig. 6 we use our entire sample of cities and
nvestigate population growth rates over the longest time period that
ur 60 year sample allows, 55 years. This figure suggests that the pat-
ern we see in Fig. 4 extends nearly 55 years before and after a subway
pening, although our estimates become noisier as the time from the
ubway opening approaches 55 years. 

To check for differences across regions in the relationship between
rban growth and subways, we produce analogous figures continent
y continent (not shown). Remarkably, each of the continents shows
 similar pattern. Urban population growth rates decrease in the period
round subway openings and there is no obvious sign of a change in
his trend at the time a subway opens. The only qualification of this
tatement applies to Europe, where there is a statistically insignificant
fter the subway opening. The solid line plots the mean growth rate and dashed 

ines give upper and lower 95% confidence bounds. These are local bounds con- 

tructed by connecting upper and lower 5% bounds at each year. 
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Table 3 

Population and subway stations for the world’s 90 largest cities as of 2010. 

City Name Pop. Stations Stations pp. City Name Pop. Stations Stations pp. 

Tokyo 36,933 255 0.69 Ho Chi Minh City 6,189 . . 

Delhi 21,935 128 0.58 Miami 5,971 22 0.37 

Mexico City 20,142 147 0.73 Santiago 5,959 93 1.56 

New York 20,104 489 2.43 Baghdad 5,891 . . 

Sao Paulo 19,649 62 0.32 Philadelphia 5,841 64 1.10 

Shanghai 19,554 239 1.22 Nanjing 5,665 54 0.95 

Mumbai 19,422 . . Haerbin 5,496 . . 

Beijing 15,000 124 0.83 Barcelona 5,488 137 2.50 

Dhaka 14,930 . . Toronto 5,485 69 1.26 

Kolkata 14,283 23 0.16 Shenyang 5,469 22 0.40 

Karachi 13,500 . . Belo Horizonte 5,407 19 0.35 

Buenos Aires 13,370 76 0.57 Riyadh 5,227 . . 

Los Angeles 13,223 30 0.23 Hangzhou 5,189 . . 

Rio de Janeiro 11,867 35 0.29 Dallas-Fort Worth 5,143 . . 

Manila 11,654 43 0.37 Singapore 5,086 78 1.53 

Moscow 11,472 168 1.46 Chittagong 5,069 . . 

Osaka 11,430 125 1.09 Pune 4,951 . . 

Cairo 11,031 51 0.46 Atlanta 4,875 38 0.78 

Istanbul 10,953 12 0.11 Xi’an, Shaanxi 4,846 . . 

Lagos 10,788 . . Saint Petersburg 4,842 63 1.30 

Paris 10,516 299 2.84 Luanda 4,790 . . 

Guangzhou 10,486 123 1.17 Houston 4,785 . . 

Shenzhen 10,222 47 0.46 Boston 4,772 74 1.55 

Seoul 9,751 360 3.69 Washington, D.C. 4,634 86 1.86 

Chongqing 9,732 . . Khartoum 4,516 . . 

Jakarta 9,630 . . Sydney 4,479 . . 

Chicago 9,545 142 1.49 Guadalajara 4,442 17 0.38 

Lima 8,950 16 0.18 Surat 4,438 . . 

London 8,923 267 2.99 Alexandria 4,400 . . 

Wuhan 8,904 25 0.28 Detroit 4,364 12 0.27 

Tianjin 8,535 36 0.42 Yangon 4,356 . . 

Chennai 8,523 . . Abidjan 4,151 . . 

Bogota 8,502 . . Monterrey 4,100 32 0.78 

Kinshasa 8,415 . . Ankara 4,074 12 0.29 

Bangalore 8,275 . . Shantou 4,062 . . 

Bangkok 8,213 51 0.62 Salvador 3,947 . . 

Hyderabad 7,578 . . Melbourne 3,896 . . 

Lahore 7,352 . . Porto Alegre 3,892 17 0.44 

Tehran 7,243 54 0.75 Phoenix 3,830 . . 

Dongguan 7,160 . . Montreal 3,808 68 1.79 

Hong Kong 7,053 54 0.77 Zhengzhou 3,796 . . 

Madrid 6,405 239 3.73 Johannesburg 3,763 . . 

Chengdu 6,397 16 0.25 Brasilia 3,701 27 0.73 

Ahmadabad 6,210 . . Recife 3,684 28 0.76 

Foshan 6,208 . . San Francisco 3,681 48 1.30 

Note : Populations in thousands. Subway stations per person is per 100,000 residents. 
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ositive deviation from trend around the opening of a subway system.
e also produced analogs to Figs. 4 and 5 where we restrict attention to

ities with population above 1m in 1970. This eliminates the small fast
rowing cities that qualify for the sample late in the sampling period.
he resulting figures are difficult to distinguish from those presented
ere. 

Figs. 4, 5 and 6 describe population growth rates as time varies rel-
tive to the date of a subway system opening . In Table 4 we turn our
ttention to the relationship between subway expansions and growth
ates. The top row of panel (a) describes 138 city-year pairs where a
ity-year with a subway expansion is followed by a city-year without
 subway expansion (recall that we use observations every five years
o technically the table reflects quinquennial city-periods). On average,
he growth rate in city-years with an expansion is 0.063, and in the
ubsequent city-year, without an expansion, it is 0.054. A t -test of the
ifference between the two means indicates that they are statistically
ifferent with high probability. In short, population growth rates are
ower following a subway expansion than during one. 

The remaining four rows of panel (a) of Table 4 perform similar cal-
ulations for slightly different sets of city-years. In row two we consider
he 60 city-year triples for which we observe a subway expansion fol-
owed by two city-years without an expansion. As for row 1, we see that
 Δ

93 
rowth rates decrease following a subway expansion and that the de-
rease in growth rate is statistically different from zero. In the third
ow we consider the 204 pairs of city-years where a subway expan-
ion follows a city-year without an expansion. The mean growth rate
or city-years preceding a subway expansion is larger than for city-years
ith an expansion, and this difference is statistically different from zero.
he fourth row of Table 4 considers the 141 triples of city-years where
 subway expansion is preceded by two years without an expansion.
gain, we see that city growth rates decrease in the years leading up

o a subway expansion. The last row of panel a in Table 4 considers
he 64 triples of city-years for which a subway expansion follows and
recedes city-years without expansions. The pattern of the other rows is
reserved. Population growth rates are higher before a subway expan-
ion and lower after, and this trend is statistically different from zero. 

Similarly to Fig. 5 , panel (b) of Table 4 replicates the results of panel
a), but controls for continent and year fixed effects. Specifically, the
alues reported in panel (b) of Table 4 are regression coefficients 𝛽 from
he regression, 

log ( Pop 𝑖𝑡 ) = 𝛼𝑡 + 𝜙𝑗 + 

2 ∑

𝑘 =−2 
𝛽𝑘 ⋅𝐼( Time to Expansion Indicators 𝑖𝑡 = 𝑘 ) + 𝜖𝑖𝑡 , 
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Fig. 4. Subway system opening and population growth (constant sample). 

Note : The graph depicts mean change in city log population according to time 

to system opening. 𝑡 = 0 indicates the year in which a city’s subway system 

was inaugurated. We impose a constant sample of cities on either side of 𝑡 = 0 . 
Graph based on constant sample of 61 cities. 

Fig. 5. Subway system opening and population growth (constant sample). 

Note : The graph depicts residuals from a regression of change in city log pop- 

ulation against continent and year fixed effects using the same sample of cities 

as Fig. 4 . Residuals from the regression are averaged conditional on time from 

subway opening and shown in the graph. 𝑡 = 0 indicates the year in which a 

city’s subway system was inaugurated. 

Fig. 6. Subway system opening and population growth (non-constant sample). 

Note : The graph depicts mean change in city log population according to time 

to system opening. 𝑡 = 0 indicates the year in which a city’s subway system was 

inaugurated. Graph is based on a sample of 115 cities. 
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94 
here 𝜙j refers to continent dummies and the excluded category for the
ime to expansion indicators is 𝑘 = 0 . Standard errors are clustered at
he city level, and we use the same samples as in the top panel. We test
hether the various time to expansion coefficients are different from the
ear zero coefficient using a robust F -test. Panel (b) of the table shows
hat even after we control for year and continent fixed effects, subway
xpansions are not associated with a measurable increase in population
rowth rates. 

. Econometric model 

The descriptive evidence presented so far indicates a positive cross-
ectional relationship between the extent of a city’s subway network and
ts population. Larger cities have more extensive subway networks. On
he other hand, time series evidence suggests that changes to subway
etworks do not affect the population of cities. These facts suggest that
arge cities build and expand subway networks but that these networks
o not cause changes in subsequent population growth. To establish
his causal interpretation of the patterns we see in the raw data, we
ust address two main inference problems, confounding dynamics and

mitted variables. 

.1. The problem of confounding dynamics 

Confounding dynamics arise if subway extent and population evolve
uch that subways open or expand in years that are, on average, different
rom other years. Many examples are possible. Cities may tend to build
nd open subways as some constraint to their growth begins to bind
nd their growth is slowing. In this case, these cities might have seen a
ramatic decrease in growth had they failed to construct a subway but
anage to maintain their growth by adding to their networks. Alterna-

ively, city population may naturally decrease when subways open and
onstruction workers leave, and positive effects of subways on growth
ust offset this loss. 

More generally, this class of problems arises when there is some se-
ies of population shocks that systematically precedes an expansion of
he subway network and confounds naive estimates of the relationship
etween subway expansion and growth. Describing the problem in this
ay suggests two possible responses. The first is simply to control for

he history of population growth in the period leading up to a subway
xpansion. In this way, we can estimate the effect of subways, hold-
ng constant their population growth during the preceding periods. The
econd is to find an instrument that predicts subway expansions but is
onditionally orthogonal to the hypothetical sequence of confounding
opulation shocks. 

As we will see, subway systems grow along a predictable trajectory
see appendix Fig. A.1 ) and so long lags of subway extent are good pre-
ictors of current subway growth (See Fig. A.2 ). 19 By construction, long
ags of subway extent pre-date the hypothetical confounding recent his-
ory of population growth, and hence should satisfy the relevant exclu-
ion restriction. 20 

In the remainder of this section we develop an econometric model
hat allows us to make this intuition precise and will form the basis for
19 Indeed, the growth of subway systems is surprisingly predictable. We can 

nly speculate as to why this might be. One explanation that would lead to 

he pattern we observe is that every city’s administration tries to show compe- 

ence by adding a subway line to the system. Another possibility is suggested 

y Gomez-Ibanez’s ( Gomez-Ibanez, 1996 ) history of the Boston subway. In this 

istory, Gomez-Ibanez documents a series of expansions, partly motivated by 

he need to expand the tax base on which to draw for subsidies for the system. 
20 It is worth pointing out that our use of long lags of subway system status as a 

ource of quasi-random variation is conceptually similar to the use of historical 

etworks as instruments for highways, e.g., Duranton and Turner (2012) . The 

ifference is that we here implement a panel data model, which looks quite 

ifferent from the existing literature on roads, and our ‘long lags’ are recent 

elative to the historical network variables used in Duranton and Turner (2012) . 
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Table 4 

Mean city-year population growth rates by time to a subway expansion. 

5 year period Δlog ( population ) 

Event Two periods Period before Subway expansion Period after Two periods 

type before expansion expansion period expansion after expansion N 

Panel a: Raw growth rates 

1 0.063 0.054 ∗ ∗ ∗ 138 

2 0.078 0.067 ∗ ∗ 0.064 ∗ ∗ 60 

3 0.090 ∗ ∗ ∗ 0.073 204 

4 0.120 ∗ ∗ 0.107 ∗ ∗ ∗ 0.083 141 

5 0.075 ∗ ∗ ∗ 0.061 0.052 ∗ ∗ 64 

Panel b: Growth rates relative to expansion period controlling for continent and year fixed effects 

1 -0.001 138 

2 -0.001 -0.009 60 

3 0.006 ∗ 204 

4 0.013 ∗ 0.012 ∗ 141 

5 0.009 ∗ -0.007 64 

Notes : Each row in panel (a) shows growth rates of cities in consecutive time periods. Event type 1 is a 

period of subway expansion (in the middle column) followed by a period with no expansion. Event type 

2 is a period of expansion followed by two consecutive 5 year periods with no expansion. Event type 3 

is a period with no subway expansions leading up to a period with expansions, and so on. Each row in 

panel (b) shows the difference in growth rates of cities (relative to a period of expansion) in consecutive 

time periods from a regression controlling for continent and year fixed effects. Stars indicate a significant 

difference of growth rate compared to period an expansion period. ∗ ∗ ∗ 1%, ∗ ∗ 5%, ∗ 10% significance 

respectively. 

s  

a  

f  

i
d  

o  

l  

l  

c  

l  

 

c  

H  

l  

r  

w  

t  

 

r  

c  

a  

b  

s

𝑦

𝑠

w  

o  

o  

d  

s
 

m  

t  

b  

d  

t  

a  

o  

I  

p  

b  

i  

t
 

g

Δ

Δ

D  

i  

i  

i  

w  

s  

s  

t
 

i  

t  

p  

a  

o

21 While differencing solves one problem, it may create another. If 𝑘 = 1 then 

both Δ𝑠 𝑖𝑡 −1 and Δy it involve terms for quantities for time 𝑡 − 1 . If we are con- 

cerned about contemporaneous correlation of errors in the population and sub- 

way equations, then this creates an obvious problem. This is a classic problem 

in dynamic panel data and the conventional approach is to substitute 𝑠 𝑖𝑡 −2 for 

Δ𝑠 𝑖𝑡 −1 or to use longer lags. 
22 We note that the instrumental variables strategy described here is related to 

the one proposed by Olley and Pakes (1991) , while the exogeneity condition of 

Eq. (7) is related to ideas developed in Arellano and Bond (1991) . 
ubsequent estimations. To begin, index the set of observed cities by i
nd the set of observed years by t . Let y it denote an outcome of interest
or city i in year t . Depending on context, y will be population, mean light
ntensity within 25 km of the city center, centrality or ridership. Let s it 
enote a measure of subway extent in city i in year t , usually the number
f operational stations but sometimes the number of operational subway
ines or route kilometers. Let x it denote a vector of time varying city
evel covariates, most often country level population, gdp per capita and
ontinent specific year indicators, and z i a time-invariant vector of city
evel controls. The operator Δ denotes first differences, Δ𝑥 𝑡 = 𝑥 𝑡 − 𝑥 𝑡 −1 .

We do not have a strong prior over whether subways should affect
ity population levels or growth rates additively or multiplicatively.
owever, plots of population growth against subway growth in both

ogarithms and levels clearly suggest that the logarithmic forms better
epresent the data. Given this, quantities are typically in logarithms and
here necessary we add one to variables to facilitate this transforma-

ion. This also allows us to interpret regression coefficients as elasticities.
In light of the differences between the time series and cross-sectional

elationship between subways and population growth, we are also con-
erned that cities have time invariant characteristics correlated with size
nd subway extent. The following system, while too stark to be defensi-
le, formalizes this problem and allows a discussion of how our lagged
ubways instrument addresses the problem of confounding dynamics. 

 𝑖𝑡 = 𝐴 1 𝑠 𝑖𝑡 + 𝑐 𝑖 + 𝜖𝑖𝑡 (4) 

 𝑖𝑡 = 𝐵 1 𝑠 𝑖𝑡 − 𝑘 + 𝑑 𝑖 + 𝜂𝑖𝑡 , (5) 

here A 1 , the “outcome elasticity of subway extent ”, is the parameter
f interest and k is a positive integer. In words, population depends
n contemporaneous subways, a city specific intercept and a random
isturbance. Subways at t depend on subways at period 𝑡 − 𝑘, a city
pecific intercept and a random disturbance. 

Written this way, it is natural to consider using 𝑠 𝑖𝑡 − 𝑘 as an instru-
ent for s it . This is subject to two objections. First, this system of equa-

ion commits us to a particular dynamic structure for the relationship
etween subways and population. It is natural to wonder whether this
ynamic structure is correct. In our estimations we consider alterna-
95 
ive dynamic structures for our data. Second, unobserved time invari-
nt determinants of subway construction are probably related to un-
bserved time invariant determinants of growth. That is, cov ( c i , d i ) ≠0.
t follows that, because 𝑠 𝑖𝑡 − 𝑘 also depends on d i , we should not ex-
ect 𝑐𝑜𝑣 (( 𝑐 𝑖 + 𝜖𝑖𝑡 ) , 𝑠 𝑖𝑡 − 𝑘 ) = 0 . That is, the dynamic structure described
y Eqs. (4) and (5) requires that 𝑠 𝑖𝑡 − 𝑘 be correlated with unobservables
n the population equation. It follows that it is not a valid instrument in
his context. 

As a first response to this problem, first difference Eqs. (4) and (5) to
et 

𝑦 𝑖𝑡 = 𝐴 1 Δ𝑠 𝑖𝑡 + Δ𝜖𝑖𝑡 (6) 

𝑠 𝑖𝑡 = 𝐵 1 Δ𝑠 𝑖𝑡 − 𝑘 + Δ𝜂𝑖𝑡 . (7) 

ifferencing solves two problems. First, and as usual, it removes time-
nvariant unobservables from the first equation. 21 Second, after remov-
ng the city specific intercept from the population equation, the valid-
ty of lagged subways as an instrument for current subways hinges on
hether 𝑐𝑜𝑣 (Δ𝑠 𝑖𝑡 − 𝑘 , Δ𝜖𝑖𝑡 ) = 0 , or in words, on whether lagged change in

ubways is uncorrelated with current change in the time varying propen-
ity to grow. This is simply a more technical statement of the intuition
hat motivates this instrumental variables strategy. 22 

Since Δ𝑠 𝑖𝑡 − 𝑘 = 𝑠 𝑖𝑡 − 𝑠 𝑖𝑡 − 𝑘 and since the error term in Eq. (6) no longer
ncludes c i , as is standard in dynamic panel estimation, the same logic
hat justifies using Δ𝑠 𝑖𝑡 − 𝑘 as an instrument also justifies using the com-
onent levels. In fact, we find that the levels have much better predictive
bility in the first stage than do changes, and so we rely on lagged levels
f log subways as our instruments. 
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Table 5 

Pooled cross sectional estimation. 

Dependent variable All cities Subway cities 

(1) (2) (3) (4) (5) (6) (7) 

ln (pop t ) ln (pop t ) ln (pop t ) ln (pop t ) ln (pop t ) ln (pop t ) ln (Lights t ) 

ln (subway stations t ) 0.48 ∗∗∗ 0.28 ∗∗∗ 0.26 ∗∗∗ 0.22 ∗∗∗ 0.17 ∗∗∗ 

(0.02) (0.03) (0.03) (0.03) (0.03) 

ln (route km t ) 0.23 ∗∗∗ 

(0.03) 

ln (subway lines t ) 0.52 ∗∗∗ 

(0.06) 

ln ( GDP 𝑝𝑐 𝑡 ) 0.31 ∗∗∗ 0.02 -0.04 0.03 0.01 0.37 ∗∗∗ 

(0.04) (0.09) (0.08) (0.09) (0.09) (0.08) 

ln ( country pop 𝑡 ) 0.17 ∗∗∗ 0.28 ∗∗∗ 0.22 ∗∗∗ 0.29 ∗∗∗ 0.27 ∗∗∗ 0.20 ∗∗∗ 

(0.03) (0.05) (0.06) (0.06) (0.06) (0.05) 

Geographic controls No Yes Yes Yes Yes Yes Yes 

YearXContinent dummies No Yes Yes Yes Yes Yes Yes 

Mean of dep. variable 13.35 13.44 14.48 14.82 14.48 14.48 4.67 

Mean of subways regressor 0.38 0.40 1.88 2.18 1.99 0.79 3.06 

SD subways regressor 1.15 1.17 1.92 1.96 2.05 0.91 1.49 

R-squared 0.18 0.49 0.53 0.58 0.52 0.53 0.54 

Number of cities 632 627 137 99 137 137 137 

Number of subway cities 138 137 137 99 137 137 137 

Number of periods 13 13 13 13 13 13 4 

Observations 8216 7374 1565 1155 1565 1565 548 

Notes: Dependent variable: Log population of metropolitan area in quinquennial period t (except last column 

- see (7) below). City-level clustered standard errors in parentheses. Stars denote significance levels: ∗ 0.10, ∗ ∗ 

0.05, ∗ ∗ ∗ 0.01. Geographic controls are capital city dummy, log km to ocean, log km to land border, and log 

km to navigable river. (1)- Pooled cross section. (2)- Geographic controls, GDP pc control, country population, 

and year-by-continent dummies. (3)- Restrict sample to cities with subway by 2010. (4)- Restrict sample to 

large cities in 1970 (population > 1 million). (5)- Log route km of subways as main regressor. Sample is cities 

with subway by 2010. (6)- Log subway lines in system as main regressor. Sample is cities with subway by 

2010. (7)- Dep. var. is log mean radiance calibrated lights in a 25 km circle around the centroid of the city 

in quinquennial period t . 
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The discussion above describes an econometric strategy based
round using old subway system extent to instrument for current subway
ystem growth. An alternative is to use lagged changes of population to
nstrument for current changes in subways. The basic logic of this ap-
roach is similar to that described above. However, lagged population
evels and changes have less ability to predict current changes to sub-
ays than do lagged subway variables, so we organize our discussion
nd analysis around the lagged subways instruments. 

The instrumental variable strategy articulated above responds to the
ossibility that subway construction reflects recent trends in population.
 more direct approach to this problem is to simply control for lagged
opulation, which we also do in the results section. 

A related problem arises if both population growth and subway
rowth reflect some unobserved city specific time-varying factor. For
xample, it may be that poor administrations cause cities to grow slowly
nd build subway networks. In this case, our estimated effect of subways
n population growth confounds the effects of bad municipal govern-
ent with the effects of subways. To address this possibility, we would

ike to include fixed effects in the first differences regressions, or equiv-
lently, city specific trend in the levels regressions, Eqs. (4) and (5) . To
mplement this estimator, we second difference Eq. (4) . 23 

Summarizing, our econometric investigation will be organized
round estimating the following system, 

 𝑖𝑡 = 𝐴 1 𝑠 𝑖𝑡 + 𝐴 2 𝑥 𝑖𝑡 + 𝐴 3 𝑧 𝑖 + 𝑐 𝑖 + 𝑔 𝑖 𝑡 + 𝜖𝑖𝑡 (8)

 = 𝐵 𝑠 + 𝐵 𝑥 + 𝐵 𝑧 + 𝑑 + ℎ 𝑡 + 𝜂 . (9)
𝑖𝑡 1 𝑖𝑡 − 𝑘 2 𝑖𝑡 3 𝑖 𝑖 𝑖 𝑖𝑡 

23 In principle, one could also implement our instrumental variables strategy in 

econd differences. We experimented with this but found that lagged subways 

nd population variables do not have much ability to predict current second 

ifferences of subways. Consequently, these regressions were not informative. 

h  

s  

Δ

96 
his generalizes Eqs. (4) and (5) in a number of ways. First, it allows
or time-invariant control variables, z i . Second, it allows for city specific
rends and intercepts in both population and subways equations. Third,
t allows for time varying controls, lags of y i in particular. In practice,
e predict current changes in subways with 20 or 40 year old subway

xtent, so that 𝑘 = 4 or 8. 

.2. The problem of omitted variables 

We are concerned that subway expansions and population growth
re correlated with some unobservable. For example, one can imagine
hat cities experiencing bouts of growth-inhibiting automobile conges-
ion decide to build subways. If this is indeed the case, then we should
bserve different effects of subways on population growth in congested
han in uncongested cities. In particular, we should observe that subway
xpansions in cities with low levels of congestion attract population but
hat subway expansions in congested cities do not (or conversely). If we
nd no heterogenous effects of subways by city congestion levels, this
uggests that this particular omitted variable is not biasing our estima-
ions. 

A second possibility is that the effect of subways on growth may
e heterogenous across fixed city characteristics. For example, subway
xpansions may attract population to cities that already have a substan-
ial subway network coverage, such as Paris or New York, but not to
ities such as Miami with small systems. We can test for this by look-
ng for heterogenous effects by subway network coverage. If we find no
eterogenous effects by subway network coverage, we interpret this as
uggestive that this type of consideration is not leading to the null result.

More formally, we estimate the following regression 

𝑦 = 𝐴 Δ𝑠 + 𝐴 (Δ𝑠 × 𝑥 ) + Δ𝜖 (10) 
𝑖𝑡 1 𝑖𝑡 2 𝑖𝑡 𝑖 𝑖𝑡 
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Table 6 

First differences estimation. 

Time periods: Quinquennial panel Decennial panel Long difference 

Dependent variable: Δln (pop t ) Δln (Lights t ) Δln (pop t ) Δ ln ( pop 50−00 ) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Δln (subway stations t ) -0.011 ∗∗ 0.001 -0.002 0.006 ∗∗ -0.022 ∗ 0.024 -0.007 

(0.004) (0.003) (0.003) (0.003) (0.012) (0.015) (0.005) 

Δln ( subway stations 50−00 ) -0.060 

(0.058) 

Δln (route km t ) -0.001 

(0.003) 

Δln (subway lines t ) -0.002 

(0.008) 

Δln (Bus ridership t ) 0.035 

(0.039) 

Δ ln ( GDP 𝑝𝑐 𝑡 ) 0.201 ∗∗∗ 0.176 ∗∗∗ 0.006 0.201 ∗∗∗ 0.201 ∗∗∗ 0.643 ∗∗∗ 0.222 ∗∗∗ 

(0.042) (0.032) (0.103) (0.042) (0.042) (0.106) (0.038) 

Δ ln ( country pop 𝑡 ) 0.951 ∗∗∗ 1.121 ∗∗∗ 1.222 ∗∗∗ 0.951 ∗∗∗ 0.949 ∗∗∗ 0.260 ∗ 0.911 ∗∗∗ 

(0.118) (0.138) (0.214) (0.117) (0.118) (0.144) (0.150) 

YearXContinent dummies No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Mean of dep. variable 0.113 0.113 0.111 0.098 0.057 0.111 0.111 0.027 0.110 1.234 

Mean of subways regressor 0.25 0.25 0.26 0.26 0.10 0.27 0.10 0.36 0.27 0.12 

SD subways regressor 0.69 0.69 0.71 0.69 0.38 0.75 0.26 0.82 0.72 0.24 

R-squared 0.00 0.29 0.42 0.55 0.51 0.42 0.42 0.46 0.39 0.40 

Number of cities 138 138 137 99 31 137 137 137 137 138 

Number of subway cities 138 138 137 99 31 137 137 137 137 138 

Number of periods 12 12 12 12 8 12 12 3 6 1 

Observations 1656 1656 1428 1056 63 1428 1428 411 730 138 

Notes : Sample is subway cities. City-level clustered standard errors in parentheses. Stars denote significance levels: ∗ 0.10, ∗ ∗ 0.05, ∗ ∗ ∗ 0.01. (1)- No controls. 

(2)- Add year-by-continent dummies. (3)- Add change in log gdp and change in log country pop. controls. (4)- Restrict sample to large cities in 1970 

(population > 1 million). (5)- Control for change in log bus ridership. (6)- Use change in log route km as main regressor. (7)- Use change in log subway 

lines as main regressor. (8)- Dep. var. is change in log mean radiance calibrated lights in a 25km circle around the centroid of the city. (9)- Ten year panel 

analysis. (10)- Long difference regression 1950–2000, control for Δ ln ( GDP 𝑝𝑐 50−00 ) and Δ ln ( Country pop 50−00 ) , not shown. 
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here x i denotes the terminal value of some control variable omitted
rom our main specification. 24 The particular variables that we con-
ider measure: topography; the terminal stock of roads; capital status;
ost wwii subway system indicator; degree of centralization; road con-
estion levels; and an ease of doing business index, among others. The
ata sources and definitions for these variables are described in the data
ppendix. 

. Subways and population: Main estimation results 

We proceed by estimating successively more complete and complex
ersions of Eqs. (8) and (9) . To begin, in Table 5 we estimate Eq. (8) us-
ng OLS on pooled cross-sections. Such estimations result in unbiased
stimates only if the time invariant determinants of subways and pop-
lation are uncorrelated. This condition seems implausible. We expect
hat unobserved factors affecting the attractiveness of a city also affect
ts construction of subways, so we regard these estimations as primarily
escriptive. 

In column 1 of Table 5 we regress the log of population on log of the
ount of operational subway stations. We use the entire sample of 632
ities for which we have population and subway data. Since our panel is
omplete for these two variables, we have a sample of 13 × 632 = 8 , 216 
ity-years. The subway elasticity of population is large. A 10% increase
n a city’s count of stations is associated with a 4.8% increase in popula-
ion. Column 2 replicates this result, but controls for country level gdp
24 We do not have a strong prior over whether or not the variable x i should 

ccur independently in this equation. It is conventional that it should do so, 

owever, since this is a first difference regression and since the x i ’s do not vary 

ver time, the first difference of a regression in levels that included an indepen- 

ent x i term would look like Eq. (10) . As a practical matter, we report estimates 

f Eq. (10) , but corresponding estimates that include and independent term in 

 i do not lead to important differences in our estimates of the effects of subways 

n population growth. 
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97 
nd continent-by-year fixed effects, along with several time-invariant
ontrols; a capital city indicator, and distances to the ocean, interna-
ional boundary and nearest navigable river. We see that the coefficient
n subways, while still large, decreases to 0.28. Our sample size de-
reases to 7374 in this regression, primarily because a number of the
ountries covered by our sample, particularly those in the former Soviet
nion, came into existence after 1950 and so country level gdp is not
vailable. 

Column 3 considers the same regression as column 2 but restricts
ttention to cities that had subways in 2010. This is the largest sample
f cities that could possibly contribute to a first differences estimate of
he effect of subways. This reduces our sample to 1565 city-years but
eaves the coefficient of subways almost unchanged. The sample of 137
ities used in column 3 includes some cities that were small in 1950
nd grew quickly to cross the 750,000 threshold for inclusion in the
N World Cities Data. To investigate the importance of this sampling
roblem in column 4 we restrict attention to cities that were already
arge in 1970 (above 1 million). 25 The estimated coefficient with the
ample restricted to large cities changes very little. Columns 5 and 6
eplicate column 3, but consider alternative measures of subway extent,
oute kilometers and log subway lines. Coefficient magnitudes change
pproximately in proportion to the changes in the standard deviation of
he subway measures. 

Column 7 reports a regression similar to column 3, where our de-
endent variable is the logarithm of mean light intensity in a 25 km
isk centered on the city. As in column 3, we restrict attention to cities
ith subways in 2010. Our sample of city-years is smaller than for pop-
lation regressions because we have just four cross sections of lights
ata. We see that a one percent increase in subways is associated with a
25 We experimented extensively with different sampling rules to investigate 

hether our results are driven by the small cities that grow rapidly to get into 

he sample. We could find no evidence that this is the case. 
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Table 7 

Robustness to confounding dynamics. 

Time periods: Quinquennial panel 

Estimation: OLS IV 

Dependent variable: Δln (pop t ) Δ2 ln (pop t ) Δln (pop t ) 

(1) (2) (3) (4) (5) (6) (7) 

Δln (subway stations t ) -0.006 -0.006 0.018 0.016 0.014 -0.036 

(0.004) (0.003) (0.011) (0.010) (0.015) (0.035) 

Δ2 ln (subway stations t ) -0.003 

(0.002) 

Δ ln ( pop 𝑡 −2 ) 0.553 ∗∗∗ 0.599 ∗∗∗ 0.545 ∗∗∗ 0.600 ∗∗∗ 0.546 ∗∗∗ 

(0.052) (0.113) (0.053) (0.119) (0.053) 

Δ ln ( pop 𝑡 −3 ) -0.059 -0.068 

(0.082) (0.087) 

ln ( pop 𝑡 −2 ) -0.040 ∗∗∗ 

(0.012) 

Δ ln ( country pop 𝑡 ) 0.465 ∗∗∗ 0.446 ∗∗∗ 0.434 ∗∗∗ 0.415 ∗∗∗ 0.438 ∗∗∗ 0.868 ∗∗∗ 

(0.058) (0.045) (0.061) (0.049) (0.061) (0.123) 

Δ ln ( GDP 𝑝𝑐 𝑡 ) 0.128 ∗∗∗ 0.124 ∗∗∗ 0.126 ∗∗∗ 0.122 ∗∗∗ 0.126 ∗∗∗ 0.204 ∗∗∗ 

(0.025) (0.023) (0.024) (0.022) (0.024) (0.045) 

Δ2 ln ( country pop 𝑡 ) 0.301 ∗∗ 

(0.100) 

Δ2 ln ( GDP 𝑝𝑐 𝑡 ) 0.067 ∗∗ 

(0.022) 

YearXContinent dummies Yes Yes Yes Yes Yes Yes Yes 

Mean of dep. variable 0.098 0.091 -0.010 0.098 0.091 0.098 0.106 

Mean of subways regressor 0.29 0.31 0.02 0.29 0.31 0.29 0.27 

SD subways regressor 0.74 0.77 1.01 0.74 0.77 0.74 0.72 

R-squared 0.61 0.60 0.11 0.59 0.58 0.60 0.46 

Number of cities 137 137 137 137 137 137 137 

Number of subway cities 137 137 137 137 137 137 137 

Number of periods 10 9 11 10 9 10 11 

F-stat excluded instrument 132.36 147.51 153.49 216.75 

Observations 1235 1124 1291 1235 1124 1235 1344 

Dependent variable: Change in log population of metropolitan area in a 5 year period. Sample is subway cities. 

City-level clustered standard errors in parentheses. Stars denote significance levels: ∗ 0.10, ∗ ∗ 0.05, ∗ ∗ ∗ 0.01. (1)- 

First differences controlling for Δ ln ( pop 𝑡 −2 ) . (2)- First differences controlling for Δ ln ( pop 𝑡 −2 ) and Δ ln ( pop 𝑡 −3 ) . 
(3)- Second differences regression. (4)- Instrument Δln ( s t ) with ln ( 𝑠 𝑡 −4 ) controlling for Δ ln ( pop 𝑡 −2 ) . (5)- Instru- 

ment Δln ( s t ) with ln ( 𝑠 𝑡 −4 ) controlling for Δ ln ( pop 𝑡 −2 ) and Δ ln ( pop 𝑡 −3 ) . (6)- Instrument Δln ( s t ) with ln ( 𝑠 𝑡 −8 ) 
controlling for Δ ln ( pop 𝑡 −2 ) . (7)- Instrument Δln ( s t ) with ln ( 𝑠 𝑡 −4 ) controlling for ln ( pop 𝑡 −2 ) . 
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.17% increase in lights. This is close to our results for population and
uggests that our population regressions are not driven by problems in
he un World Cities Data. In sum, Table 5 confirms the conclusion of
ig. 3 . Cities with more subways tend to be bigger. This relationship is
obust to controls, sampling, the particular measure of subway extent
nd whether we measure city size with lights or population. 

We now turn to first difference regressions. Table 6 presents first
ifference estimates of a version of Eq. (8) without city specific trends.
e note that both first difference and within estimators are consistent

stimators for Eq. (8) if the errors, 𝜖it , in each period are not correlated
ith the regressors in any period conditional on the unobserved fixed

ffect. Because our approach to estimating Eqs. (8) and (9) revolves
round differencing, we prefer the first differences estimator. 26 

Columns 3–7 in Table 6 use the same sample of cities as column
 of Table 5 , while columns 1 and 2 use the slightly larger sample
vailable when we do not control for changes in gdp . In column 1,
e report the results of regressing change in log population on change

n the log of the count of operational stations. In column 2 we repeat
his regression with continent specific year dummies. Like Table 4 we
ee a negative relationship between subway expansions and population
rowth when we do not control for continent specific year effects, but
hat the relationship between subways and population is approximately
26 The choice between the two estimators hinges on subtle differences in the er- 

ors. The first difference estimator is more efficient if 𝜖it is a random walk, while 

he within estimator is more efficient if the 𝜖it are i.i.d. (Ch. 10, Wooldridge, 

001 ). 
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ero once we include these controls. In column 3 we add controls for
ountry level changes in gdp and population and in column 4 we re-
trict attention to large cities in 1970 (over 1 million). In every case,
e estimate the effect of subways to be less than 0.01 with standard

rrors around 0.003. These are tiny effects, precisely estimated. In un-
eported results we estimate these same specifications separately for
ach continent and find virtually no heterogeneity across continents, in-
icating that these small coefficients are not masking across-continent
eterogeneity. 

In column 5 we control for our measure of bus ridership. We do this
o address the following concern. Suppose that in every year that a city
oes not invest in subways, it invests in buses, and that buses and sub-
ays substitute perfectly for each other. In this case, years with subway

xpansions will be identical to years without, even though subways may
e having an arbitrarily large positive effect on population growth. Our
ata allows us to deal with this particular concern by controlling for
hanges in bus ridership. Since the sample of cities and years for which
e observe bus ridership is much smaller than the sample for which we
bserve subways and population, our sample of years and cities shrinks
onsiderably. However, including this control does not lead to a posi-
ive effect of subways on population. In fact, the relationship is slightly
egative. 

In columns 6 and 7 we measure subway extent using route km and
ounts of subway lines. We still find very small and statistically insignif-
cant effects. In column 8 we use the average light intensity in a disk of
5 km centered on the city as our dependent variable. As with our other
egressions, we find a much smaller effect than in the comparable cross-
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Table 8 

First Differences - Distributed Lag Models. 

Time periods: Quinquennial panel 

Dependent variable: Δln (pop t ) 

(1) (2) (3) (4) (5) 

Δln (subway stations t ) -0.002 -0.002 

(0.003) (0.004) 

Δ ln ( subway stations 𝑡 −1 ) -0.002 -0.002 

(0.003) (0.003) 

Δ ln ( subway stations 𝑡 −2 ) -0.003 -0.003 

(0.003) (0.003) 

Δ ln ( subway stations 𝑡 −3 ) -0.005 -0.006 

(0.003) (0.004) 

Δ ln ( GDP 𝑝𝑐 𝑡 ) 0.201 ∗∗∗ 0.201 ∗∗∗ 0.200 ∗∗∗ 0.200 ∗∗∗ 0.200 ∗∗∗ 

(0.042) (0.042) (0.042) (0.042) (0.042) 

Δ ln ( country pop 𝑡 ) 0.951 ∗∗∗ 0.948 ∗∗∗ 0.946 ∗∗∗ 0.945 ∗∗∗ 0.944 ∗∗∗ 

(0.118) (0.119) (0.119) (0.119) (0.118) 

YearXContinent dummies Yes Yes Yes Yes Yes 

Mean of dep. variable 0.11 0.11 0.11 0.11 0.11 

Number of cities 137 137 137 137 137 

Number of subway cities 137 137 137 137 137 

Number of periods 12 12 12 12 12 

Observations 1428 1428 1428 1428 1428 

Notes : Dependent variable: Change in log population in a 5 year period. Sample 

is cities with subway in 2010. City-level clustered standard errors in parentheses. 

Stars denote significance levels: ∗ 0.10, ∗ ∗ 0.05, ∗ ∗ ∗ 0.01. 
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ectional regression, column 7 of Table 5 , in this case not distinguishable
rom zero. 

In column 9 we replicate column 3 but use 10 year rather than five
ear intervals to construct our panel, while in column 10 we report a
ong difference regression where we conduct a cross-sectional regression
f long differences of population on long differences of subways. Both
oint estimates are small negative numbers indistinguishable from zero
t ordinary levels of confidence. Columns 9 and 10 suggest that our first
ifference estimates are not an artifact of the frequency with which we
ample the data. 27 

Summing up, first difference estimates are dramatically smaller than
ross-sectional estimates. Not only are the estimates of the effect smaller
han those in the cross-sectional estimates, but they are small in an ab-
olute sense, often well under 1% and precisely estimated. 

We now investigate the possibility of confounding dynamics.
olumns 1 and 2 of Table 7 replicate column 3 of Table 6 while con-
rolling for the second and third lag of population change, respectively.
ur sample size drops slightly in these specifications because we ob-

erve lagged population for fewer city years than contemporaneous pop-
lation. Like the corresponding first difference regression in Table 6 ,
hese regressions indicate tiny and precisely estimated effects of sub-
ays on population growth. Because the first lag of population is me-

hanically endogenous in our first difference regressions, columns 1 and
 of Table 7 control for the second and third lags of population. Column
 instead reports second difference regressions. If there are city specific
rends, this regression will account for this. As in the first difference
egressions, we see a tiny precisely estimated relationship between sub-
ays and population. 

In the remainder of Table 7 we turn attention to the instrumental
ariables regressions described in Section 6 . That is, we replicate the first
ifference regressions of columns 1 and 2, but use the fourth or eighth
27 In fact, the long distance estimates are sensitive to the choice of time period. 

or example, if we conduct a long difference regression from 1950 to 2010, we 

et a statistically significant positive relationship between subways and popu- 

ation. This result is driven entirely by two cities which grew rapidly over the 

hole period and built large subway systems between 2005 and 2010. Exclud- 

ng these two cities restores a coefficient of about zero in this regression. For 

his reason, we regard the long difference estimates as less reliable than other 

stimates. 
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ag of subways as an instrument for the current change in subways. The
ppendix describes the first stage. As we see in Fig. A.1 , subway systems
row predictably, and at a decreasing rate. Thus, given the extent of a
ubway system in any period, we can forecast the future, lower, growth
ate quite accurately. This is demonstrated in Table A.1 which presents
rst stage results predicting current subway system growth rate as a

unction of lagged subway extent and the controls that appear in the
rst two columns of Table 7 . We see that our instruments are not weak,
nd behave as we would expect given the profile of system growth that
e see in Figs. A.1 and A.2 . 

Given that the instrument for subway growth in period t is subway
xtent 20 or 40 years prior, our instrumented estimate provides a local
verage treatment effect for which identifying variation is obtained from
ower ranked expansions, as the instrument excludes variation from the
nitial and usually highest priority subway stations. For example, sub-
ay stations built during the first decade of a system are on average 6.4
m from the city center, whereas this distance increases to 7.6 km and
.5 km in the second and third decades respectively. 

In columns 4 and 5 of Table 7 we replicate columns 1 and 2, but
nstrument for change in log subways with the fourth lag of log sub-
ays. In column 6 we replicate column 1 but instrument for change in

ubways with the eighth lag of log subways. The IV point estimates of
he effect of log subways are slightly larger than the first difference esti-
ates, but never above 2% and never statistically distinguishable from

ero. 28 As a robustness check, in column 7 we take the specification
n column 4 but replace the control for lagged population growth with
agged population level. This results in a negative but insignificantly
ifferent from zero instrumented coefficient of subway expansions on
ity growth. The IV coefficient estimates are not uniformly positive and
uggest that the effect of subway expansions on city growth is small and
ot distinguishable from zero. In sum, Table 7 does not support the hy-
othesis that subways have a large positive effect on population growth
hat is masked by some confounding dynamic process. 
28 Although point estimates from IV and first difference estimates of the ef- 

ect of subways are not distinguishable from zero at conventional levels, they 

re close, e.g., compare columns 2 and 5 of Table 7 . To the extent that IV esti- 

ates are larger than the first difference estimates, they suggests that subways 

ssigned to city-years by the equilibrium process are assigned to city-years that 

re growing slightly more slowly than city-years selected at random. 
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Table 9 

Robustness to confounding unobservables. 

Time periods: Quinquennial panel 

Estimation: OLS 

Dependent variable: Δln (pop t ) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

Δln ( s t ) -0.002 -0.001 -0.004 0.002 0.003 -0.000 -0.003 -0.029 0.044 ∗ -0.000 -0.000 0.005 -0.002 

(0.003) (0.006) (0.005) (0.007) (0.004) (0.004) (0.006) (0.032) (0.027) (0.005) (0.004) (0.004) (0.006) 

(25 km slope > median) X Δln ( s t ) -0.000 

(0.006) 

(25 km elevation range > median) X Δln ( s t ) 0.005 

(0.006) 

(25km highways > median) X Δln ( s t ) -0.004 

(0.008) 

(TomTom congestion > median) X Δln ( s t ) -0.012 

(0.008) 

(Capital) X Δln ( s t ) -0.004 

(0.006) 

(Good doing business) X Δln ( s t ) 0.003 

(0.009) 

(System built post WW II) X Δln ( s t ) 0.028 

(0.031) 

Centralization X Δln ( s t ) -0.045 

(0.028) 

(Subway coverage > median) X Δln ( s t ) -0.002 

(0.004) 

(City pop. 1950 > median) X Δln ( s t ) -0.003 

(0.007) 

(Coastal city) X Δln ln ( s t ) -0.015 ∗∗ 

(0.006) 

(Bus ridership pc > median) X Δln ( s t ) 0.002 

(0.007) 

Δ ln ( GDP 𝑝𝑐 𝑡 ) 0.201 ∗∗∗ 0.201 ∗∗∗ 0.201 ∗∗∗ 0.201 ∗∗∗ 0.299 ∗∗∗ 0.201 ∗∗∗ 0.195 ∗∗ 0.202 ∗∗∗ 0.189 ∗∗ 0.201 ∗∗∗ 0.201 ∗∗∗ 0.203 ∗∗∗ 0.082 

(0.042) (0.042) (0.042) (0.042) (0.080) (0.042) (0.066) (0.043) (0.058) (0.042) (0.042) (0.042) (0.061) 

Δ ln ( country pop 𝑡 ) 0.951 ∗∗∗ 0.951 ∗∗∗ 0.955 ∗∗∗ 0.952 ∗∗∗ 0.807 ∗∗∗ 0.952 ∗∗∗ 0.749 ∗∗∗ 0.947 ∗∗∗ 0.776 ∗∗∗ 0.947 ∗∗∗ 0.949 ∗∗∗ 0.956 ∗∗∗ 0.840 ∗∗ 

(0.118) (0.117) (0.115) (0.117) (0.111) (0.119) (0.092) (0.117) (0.061) (0.117) (0.117) (0.109) (0.366) 

YearXContinent dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Mean of dep. variable 0.11 0.11 0.11 0.11 0.10 0.11 0.15 0.11 0.07 0.11 0.11 0.11 0.10 

Number of cities 137 136 136 137 84 137 63 137 137 137 137 137 40 

Number of subway cities 137 136 136 137 84 137 63 137 137 137 137 137 40 

Number of periods 12 12 12 12 12 12 12 12 4 12 12 12 12 

Observations 1428 1416 1416 1428 937 1428 579 1428 541 1428 1428 1428 453 

Notes: s t is short for subway stations t . Sample is subway cities in 2010. City-level clustered standard errors in parentheses. Stars denote significance levels: ∗ 0.10, ∗ ∗ 0.05, ∗ ∗ ∗ 0.01. 
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We next consider models that allow for a distributed lag structure in
ur data. In column 1 of Table 8 , we replicate column 3 of Table 6 and in
olumns 2–4 we substitute successively older lags of change in subways
or the current value. Like the effects of current subways, the effects of
agged subways are tiny and precisely estimated. In column 5 we include
he current change of subways and three lags and see that coefficients
re virtually identical to those we obtain when we include subway vari-
bles one at a time. This suggests that our focus on the relationship
etween current subway expansions and current population growth is
ot leading us to miss some longer term effect of subways on population
rowth. These regressions also suggest that a subway expansion does not
ffect current or future rates of population growth. 

In Table 9 we turn attention to the problem of omitted variables
sing the strategy described in Eq. (10) . In column 1 of Table 9 we
eplicate the first difference regression from column 3 of Table 6 for
eference. In column 2 we include an interaction between subways and
n indicator for above median mean slope within 25 km of the city
enter. If we think that cities build subways when some topographical
onstraint on their development begins to bind, then we should expect
ities more subject to such topographical constraints to respond differ-
ntly to changes in subways than other cities. The results in column
 do not support this intuition. Column 3 replicates column 2, but in
lace of the average slope, measures topographical constraints with the
levation range within 25 km of the city center. Like column 2, the re-
ults in column 3 do not suggest that subways affect cities with difficult
opography differently than flatter cities. 

In column 4 we interact subway growth with an indicator for above
edian kilometers of highways in a 25 km circle around the city. That

he coefficients on the main effect and the interaction are zero suggests
hat subway growth does not have a differential impact depending on
hether the city is well served by highways. In column 5 we include
n interaction between an indicator for above median traffic congestion
nd subways. If we think that cities tend to build subways as traffic con-
estion begins to constrain their growth, then we should see congested
nd uncongested cities respond differently to subways. Column 5 does
ot support this intuition. 

In column 6 we include an interaction of subways with a capital
ity indicator. If we think, for example, that capital cities are more
ikely to be the beneficiary of public expenditure than other cities,
hen we might expect such spending to have a lower return in capi-
al cities than elsewhere. Column 6 does not support this intuition. In
olumn 7 we interact an indicator of an index of institutional quality
ith subways. If we think that a city’s response to subways depends
n its ability to reorganize private sector employment, then we might
xpect cities with a low score on this index to respond differently to
ubways than those with a high score. The data also do not support this
dea. 

In column 8 we interact subways with an indicator for whether the
ubway system predates the second world war — the time when cars be-
ame ubiquitous. If we think that older cities are laid out in a way that
s more conducive to public transit, then we might expect to see such
lder cities respond differently to subways than other cities. We do not.
n column 9 we interact subways with a measure of city centralization
efined as the absolute value of the city light gradient in 1995. The point
stimate on main effect is positive and marginally significant at the 10%
evel and suggests that subways have slightly larger effects on popula-
ion in more decentralized cities — since the interaction coefficient is
egative and of about same magnitude. 

Column 10 investigates whether the subway network extent is impor-
ant. To accomplish this, we calculate the share of all light within 25 km
f the center that is within 2 km of a station. If cities respond differ-
ntly to subways that serve a larger fraction of their economic activity
nd population, then we should expect to see a significant coefficient on
he interaction of this variable with subways. Our data do not support
his intuition. Column 11 investigates whether cities that were large in
950 respond differently to subways. They do not. In column 12 we see
101 
hat coastal cities grow slightly less fast in response to subways than do
ther cities, but this effect is tiny. 

Finally, in column 13 we ask whether cities with an effective bus net-
ork respond differently to subways than those that do not. The data

uggest that they do not. This is consistent with the first difference re-
ression in column 9 of Table 6 , where we see that controlling for bus
idership in a first difference regression does not lead to a positive esti-
ated effect of subways. 

We have now presented five types of results, cross-sectional, first dif-
erence, IV, second difference and first differences including a variety
f interaction effects. Consistent with descriptive evidence presented in
ection 1 , cross-sectional estimates are much larger than first differences
stimates. Results based on metropolitan area light intensity are qual-
tatively similar to those based on population. Once we add continent
pecific year effects in column 3 of Table 5 the cross-sectional estimate
f the effect of doubling subway stations is a 26% increase in popula-
ion. In first differences, the corresponding estimate is less than 1% and
s indistinguishable from zero. Our attempts to deal with confounding
ynamics and with omitted variables do not change this conclusion. 

Broadly, formal econometric results support the conclusion sug-
ested by the descriptive evidence. That is, that big cities build subways
nd that these subways subsequently have little or no effect on the pop-
lation in these cities. Our most favorable IV regressions indicate that
oubling a subway system will increase population by less than 2%,
lthough these estimates are never distinguishable from zero and first
ifference estimates of the effect of subways on population are often an
rder of magnitude smaller. 

. Subways and urban form 

In this section, we use the lights data to investigate the relationship
etween urban centralization and subway extent. We are interested in
etermining if the light gradient changes with subway expansions. We
ollow our previous empirical approach using the light gradient and light
ntercept in a city-year as our dependent variables. These variables de-
cribe, respectively, the rate at which light decays with distance from
he center, and brightness at the center. 

More specifically, we regress our estimate of the light slope B and
he intercept A in Eq. (3) respectively for each city-year on a measure
f subways using the various regression specifications employed previ-
usly to analyze subways and population. 

Table 10 reports our results. Panel (a) shows results using the light
radient B as the dependent variable, while panel (b) shows results us-
ng A as the dependent variable. We first discuss panel (a) at the top of
he table. Column 1 shows the pooled OLS estimate. In the cross section,
he elasticity of light gradient to subway extent is 0.034. Given that the
ight gradient is negative, this indicates that cities with larger subway
ystems have a flatter light gradient and are less centralized. Column 2
resents the first difference regression result in which we find an elas-
icity estimate of 0.023. In column 3 we control for the second lag of
opulation growth, and find virtually the same coefficient as in column
. Columns 4 and 5 present our instrumented first difference estimates
nd show that we find a statistically significant elasticity of 0.060. We
xperimented with a number of different indexes of centralization, for
xample, the ratio of light within 5 km of the center to light between 5
nd 25 km. Our estimates of the effects of subways on decentralization
re broadly similar across indexes. 

The bottom part of the table, panel (b), shows results using the light
ntercept A as the dependent variable. Mean light at the origin is 12.1
og points and is 0.17 log points lower in cities with subways (column 1).
olumn 2 shows the first difference regression result in which the elas-
icity of light at the origin to subways is -0.20. Controlling for lagged
opulation growth does not change the estimated coefficient (column
). Columns 4 and 5 show our instrumented estimates which are also
egative but larger and statistically significant at the 5% level in col-
mn 6 which controls for lagged population growth. Taking together
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Table 10 

Decentralization - Radiance calibrated light gradient. 

Panel a - Light gradient 

Dependent variable: Light gradient ΔLight Gradient 

Estimation: OLS OLS OLS IV IV 

(1) (2) (3) (4) (5) 

Δln (subway stations t ) 0.023 ∗∗∗ 0.024 ∗∗∗ 0.047 ∗ 0.060 ∗∗ 

(0.0062) (0.0062) (0.025) (0.024) 

ln (subway stations t ) 0.034 ∗∗∗ 

(0.010) 

Δ ln ( GDP 𝑝𝑐 𝑡 ) -0.078 -0.079 -0.100 ∗ -0.11 ∗ 

(0.053) (0.053) (0.056) (0.058) 

Δ ln ( country pop 𝑡 ) -0.0051 -0.0014 -0.091 -0.13 

(0.17) (0.17) (0.21) (0.22) 

ln ( GDP 𝑝𝑐 𝑡 ) 0.043 ∗ 

(0.024) 

ln ( country pop 𝑡 ) 0.048 ∗∗∗ 

(0.014) 

ln ( pop 𝑡 −2 ) control Yes Yes 

Mean of dep. variable -0.811 0.041 0.041 0.041 0.041 

Mean of subways regressor 3.06 0.36 0.36 0.36 0.36 

SD subways regressor 1.49 0.82 0.82 0.82 0.82 

R-squared 0.35 0.19 0.19 0.17 0.15 

Panel b - Light intercept 

Dependent variable: Light intercept ΔLight intercept 

Estimation: OLS OLS OLS IV IV 

(1) (2) (3) (4) (5) 

Δln (subway stations t ) -0.20 ∗∗∗ -0.20 ∗∗∗ -0.33 -0.46 ∗∗ 

(0.056) (0.056) (0.20) (0.20) 

ln (subway stations t ) -0.17 ∗ 

(0.085) 

Δ ln ( GDP 𝑝𝑐 𝑡 ) 1.36 ∗∗ 1.37 ∗∗ 1.48 ∗∗ 1.61 ∗∗ 

(0.47) (0.48) (0.50) (0.52) 

Δ ln ( country pop 𝑡 ) 0.14 0.10 0.62 1.03 

(1.20) (1.21) (1.58) (1.59) 

ln ( GDP 𝑝𝑐 𝑡 ) 0.030 

(0.22) 

ln ( country pop 𝑡 ) -0.23 ∗ 

(0.13) 

ln ( pop 𝑡 −2 ) control Yes Yes 

Mean of dep. variable 12.135 -0.367 -0.367 -0.367 -0.367 

Mean of subways regressor 3.06 0.36 0.36 0.36 0.36 

SD subways regressor 1.49 0.82 0.82 0.82 0.82 

R-squared 0.27 0.30 0.30 0.30 0.28 

Number of cities 137 137 137 137 137 

Number of subway cities 137 137 137 137 137 

Number of periods 4 3 3 3 3 

Observations 548 411 411 411 411 

Notes : For each city-year, a linear regression was estimated between the log mean radiance 

calibrated light intensity in successive rings at 0–1.5km, 1.5-5km, 5-10km, 10-25km and 25- 

50km and log distance from the city center centroid. Panel a column 1 dependent variable 

is the slope of the light gradient. Columns 2–5 use as dependent variable the change in 

slope over a 5 year period. Panel b column 1 dependent variable is the intercept of the light 

gradient. City-level robust standard errors in parentheses. All regressions include geographic 

controls and year by continent dummies. Stars denote significance levels: ∗ 0.10, ∗ ∗ 0.05, 
∗ ∗ ∗ 0.01. 
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he results in panels (a) and (b) suggests that subways decentralize ac-
ivity (flatter light slopes and lower intercept) from the center to the
eripheral areas of the city, and are consistent with the absence of pop-
lation growth documented in Section 7 . 

These results allow us to reject the claim that subways lead to a con-
entration of activity in the downtown core. While this may seem sur-
rising, decentralization in response to a decrease in transportation costs
s an almost universal feature of theoretical descriptions of cities. It is
lso consistent with established empirical results about the effects roads
 Baum-Snow (2007) , Baum-Snow et al. (2017) and Garcia-López (2012) )
nd with Ahlfeldt and Wendland (2011) who find that commuter rail
ontributes to the decentralization of Berlin. In our data, we observe
hat 72% of subway cities have subway stations beyond 10 km from the
102 
ity center, and 16% of them have stations beyond 25 km. These statis-
ics suggest that subways are built to have some radial capacity that can
ontribute to decentralization. 

One of the most robust findings of the literature using within
ity variation to study the effects of subways. e.g., Gibbons and
achin (2005) and Billings (2011) , is that economic activity becomes

elatively concentrated near subways. To confirm that this feature is
resent in our data, we restricted attention to areas within 2 km of a
ubway station and recalculated light density gradients for each city on
he basis of these areas. As expected, density declines much more slowly
long subway lines than it does along other rays out from the city cen-
er. That is, our lights data confirm the main pattern seen in studies of
ubways that exploit within city variation. 
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Table 11 

Log ridership - Pooled cross section. 

Time periods: Quinquennial panel 

Dependent variable: ln (All ridership t ) ln (Subway ridership t ) ln (Bus ridership t ) 

(1) (2) (3) (4) (5) (6) 

ln (subway stations t ) 0.66 ∗∗∗ 0.90 ∗∗∗ 1.09 ∗∗∗ 1.19 ∗∗∗ 0.54 ∗∗∗ 0.61 ∗∗∗ 

(0.16) (0.15) (0.13) (0.15) (0.14) (0.11) 

ln ( GDP 𝑝𝑐 𝑡 ) -1.31 ∗∗∗ -0.25 -1.76 ∗∗∗ 

(0.31) (0.28) (0.37) 

ln ( country pop 𝑡 ) -0.12 -0.09 -0.04 

(0.17) (0.15) (0.15) 

Geographic controls No Yes No Yes No Yes 

YearXContinent dummies No Yes No Yes No Yes 

Mean of dep. variable 19.77 19.77 18.82 18.82 18.60 18.60 

Mean of subways regressor 4.04 4.04 3.87 3.87 3.67 3.67 

SD subways regressor 0.98 0.98 1.04 1.04 1.17 1.17 

R-squared 0.32 0.78 0.57 0.74 0.23 0.70 

Number of cities 34 34 78 78 45 45 

Number of subway cities 34 34 78 78 45 45 

Number of periods 10 10 10 10 10 10 

Observations 88 88 225 225 117 117 

Notes : Dependent variable: Log ridership of subways and buses in metropolitan area in period t. City- 

level clustered standard errors in parentheses. Stars denote significance levels: ∗ 0.10, ∗ ∗ 0.05, ∗ ∗ ∗ 

0.01. Geographic controls are capital city dummy, log km to ocean, log km to land border, and log 

km to major navigable river. (Odd columns)-Pooled cross section. (Even columns)-Add geographic 

controls, GDP pc control, country population, and yearXcontinent dummies. 
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29 From Table 5 column 6, the subway line elasticity of population is 0.52. 

Thus we have, 0 . 52 × 0 . 23 = 0 . 12 . 
30 Ten car subway trains can carry about 35,000 people per hour (Transit Ca- 

pacity and Quality of Service Manual (1999)(ch. 1, part 1, p1-22), Transit Co- 

operative Research Program) or 87,500 over the course of a 2.5 h morning com- 

mute. Thus, a single new subway line could allow 87,500 new commuters to 

reach a central city. With a 50% labor force participation rate such a migration 

could increase a city’s population by 175,000. This is 3.7% increase to the 4.7 

million population of an average subway city in our sample. Since an average 

subway system has 57 stations and an average subway line has 13.2 stations, 

adding a new subway line is a 23% increase in the extent of an average subway 

network. Dividing, this suggests that doubling the extent of an average subway 
0 . 037 
. Ridership 

Previous literature has provided wide-ranging predictions about
ravel mode substitution patterns. For example, the Los Angeles subway
xpansion was opposed by groups representing residents of poor neigh-
orhoods under the argument that funding (and hence the supply) of
uses serving these neighborhoods would decrease as a consequence of
arge operating subsidies to the subway (Grengs, 2002 ). If this argument
olds in general, we should observe that bus ridership decreases when
ubways expand. On the other hand, some authors have argued that
verall public transit ridership should be positively affected by subway
xpansions since buses and subways complement each other in provid-
ng public transportation ( c.f. Hensher, 2007 ). As an example of why
his would occur they point out that bus lines are redesigned after sub-
ay expansions to feed passengers into the subway system. Under this
rgument bus ridership should increase when subway systems expand.
inally, studies of rail expansions have argued that most subway users
ere previously bus users (Baum Snow and Kahn, 2005 ), suggesting that

he net effect on overall ridership of rail expansions should be small. 
Table 11 shows pooled cross sectional estimates relating subway ex-

ent to ridership. Cities with larger subway systems have more transit
iders (the elasticity is 0.90 in column 2). Similarly, cities with larger
ubway systems have more subway riders (the elasticity in column 4 is
.19) as well as bus riders (the elasticity in column 6 is 0.61). As with
able 5 , we view these pooled ols estimates as mainly descriptive. 

Table 12 presents our first difference estimations. In Column 3 we
nd that the total transit ridership elasticity of subway extent is 0.68
significant at the 5% level). This suggests that subway expansions lead
o increases in total transit ridership. 

In columns 4–6 we show that subway ridership elasticity to subway
xtent is 0.61 and is distinguishable from zero. On the other hand, the
ffect of subway expansions on bus ridership is close to zero in columns
–9. This echoes Duranton and Turner (2011) who find that increase
o the stock of highway kilometers in a city lead to large increases in
riving, and that only a little of this increase reflects diversion of traf-
c from other roads. The results in columns 4–6 also suggest that sub-
ay ridership increases less than proportionally with system extent (e.g.,
ne-sided test p -value = 0.044 for column 6). This is interesting for two
easons. First, it suggests that increases in subway extent elicit smaller
 n

103 
ncreases in ridership than the increases in driving that follow from in-
reases in the road network ( Duranton and Turner, 2011 ). Second, it
uggests that subway networks may be subject to decreasing returns to
cale. This is consistent with findings of decreasing returns to scale in
he road network in Couture et al. (2018) . 

0. Discussion 

0.1. Subways and growth 

On the basis of Fig. 3 , it is natural to conjecture that subways are
mportant for the growth of cities. Our cross-sectional estimates support
his conjecture. With 4.5 lines in an average system, adding a subway
ine is about a 23% increase in system extent. Using our cross-sectional
stimate of the relationship between subway lines and population we
ave that a new subway is associated with a population increase of
bout 12%. 29 This is close to a back of the envelope calculation of the
opulation growth that would occur if a new subway line operated at
apacity and all of its riders migrated to the city because of the new
ubway line. 30 Thus, if we compare the cross-sectional estimates with
he technical capabilities of subways, the cross-sectional estimates seem
easible, but only barely. 

Other estimation strategies tell a different story. Our first differ-
nce estimates suggest that doubling the extent of a subway network
auses at most a tiny increase in population. While these estimates
re consistent with patterns seen in the raw data, the possibility of
etwork could lead to a population increase of about 
0 . 23 

× 100 = 16 . 1 %. 
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Table 12 

Log ridership - First differences. 

Time periods: Quinquennial panel 

Dependent variable: Δln (All ridership t ) Δln (Subway ridership t ) Δln (Bus ridership t ) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Δln (subway stations t ) 0.728 ∗∗ 0.734 ∗∗ 0.678 ∗∗ 0.572 ∗∗ 0.660 ∗∗ 0.613 ∗∗ -0.001 0.005 -0.011 

(0.238) (0.261) (0.299) (0.213) (0.198) (0.224) (0.044) (0.060) (0.050) 

Δ ln ( GDP 𝑝𝑐 𝑡 ) 0.069 0.158 0.271 

(0.229) (0.228) (0.276) 

Δ ln ( country pop 𝑡 ) 1.238 1.116 3.181 ∗∗ 

(1.302) (1.154) (1.186) 

YearXContinent dummies No Yes Yes No Yes Yes No Yes Yes 

Continent dummies No Yes Yes No Yes Yes No Yes Yes 

Mean of dep. variable 0.064 0.064 0.064 0.150 0.150 0.150 0.014 0.014 0.014 

Mean of subways regressor 0.06 0.06 0.06 0.11 0.11 0.11 0.10 0.10 0.10 

SD subways regressor 0.15 0.15 0.15 0.23 0.23 0.23 0.38 0.38 0.38 

R-squared 0.39 0.56 0.57 0.20 0.41 0.42 0.00 0.35 0.39 

Number of cities 24 24 24 63 63 63 31 31 31 

Number of subway cities 24 24 24 63 63 63 31 31 31 

Number of periods 8 8 8 9 9 9 8 8 8 

Observations 48 48 48 143 143 143 63 63 63 

Notes: Dependent variable: Change in log ridersip of metropolitan area in a 5 year period. Sample is subway cities. City-level 

clustered standard errors in parentheses. Stars denote significance levels: ∗ 0.10, ∗ ∗ 0.05, ∗ ∗ ∗ 0.01. (1)- No controls. (2)-Add 

yearXcontinent dummies (3)-Add log gdp and log country pop. controls. 
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onfounding dynamics or omitted variables are obstacles to a causal
nterpretation of these estimates. To investigate the possibility that
ubway expansions systematically occur in periods of low population
rowth, we control for the recent history of population growth, con-
uct second difference and instrumental variables estimates. These es-
imates also yield tiny elasticities. To investigate the role of omitted
ariables we consider a large set of possible control variables. These
stimates fail to find evidence for a big hidden effect of subways on
rowth. The weight of evidence hence suggests that big cities build sub-
ays, but that subways have at most a tiny effect on urban population
rowth. 

0.2. Subways and ridership 

We also investigate the effect of subway expansions on transit rid-
rship. Somewhat surprisingly, we find that subway expansions do not
ecrease bus ridership. We also find that doubling the extent of a sub-
ay network leads to about a 60% increase in ridership. Our estimates
re precise enough to allow us to reject the hypothesis of no-effect and
lso to reject the hypothesis of a 100% effect. Thus, our point estimates
re suggestive of a large ridership response to subway expansions, and
lso of modest decreasing returns to subway extent. 

To understand the relationship between our findings for ridership
nd population, we first calculate the number of immigrant subway com-
uters that would be required to completely account for the increase in

idership associated with a subway expansion. 31 This calculation sug-
ests that the increases in ridership that follow subway expansions are
ar too large to consist of immigrant commuters. This suggests, in turn,
hat increases in ridership must primarily reflect an increase in commute
r non-commute trips by current residents. 
31 An average subway network serves about 377 million riders per year. If a 

edicated subway commuter rides the subway twice per day, 250 days per year, 

hen an average subway system could serve about 0.75 million such commuters. 

his means doubling the extent of a subway network would require about 0 . 6 ×
 . 75 𝑚𝑖𝑙 𝑙 𝑖𝑜𝑛 = 0 . 45 𝑚𝑖𝑙 𝑙 𝑖𝑜𝑛 new dedicated subway commuters. With 50% labor 

orce participation and average city population of 4.7 million, if, hypothetically, 

ew ridership resulting from an expansion is provided by new migrants to the 

ity who are dedicated subway commuters, then city population would increase 

y about 19% in response to a doubling of system extent. 
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0.3. Subways and decentralization 

Our investigation of the effect of subways on urban form finds that
ubway expansions cause cities to spread out. Our first difference and IV
stimations in Table 10 indicate that a doubling of the subway network
auses the light density gradient to flatten by between 0.02 and 0.06.
sing the larger of these two estimates, we can calculate that a doubling
f the subway network causes the share of all light within 5km of the
enter to decrease by about 2.2% in an average city, holding total light
onstant. At 13.2 stations per line and 57 stations per system, adding an
verage radial subway line increases system capacity by about 23% and
hould lead to about 0.5% decrease in the central share of a city’s light.

Although this decentralization effect is also seen for radial highways,
he effect of subways seems to be smaller. Baum-Snow (2007) finds that
 single interstate highway causes about 9% of the population of a us
ity to decentralize, while Baum-Snow et al. (2017) find that a radial
ighway causes about 5% of the population of a Chinese city to de-
entralize. These effects are about 10 times as large as those we find for
ubways. The relative size of the subway effect seems even smaller if we
ompare the capacity of a subway line with that of a radial highway. 32 

To understand the relationship between our decentralization results
nd those for population and ridership, suppose that changes in light are
xactly proportional to changes in residential population. In this case,
oubling the extent of an average city’s subway network would lead to
 2.2% decrease in lights within 5km of the center. If changes in lights
nd changes in population are perfectly proportional, this requires that
bout 94,000 people move in an average city with population 4.7 mil-
ion. Again assuming 50% labor force participation, this means moving
7,000 workers. If all of these workers use the subway to commute to
mmobile jobs from their newly remote residences, this subway induced
ecentralization will give rise to about 47,000 new dedicated subway
ommuters. 

We saw above that the increase in ridership that follows from a dou-
ling of the subway network could serve about 450,000 new dedicated
ubway commuters. Even under our extreme assumptions, this is about
32 As we note in footnote 30, a subway line can carry about 35,000 people per 

our at peak capacity. A limited access highway lane carries about 2200 cars 

er hour at peak capacity. Thus, a four lane radial highway consisting of two 

anes in each direction can carry about 4400 cars per hour each way, about 12% 

f the capacity of a subway line (in the US, interstate highways are most often 

wo lanes in each direction). 
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Fig. A.1. Stations in a subway system by time since system opening. 

Note : Vertical axis is log of subway stations in a system. Horizontal axis is years 

since system opening. Dots indicate individual city-years. 

Fig. A.2. Growth of subways and 20 year lagged subway level. 

Note : Vertical axis is change in log stations in a system over five years. Horizontal 

axis is log stations 20 years prior ( 𝑡 − 4 ). Linear fit overlaid. 
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0 times as many as are implied by the amount of decentralization. Thus,
e probably cannot account for the increase in ridership that follows a

ubway expansion with an increase in commuting by newly decentral-
zed existing residents. 

Since we also cannot account for the increase in ridership with new
ity residents, we conjecture that subways either displace other modes of
ransport while keeping travel constant, or induce new trips by subway.
he evidence provided in Gendron-Carrier et al. (2017) that subways

ead to lower levels of pollution is consistent with such transport mode
ubstitution. 

1. Conclusion 

Subway expansions appear to have little or no effect on population
rowth, they lead to modest increases in ridership, and they have small
ffects on the configuration of cities. New ridership is unlikely to primar-
ly consist of new commuters and subway expansions probably lead to
ncreases in aggregate city land rent that are small relative to construc-
ion costs. These results do not seem to provide a basis for the large
ubsidies that subway construction and operation often requires. 

While we have addressed the effects of subway expansion on pop-
lation, urban form and ridership, we have not addressed the effect of
ubway expansions on air pollution - although this is taken up in a com-
anion piece ( Gendron-Carrier et al., 2017 ). With this said, our results
ere suggest that the evaluation of subway projects ought to rest on the
emand for mobility, farebox revenue, and not on the ability of subways
o promote city growth. 

ppendix A. Supplemental results 

While Fig. 1 shows the growth of the world’s subways, Fig. A.1 traces
ut the extent of individual systems as a function of the time since they
pened. Each marker in this figure describes a city year, so that there
s one marker for each of the city-years in our data where at least one
ubway station is open. Consistent with Fig. 1 , most of the observations
re in the left portion of the graph. This reflects the fact that many
ubways systems have opened in the past 30 years. On the other hand,
arkers in the right hand portion of the graph describe the handful of

ubway systems that date back to the 19th century. The solid line in the
gure describes a locally weighted regression of system extent on system
ge. This figure suggests that the expansion of a city’s subway network
s predictable. Expansion is rapid during the first 30–40 years after a
ystem opens and slows thereafter. Fig. A.2 illustrates the variation that
dentifies our first stage regression more explicitly. The horizontal axis
s the fourth lag of log system extent and the vertical axis is change
n current log extent. The negative relationship we would expect from
ig. A.1 is clear. Table A.1 presents our first stage regressions. These
egressions show that the clear negative relationship between lagged
evel and change that we see in Fig. A.2 is robust to the inclusion of
ontrols. 

ppendix A.1. Data description 

In this subsection we describe the data sources and variable defini-
ions for each of the interaction variables used in Table 9 . 

Digital elevation maps (DEM) were obtained from the publicly
vailable Shuttle Radar Tomography Mission (NASA-SRTM). The DEM
ataset contains elevation as well as land slope at 3 arc-second resolu-
ion (about 90 m) worldwide. The mean slope was calculated within a
5 km disk around the city center. Cities were then partitioned at the
edian value of the average slope to generate the interaction used in

olumn 2. 
The elevation range variable was defined using the SRTM DEM data

s the maximum minus the minimum value for terrain elevation within
 25 km disk around the city center. Cities were then partitioned at the
105 
edian value of the elevation range to generate the interaction used in
olumn 3. 

Digital data on worldwide highways was obtained from ESRI’s roads
nd highways layer. We used rank 1 roads (highways) and calculated
otal kilometers of roads within a 25 km disk of a city’s center. Cities
ere then partitioned at the median value of kilometers of highways in
 city to generate the interaction used in column 4. 

Congestion data was downloaded from TomTom ( http://
ww.tomtom.com/en_ca/trafficindex/#/list , accessed July 2015)
hich ranks city traffic conditions in 219 major cities worldwide. Cities
ere partitioned at the median value of congestion to generate the

nteraction used in column 5. 
Capital city refers to being a country capital. This variable was ob-

ained from the UN cities dataset. 
For institutional quality we used the World Bank’s Doing Busi-

ess ranking ( http://www.doingbusiness.org/rankings , accessed may
013). The ‘Good for doing business’ variable used in column 7 indi-
ates that the country is among the top half for ease of doing business,
hich means the regulatory environment is conducive to the starting
nd operation of a local firm. The rankings are determined by sorting
he aggregate distance to frontier scores on 10 topics, each consisting of
everal indicators, giving equal weight to each topic. 

http://www.tomtom.com/en_ca/trafficindex/\043/list
http://www.doingbusiness.org/rankings
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Table A.1 

Subways first stage: First difference – lagged subway instru- 

ments. 

(1) (2) (3) 

Dependent variable: Δln ( s t ) Δln ( s t ) Δln ( s t ) 

ln ( subway stations 𝑡 −4 ) -0.094 ∗∗∗ -0.100 ∗∗∗ 

(0.008) (0.008) 

ln ( subway stations 𝑡 −8 ) -0.067 ∗∗∗ 

(0.005) 

Δ ln ( pop 𝑡 −2 ) 0.084 -0.121 0.199 

(0.151) (0.526) (0.151) 

Δ ln ( pop 𝑡 −3 ) 0.251 

(0.585) 

Δ ln ( GDP 𝑝𝑐 𝑡 ) 0.024 0.001 0.057 

(0.160) (0.170) (0.167) 

Δ ln ( country pop 𝑡 ) 0.905 0.980 1.156 ∗ 

(0.660) (0.662) (0.613) 

YearXContinent dummies Yes Yes Yes 

Mean of dep. variable 0.29 0.31 0.29 

R-squared 0.13 0.12 0.10 

Number of cities 137 137 137 

Number of subway cities 137 137 137 

Number of periods 10 9 10 

Excluded instruments F-stat 132.36 147.51 153.49 

Observations 1235 1124 1235 

Notes: Dependent variable is the change in log subway stations in 

a five year period. Stars denote significance levels: ∗ 0.10, ∗ ∗ 0.05, 
∗ ∗ ∗ 0.01. Sample is subway cities. City-level clustered standard 

errors in parentheses. 
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The centralization variable used in column 9 is defined as the abso-
ute value of the city light gradient in 1995. Larger values hence corre-
pond more centralized cities. 

The subway coverage variable used in column 10 is a measure of
hether the subway system in 1995 provided an above median coverage
f total city lights. To create this variable, we first defined 2 km radius
isks around subway stations operational in 1995. We then calculated
he sum of lights within the subway disks in 1995 and proceeded to
ake the ratio of this value to the sum of lights in a 25 km disk around
he city center. Cities were partitioned at the median value of subway
overage to generate the interaction used in column 10. 

In column 11, a city was classified as coastal if its centroid is located
ithin 20 km of the ocean. To provide a concrete example of this, Hous-

on is the city closest to the limit of the cutoff for being coastal using
his definition. 
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